1
|
Fratta Pasini AM, Stranieri C, Di Leo EG, Bertolone L, Aparo A, Busti F, Castagna A, Vianello A, Chesini F, Friso S, Girelli D, Cominacini L. Identification of Early Biomarkers of Mortality in COVID-19 Hospitalized Patients: A LASSO-Based Cox and Logistic Approach. Viruses 2025; 17:359. [PMID: 40143288 PMCID: PMC11946718 DOI: 10.3390/v17030359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/06/2025] [Accepted: 02/20/2025] [Indexed: 03/28/2025] Open
Abstract
This study aimed to identify possible early biomarkers of mortality among clinical and biochemical parameters, iron metabolism parameters, and cytokines detected within 24 h from admission in hospitalized COVID-19 patients. We enrolled 80 hospitalized patients (40 survivors and 40 non-survivors) with COVID-19 pneumonia and acute respiratory failure. The median time from the onset of COVID-19 symptoms to hospital admission was lower in non-survivors than survivors (p < 0.05). Respiratory failure, expressed as the ratio of arterial oxygen partial pressure to the fraction of inspired oxygen (P/F), was more severe in non-survivors than survivors (p < 0.0001). Comorbidities were similar in both groups. Among biochemical parameters and cytokines, eGFR and interleukin (IL)-1β were found to be significantly lower (p < 0.05), while LDH, IL-10, and IL-8 were significantly higher in non-survivors than in survivors (p < 0.0005, p < 0.05 and p < 0.005, respectively). Among other parameters, LDH values distribution showed the most significant difference between study groups (p < 0.0001). LASSO feature selection combined with Cox proportional hazards and logistic regression models was applied to identify features distinguishing between survivors and non-survivors. Both approaches highlighted LDH as the strongest predictor, with IL-22 and creatinine emerging in the Cox model, while IL-10, eGFR, and creatinine were influential in the logistic model (AUC = 0.744 for Cox, 0.723 for logistic regression). In a similar manner, we applied linear regression for predicting LDH levels, identifying the P/F ratio as the top predictor, followed by IL-10 and eGFR (NRMSE = 0.128). Collectively, these findings underscore LDH's critical role in mortality prediction, with P/F and IL-10 as key determinants of LDH increases in this Italian COVID-19 cohort.
Collapse
Affiliation(s)
- Anna Maria Fratta Pasini
- Department of Medicine, Section of Internal Medicine D, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (C.S.); (E.G.D.L.); (L.B.); (F.B.); (A.V.); (F.C.); (D.G.); (L.C.)
| | - Chiara Stranieri
- Department of Medicine, Section of Internal Medicine D, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (C.S.); (E.G.D.L.); (L.B.); (F.B.); (A.V.); (F.C.); (D.G.); (L.C.)
| | - Edoardo Giuseppe Di Leo
- Department of Medicine, Section of Internal Medicine D, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (C.S.); (E.G.D.L.); (L.B.); (F.B.); (A.V.); (F.C.); (D.G.); (L.C.)
| | - Lorenzo Bertolone
- Department of Medicine, Section of Internal Medicine D, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (C.S.); (E.G.D.L.); (L.B.); (F.B.); (A.V.); (F.C.); (D.G.); (L.C.)
| | - Antonino Aparo
- Interdepartmental Laboratory of Medical Research, Research Center LURM, University of Verona, 37134 Verona, Italy;
| | - Fabiana Busti
- Department of Medicine, Section of Internal Medicine D, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (C.S.); (E.G.D.L.); (L.B.); (F.B.); (A.V.); (F.C.); (D.G.); (L.C.)
| | - Annalisa Castagna
- Department of Medicine, Section of Internal Medicine B, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy (S.F.)
| | - Alice Vianello
- Department of Medicine, Section of Internal Medicine D, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (C.S.); (E.G.D.L.); (L.B.); (F.B.); (A.V.); (F.C.); (D.G.); (L.C.)
| | - Fabio Chesini
- Department of Medicine, Section of Internal Medicine D, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (C.S.); (E.G.D.L.); (L.B.); (F.B.); (A.V.); (F.C.); (D.G.); (L.C.)
| | - Simonetta Friso
- Department of Medicine, Section of Internal Medicine B, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy (S.F.)
| | - Domenico Girelli
- Department of Medicine, Section of Internal Medicine D, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (C.S.); (E.G.D.L.); (L.B.); (F.B.); (A.V.); (F.C.); (D.G.); (L.C.)
| | - Luciano Cominacini
- Department of Medicine, Section of Internal Medicine D, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (C.S.); (E.G.D.L.); (L.B.); (F.B.); (A.V.); (F.C.); (D.G.); (L.C.)
| |
Collapse
|
2
|
Ferrer G, Palacios F, Chiu PY, Wong K, Bueno-Costa A, Barrientos JC, Kolitz JE, Allen SL, Rai KR, Chen SS, Sherry B, Chiorazzi N. CLL crosstalk with naïve T cells enhances the differentiation of IL-22-producing T cells and CLL -cell survival. Leukemia 2025; 39:499-502. [PMID: 39578533 PMCID: PMC11794130 DOI: 10.1038/s41375-024-02463-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/29/2024] [Accepted: 11/05/2024] [Indexed: 11/24/2024]
Affiliation(s)
- Gerardo Ferrer
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA.
- Cancer Epigenetics, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain.
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Madrid, Spain.
