1
|
Sen S, Parihar N, Patil PM, Upadhyayula SM, Pemmaraju DB. Revisiting the Emerging Role of Light-Based Therapies in the Management of Spinal Cord Injuries. Mol Neurobiol 2025; 62:5891-5916. [PMID: 39658774 DOI: 10.1007/s12035-024-04658-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024]
Abstract
The surge in spinal cord injuries (SCI) attracted many neurobiologists to explore the underlying complex pathophysiology and to offer better therapeutic outcomes. The multimodal approaches to therapy in SCI have proven to be effective but to a limited extent. The clinical basics involve invasive procedures and limited therapeutic interventions, and most preclinical studies and formulations are yet to be translated due to numerous factors. In recent years, photobiomodulation therapy (PBMT) has found many applications in various medical fields. In most PBMT, studies on SCI have employed laser sources in experimental animal models as a non-invasive source. PBMT has been applied in numerous facets of SCI pathophysiology, especially attenuation of neuroinflammatory cascades, enhanced neuronal regeneration, reduced apoptosis and gliosis, and increased behavioral recovery within a short span. Although PBMT is specific in modulating mitochondrial bioenergetics, innumerous molecular pathways such as JAK-STAT, PI3K-AKT, NF-κB, MAPK, JNK/TLR/MYD88, ERK/CREB, TGF-β/SMAD, GSK3β-AKT-β-catenin, and AMPK/PGC-1α/TFAM signaling pathways have been or are yet to be exploited. PMBT has been effective not only in cell-specific actions in SCI such as astrocyte activation or microglial polarization or alterations in neuronal pathology but also modulated overall pathobiology in SCI animals such as rapid behavioral recovery. The goal of this review is to summarize research that has used PBMT for various models of SCI in different animals, including clarifying its mechanisms and prospective molecular pathways that may be utilized for better therapeutic outcomes.
Collapse
Affiliation(s)
- Santimoy Sen
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Nidhi Parihar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Prathamesh Mahadev Patil
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Suryanarayana Murty Upadhyayula
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Deepak B Pemmaraju
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India.
| |
Collapse
|
2
|
Yan B, Zhou J, Yan F, Gao M, Tang J, Huang L, Luo Y. Unlocking the potential of photobiomodulation therapy for brain neurovascular coupling: The biological effects and medical applications. J Cereb Blood Flow Metab 2025; 45:800-830. [PMID: 39763390 PMCID: PMC11705326 DOI: 10.1177/0271678x241311695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 12/10/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025]
Abstract
Photobiomodulation (PBM) therapy stands as an innovative neurostimulation modality that has demonstrated both efficacy and safety in improving brain function. This therapy exerts multifaceted influences on neurons, blood vessels, and their intricate interplay known as neurovascular coupling (NVC). Growing evidence indicates that NVC may present a promising target for PBM intervention. However, the detailed mechanisms underlying its therapeutic benefits remain to be fully understood. This review aims to elucidate the potential metabolic pathways and signaling cascades involved in the modulatory effects of PBM, while also exploring the extensive repertoire of PBM applications in neurologic and psychiatric conditions. The prospects of PBM within the realm of NVC investigation are intensively considered, providing deeper insights into the powerful capabilities of PBM therapy and its potential to revolutionize neurostimulation treatments.
Collapse
Affiliation(s)
- Bingzi Yan
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Zhou
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| | - Fengshuo Yan
- The Second Research Institute of Civil Aviation Administration of China, Chengdu, China
| | - Mingyang Gao
- The Second Research Institute of Civil Aviation Administration of China, Chengdu, China
| | - Jiaji Tang
- Sichuan Becoming Technology Co., LTD, Chengdu, China
| | - Lin Huang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Yan Luo
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Shi Z, Li S, Chen W, Yan H. The effect of blue and green light on human umbilical cord mesenchymal stem cells for promoting proliferation and wound healing. Sci Rep 2025; 15:14787. [PMID: 40295587 PMCID: PMC12037727 DOI: 10.1038/s41598-025-99083-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 04/16/2025] [Indexed: 04/30/2025] Open
Abstract
Photobiomodulation (PBM) has been widely utilized in regenerative medicine, including dermatology, dentistry, and neurology. However, the optimal energy density of PBM for human umbilical cord mesenchymal stem cells (hUC-MSCs) remains underexplored, hindering its development and potential clinical application. This study aims to identify the optimal wavelength and irradiation fluence for promoting the proliferation of hUC-MSCs by comparing the effects of different wavelengths and irradiation fluences. Our results show that green light enhances the anti-inflammatory properties of hUC-MSCs, with the 76s being the most effective in inhibiting IL-6 and GM-CSF. Blue light with 38 s is more effective in promoting angiogenesis, significantly increasing the mRNA and protein secretion of VEGF, HGF, and FGF2 compared to the non-irradiated group. The peak secretion times varied, with VEGF and FGF2 peaking at 72 h and HGF at 24 h. RNA-Seq confirms the significant roles of blue and green light in inhibiting epithelial-mesenchymal transition and inflammation. In vitro co-culture models and conditioned media experiments validate these anti-inflammatory effects. These findings have important implications for accelerating the clinical application of stem cell therapies and provide new references for PBM use in hUC-MSCs.
