1
|
Klein BY, Ben-David I, Gofrit ON, Greenblatt CL. Repurposing peripheral immunocytes of Bacillus Calmette Guerin-vaccinated melanoma patients to reveal preventive Alzheimer's disease mechanisms, possibly via the unfolded protein response. J Alzheimers Dis Rep 2025; 9:25424823241309664. [PMID: 40034523 PMCID: PMC11864245 DOI: 10.1177/25424823241309664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/05/2024] [Indexed: 03/05/2025] Open
Abstract
Background Alzheimer's disease (AD) dysfunctional unfolded protein response (UPR) is revealed by amyloid-β aggregates. Normally, UPR reacts to endoplasmic reticulum stress by resolving misfolded/aggregated proteins, and UPR failure induces brain-cell apoptosis consistent with AD pathology. Peripheral blood mononuclear cells (PBMC) and immunocyte brain infiltrates are involved in AD pathogenesis, whose risk is lowered by the Bacillus Calmette Guerin (BCG) vaccine. Hypothetically, BCG prevents AD caused by UPR-driven apoptosis in PBMC brain infiltrates, corrected by BCG-vaccinated PBMC brain infiltrates. Objective To reveal whether BCG shifts the UPR towards cell survival. Method: PBMC proteins from 6 individuals were compared by immuno-electrophoresis before and after BCG hypervaccination. Cryopreserved PBMC provided an opportunity to analyze the BCG impact on the UPR, although their donor destiny to develop AD was unknown. UPR signaling responsive to BCG was recorded to examine if BCG can influence UPR signaling and thereby explain the previously demonstrated AD prevention by BCG. Results UPR signal levels were scored according to positive versus negative cell survival odds by the BCG impact on a dozen UPR signals. The balance between positive and negative scores of individuals emphasizes the impact of the BCG vaccine on the UPR. The antiapoptotic UPR signals under BCG show opposite trends to UPR signals in AD brains, reported by the literature. In conclusion, 3/6 individuals had superior PBMC survival chances under BCG. Conclusions These results suggest that the UPR is part of the mechanism responsible for reducing the risk of AD, as previously shown among BCG-treated bladder cancer patients.
Collapse
Affiliation(s)
- Benjamin Y Klein
- Department of Microbiology and Molecular Genetics Hebrew University Medical School, Hadassah University Medical School, Ein-Karem, Jerusalem, Israel
| | - Inna Ben-David
- Sharett Institute of Oncology, Hadassah University Medical School,
Ein-Karem, Jerusalem, Israel
| | - Ofer N Gofrit
- Department of Urology, Hadassah University Medical School, Ein-Karem, Jerusalem, Israel
| | - Charles L Greenblatt
- Department of Microbiology and Molecular Genetics Hebrew University Medical School, Hadassah University Medical School, Ein-Karem, Jerusalem, Israel
| |
Collapse
|
2
|
Yin L, Bing Z, Zheng Y, Pan Y, Dong Y, Wang J, Luo R, Zhao Y, Dou H, Hou Y. Oroxylin A-induced Trained Immunity Promotes LC3-associated Phagocytosis in Macrophage in Protecting Mice Against Sepsis. Inflammation 2024; 47:2196-2214. [PMID: 38739341 DOI: 10.1007/s10753-024-02033-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 05/14/2024]
Abstract
Sepsis is defined as a dysregulated host response to infection that leads to multiorgan failure. Innate immune memory, i.e., "trained immunity", can result in stronger immune responses and provide protection against various infections. Many biological agents, including β-glucan, can induce trained immunity, but these stimuli may cause uncontrolled inflammation. Oroxylin A (OA) is an active flavonoid compound that is derived from Scutellaria baicalensis. OA is an agonist for inducing trained immunity in vivo and in vitro, and β-glucan was used as a positive control. The protective effects of OA-induced trained immunity were evaluated in mouse models that were established by either lipopolysaccharide (LPS) administration or caecal ligation and puncture (CLP). The expression of inflammatory factors and signaling pathway components involved in trained immunity was evaluated in vitro using qRT‒PCR, western blotting (WB) and enzyme-linked immunosorbent assay (ELISA). Flow cytometry and confocal microscopy were used to examine reactive oxygen species (ROS) levels and phagocytosis in trained macrophages. A PCR array was used to screen genes that were differentially expressed in trained macrophages. Here, we revealed that OA alleviated sepsis via trained immunity. OA-treated macrophages displayed increased glycolysis and mTOR phosphorylation, and mTOR inhibitors suppressed OA-induced trained immunity by effectively reprogramming macrophages. The PCR array revealed key genes in the mTOR signaling pathway in OA-treated macrophages. Furthermore, OA targeted the Dectin-1-syk axis to promote LC3-associated phagocytosis (LAP) by trained macrophages, thereby enhancing the ability of these macrophages to protect against infection. This ability could be transferred to a new host via the adoptive transfer of peritoneal macrophages. This study is the first to provide new insights into the potential of OA-induced trained immunity to be used as a strategy to protect mice against sepsis by promoting LAP by macrophages.