| | - Florencia Palacios
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA
- Chronic Lymphocytic Leukemia laboratory Research, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Pui Yan Chiu
- Center for Immunology & Inflammation, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA
| | - Kelly Wong
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA
| | - Alberto Bueno-Costa
- Cancer Epigenetics, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Madrid, Spain
| | - Jacqueline C Barrientos
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA
- Department of Medicine, Northwell Health, Manhasset and New Hyde Park, Manhasset, NY, USA
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA
| | - Jonathan E Kolitz
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA
- Department of Medicine, Northwell Health, Manhasset and New Hyde Park, Manhasset, NY, USA
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA
| | - Steven L Allen
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA
- Department of Medicine, Northwell Health, Manhasset and New Hyde Park, Manhasset, NY, USA
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA
| | - Kanti R Rai
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA
- Department of Medicine, Northwell Health, Manhasset and New Hyde Park, Manhasset, NY, USA
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA
| | - Shih-Shih Chen
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA
| | - Barbara Sherry
- Center for Immunology & Inflammation, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA
| | - Nicholas Chiorazzi
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA
- Department of Medicine, Northwell Health, Manhasset and New Hyde Park, Manhasset, NY, USA
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA
| |
Collapse
|
3
|
Kim DH, Croen LA, Iosif AM, Ames JL, Alexeeff S, Qian Y, Yolken RH, Ashwood P, Van de Water J. The association of maternal COVID-19-infection during pregnancy on the neonatal immune profile and associations with later diagnosis of neurodevelopmental disorders. Brain Behav Immun 2025; 123:1071-1080. [PMID: 39532198 DOI: 10.1016/j.bbi.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/15/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
Despite the prevalence and significant concern of COVID-19 in maternal and offspring health, little is known about the impact of COVID-19 during pregnancy on newborn immunity and neurodevelopment. This study aimed to examine 1) the relationship between maternal COVID-19 during pregnancy and newborn immune profiles and investigate the 2) associations between specific newborn immune profiles and the risk of subsequent diagnosis of a neurodevelopmental disorder (NDD) among children with prenatal exposure to COVID-19. Newborn dried bloodspots (NBS) from 545 children born at Kaiser Permanente Northern California between January 2020 and September 2021 (460 [223 males, 237 females] to COVID-19-infected [COVID+] mothers; 85 [45 males, 40 females] to COVID-19-uninfected [COVID-] mothers) were used to profile newborn immune molecules via a 42-plex cytokine/chemokine assay. Among the 460 children born to COVID+ mothers, 73 (47 males, 27 females) were later diagnosed with an NDD. In the first set of analyses examining the association between maternal COVID-19 infection during pregnancy and newborn immune profile, the results adjusted for covariates but uncorrected for multiple comparisons showed that newborns of COVID+ mothers had significantly higher levels of IL-22 (estimate [est.] = 0.16, 95 % Cl 0.01, 0.3, p = 0.04) and GM-CSF (est. = 0.27, 95 % Cl 0.09, 0.46, p = 0.004) compared to newborns of COVID- mothers. These differences were no longer statistically significant after multiple comparison adjustments. In the second analysis exploring the association between newborn profile and later diagnosis of NDD among newborns born to COVID+ mothers, the results adjusted for covariates revealed an association between higher neonatal levels of IL-22 (hazard ratio [HR] = 0.49, 95 % Cl 0.33, 0.75, p = 0.001) and lower risk of a later diagnosis of an NDD, which remained significant after multiple comparison adjustments (p = 0.04). Other neonatal cytokines/chemokines/growth factors such as sCD40L (HR = 0.7, 95 % Cl 0.57, 0.9, p = 0.009), IP-10 (HR = 0.46, 95 % Cl 0.25, 0.83, p = 0.009), MIG (HR = 0.52, 95 % Cl 0.3, 0.9, p = 0.02), FLT-3L (HR = 0.45, 95 % Cl 0.24, 0.83, p = 0.01), PDGF AB/BB (HR = 0.56, 95 % Cl 0.36, 0.99, p = 0.046), VEGF (HR = 0.57, 95 % Cl 0.34, 0.98, p = 0.04), and IL-4 (HR = 0.48, 95 % Cl 0.26, 0.93, p = 0.03) were no longer statistically significant after multiple comparison adjustments. Despite the imbalance between the number of COVID-19 exposed and unexposed newborns in this study cohort, our novel findings enhance our understanding of the potential impact of maternal COVID-19 infection during pregnancy on the developing neonatal immune system. Our findings highlight the role of immune molecules, beyond those considered to be pro-inflammatory, that may be crucial in maternal and newborn immunity against COVID-19 infection during pregnancy. Furthermore, our results suggest that reduced levels of neonatal immune molecules in newborns of COVID + mothers may be linked to an increased risk of a subsequent diagnosis of an NDD.
Collapse
Affiliation(s)
- Danielle Hj Kim
- Department of Internal Medicine, Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, CA, USA; Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Lisa A Croen
- Division of Research, Kaiser Permanente Northern California, Pleasanton, CA, USA
| | - Ana-Maria Iosif
- Department of Public Health Sciences, Division of Biostatistics, University of California, Davis, CA, USA
| | - Jennifer L Ames
- Division of Research, Kaiser Permanente Northern California, Pleasanton, CA, USA
| | - Stacey Alexeeff
- Division of Research, Kaiser Permanente Northern California, Pleasanton, CA, USA
| | - Yinge Qian
- Division of Research, Kaiser Permanente Northern California, Pleasanton, CA, USA
| | - Robert H Yolken
- Stanley Division of Developmental Neurovirology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA; MIND Institute, University of California, Davis, CA, USA
| | - Judy Van de Water
- Department of Internal Medicine, Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, CA, USA; Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA; MIND Institute, University of California, Davis, CA, USA.
| |
Collapse
|
4
|
Bochnia-Bueno L, Coelho GM, Cataneo AHD, Zanluca C, Ferreira LH, Cavalcanti LPDG, Clementino MADF, Yaochite JNU, Dos Santos HG, Nogueira MB, Duarte Dos Santos CN, Raboni SM. Assessment of immune responses to a Comirnaty® booster following CoronaVac® vaccination in healthcare workers. Mem Inst Oswaldo Cruz 2024; 119:e230239. [PMID: 39258622 PMCID: PMC11385826 DOI: 10.1590/0074-02760230239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/13/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND The immunological response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and immunisation is variable. OBJECTIVES To describe the humoral immune response by correlating IgA and IgG antibodies with NAbs titration following CoronaVac® immunisation and an mRNA (Comirnaty®) booster among healthcare workers (HCWs) and to compare the cytokine and interleukin profiles between HCWs vaccinated with CoronaVac and coronavirus disease 2019 (COVID-19) infected patients. METHODS Samples from 133 HCWs collected at 20 (T1) and 90 (T2) days after CoronaVac immunisation and 15 (T3) days after a booster dose with the Comirnaty vaccine were analysed for IgA and IgG EIA and neutralisation assay. Cytokine levels from vaccinated individuals at T1 day and COVID-19 patients were compared. FINDINGS Neutralising antibodies (NAbs) were observed in 81.7% of participants at T1, but only 49.2% maintained detectable NAbs after 90 days. The booster dose increased NAbs response in all participants. The cytokines with the highest levels post-vaccination were IL-6 and MCP-1. The MCP-1, IL-18, and IFN- γ levels were higher in COVID-19 patients than in vaccinated HCWs, while IL-22 levels increased in the vaccinated HCWs group. MAIN CONCLUSIONS The neutralisation titres in the T2 samples decreased, and antibody levels detected at T2 showed a more significant reduction than the neutralisation. The higher IL-22 expression in immunised individuals compared to those with COVID-19 suggests that IL-22 may be beneficial in protecting against severe disease.