Collapse
Affiliation(s)
- Zhuojun Shi
- Department of Plastic and Burns Surgery, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Site Li
- Department of Plastic and Burns Surgery, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Wei Chen
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Hong Yan
- Department of Plastic and Burns Surgery, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
- Department of Plastic, Aesthetic, Reparative and Reconstructive Surgery/Wound Repair Center, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Wu ZM, Wu W, Ding X, Feng Q, Zhang BM, Wang HS, Cui XJ, Yao M. Neuroprotective effect and possible mechanisms of the extract of ginkgo biloba for spinal cord injury in experimental animal: a meta-analysis and systematic review. Nutr Neurosci 2025:1-14. [PMID: 40019748 DOI: 10.1080/1028415x.2024.2425643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Spinal cord injury (SCI) is a major challenge in the medical community because of its difficulty in treatment and poor prognosis. Extract of ginkgo biloba (EGb) has been widely used in the prevention and treatment of age-related neurosensory disease, which is considered to have the effect of neuroprotection. We performed a systematic review to evaluate the neurobiological roles of EGb for treating SCI in rats. Pubmed, Embase, Sinomed and China National knowledge Infrastructure were searched from their inception dates to April 2024, and 30 articles were included. The quality score of the included studies ranged from 4 to 7 out of 10 points, and all of them were randomization. It was shown that after SCI, EGb administration could significantly improve motor function (WMD = 2.09 [1.59, 2.59], p < 0.00001). Subgroup analysis concluded that EGb at the doses of 10-50 mg/kg improved the motor function to the greatest extent. In comparison with the control group, EGb administration could reduce lipid peroxidation and inhibit inflammation (MDA: SMD = -1.43 [-5.05,2.20], p < 0.00001; iNOS: WMD = -22.17 [-35.45, -8.90], p < 0.00001). In addition, this review suggested that EGb can antagonize inflammation, reduce oxidative stress to inhibit the lipid peroxidation and resistance to apoptosis, promote nerve growth and reduce myelin loss on SCI. Preclinical grade suggests that, collectively, EGb may be a promising natural neuroprotective agent on SCI with unique advantages and mechanisms of action. More clinical randomized, blind controlled trials are also needed to confirm the neuroprotective effect of EGb on SCI.
Collapse
Affiliation(s)
- Zi-Ming Wu
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Wei Wu
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Xing Ding
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Qian Feng
- PuTuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Bi-Meng Zhang
- Shanghai General Hospital, Shanghai, People's Republic of China
| | - Hong-Shen Wang
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People's Republic of China
| | - Xue-Jun Cui
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Min Yao
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| |
Collapse
|
5
|
Woo K, Kim YS, Abueva C, Woo SH. Reprogramming Macrophage Phenotypes With Photobiomodulation for Improved Inflammation Control in ENT Organ Tissues. Clin Exp Otorhinolaryngol 2025; 18:1-13. [PMID: 39700888 PMCID: PMC11917203 DOI: 10.21053/ceo.2024.00286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/18/2024] [Indexed: 12/21/2024] Open
Abstract
Photobiomodulation (PBM), a noninvasive phototherapy that utilizes wavelengths between red and near-infrared light, has emerged as a promising approach for controlling inflammation by modulating macrophage polarization. This review investigates the therapeutic potential of PBM in treating ENT-specific inflammatory conditions, such as chronic rhinosinusitis and otitis media, focusing on its effects on macrophage phenotypes and evidence from preclinical studies. By promoting mitochondrial activity, increasing adenosine triphosphate production, and modulating reactive oxygen species, PBM has been shown to shift macrophages from a pro-inflammatory to an anti-inflammatory phenotype. Studies have demonstrated that PBM enhances tissue repair, reduces inflammatory markers, and promotes wound healing. Moreover, PBM facilitates the polarization of M2 macrophages, a crucial factor in resolving mucosal inflammation in the nasal, pharyngeal, and middle ear cavities, as well as restoring tissue homeostasis. The anti-inflammatory effects of PBM are attributed to its ability to influence several molecular mechanisms involved in inflammation regulation, particularly in ENT organ tissues, where recurrent inflammation can lead to chronic conditions such as otitis media or sinusitis. Furthermore, this review compares PBM to competing methods for reprogramming macrophages and treating inflammation, highlighting its advantages of minimal toxicity, simplicity, and precision in controlling ENT immune responses.