Collapse
Affiliation(s)
- Lijie Yin
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
| | - Ziqian Bing
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
| | - Yaojun Zheng
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
| | - Yuchen Pan
- Jiangsu International Laboratory of Immunity and Metabolism, The Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yue Dong
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
| | - Jiali Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
| | - Renjie Luo
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
| | - Yue Zhao
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China.
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, China.
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China.
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, China.
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China.
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, China.
| |
Collapse
|
3
|
Zhang W, Li P. The suppression of nuclear factor kappa B/microRNA 222 axis alleviates lipopolysaccharide-induced acute lung injury through increasing the alkylglyceronephosphate synthase expression. J Infect Chemother 2024; 31:102500. [PMID: 39209261 DOI: 10.1016/j.jiac.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/01/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Acute lung injury (ALI) is a serious and rapidly progressing pulmonary disorder with a high mortality rate. In this study, we aimed to investigate the relationship between miR-222 and NF-κB (p65) activation in ALI. METHODS ALI was induced in mice using lipopolysaccharide (LPS). Lung tissues and bronchoalveolar lavage fluid were collected for analysis. MH-S cell lines were used as an ALI model. Various techniques including histopathology, molecular analysis, and cell culture assays were employed. RESULTS Increased miR-222 levels were observed in the LPS-induced ALI mouse model. ALI mice exhibited severe lung pathology, inflammatory cell infiltration, edema, elevated W/D ratio, MPO activity, and increased TNFα, IL1, and IL6 levels, which were reversed by miR-222 antagomir, confirming miR-222's exacerbation of LPS-induced ALI. miR-222 directly targeted the 3'-UTR of alkylglyceronephosphate synthase (AGPS) mRNA, reducing its expression. AGPS is crucial for plasmalogen synthesis, which protects against oxidative stress. NF-κB (p-p65) levels were increased in ALI models, and LPS promoted the enrichment of the miR-222 promoter region, suggesting NF-κB (p65) involvement in miR-222 transcriptional regulation. The NF-κB/miR-222/AGPS axis played a significant role in ALI progression. CONCLUSIONS The present study indicates that NF-κB (p65) activates miR-222 transcription by enriching its promoter region, leading to increased miR-222 expression. Elevated miR-222 levels downregulate AGPS, thereby accelerating the progression of ALI. Targeting the NF-κB/miR-222/AGPS axis may hold promise as a therapeutic approach for ALI, although further research is needed to fully understand its significance.