Collapse
Affiliation(s)
- Lucas Bochnia-Bueno
- Universidade Federal do Paraná, Laboratório de Virologia, Curitiba, PR, Brasil
- Universidade Federal do Paraná, Programa de Pós-Graduação em Microbiologia, Parasitologia e Patologia, Curitiba, PR, Brasil
| | - Gabriela Mattoso Coelho
- Fundação Oswaldo Cruz-Fiocruz, Instituto Carlos Chagas, Laboratório de Virologia Molecular, Curitiba, PR, Brasil
| | | | - Camila Zanluca
- Fundação Oswaldo Cruz-Fiocruz, Instituto Carlos Chagas, Laboratório de Virologia Molecular, Curitiba, PR, Brasil
| | - Laura Holtman Ferreira
- Universidade Federal do Paraná, Laboratório de Virologia, Curitiba, PR, Brasil
- Universidade Federal do Paraná, Programa de Pós-Graduação em Microbiologia, Parasitologia e Patologia, Curitiba, PR, Brasil
| | | | | | - Juliana Navarro Ueda Yaochite
- Universidade Federal do Ceará, Faculdade de Farmácia, Odontologia e Enfermagem, Departamento de Análises Clínicas e Toxicologia, Fortaleza, CE, Brasil
| | | | - Meri Bordignon Nogueira
- Universidade Federal do Paraná, Laboratório de Virologia, Curitiba, PR, Brasil
- Universidade Federal do Paraná, Programa de Pós-Graduação em Microbiologia, Parasitologia e Patologia, Curitiba, PR, Brasil
| | | | - Sonia Mara Raboni
- Universidade Federal do Paraná, Laboratório de Virologia, Curitiba, PR, Brasil
- Universidade Federal do Paraná, Programa de Pós-Graduação em Microbiologia, Parasitologia e Patologia, Curitiba, PR, Brasil
| |
Collapse
|
5
|
Sánchez-Menéndez C, de la Calle-Jiménez O, Mateos E, Vigón L, Fuertes D, Murciano Antón MA, San José E, García-Gutiérrez V, Cervero M, Torres M, Coiras M. Different polarization and functionality of CD4+ T helper subsets in people with post-COVID condition. Front Immunol 2024; 15:1431411. [PMID: 39257580 PMCID: PMC11385313 DOI: 10.3389/fimmu.2024.1431411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/09/2024] [Indexed: 09/12/2024] Open
Abstract
Introduction After mild COVID-19 that does not require hospitalization, some individuals develop persistent symptoms that may worsen over time, producing a multisystemic condition termed Post-COVID condition (PCC). Among other disorders, PCC is characterized by persistent changes in the immune system that may not be solved several months after COVID-19 diagnosis. Methods People with PCC were recruited to determine the distribution and functionality of CD4+ T helper (Th) subsets in comparison with individuals with mild, severe, and critical presentations of acute COVID-19 to evaluate their contribution as risk or protective factors for PCC. Results People with PCC showed low levels of Th1 cells, similar to individuals with severe and critical COVID-19, although these cells presented a higher capacity to express IFNγ in response to stimulation. Th2/Th1 correlation was negative in individuals with acute forms of COVID-19, but there was no significant Th2/Th1 correlation in people with PCC. Th2 cells from people with PCC presented high capacity to express IL-4 and IL-13, which are related to low ventilation and death associated with COVID-19. Levels of proinflammatory Th9 and Th17 subsets were significantly higher in people with PCC in comparison with acute COVID-19, being Th1/Th9 correlation negative in these individuals, which probably contributed to a more pro-inflammatory than antiviral scenario. Th17 cells from approximately 50% of individuals with PCC had no capacity to express IL-17A and IL-22, similar to individuals with critical COVID-19, which would prevent clearing extracellular pathogens. Th2/Th17 correlation was positive in people with PCC, which in the absence of negative Th1/Th2 correlation could also contribute to the proinflammatory state. Finally, Th22 cells from most individuals with PCC had no capacity to express IL-13 or IL-22, which could increase tendency to reinfections due to impaired epithelial regeneration. Discussion People with PCC showed skewed polarization of CD4+ Th subsets with altered functionality that was more similar to individuals with severe and critical presentations of acute COVID-19 than to people who fully recovered from mild disease. New strategies aimed at reprogramming the immune response and redirecting CD4+ Th cell polarization may be necessary to reduce the proinflammatory environment characteristic of PCC.
Collapse
Affiliation(s)
- Clara Sánchez-Menéndez
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- PhD Program in Biomedical Sciences and Public Health, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
- Hematology and Hemotherapy Service, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Olivia de la Calle-Jiménez
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Internal Medicine Service, Hospital Universitario Clínico San Carlos, Madrid, Spain
| | - Elena Mateos
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Lorena Vigón
- AIDS Immunopathology, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Daniel Fuertes
- School of Telecommunications Engineering, Universidad Politécnica de Madrid, Madrid, Spain
| | - María Aranzazu Murciano Antón
- Family Medicine, Centro de Salud Doctor Pedro Laín Entralgo, Alcorcón, Madrid, Spain
- International PhD School, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain
| | - Esther San José
- Immunomodulation Unit, Department of Health Sciences, Faculty of Biomedical and Health Sciences, European University of Madrid, Madrid, Spain
| | - Valentín García-Gutiérrez
- Hematology and Hemotherapy Service, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Miguel Cervero
- School of Medicine, Universidad Alfonso X El Sabio, Madrid, Spain
| | - Montserrat Torres
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Mayte Coiras
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
6
|
Halvorsen B, Viermyr HK, Ueland T, Sagen EL, Michelsen AE, Bjerkeli V, Tveita AA, Henriksen KN, Kåsine T, Dyrhol-Riise AM, Trøseid M, Dahl TB, Aukrust P, Gregersen I. IL-22 is increased in hospitalized patients with COVID-19 and associates with cardiac involvement. J Infect 2024; 89:106176. [PMID: 38719108 DOI: 10.1016/j.jinf.2024.106176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024]
Affiliation(s)
- Bente Halvorsen
- Research Institute for Internal Medicine, Oslo University Hospital Rikshospitalet, 0027 Oslo, Norway; Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
| | - Hans-Kittil Viermyr
- Research Institute for Internal Medicine, Oslo University Hospital Rikshospitalet, 0027 Oslo, Norway
| | - Thor Ueland
- Research Institute for Internal Medicine, Oslo University Hospital Rikshospitalet, 0027 Oslo, Norway; Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway; Thrombosis Research Center (TREC), Division of internal medicine, University hospital of North Norway, Tromsø Norway
| | - Ellen L Sagen
- Research Institute for Internal Medicine, Oslo University Hospital Rikshospitalet, 0027 Oslo, Norway
| | - Annika E Michelsen
- Research Institute for Internal Medicine, Oslo University Hospital Rikshospitalet, 0027 Oslo, Norway; Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
| | - Vigdis Bjerkeli
- Research Institute for Internal Medicine, Oslo University Hospital Rikshospitalet, 0027 Oslo, Norway
| | - Anders A Tveita
- Department of Internal Medicine, Bærum Hospital, Vestre Viken Hospital Trust, 1346 Gjettum, Norway; Division of Laboratory Medicine, Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
| | - Katerina N Henriksen
- Department of Hematology, Oslo University Hospital, Oslo, Norway; Hospital Pharmacies, South-Eastern Norway Enterprise, Oslo, Norway
| | - Trine Kåsine
- Department of Anaesthesia and Intensive Care Medicine, Oslo University Hospital, Oslo, Norway
| | - Anne Ma Dyrhol-Riise
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway; Department of Infectious Diseases, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Marius Trøseid
- Research Institute for Internal Medicine, Oslo University Hospital Rikshospitalet, 0027 Oslo, Norway; Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway; Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Tuva B Dahl
- Research Institute for Internal Medicine, Oslo University Hospital Rikshospitalet, 0027 Oslo, Norway; Department of Acute Medicine, Oslo University Hospital, Oslo, Norway
| | - Pål Aukrust
- Research Institute for Internal Medicine, Oslo University Hospital Rikshospitalet, 0027 Oslo, Norway; Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway; Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Ida Gregersen
- Research Institute for Internal Medicine, Oslo University Hospital Rikshospitalet, 0027 Oslo, Norway.