Collapse
Affiliation(s)
- Ken Woo
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yeon Soo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | | | - Seung Hoon Woo
- Department of Otorhinolaryngology-Head and Neck Surgery, Dankook University College of Medicine, Cheonan, Korea
| |
Collapse
|
6
|
Stevens AR, Hadis M, Alldrit H, Milward MR, Di Pietro V, Gendoo DMA, Belli A, Palin W, Davies DJ, Ahmed Z. Evaluation of transcriptomic changes after photobiomodulation in spinal cord injury. Sci Rep 2025; 15:3193. [PMID: 39863663 PMCID: PMC11762322 DOI: 10.1038/s41598-025-87300-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
Spinal cord injury (SCI) is a significant cause of lifelong disability, with no available disease-modifying treatments to promote neuroprotection and axon regeneration after injury. Photobiomodulation (PBM) is a promising therapy which has proven effective at restoring lost function after SCI in pre-clinical models. However, the precise mechanism of action is yet to be determined. Here, we used an in-vivo model of SCI in adult rats that received daily PBM (660 nm, 24 mW/cm2, 1 min) and at three days post-injury, the injured spinal cord segment was harvested and subjected to whole transcriptome sequencing and subsequent pathway analysis (generally applicable gene-set enrichment (GAGE)). Pathway analysis demonstrated 1275 differentially expressed genes (DEGs) after PBM treatment, of which 397 were upregulated and 878 were downregulated. Key pathways were significantly enriched, including 8.6-fold enrichment of "neuron projection morphogenesis" (adjusted p = 8.10 × 10- 14), with upregulation of Notch3, Slit1/Robo2 and Sema3g pathways. Ribosomal and oxidative phosphorylation pathways and NADH dehydrogenase were downregulated, and there was upregulation of ATP-dependent activity, cAMP and calcium signalling pathways. Key genes in apoptotic pathways were downregulated, as were S100 and cyclo-oxygenase components. Together, our study supports the favourable effects of PBM in promoting neuroregeneration and suppressing apoptosis after neurological injury. Further findings from pathway analysis suggest that downregulation of metabolism-associated pathways is a mechanism by which acute post-injury mitochondrial dysfunction may be averted by PBM therapy.
Collapse
Affiliation(s)
- Andrew R Stevens
- Neuroscience and Ophthalmology, Department of Inflammation and Ageing, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham, Birmingham, B15 2TH, UK
- Phototherapy Research Group, School of Dentistry, College of Medicine and Health, University of Birmingham, Birmingham, B5 7EG, UK
| | - Mohammed Hadis
- Phototherapy Research Group, School of Dentistry, College of Medicine and Health, University of Birmingham, Birmingham, B5 7EG, UK
- School of Dentistry, College of Medicine and Health, University of Birmingham, Birmingham, B5 7EG, UK
| | - Hannah Alldrit
- Department of Cancer and Genomic Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham, B15 2TT, UK
| | - Michael R Milward
- School of Dentistry, College of Medicine and Health, University of Birmingham, Birmingham, B5 7EG, UK
- Department of Cancer and Genomic Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham, B15 2TT, UK
| | - Valentina Di Pietro
- Neuroscience and Ophthalmology, Department of Inflammation and Ageing, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham, Birmingham, B15 2TH, UK
- Centre for Trauma Sciences Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Centre for Neurogenetics, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Deena M A Gendoo
- Department of Cancer and Genomic Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham, B15 2TT, UK
- Institute for Interdisciplinary Data Science and AI, University of Birmingham, Birmingham, B15 2TT, UK
| | - Antonio Belli
- Neuroscience and Ophthalmology, Department of Inflammation and Ageing, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham, Birmingham, B15 2TH, UK
- Centre for Trauma Sciences Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - William Palin
- Phototherapy Research Group, School of Dentistry, College of Medicine and Health, University of Birmingham, Birmingham, B5 7EG, UK
- School of Dentistry, College of Medicine and Health, University of Birmingham, Birmingham, B5 7EG, UK
| | - David J Davies
- Neuroscience and Ophthalmology, Department of Inflammation and Ageing, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham, Birmingham, B15 2TH, UK
- Phototherapy Research Group, School of Dentistry, College of Medicine and Health, University of Birmingham, Birmingham, B5 7EG, UK
- Centre for Trauma Sciences Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Zubair Ahmed
- Neuroscience and Ophthalmology, Department of Inflammation and Ageing, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham, Birmingham, B15 2TH, UK.