Collapse
Affiliation(s)
- Wei Zhang
- Intensive Care Unit, Shandong Provincial Third Hospital, Shandong University, Jinan, 250031, China.
| | - Pibao Li
- Intensive Care Unit, Shandong Provincial Third Hospital, Shandong University, Jinan, 250031, China.
| |
Collapse
|
4
|
Kumar R, Kolloli A, Singh P, Shi L, Kupz A, Subbian S. The innate memory response of macrophages to Mycobacterium tuberculosis is shaped by the nature of the antigenic stimuli. Microbiol Spectr 2024; 12:e0047324. [PMID: 38980014 PMCID: PMC11302266 DOI: 10.1128/spectrum.00473-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/07/2024] [Indexed: 07/10/2024] Open
Abstract
Innate immune cells, such as macrophages, mount an immune response upon exposure to antigens and pathogens. Emerging evidence shows that macrophages exposed to an antigen can generate a "memory-like" response (a.k.a. trained immunity), which confers a non-specific and enhanced response upon subsequent stimulation with a second antigen/microbe. This trained immunity has been implicated in the enhanced response of macrophages against several invading pathogens. However, the association between the nature of the antigen and the corresponding immune correlate of elicited trained immunity is not fully understood. Similarly, the response of macrophages trained and restimulated with homologous stimulants to subsequent infection by pathogenic Mycobacterium tuberculosis (Mtb) remains unexplored. Here, we report the immune and metabolic profiles of trained immunity in human THP-1-derived macrophages after homologous training and restimulation with BCG, LPS, purified protein Derivative (PPD), heat-killed Mtb strains HN878 (hk-HN), and CDC1551 (hk-CDC). Furthermore, the impact of training on the autophagic and antimicrobial responses of macrophages with or without subsequent infection by clinical Mtb isolates HN878 and CDC1551 was evaluated. Results show that repeated stimulation of macrophages with different antigens displays distinct pro-inflammatory, metabolic, antimicrobial, and autophagy induction profiles. These macrophages also induce a differential antimicrobial response upon infection with clinical Mtb HN878 and CDC1551 isolates. A significantly reduced intracellular bacterial load was noted in the stimulated macrophages, which was augmented by the addition of rapamycin, an autophagy inducer. These observations suggest that the nature of the antigen and the mode of stimulation shape the magnitude and breadth of macrophage innate memory response, which impacts subsequent response to Mtb infection. IMPORTANCE Trained immunity (a.k.a. innate memory response) is a novel concept that has been rapidly emerging as a mechanism underpinning the non-specific immunity of innate immune cells, such as macrophages. However, the association between the nature of the stimuli and the corresponding immune correlate of trained immunity is not fully understood. Similarly, the kinetics of immunological and metabolic characteristics of macrophages upon "training" by the same antigen as primary and secondary stimuli (homologous stimulation) are not fully characterized. Furthermore, the ability of antigens such as purified protein derivative (PPD) and heat-killed-Mtb to induce trained immunity remains unknown. Similarly, the response of macrophages primed and trained by homologous stimulants to subsequent infection by pathogenic Mtb is yet to be reported. In this study, we evaluated the hypothesis that the nature of the stimuli impacts the depth and breadth of trained immunity in macrophages, which differentially affects their response to Mtb infection.
Collapse
Affiliation(s)
- Ranjeet Kumar
- Public Health Research Institute, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - Afsal Kolloli
- Public Health Research Institute, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - Pooja Singh
- Public Health Research Institute, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - Lanbo Shi
- Public Health Research Institute, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - Andreas Kupz
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns & Townsville, Queensland, Australia
| | - Selvakumar Subbian
- Public Health Research Institute, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
5
|
Xu JC, Wu K, Ma RQ, Li JH, Tao J, Hu Z, Fan XY. Establishment of an in vitro model of monocyte-like THP-1 cells for trained immunity induced by bacillus Calmette-Guérin. BMC Microbiol 2024; 24:130. [PMID: 38643095 PMCID: PMC11031977 DOI: 10.1186/s12866-024-03191-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/10/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Mycobacteria bloodstream infections are common in immunocompromised people and usually have disastrous consequences. As the primary phagocytes in the bloodstream, monocytes and neutrophils play critical roles in the fight against bloodstream mycobacteria infections. In contrast to macrophages, the responses of monocytes infected with the mycobacteria have been less investigated. RESULTS In this study, we first established a protocol for infection of non-adherent monocyte-like THP-1 cells (i.e. without the differentiation induced by phorbol 12-myristate 13-acetate (PMA) by bacillus Calmette-Guérin (BCG). Via the protocol, we were then capable of exploring the global transcriptomic profiles of non-adherent THP-1 cells infected with BCG, and found that NF-κB, MAPK and PI3K-Akt signaling pathways were enhanced, as well as some inflammatory chemokine/cytokine genes (e.g. CCL4, CXCL10, TNF and IL-1β) were up-regulated. Surprisingly, the Akt-HIF-mTOR signaling pathway was also activated, which induces trained immunity. In this in vitro infection model, increased cytokine responses to lipopolysaccharides (LPS) restimulation, higher cell viability, and decreased Candida albicans loads were observed. CONCLUSIONS We have first characterized the transcriptomic profiles of BCG-infected non-adherent THP-1 cells, and first developed a trained immunity in vitro model of the cells.