| |
Collapse
|
7
|
Peng Q, Luo X, Mo L, Xu X, Liu Y, Liu D, Yang P. TRIM41 contributes to the pathogenesis of airway allergy by compromising dendritic cells' tolerogenic properties. iScience 2024; 27:110067. [PMID: 38883815 PMCID: PMC11176661 DOI: 10.1016/j.isci.2024.110067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/19/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024] Open
Abstract
Dendritic cells (DC) play a crucial role in the initiation of immune responses. TRIM41, an E3 ubiquitin ligase, can facilitate targeting protein degradation. The purpose of this study is to analyze the role of TRIM41 in the pathogenesis of airway allergy (AA) and the impact of regulating TRIM41 on suppressing AA. We observed that the airway DCs of AA mice had a higher expression of Trim41. The expression of Trim41 in airway DCs was associated with the DCs' tolerogenic functions of AA mice. The AA responses, including increased amounts of eosinophil peroxidase, mast cell protease-1, Th2 cytokines, and specific IgE in bronchoalveolar lavage fluids, were positively correlated with the Trim41 expression in mouse airway DCs. TRIM41 induced c-Maf degradation and interfered with the Il10 expression in airway DCs, which could be counteracted by inhibiting TRIM41. Regulation of TRIM41 mitigated experimental AA responses.
Collapse
Affiliation(s)
- Qiuying Peng
- Department of Pediatric Otolaryngology, Shenzhen Hospital of Southern Medical University, Shenzhen, China
- Department of Pediatrics, Guangzhou Panyu Maternal and Children Health Hospital, Guangzhou, China
| | - Xiangqian Luo
- Department of Pediatric Otolaryngology, Shenzhen Hospital of Southern Medical University, Shenzhen, China
| | - Lihua Mo
- Department of Pediatric Otolaryngology, Shenzhen Hospital of Southern Medical University, Shenzhen, China
- Institute of Allergy & Immunology of Shenzhen University and State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China
- Department of General Practice Medicine, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xuejie Xu
- Institute of Allergy & Immunology of Shenzhen University and State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China
| | - Yu Liu
- Department of General Practice Medicine, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Dabo Liu
- Department of Pediatric Otolaryngology, Shenzhen Hospital of Southern Medical University, Shenzhen, China
| | - Pingchang Yang
- Institute of Allergy & Immunology of Shenzhen University and State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China
| |
Collapse
|
8
|
Letafati A, Ardekani OS, Naderisemiromi M, Norouzi M, Shafiei M, Nik S, Mozhgani SH. Unraveling the dynamic mechanisms of natural killer cells in viral infections: insights and implications. Virol J 2024; 21:18. [PMID: 38216935 PMCID: PMC10785350 DOI: 10.1186/s12985-024-02287-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/04/2024] [Indexed: 01/14/2024] Open
Abstract
Viruses pose a constant threat to human well-being, necessitating the immune system to develop robust defenses. Natural killer (NK) cells, which play a crucial role in the immune system, have become recognized as vital participants in protecting the body against viral infections. These remarkable innate immune cells possess the unique ability to directly recognize and eliminate infected cells, thereby contributing to the early control and containment of viral pathogens. However, recent research has uncovered an intriguing phenomenon: the alteration of NK cells during viral infections. In addition to their well-established role in antiviral defense, NK cells undergo dynamic changes in their phenotype, function, and regulatory mechanisms upon encountering viral pathogens. These alterations can significantly impact the effectiveness of NK cell responses during viral infections. This review explores the multifaceted role of NK cells in antiviral immunity, highlighting their conventional effector functions as well as the emerging concept of NK cell alteration in the context of viral infections. Understanding the intricate interplay between NK cells and viral infections is crucial for advancing our knowledge of antiviral immune responses and could offer valuable information for the creation of innovative therapeutic approaches to combat viral diseases.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Omid Salahi Ardekani
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Mina Naderisemiromi
- Department of Immunology, Faculty of Medicine and Health, The University of Manchester, Manchester, UK
| | - Mehdi Norouzi
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | | | - Soheil Nik
- School of Medicine, Alborz University of Medical Sciences, Karaj, Alborz, Iran
| | - Sayed-Hamidreza Mozhgani
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran.