- Centre for Trauma Sciences Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- Centre for Neurogenetics, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
7
|
Kandemir T, Sogut I, Ataizi ZS, Can B, Oglakci-Ilhan A, Burukoglu-Donmez D, Kanbak G. Pre- and post-traumatic boric acid therapy prevents oxidative stress-mediated neuronal apoptosis in spinal cord injury. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2025; 28:444-450. [PMID: 39968086 PMCID: PMC11831752 DOI: 10.22038/ijbms.2024.81531.17649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/12/2024] [Indexed: 02/20/2025]
Abstract
Objectives In our study, the neuroprotective efficacy of pre- and post-traumatic applications of boric acid (BA) in rats with experimentally induced spinal cord injury (SCI) was investigated. Materials and Methods The experimental animals were divided into four groups: control group (C), SCI group (SCI), BA-treated group before SCI (BA+SCI), and BA-treated group after SCI (SCI+BA). Forty-eight hours after SCI, biochemical levels of malondialdehyde (MDA), total oxidant status (TOS), total antioxidant status (TAS), oxidative stress index (OSI), and cytochrome c (Cytc) and caspase-3 (Casp3) expressions were measured in the spinal cord tissues and were examined histologically. Results After SCI, oxidative stress markers, such as MDA, TOS, and OSI, and apoptosis markers Cytc and Casp3 showed an increase in levels compared to Group C. The oxidative stress markers that increased after SCI decreased with BA+SCI application, while Cytc level, one of the apoptosis markers that increased after SCI, decreased in both groups with BA application. Cell, myelin, ependymal damage, and hemorrhage levels increased after SCI compared to Group C. These histological markers increased after SCI and decreased after BA+SCI. BA was found to reduce SCI-induced oxidative stress and oxidative stress-induced apoptosis. Conclusion BA administered before SCI was shown to be more effective in protecting neural damage.
Collapse
Affiliation(s)
- Turan Kandemir
- Department of Neurosurgery, Eskisehir Osmangazi University Faculty of Medicine, Eskisehir, Turkey
| | - Ibrahim Sogut
- Department of Biochemistry, Demiroglu Bilim University, Medical Faculty, Istanbul, Turkey
| | - Zeki Serdar Ataizi
- Department of Neurosurgery, Eskişehir Yunus Emre State Hospital, Eskisehir, Turkey
| | - Betul Can
- Department of Medical Biochemistry, Eskisehir Osmangazi University Faculty of Medicine, Eskisehir, Turkey
| | - Aysegul Oglakci-Ilhan
- Department of Medical Laboratory Techniques, Eldivan Health Services Vocational School, Cankırı Karatekin University, Cankırı, Turkey
| | - Dilek Burukoglu-Donmez
- Department of Histology and Embryology, Eskisehir Osmangazi University Faculty of Medicine, Eskisehir, Turkey
| | - Gungor Kanbak
- Department of Medical Biochemistry, Eskisehir Osmangazi University Faculty of Medicine, Eskisehir, Turkey
| |
Collapse
|
8
|
Zhang ZH, Wu TY, Ju C, Zuo XS, Wang XK, Ma YG, Luo L, Zhu ZJ, Song ZW, Yao Z, Zhou J, Wang Z, Hu XY. Photobiomodulation Increases M2-Type Polarization of Macrophages by Inhibiting Versican Production After Spinal Cord Injury. Mol Neurobiol 2024; 61:6950-6967. [PMID: 38363534 DOI: 10.1007/s12035-024-03980-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/21/2024] [Indexed: 02/17/2024]
Abstract
Spinal cord injury (SCI) is a catastrophic accidence with little effective treatment, and inflammation played an important role in that. Previous studies showed photobiomodulation (PBM) could effectively downregulate the process of inflammation with modification of macrophage polarization after SCI; however, the potential mechanism behind that is still unclear. In the presented study, we aimed to investigate the effect of PBM on the expression level of versican, a matrix molecular believed to be associated with inflammation, and tried to find the mechanism on how that could regulate the inflammation process. Using immunofluorescence technique and western blot, we found the expression level of versican is increased after injury and markedly downregulated by irradiation treatment. Using virus intrathecal injection, we found the knock-down of versican could produce the effect similar to that of PBM and might have an effect on inflammation and macrophage polarization after SCI. To further verify the deduction, we peptide the supernatant of astrocytes to induce M0, M1, and M2 macrophages. We found that the versican produced by astrocytes might have a role on the promotion of M2 macrophages to inflammatory polarization. Finally, we investigated the potential pathway in the regulation of M2 polarization with the induction of versican. This study tried to give an interpretation on the mechanism of inflammation inhibition for PBM in the perspective of matrix regulation. Our results might provide light on the inflammation regulation after SCI.