Collapse
Affiliation(s)
- Jin-Chuan Xu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, China
| | - Kang Wu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, China
- Shanghai R & S Biotech. Co., Ltd, Shanghai, China
- Zhejiang Free Trade Area R & S Biomedical Technology Co., Ltd, Zhoushan, Zhejiang, China
| | - Rui-Qing Ma
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, China
| | - Jian-Hui Li
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, China
| | - Jie Tao
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, China
| | - Zhidong Hu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, China
| | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Wang S, Wang D, Bai Y, Zheng G, Han Y, Wang L, Hu J, Zhu H, Bai Y. Expression of Toll-like receptors and host defence peptides in the cecum of chicken challenged with Eimeria tenella. Parasite Immunol 2024; 46:e13022. [PMID: 38384176 DOI: 10.1111/pim.13022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 02/23/2024]
Abstract
Chicken coccidiosis, caused by Eimeria protozoa, affects poultry farming. Toll-like receptors (TLRs) and host defence peptides (HDPs) help host innate immune responses to eliminate invading pathogens, but their roles in Eimeria tenella infection remain poorly understood. Herein, 14-day-old chickens were treated orally with 50,000 E. tenella oocysts and the cecum was dissected at different timepoints. mRNA expression of 10 chicken TLRs (chTLRs) and five HDPs was measured by quantitative real-time PCR. chTLR7 and chTLR15 were upregulated significantly at 3 h post-infection while other chTLRs were downregulated (p < .05). chTLR1a, chTLR1b, chTLR2b and chTLR4 peaked at 36 h post-infection, chTLR3, chTLR5 and chTLR15 peaked at 72 h post-infection and chTLR21 expression was highest among chTLRs, peaking at 48 h post-infection (p < 0.05). For HDPs, cathelicidin (CATH) 1 to 3 and B1 peaked at 48 h post-infection, liver-expressed antimicrobial peptide 2 peaked at 96 h post-infection, and CATH 2 expression was highest among HDPs. CATH2 and CATH3 were markedly upregulated at 3 h post-infection (p < .05). The results provide insight into innate immune molecules during E. tenella infection in chicken, and indicate that innate immune responses may mediate resistance to chicken coccidiosis.