- Department of Microbiology and Virology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
9
|
Moradi Marjaneh M, Challenger JD, Salas A, Gómez-Carballa A, Sivananthan A, Rivero-Calle I, Barbeito-Castiñeiras G, Foo CY, Wu Y, Liew F, Jackson HR, Habgood-Coote D, D'Souza G, Nichols SJ, Wright VJ, Levin M, Kaforou M, Thwaites RS, Okell LC, Martinón-Torres F, Cunnington AJ. Analysis of blood and nasal epithelial transcriptomes to identify mechanisms associated with control of SARS-CoV-2 viral load in the upper respiratory tract. J Infect 2023; 87:538-550. [PMID: 37863321 DOI: 10.1016/j.jinf.2023.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
OBJECTIVES The amount of SARS-CoV-2 detected in the upper respiratory tract (URT viral load) is a key driver of transmission of infection. Current evidence suggests that mechanisms constraining URT viral load are different from those controlling lower respiratory tract viral load and disease severity. Understanding such mechanisms may help to develop treatments and vaccine strategies to reduce transmission. Combining mathematical modelling of URT viral load dynamics with transcriptome analyses we aimed to identify mechanisms controlling URT viral load. METHODS COVID-19 patients were recruited in Spain during the first wave of the pandemic. RNA sequencing of peripheral blood and targeted NanoString nCounter transcriptome analysis of nasal epithelium were performed and gene expression analysed in relation to paired URT viral load samples collected within 15 days of symptom onset. Proportions of major immune cells in blood were estimated from transcriptional data using computational differential estimation. Weighted correlation network analysis (adjusted for cell proportions) and fixed transcriptional repertoire analysis were used to identify associations with URT viral load, quantified as standard deviations (z-scores) from an expected trajectory over time. RESULTS Eighty-two subjects (50% female, median age 54 years (range 3-73)) with COVID-19 were recruited. Paired URT viral load samples were available for 16 blood transcriptome samples, and 17 respiratory epithelial transcriptome samples. Natural Killer (NK) cells were the only blood cell type significantly correlated with URT viral load z-scores (r = -0.62, P = 0.010). Twenty-four blood gene expression modules were significantly correlated with URT viral load z-score, the most significant being a module of genes connected around IFNA14 (Interferon Alpha-14) expression (r = -0.60, P = 1e-10). In fixed repertoire analysis, prostanoid-related gene expression was significantly associated with higher viral load. In nasal epithelium, only GNLY (granulysin) gene expression showed significant negative correlation with viral load. CONCLUSIONS Correlations between the transcriptional host response and inter-individual variations in SARS-CoV-2 URT viral load, revealed many molecular mechanisms plausibly favouring or constraining viral replication. Existing evidence corroborates many of these mechanisms, including likely roles for NK cells, granulysin, prostanoids and interferon alpha-14. Inhibition of prostanoid production and administration of interferon alpha-14 may be attractive transmission-blocking interventions.
Collapse
Affiliation(s)
- Mahdi Moradi Marjaneh
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, UK; Centre for Paediatrics and Child Health, Imperial College London, London, UK; Section of Virology, Department of Infectious Diseases, Imperial College London, London, UK.
| | - Joseph D Challenger
- Medical Research Council Centre for Global Infections Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Antonio Salas
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain; Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
| | - Alberto Gómez-Carballa
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain; Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
| | - Abilash Sivananthan
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, UK
| | - Irene Rivero-Calle
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain; Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| | - Gema Barbeito-Castiñeiras
- Servicio de Microbiología y Parasitología, Complejo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| | - Cher Y Foo
- School of Medicine, Imperial College London, London, UK
| | - Yue Wu
- Department of Surgery and Cancer, Imperial College London, St. Mary's Hospital, London, UK
| | - Felicity Liew
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Heather R Jackson
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, UK; Centre for Paediatrics and Child Health, Imperial College London, London, UK
| | - Dominic Habgood-Coote
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, UK; Centre for Paediatrics and Child Health, Imperial College London, London, UK
| | - Giselle D'Souza
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, UK; Centre for Paediatrics and Child Health, Imperial College London, London, UK
| | - Samuel J Nichols
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, UK; Centre for Paediatrics and Child Health, Imperial College London, London, UK
| | - Victoria J Wright
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, UK; Centre for Paediatrics and Child Health, Imperial College London, London, UK
| | - Michael Levin
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, UK; Centre for Paediatrics and Child Health, Imperial College London, London, UK
| | - Myrsini Kaforou
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, UK; Centre for Paediatrics and Child Health, Imperial College London, London, UK
| | - Ryan S Thwaites
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Lucy C Okell
- Medical Research Council Centre for Global Infections Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Federico Martinón-Torres
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain; Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| | - Aubrey J Cunnington
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, UK; Centre for Paediatrics and Child Health, Imperial College London, London, UK.
| |
Collapse
|
10
|
Rajamanickam A, Nathella PK, Selvaraj N, Manoj M, Thangaraj JWV, Muthusamy SK, Chethrapilly Purushothaman GK, Bhatnagar T, Ponnaiah M, Ramasamy S, Velusamy S, Babu S. Characterization of IL-10 Family of Cytokines in Acute and Convalescent COVID-19 Individuals. J Interferon Cytokine Res 2023; 43:469-477. [PMID: 37708007 DOI: 10.1089/jir.2023.0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023] Open
Abstract
Cytokines are major players in orchestrating inflammation, disease pathogenesis, and severity during COVID-19. Members of the interleukin (IL)-10 family of cytokines play important roles in regulating immune responses to various inflammatory and infectious diseases. However, the role of the IL-10 family of cytokines in COVID-19 remains elusive. Hence, we determined the plasma levels of the IL-10 family of cytokines (IL-10, IL-19, IL-20, IL-22, and IL-24) in 7 groups of COVID-19 individuals, based on days since real-time reverse transcriptase-polymerase chain reaction confirmation of SARS-CoV-2 infection. Our data show that the levels of IL-10, IL-19, IL-20, IL-22, and IL-24 cytokines decreased from days 15-30 to days 61-90 and plateaued thereafter. Severe COVID-19 patients exhibit increased plasma levels of IL-10, IL-19, IL-20, IL-22, and IL-24 compared to mild patients. Thus, our study provides evidence of alterations in the plasma levels of the IL-10 family of cytokines in convalescent COVID-19 individuals.
Collapse
Affiliation(s)
- Anuradha Rajamanickam
- National Institutes of Health-International Center for Excellence in Research, Chennai, India
| | | | - Nandhini Selvaraj
- National Institutes of Health-International Center for Excellence in Research, Chennai, India
| | | | | | | | | | | | | | | | | | - Subash Babu
- National Institutes of Health-International Center for Excellence in Research, Chennai, India
| |
Collapse
|
11
|
Sfera A, Rahman L, Zapata-Martín Del Campo CM, Kozlakidis Z. Long COVID as a Tauopathy: Of "Brain Fog" and "Fusogen Storms". Int J Mol Sci 2023; 24:12648. [PMID: 37628830 PMCID: PMC10454863 DOI: 10.3390/ijms241612648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Long COVID, also called post-acute sequelae of SARS-CoV-2, is characterized by a multitude of lingering symptoms, including impaired cognition, that can last for many months. This symptom, often called "brain fog", affects the life quality of numerous individuals, increasing medical complications as well as healthcare expenditures. The etiopathogenesis of SARS-CoV-2-induced cognitive deficit is unclear, but the most likely cause is chronic inflammation maintained by a viral remnant thriving in select body reservoirs. These viral sanctuaries are likely comprised of fused, senescent cells, including microglia and astrocytes, that the pathogen can convert into neurotoxic phenotypes. Moreover, as the enteric nervous system contains neurons and glia, the virus likely lingers in the gastrointestinal tract as well, accounting for the intestinal symptoms of long COVID. Fusogens are proteins that can overcome the repulsive forces between cell membranes, allowing the virus to coalesce with host cells and enter the cytoplasm. In the intracellular compartment, the pathogen hijacks the actin cytoskeleton, fusing host cells with each other and engendering pathological syncytia. Cell-cell fusion enables the virus to infect the healthy neighboring cells. We surmise that syncytia formation drives cognitive impairment by facilitating the "seeding" of hyperphosphorylated Tau, documented in COVID-19. In our previous work, we hypothesized that the SARS-CoV-2 virus induces premature endothelial senescence, increasing the permeability of the intestinal and blood-brain barrier. This enables the migration of gastrointestinal tract microbes and/or their components into the host circulation, eventually reaching the brain where they may induce cognitive dysfunction. For example, translocated lipopolysaccharides or microbial DNA can induce Tau hyperphosphorylation, likely accounting for memory problems. In this perspective article, we examine the pathogenetic mechanisms and potential biomarkers of long COVID, including microbial cell-free DNA, interleukin 22, and phosphorylated Tau, as well as the beneficial effect of transcutaneous vagal nerve stimulation.