Collapse
Affiliation(s)
- Zhi-Hao Zhang
- General Hospital of Northern Theater Command, Shenyang, 110000, Liaoning Province, China
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Ting-Yu Wu
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Cheng Ju
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Xiao-Shuang Zuo
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Xuan-Kang Wang
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Yang-Guang Ma
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Liang Luo
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Zhi-Jie Zhu
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Zhi-Wen Song
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Zhou Yao
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Jie Zhou
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Zhe Wang
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Xue-Yu Hu
- Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| |
Collapse
|
9
|
Jahani-Sherafat S, Mollaghaei S, Asri N, Rezaei Tavirani M, Baghaei K, Rostami-Nejad M. The Effect of Photobiomodulation and Akkermansia muciniphila on THP-1 Derived Macrophage Polarization Treated with Gliadin Peptide. J Lasers Med Sci 2024; 15:e21. [PMID: 39188931 PMCID: PMC11345802 DOI: 10.34172/jlms.2024.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/16/2024] [Indexed: 08/28/2024]
Abstract
Introduction: Photobiomodulation (PBM) and Akkermansia muciniphila have been shown to be effective in improving inflammatory conditions with positive effects on increasing the population of anti-inflammatory M2 macrophages (MQs). In this study, gliadin-stimulated THP-1 derived MQs were treated with A. muciniphila and PBM to evaluate their effects on promoting the polarization of M2 MQs. Methods: The human monocyte cell line (THP-1) was differentiated to MQs. MQs were stimulated with 200 μg/mL gliadin for 24 hours and then treated with PBM 810 nm alone and in combination with A. muciniphila for the following 24 hours to evaluate their effects on MQs polarization. THP-1 derived MQs were also treated with PBM and A. muciniphila to evaluate their effects on non-stimulated MQs. CD11b, CD80, and CD206 levels were evaluated by using the flow cytometry technique. Moreover, the expression of some M1 and M2-related cytokines was determined. Results: PBM therapy of gliadin-stimulated MQs decreased IL-6 and increased TGF-β, IL-10 and TNF-α expression compared with gliadin exposed MQs. PBM along with A. muciniphila treatment induced IL-6, TNF-α, and IL-10 expression in MQs in comparison to the untreated group. It also elevated TGF-β, IL-10 and TNF-α levels in gliadin-triggered MQs in comparison to gliadin-stimulated MQ cells. Conclusion: The result of this study showed the potential of PBMT and A. muciniphila for modulating inflammatory responses and MQs polarization. This may open new perspectives to find possible therapeutic targets for celiac diseases.
Collapse
Affiliation(s)
- Somayeh Jahani-Sherafat
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Mollaghaei
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nastaran Asri
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Kaveh Baghaei
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rostami-Nejad
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Yin Z, Wan B, Gong G, Yin J. ROS: Executioner of regulating cell death in spinal cord injury. Front Immunol 2024; 15:1330678. [PMID: 38322262 PMCID: PMC10844444 DOI: 10.3389/fimmu.2024.1330678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
The damage to the central nervous system and dysfunction of the body caused by spinal cord injury (SCI) are extremely severe. The pathological process of SCI is accompanied by inflammation and injury to nerve cells. Current evidence suggests that oxidative stress, resulting from an increase in the production of reactive oxygen species (ROS) and an imbalance in its clearance, plays a significant role in the secondary damage during SCI. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) is a crucial regulatory molecule for cellular redox. This review summarizes recent advancements in the regulation of ROS-Nrf2 signaling and focuses on the interaction between ROS and the regulation of different modes of neuronal cell death after SCI, such as apoptosis, autophagy, pyroptosis, and ferroptosis. Furthermore, we highlight the pathways through which materials science, including exosomes, hydrogels, and nanomaterials, can alleviate SCI by modulating ROS production and clearance. This review provides valuable insights and directions for reducing neuronal cell death and alleviating SCI through the regulation of ROS and oxidative stress.