Collapse
Affiliation(s)
- Song Wang
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang, China
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Danni Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Yilin Bai
- School of Agricultural Science, Zhengzhou University, Zhengzhou, China
| | - Guijie Zheng
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Yanhui Han
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Lei Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Jianhe Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Huili Zhu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Yueyu Bai
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| |
Collapse
|
7
|
Bakare OO, Gokul A, Niekerk LA, Aina O, Abiona A, Barker AM, Basson G, Nkomo M, Otomo L, Keyster M, Klein A. Recent Progress in the Characterization, Synthesis, Delivery Procedures, Treatment Strategies, and Precision of Antimicrobial Peptides. Int J Mol Sci 2023; 24:11864. [PMID: 37511621 PMCID: PMC10380191 DOI: 10.3390/ijms241411864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
Infectious diseases are constantly evolving to bypass antibiotics or create resistance against them. There is a piercing alarm for the need to improve the design of new effective antimicrobial agents such as antimicrobial peptides which are less prone to resistance and possess high sensitivity. This would guard public health in combating and overcoming stubborn pathogens and mitigate incurable diseases; however, the emergence of antimicrobial peptides' shortcomings ranging from untimely degradation by enzymes to difficulty in the design against specific targets is a major bottleneck in achieving these objectives. This review is aimed at highlighting the recent progress in antimicrobial peptide development in the area of nanotechnology-based delivery, selectivity indices, synthesis and characterization, their doping and coating, and the shortfall of these approaches. This review will raise awareness of antimicrobial peptides as prospective therapeutic agents in the medical and pharmaceutical industries, such as the sensitive treatment of diseases and their utilization. The knowledge from this development would guide the future design of these novel peptides and allow the development of highly specific, sensitive, and accurate antimicrobial peptides to initiate treatment regimens in patients to enable them to have accommodating lifestyles.
Collapse
Affiliation(s)
- Olalekan Olanrewaju Bakare
- Department of Biochemistry, Faculty of Basic Medical Sciences, Olabisi Onabanjo University, Sagamu 2002, Nigeria
| | - Arun Gokul
- Department of Plant Sciences, Qwaqwa Campus, University of the Free State, Phuthadithjaba 9866, South Africa
| | - Lee-Ann Niekerk
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Omolola Aina
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Ademola Abiona
- Department of Biochemistry, Faculty of Basic Medical Sciences, Olabisi Onabanjo University, Sagamu 2002, Nigeria
| | - Adele Mariska Barker
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Gerhard Basson
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Mbukeni Nkomo
- Department of Botany, H13 Botany Building, University of Zululand, Private Bag X1001, KwaDlangezwa 3886, South Africa
| | - Laetitia Otomo
- Department of Plant Sciences, Qwaqwa Campus, University of the Free State, Phuthadithjaba 9866, South Africa
| | - Marshall Keyster
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Ashwil Klein
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| |
Collapse
|
8
|
Ikenohuchi YJ, Silva MDS, Rego CMA, Francisco AF, da Silva Setúbal S, Ferreira E Ferreira AA, Boeno CN, Santana HM, Felipin KP, de Lima AM, de Mattos Fontes MR, Paloschi MV, Soares AM, Zuliani JP. A C-type lectin induces NLRP3 inflammasome activation via TLR4 interaction in human peripheral blood mononuclear cells. Cell Mol Life Sci 2023; 80:188. [PMID: 37349530 PMCID: PMC11073222 DOI: 10.1007/s00018-023-04839-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/17/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023]
Abstract
Lectins are a large group of proteins found in many snake venoms. BjcuL is a C-type lectin from Bothrops jararacussu snake venom that does not present cytotoxicity action on human peripheral blood mononuclear cells (PBMCs) at concentrations of 5 and 10 μg/mL. BjcuL demonstrates an immunomodulatory role in PBMCs with the production of pro- and anti-inflammatory cytokines (IL-2, IL-10, IFN-γ, IL-6, TNF-α, and IL-17) in addition to stimulate T cells to produce reactive oxygen species (ROS) that could play a role in the acute inflammatory reaction observed in the victims. Inflammasomes are an essential arm in cells of innate immunity to detect and sense a range of endogenous or exogenous, sterile, or infectious stimuli to elicit cellular responses and effector mechanisms. NLRP3 inflammasome is a significant target for this study, because the lectin is responsible for leukocyte activation stimulating the release of inflammatory mediators, which results in dynamic cellular responses to remove the detrimental process to the body in snakebites. Thus, this study aimed to investigate how isolated BjcuL from B. jararacussu venom affects NLRP3 inflammasome activation on PBMCs. For this, the cells were isolated by density gradient and incubated with BjcuL at different periods and concentrations for the evaluation of the activation of the NLRP3 inflammasome through gene and protein expressions of ASC, CASPASE-1, and NLRP3 by RT-qPCR, Western blot, and immunofluorescence, as well as the participation of Toll-like receptor 4 (TLR4) and ROS in the IL-1β production, a product resultant of the NLRP3 inflammasome activation. Herein, BjcuL interacts with TLR4 as demonstrated by in vitro and in silico studies and induces cytokines release via NF-κB signaling. By genic and protein expression assays, BjcuL activates NLRP3 inflammasome, and the pharmacological modulation with LPS-RS, an antagonist of TLR4; LPS-SM, an agonist of TLR4; MCC950, a specific NLRP3 inhibitor, and rotenone, an inhibitor of mitochondrial ROS, confirmed the participation of TLR4 and ROS in the NLRP3 inflammasome activation and IL-1β liberation. The effects of BjcuL on the regulation and activation of the NLRP3 inflammasome complex via TLR4 activation with ROS participation may be determinant for the development of the inflammatory local effects seen in snakebite victims. In addition, in silico together with in vitro studies provide information that may be useful in the rational design of TLR agonists as well as new adjuvants for immunomodulatory therapy.