Collapse
Affiliation(s)
- Adonis Sfera
- Paton State Hospital, 3102 Highland Ave, Patton, CA 92369, USA
- School of Behavioral Health, Loma Linda University, 11139 Anderson St., Loma Linda, CA 92350, USA
- Department of Psychiatry, University of California, Riverside 900 University Ave, Riverside, CA 92521, USA
| | - Leah Rahman
- Department of Neuroscience, University of Oregon, 222 Huestis Hall, Eugene, OR 97401, USA
| | | | - Zisis Kozlakidis
- International Agency for Research on Cancer, World Health Organization, 69000 Lyon, France
| |
Collapse
|
12
|
Zhang K, Chen L, Zhu C, Zhang M, Liang C. Current Knowledge of Th22 Cell and IL-22 Functions in Infectious Diseases. Pathogens 2023; 12:pathogens12020176. [PMID: 36839448 PMCID: PMC9965464 DOI: 10.3390/pathogens12020176] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
T helper 22 (Th22) cells, a newly defined CD4+ T-cell lineage, are characterized by their distinct cytokine profile, which primarily consists of IL-13, IL-22 and TNF-α. Th22 cells express a wide spectrum of chemokine receptors, such as CCR4, CCR6 and CCR10. The main effector molecule secreted by Th22 cells is IL-22, a member of the IL-10 family, which acts by binding to IL-22R and triggering a complex downstream signaling system. Th22 cells and IL-22 have been found to play variable roles in human immunity. In preventing the progression of infections such as HIV and influenza, Th22/IL-22 exhibited protective anti-inflammatory characteristics, and their deleterious proinflammatory activities have been demonstrated to exacerbate other illnesses, including hepatitis B and Helicobacter pylori infection. Herein, we review the current understanding of Th22 cells, including their definition, differentiation and mechanisms, and the effect of Th22/IL-22 on human infectious diseases. According to studies on Th22 cells, Th22/IL-22 may be a promising therapeutic target and an effective treatment strategy for various infections.
Collapse
Affiliation(s)
- Kunyu Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
- Institute of Urology, Anhui Medical University, Hefei 230022, China
- The Second Clinical Medical College, Anhui Medical University, Hefei 230032, China
| | - Lei Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
- Institute of Urology, Anhui Medical University, Hefei 230022, China
| | - Chenyu Zhu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
- Institute of Urology, Anhui Medical University, Hefei 230022, China
- The Second Clinical Medical College, Anhui Medical University, Hefei 230032, China
| | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
- Institute of Urology, Anhui Medical University, Hefei 230022, China
- Correspondence: (M.Z.); (C.L.); Tel./Fax: +86-55162922034 (M.Z.); +86-55162922034 (C.L.)
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
- Institute of Urology, Anhui Medical University, Hefei 230022, China
- Correspondence: (M.Z.); (C.L.); Tel./Fax: +86-55162922034 (M.Z.); +86-55162922034 (C.L.)
| |
Collapse
|
13
|
Majeed AY, Zulkafli NES, Ad'hiah AH. Interleukin-22 and interleukin-33 show up-regulated levels in the serum of patients with mild/moderate Coronavirus disease 2019. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2023; 12:24. [PMID: 36875710 PMCID: PMC9968467 DOI: 10.1186/s43088-023-00367-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/21/2023] [Indexed: 02/27/2023] Open
Abstract
Background This study analyzed serum concentrations of interleukin (IL)-22 and IL-33 (pro-inflammatory and anti-inflammatory cytokines) in 90 patients with mild/moderate coronavirus disease 2019 (COVID-19) and 90 healthy controls. Enzyme-linked immunosorbent assay kits were used to measure IL-22 and IL-33 concentrations. Results Median (interquartile range) concentrations of IL-22 and IL-33 were significantly higher in patients than in controls (IL-22: 18.6 [18.0-19.3] vs. 13.9 [12.1-14.9] pg/mL, probability [p] < 0.001; IL-33: 37.8 [35.3-43.0] vs. 24.1 [23.0-26.2] pg/mL, p < 0.001). As indicated by the area under the curve (AUC), IL-22 and IL-33 were excellent predictors of COVID-19 (AUC = 0.95 and 0.892, respectively). Multinomial logistic regression analysis demonstrated that individuals with high production (> control median) of IL-22 (odds ratio = 17.80 [95% CI: 6.48-48.90]; p = 0.001) and IL-33 (odds ratio = 19.0 [95% CI: 7.4-48.6]; p = 0.001) were more likely to develop COVID-19. A positive correlation was found between IL-22 and IL-33 and both cytokines also showed positive correlations with granulocyte-to-lymphocyte ratio and erythrocyte sedimentation rate in all participants. Conclusions IL-22 and IL-33 showed up-regulated concentrations in the serum of patients with mild/moderate COVID-19. Both cytokines may have prognostic value for COVID-19 along with their association with disease risk.