Collapse
Affiliation(s)
- Zhaoyang Yin
- Department of Orthopedics, the Affiliated Lianyungang Hospital of Xuzhou Medical University (The First People’s Hospital of Lianyungang), Lianyungang, China
| | - Bowen Wan
- Department of Orthopedics, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Ge Gong
- Department of Geriatrics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jian Yin
- Department of Orthopedics, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
- Department of Orthopedics, Jiangning Clinical Teaching Hospitals of Jiangsu Vocational College of Medicine, Nanjing, China
| |
Collapse
|
11
|
Li X, Xu J, Su W, Su L, Chen X, Yang J, Lin X, Yang L. GPNMB Modulates Autophagy to Enhance Functional Recovery After Spinal Cord Injury in Rats. Cell Transplant 2024; 33:9636897241233040. [PMID: 38400732 PMCID: PMC10894544 DOI: 10.1177/09636897241233040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/23/2024] [Indexed: 02/26/2024] Open
Abstract
Spinal cord injury (SCI) severely affects the quality of life and autonomy of patients, and effective treatments are currently lacking. Autophagy, an essential cellular metabolic process, plays a crucial role in neuroprotection and repair after SCI. Glycoprotein non-metastatic melanoma protein B (GPNMB) has been shown to promote neural regeneration and synapse reconstruction, potentially through the facilitation of autophagy. However, the specific role of GPNMB in autophagy after SCI is still unclear. In this study, we utilized the spinal cord transection method to establish SCI rats model and overexpressed GPNMB using adenoviral vectors. We assessed tissue damage using hematoxylin and eosin (H&E) and Nissl staining, and observed cell apoptosis using TUNEL staining. We evaluated the inflammatory response by measuring inflammatory factors using enzyme-linked immunosorbent assay (ELISA). In addition, we measured reactive oxygen species (ROS) levels using 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA), and assessed oxidative stress levels by measuring malondialdehyde (MDA) and glutathione (GSH) using ELISA. To evaluate autophagy levels, we performed immunofluorescence staining for the autophagy marker Beclin-1 and conducted Western blot analysis for autophagy-related proteins. We also assessed limb recovery through functional evaluation. Meanwhile, we induced cell injury using lipopolysaccharide (LPS) and added an autophagy inhibitor to verify the impact of GPNMB on SCI through autophagy modulation. The results demonstrated that GPNMB alleviated the inflammatory response, reduced oxidative stress levels, inhibited cell apoptosis, and promoted autophagy following SCI. Inhibiting autophagy reversed the effects of GPNMB. These findings suggest that GPNMB promotes neural injury repair after SCI, potentially through attenuating the inflammatory response, reducing oxidative stress, and inhibiting cell apoptosis.
Collapse
Affiliation(s)
- Xixi Li
- Neurosurgery Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiakun Xu
- Neurosurgery Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weijie Su
- Neurosurgery Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Luoxi Su
- Neurosurgery Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiangkun Chen
- Intensive Care Unit, The First People’s Hospital of Suqian City, Suqian, China
| | - Jia Yang
- Neurosurgery Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xunxun Lin
- Department of Plastic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lixuan Yang
- Neurosurgery Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
Zhang Z, Song Z, Luo L, Zhu Z, Zuo X, Ju C, Wang X, Ma Y, Wu T, Yao Z, Zhou J, Chen B, Ding T, Wang Z, Hu X. Photobiomodulation inhibits the expression of chondroitin sulfate proteoglycans after spinal cord injury via the Sox9 pathway. Neural Regen Res 2024; 19:180-189. [PMID: 37488865 PMCID: PMC10479858 DOI: 10.4103/1673-5374.374136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/19/2023] [Accepted: 03/04/2023] [Indexed: 07/26/2023] Open
Abstract
Both glial cells and glia scar greatly affect the development of spinal cord injury and have become hot spots in research on spinal cord injury treatment. The cellular deposition of dense extracellular matrix proteins such as chondroitin sulfate proteoglycans inside and around the glial scar is known to affect axonal growth and be a major obstacle to autogenous repair. These proteins are thus candidate targets for spinal cord injury therapy. Our previous studies demonstrated that 810 nm photobiomodulation inhibited the formation of chondroitin sulfate proteoglycans after spinal cord injury and greatly improved motor function in model animals. However, the specific mechanism and potential targets involved remain to be clarified. In this study, to investigate the therapeutic effect of photobiomodulation, we established a mouse model of spinal cord injury by T9 clamping and irradiated the injury site at a power density of 50 mW/cm2 for 50 minutes once a day for 7 consecutive days. We found that photobiomodulation greatly restored motor function in mice and downregulated chondroitin sulfate proteoglycan expression in the injured spinal cord. Bioinformatics analysis revealed that photobiomodulation inhibited the expression of proteoglycan-related genes induced by spinal cord injury, and versican, a type of proteoglycan, was one of the most markedly changed molecules. Immunofluorescence staining showed that after spinal cord injury, versican was present in astrocytes in spinal cord tissue. The expression of versican in primary astrocytes cultured in vitro increased after inflammation induction, whereas photobiomodulation inhibited the expression of versican. Furthermore, we found that the increased levels of p-Smad3, p-P38 and p-Erk in inflammatory astrocytes were reduced after photobiomodulation treatment and after delivery of inhibitors including FR 180204, (E)-SIS3, and SB 202190. This suggests that Smad3/Sox9 and MAPK/Sox9 pathways may be involved in the effects of photobiomodulation. In summary, our findings show that photobiomodulation modulates the expression of chondroitin sulfate proteoglycans, and versican is one of the key target molecules of photobiomodulation. MAPK/Sox9 and Smad3/Sox9 pathways may play a role in the effects of photobiomodulation on chondroitin sulfate proteoglycan accumulation after spinal cord injury.