Collapse
Affiliation(s)
- Yoda Janaina Ikenohuchi
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Rua da Beira, 7671 BR364, Km 3.5, Porto Velho, RO, CEP 76812-245, Brazil
| | - Milena Daniela Souza Silva
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Rua da Beira, 7671 BR364, Km 3.5, Porto Velho, RO, CEP 76812-245, Brazil
| | - Cristina Matiele Alves Rego
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Rua da Beira, 7671 BR364, Km 3.5, Porto Velho, RO, CEP 76812-245, Brazil
| | - Aleff Ferreira Francisco
- Department of Physics and Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University, UNESP, Botucatu, SP, Brazil
- Laboratory of Biotechnology of Proteins and Bioactive Compounds Applied to Health (LABIOPROT) and National Institute of Science and Technology in Epidemiology of the Occidental Amazonia (INCT-EPIAMO), Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Sulamita da Silva Setúbal
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Rua da Beira, 7671 BR364, Km 3.5, Porto Velho, RO, CEP 76812-245, Brazil
| | - Alex Augusto Ferreira E Ferreira
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Rua da Beira, 7671 BR364, Km 3.5, Porto Velho, RO, CEP 76812-245, Brazil
| | - Charles Nunes Boeno
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Rua da Beira, 7671 BR364, Km 3.5, Porto Velho, RO, CEP 76812-245, Brazil
| | - Hallison Mota Santana
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Rua da Beira, 7671 BR364, Km 3.5, Porto Velho, RO, CEP 76812-245, Brazil
| | - Kátia Paula Felipin
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Rua da Beira, 7671 BR364, Km 3.5, Porto Velho, RO, CEP 76812-245, Brazil
| | - Anderson Maciel de Lima
- Laboratory of Biotechnology of Proteins and Bioactive Compounds Applied to Health (LABIOPROT) and National Institute of Science and Technology in Epidemiology of the Occidental Amazonia (INCT-EPIAMO), Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Marcos Roberto de Mattos Fontes
- Department of Physics and Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University, UNESP, Botucatu, SP, Brazil
- Institute for Advance Studies of the Sea (IEAMAR), São Paulo State University, UNESP, São Vicente, SP, Brazil
| | - Mauro Valentino Paloschi
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Rua da Beira, 7671 BR364, Km 3.5, Porto Velho, RO, CEP 76812-245, Brazil
| | - Andreimar Martins Soares
- Laboratory of Biotechnology of Proteins and Bioactive Compounds Applied to Health (LABIOPROT) and National Institute of Science and Technology in Epidemiology of the Occidental Amazonia (INCT-EPIAMO), Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Juliana Pavan Zuliani
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Rua da Beira, 7671 BR364, Km 3.5, Porto Velho, RO, CEP 76812-245, Brazil.
- Department of Medicine, Federal University of Rondônia, UNIR, Porto Velho, RO, Brazil.
| |
Collapse
|