Collapse
Affiliation(s)
- Abdulraheem Y Majeed
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Penang, Malaysia
| | - Nor Effa S Zulkafli
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Penang, Malaysia
| | - Ali H Ad'hiah
- Tropical-Biological Research Unit, College of Science, University of Baghdad, Al-Jadriya, Al-Karrada, 10070 Baghdad, Iraq
| |
Collapse
|
14
|
Korobova ZR, Arsentieva NA, Liubimova NE, Batsunov OK, Dedkov VG, Gladkikh AS, Sharova AA, Adish Z, Chernykh EI, Kaschenko VA, Ratnikov VA, Gorelov VP, Stanevich OV, Kulikov AN, Pevtsov DE, Totolian AA. Cytokine Profiling in Different SARS-CoV-2 Genetic Variants. Int J Mol Sci 2022; 23:14146. [PMID: 36430621 PMCID: PMC9692520 DOI: 10.3390/ijms232214146] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/12/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022] Open
Abstract
This study is a successor of our previous work concerning changes in the chemokine profile in infection that are associated with different SARS-CoV-2 genetic variants. The goal of our study was to take into account both the virus and the host immune system by assessing concentrations of cytokines in patients infected with different SARS-CoV-2 variants (ancestral Wuhan strain, Alpha, Delta and Omicron). Our study was performed on 340 biological samples taken from COVID-19 patients and healthy donors in the timespan between May 2020 and April 2022. We performed genotyping of the virus in nasopharyngeal swabs, which was followed by assessment of cytokines' concentration in blood plasma. We noted that out of nearly 30 cytokines, only four showed stable elevation independently of the variant (IL-6, IL-10, IL-18 and IL-27), and we believe them to be 'constant' markers for COVID-19 infection. Cytokines that were studied as potential biomarkers lose their diagnostic value as the virus evolves, and the specter of potential targets for predictive models is narrowing. So far, only four cytokines (IL-6, IL-10, IL-18, and IL-27) showed a consistent rise in concentrations independently of the genetic variant of the virus. Although we believe our findings to be of scientific interest, we still consider them inconclusive; further investigation and comparison of immune responses to different variants of SARS-CoV-2 is required.
Collapse
Affiliation(s)
- Zoia R. Korobova
- Saint Petersburg Pasteur Institute, 14 Ulitsa Mira, 197101 Saint Petersburg, Russia
- Intensive Care Unit, Department of Immunology, Department of Infectious Diseases, Pavlov First State Medical University of St. Petersburg, 6–8 Ulitsa L’va Tolstovo, 197022 Saint Petersburg, Russia
| | | | - Natalia E. Liubimova
- Saint Petersburg Pasteur Institute, 14 Ulitsa Mira, 197101 Saint Petersburg, Russia
| | - Oleg K. Batsunov
- Saint Petersburg Pasteur Institute, 14 Ulitsa Mira, 197101 Saint Petersburg, Russia
- Intensive Care Unit, Department of Immunology, Department of Infectious Diseases, Pavlov First State Medical University of St. Petersburg, 6–8 Ulitsa L’va Tolstovo, 197022 Saint Petersburg, Russia
| | - Vladimir G. Dedkov
- Saint Petersburg Pasteur Institute, 14 Ulitsa Mira, 197101 Saint Petersburg, Russia
| | - Anna S. Gladkikh
- Saint Petersburg Pasteur Institute, 14 Ulitsa Mira, 197101 Saint Petersburg, Russia
| | - Alena A. Sharova
- Saint Petersburg Pasteur Institute, 14 Ulitsa Mira, 197101 Saint Petersburg, Russia
| | - Zhansaya Adish
- Saint Petersburg Pasteur Institute, 14 Ulitsa Mira, 197101 Saint Petersburg, Russia
- Laboratory of Immunochemistry and Immunobiotechnology, National Center for Biotechnology, 13/5, Kurgalzhynskoye Road, Nur-Sultan 010000, Kazakhstan
| | - Ekaterina I. Chernykh
- The Federal State Budgetary Institution ‘North-Western District Scientific and Clinical Center Named after L.G. Sokolov Federal Medical and Biological Agency’, Prospekt Kul’tury, 4, 194291 Saint Petersburg, Russia
| | - Victor A. Kaschenko
- The Federal State Budgetary Institution ‘North-Western District Scientific and Clinical Center Named after L.G. Sokolov Federal Medical and Biological Agency’, Prospekt Kul’tury, 4, 194291 Saint Petersburg, Russia
- Department of Faculty Surgery, Saint Petersburg State University, Universitetskaya Naberezhnaya, 7/9, 199034 Saint Petersburg, Russia
| | - Vyacheslav A. Ratnikov
- The Federal State Budgetary Institution ‘North-Western District Scientific and Clinical Center Named after L.G. Sokolov Federal Medical and Biological Agency’, Prospekt Kul’tury, 4, 194291 Saint Petersburg, Russia
- Scientific, Clinical and Educational Center “Radiation Diagnostics and Nuclear Medicine” of the Institute of High Medical Technologies, Saint Petersburg State University, Universitetskaya Naberezhnaya, 7/9, 199034 Saint Petersburg, Russia
| | - Victor P. Gorelov
- The Federal State Budgetary Institution ‘North-Western District Scientific and Clinical Center Named after L.G. Sokolov Federal Medical and Biological Agency’, Prospekt Kul’tury, 4, 194291 Saint Petersburg, Russia
| | - Oksana V. Stanevich
- Intensive Care Unit, Department of Immunology, Department of Infectious Diseases, Pavlov First State Medical University of St. Petersburg, 6–8 Ulitsa L’va Tolstovo, 197022 Saint Petersburg, Russia
| | - Alexandr N. Kulikov
- Intensive Care Unit, Department of Immunology, Department of Infectious Diseases, Pavlov First State Medical University of St. Petersburg, 6–8 Ulitsa L’va Tolstovo, 197022 Saint Petersburg, Russia
| | - Dmitry E. Pevtsov
- Intensive Care Unit, Department of Immunology, Department of Infectious Diseases, Pavlov First State Medical University of St. Petersburg, 6–8 Ulitsa L’va Tolstovo, 197022 Saint Petersburg, Russia
| | - Areg A. Totolian
- Saint Petersburg Pasteur Institute, 14 Ulitsa Mira, 197101 Saint Petersburg, Russia
- Intensive Care Unit, Department of Immunology, Department of Infectious Diseases, Pavlov First State Medical University of St. Petersburg, 6–8 Ulitsa L’va Tolstovo, 197022 Saint Petersburg, Russia
| |
Collapse
|
15
|
Lavis P, Morra S, Orte Cano C, Albayrak N, Corbière V, Olislagers V, Dauby N, Del Marmol V, Marchant A, Decaestecker C, Mascart F, De Vos N, Van de Borne P, Salmon I, Remmelink M, Parmentier M, Cardozo AK, Bondue B. Chemerin plasma levels are increased in COVID-19 patients and are an independent risk factor of mortality. Front Immunol 2022; 13:941663. [PMID: 36032171 PMCID: PMC9412239 DOI: 10.3389/fimmu.2022.941663] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/25/2022] [Indexed: 01/08/2023] Open
Abstract
Background Chemerin is an extracellular protein with chemotactic activities and its expression is increased in various diseases such as metabolic syndrome and inflammatory conditions. Its role in lung pathology has not yet been extensively studied but both known pro- and anti-inflammatory properties have been observed. The aim of our study was to evaluate the involvement of the chemerin/ChemR23 system in the physiopathology of COVID-19 with a particular focus on its prognostic value. Methods Blood samples from confirmed COVID-19 patients were collected at day 1, 5 and 14 from admission to Erasme Hospital (Brussels – Belgium). Chemerin concentrations and inflammatory biomarkers were analyzed in the plasma. Blood cells subtypes and their expression of ChemR23 were determined by flow cytometry. The expression of chemerin and ChemR23 was evaluated on lung tissue from autopsied COVID-19 patients by immunohistochemistry (IHC). Results 21 healthy controls (HC) and 88 COVID-19 patients, including 40 in intensive care unit (ICU) were included. Plasma chemerin concentration were significantly higher in ICU patients than in HC at all time-points analyzed (p<0.0001). Moreover, they were higher in deceased patients compared to survivors (p<0.05). Logistic univariate regression and multivariate analysis demonstrated that chemerin level at day 14 of admission was an independent risk factor for death. Accordingly, chemerin levels correlated with inflammatory biomarkers such as C-reactive protein and tumor necrosis factor α. Finally, IHC analysis revealed a strong expression of ChemR23 on smooth muscle cells and chemerin on myofibroblasts in advanced acute respiratory distress syndrome (ARDS). Discussion Increased plasma chemerin levels are a marker of severity and may predict death of COVID-19 patients. However, multicentric studies are needed, before chemerin can be considered as a biomarker of severity and death used in daily clinical practice. Further studies are also necessary to identify the precise mechanisms of the chemerin/ChemR23 system in ARDS secondary to viral pneumonia.