Collapse
Affiliation(s)
- Zhihao Zhang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Zhiwen Song
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Liang Luo
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Zhijie Zhu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Xiaoshuang Zuo
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Cheng Ju
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Xuankang Wang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Yangguang Ma
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Tingyu Wu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Zhou Yao
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Jie Zhou
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Beiyu Chen
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Tan Ding
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Zhe Wang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Xueyu Hu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| |
Collapse
|
13
|
Zhang Z, Zhu Z, Zuo X, Wang X, Ju C, Liang Z, Li K, Zhang J, Luo L, Ma Y, Song Z, Li X, Li P, Quan H, Huang P, Yao Z, Yang N, Zhou J, Kou Z, Chen B, Ding T, Wang Z, Hu X. Photobiomodulation reduces neuropathic pain after spinal cord injury by downregulating CXCL10 expression. CNS Neurosci Ther 2023; 29:3995-4017. [PMID: 37475184 PMCID: PMC10651991 DOI: 10.1111/cns.14325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Many studies have recently highlighted the role of photobiomodulation (PBM) in neuropathic pain (NP) relief after spinal cord injury (SCI), suggesting that it may be an effective way to relieve NP after SCI. However, the underlying mechanisms remain unclear. This study aimed to determine the potential mechanisms of PBM in NP relief after SCI. METHODS We performed systematic observations and investigated the mechanism of PBM intervention in NP in rats after SCI. Using transcriptome sequencing, we screened CXCL10 as a possible target molecule for PBM intervention and validated the results in rat tissues using reverse transcription-polymerase chain reaction and western blotting. Using immunofluorescence co-labeling, astrocytes and microglia were identified as the cells responsible for CXCL10 expression. The involvement of the NF-κB pathway in CXCL10 expression was verified using inhibitor pyrrolidine dithiocarbamate (PDTC) and agonist phorbol-12-myristate-13-acetate (PMA), which were further validated by an in vivo injection experiment. RESULTS Here, we demonstrated that PBM therapy led to an improvement in NP relative behaviors post-SCI, inhibited the activation of microglia and astrocytes, and decreased the expression level of CXCL10 in glial cells, which was accompanied by mediation of the NF-κB signaling pathway. Photobiomodulation inhibit the activation of the NF-κB pathway and reduce downstream CXCL10 expression. The NF-κB pathway inhibitor PDTC had the same effect as PBM on improving pain in animals with SCI, and the NF-κB pathway promoter PMA could reverse the beneficial effect of PBM. CONCLUSIONS Our results provide new insights into the mechanisms by which PBM alleviates NP after SCI. We demonstrated that PBM significantly inhibited the activation of microglia and astrocytes and decreased the expression level of CXCL10. These effects appear to be related to the NF-κB signaling pathway. Taken together, our study provides evidence that PBM could be a potentially effective therapy for NP after SCI, CXCL10 and NF-kB signaling pathways might be critical factors in pain relief mediated by PBM after SCI.
Collapse
Affiliation(s)
- Zhihao Zhang
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Zhijie Zhu
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Xiaoshuang Zuo
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Xuankang Wang
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Cheng Ju
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Zhuowen Liang
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Kun Li
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Jiawei Zhang
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Liang Luo
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Yangguang Ma
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Zhiwen Song
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Xin Li
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
- 967 Hospital of People's Liberation Army Joint Logistic Support ForceDalianLiaoningChina
| | - Penghui Li
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Huilin Quan
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Peipei Huang
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Zhou Yao
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Ning Yang
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Jie Zhou
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Zhenzhen Kou
- Department of Anatomy, Histology and Embryology, School of Basic MedicineAir Force Military Medical UniversityXi'anShaanxiChina
| | - Beiyu Chen
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Tan Ding
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Zhe Wang
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Xueyu Hu
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| |
Collapse
|
14
|