Collapse
Affiliation(s)
- Philomène Lavis
- Department of Pathology, Erasme Hospital, Université libre de Bruxelles, Brussels, Belgium
- I.R.I.B.H.M., Université libre de Bruxelles, Brussels, Belgium
| | - Sofia Morra
- Department of Cardiology, Erasme Hospital, Université libre de Bruxelles, Brussels, Belgium
| | - Carmen Orte Cano
- Department of Dermatology, Erasme Hospital, Université libre de Bruxelles, Brussels, Belgium
| | - Nurhan Albayrak
- Laboratory of Vaccinology and Mucosal Immunity, Université libre de Bruxelles, Brussels, Belgium
| | - Véronique Corbière
- Laboratory of Vaccinology and Mucosal Immunity, Université libre de Bruxelles, Brussels, Belgium
| | - Véronique Olislagers
- Institute for Medical Immunology, Université libre de Bruxelles, Brussels, Belgium
| | - Nicolas Dauby
- Institute for Medical Immunology, Université libre de Bruxelles, Brussels, Belgium
- Department of Infectious Diseases, C.H.U. Saint-Pierre, Brussels, Belgium
| | - Véronique Del Marmol
- Department of Dermatology, Erasme Hospital, Université libre de Bruxelles, Brussels, Belgium
| | - Arnaud Marchant
- Institute for Medical Immunology, Université libre de Bruxelles, Brussels, Belgium
| | - Christine Decaestecker
- DIAPath, Center for Microscopy and Molecular Imaging, Université libre de Bruxelles, Gosselies, Belgium
- Laboratory of Image Synthesis and Analysis, Université libre de Bruxelles, Brussels, Belgium
| | - Françoise Mascart
- Laboratory of Vaccinology and Mucosal Immunity, Université libre de Bruxelles, Brussels, Belgium
| | - Nathalie De Vos
- Department of Clinical Chemistry, LHUB-ULB, Université libre de Bruxelles, Brussels, Belgium
| | - Philippe Van de Borne
- Department of Cardiology, Erasme Hospital, Université libre de Bruxelles, Brussels, Belgium
- Institute for Translational Research in Cardiovascular and Respiratory Sciences, Université libre de Bruxelles, Brussels, Belgium
| | - Isabelle Salmon
- Department of Pathology, Erasme Hospital, Université libre de Bruxelles, Brussels, Belgium
- DIAPath, Center for Microscopy and Molecular Imaging, Université libre de Bruxelles, Gosselies, Belgium
- Centre Universitaire inter Régional d’expertise en Anatomie Pathologique Hospitalière, Jumet, Belgium
| | - Myriam Remmelink
- Department of Pathology, Erasme Hospital, Université libre de Bruxelles, Brussels, Belgium
| | - Marc Parmentier
- I.R.I.B.H.M., Université libre de Bruxelles, Brussels, Belgium
| | - Alessandra Kupper Cardozo
- Inflammation and Cell Death Signalling group, Experimental Gastroenterology Laboratory and Endotools, Université libre de Bruxelles, Brussels, Belgium
| | - Benjamin Bondue
- I.R.I.B.H.M., Université libre de Bruxelles, Brussels, Belgium
- Department of Pneumology, Erasme Hospital, Université libre de Bruxelles, Brussels, Belgium
- *Correspondence: Benjamin Bondue,
| |
Collapse
|
16
|
Fang S, Ju D, Lin Y, Chen W. The role of interleukin-22 in lung health and its therapeutic potential for COVID-19. Front Immunol 2022; 13:951107. [PMID: 35967401 PMCID: PMC9364265 DOI: 10.3389/fimmu.2022.951107] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Although numerous clinical trials have been implemented, an absolutely effective treatment against coronavirus disease 2019 (COVID-19) is still elusive. Interleukin-22 (IL-22) has attracted great interest over recent years, making it one of the best-studied cytokines of the interleukin-10 (IL-10) family. Unlike most interleukins, the major impact of IL-22 is exclusively on fibroblasts and epithelial cells due to the restricted expression of receptor. Numerous studies have suggested that IL-22 plays a crucial role in anti-viral infections through significantly ameliorating the immune cell-mediated inflammatory responses, and reducing tissue injury as well as further promoting epithelial repair and regeneration. Herein, we pay special attention to the role of IL-22 in the lungs. We summarize the latest progress in our understanding of IL-22 in lung health and disease and further discuss maneuvering this cytokine as potential immunotherapeutic strategy for the effective manage of COVID-19.
Collapse
Affiliation(s)
- Si Fang
- Multiscale Research Institute of Complex Systems & Jingan District Central Hospital of Shanghai, Fudan University, Shanghai, China
| | - Dianwen Ju
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Yong Lin
- Multiscale Research Institute of Complex Systems & Jingan District Central Hospital of Shanghai, Fudan University, Shanghai, China
| | - Wei Chen
- Multiscale Research Institute of Complex Systems & Jingan District Central Hospital of Shanghai, Fudan University, Shanghai, China
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, United States
| |
Collapse
|