Ao X, Li Y, Jiang T, Li C, Lian Z, Wang L, Zhang Z, Huang M. Angiopoietin-2 Promotes Mechanical Stress-induced Extracellular Matrix Degradation in Annulus Fibrosus Via the HIF-1α/NF-κB Signaling Pathway. Orthop Surg 2023; 15:2410-2422. [PMID: 37475697 PMCID: PMC10475680 DOI: 10.1111/os.13797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 07/22/2023] Open
Abstract
OBJECTIVE Mechanical stress is an important risk factor for intervertebral disc degeneration (IVDD). Angiopoietin-2 (ANG-2) is regulated by mechanical stress and is widely involved in the regulation of extracellular matrix metabolism. In addition, the signaling cascade between HIF-1α and NF-κB is critical in matrix degradation. This study aims to investigate the role and molecular mechanism of ANG-2 in regulating the degeneration of annulus fibrosus (AF) through the HIF-1α/NF-κB signaling pathway. METHODS The bipedal standing mice IVDD model was constructed, and histological experiments were used to evaluate the degree of IVDD and the expression of ANG-2 in the AF. Mouse primary AF cells were extracted in vitro and subjected to mechanical stretching experiments. Western blot assay was used to detect the effect of mechanical stress on ANG-2, and the role of the ANG-2-mediated HIF-1α/NF-κB pathway in matrix degradation. In addition, the effect of inhibiting ANG-2 expression by siRNA or monoclonal antibody on delaying IVDD was investigated at in vitro and in vivo levels. One-way ANOVA with the least significant difference method was used for pairwise comparison of the groups with homogeneous variance, and Dunnett's method was used to compare the groups with heterogeneous variance. RESULTS In IVDD, the expressions of catabolic biomarkers (mmp-13, ADAMTS-4) and ANG-2 were significantly increased in AF. In addition, p65 expression was increased while HIF-1α expression was significantly decreased. The results of western blot assay showed mechanical stress significantly up-regulated the expression of ANG-2 in AF cells, and promoted matrix degradation by regulating the activity of HIF-1α/NF-κB pathway. Exogenous addition of Bay117082 and CoCl2 inhibited matrix degradation caused by mechanical stress. Moreover, injection of neutralizing antibody or treatment with siRNA to inhibit the expression of ANG-2 improved the matrix metabolism of AF and inhibited IVDD progression by regulating the HIF-1α/NF-κB signaling pathway. CONCLUSION In IVDD, mechanical stress could regulate the HIF-1α/NF-κB signaling pathway and matrix degradation by mediating ANG-2 expression in AF degeneration.
Collapse
Affiliation(s)
- Xiang Ao
- Division of Spine Surgery, Department of OrthopaedicsNanfang Hospital of Southern Medical UniversityGuangzhouGuangdongChina
| | - Yuan Li
- Department of Spine Surgery, Center for Orthopedic SurgeryThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouGuangdongChina
- Academy of Orthopaedics·Guangdong ProvinceGuangzhouGuangdongChina
| | - Tao Jiang
- Division of Spine Surgery, Department of OrthopaedicsNanfang Hospital of Southern Medical UniversityGuangzhouGuangdongChina
| | - Chenglong Li
- Division of Spine Surgery, Department of OrthopaedicsNanfang Hospital of Southern Medical UniversityGuangzhouGuangdongChina
| | - Zhengnan Lian
- Department of Spine Surgery, Center for Orthopedic SurgeryThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouGuangdongChina
- Academy of Orthopaedics·Guangdong ProvinceGuangzhouGuangdongChina
| | - Liang Wang
- Department of Spine Surgery, Center for Orthopedic SurgeryThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouGuangdongChina
- Academy of Orthopaedics·Guangdong ProvinceGuangzhouGuangdongChina
| | - Zhongmin Zhang
- Division of Spine Surgery, Department of OrthopaedicsNanfang Hospital of Southern Medical UniversityGuangzhouGuangdongChina
| | - Minjun Huang
- Department of Spine Surgery, Center for Orthopedic SurgeryThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouGuangdongChina
- Academy of Orthopaedics·Guangdong ProvinceGuangzhouGuangdongChina
| |
Collapse
|
15
|
Zhang P, Zhang X, Zhu H. Photobiomodulation at 660 nm promotes collagen synthesis via downregulation of HIF-1α expression without photodamage in human scleral fibroblasts in vitro in a hypoxic environment. Graefes Arch Clin Exp Ophthalmol 2023; 261:2535-2545. [PMID: 37074407 DOI: 10.1007/s00417-023-06066-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/29/2023] [Accepted: 04/10/2023] [Indexed: 04/20/2023] Open
Abstract
PURPOSE The increasing prevalence of myopia is a global public health issue. Because of the complexity of myopia pathogenesis, current control methods for myopia have great limitations. The aim of this study was to explore the effect of photobiomodulation (PBM) on human sclera fibroblasts (HSFs) under hypoxia, in the hope of providing new ideas for myopia prevention and control. METHODS Hypoxic cell model was established at 0, 6, 12, and 24 h time points to simulate myopia microenvironment and explore the optimal time point. Control, hypoxia, hypoxia plus light, and normal plus light cell models were set up for the experiments, and cells were incubated for 24 or 48 h after PBM (660 nm, 5 J/cm2), followed by evaluation of hypoxia-inducible factor 1α (HIF-1α) and collagen I a1 (COL1A1) proteins using Western blotting and immunofluorescence, and photo damage was detected by CCK-8, scratch test, and flow cytometry assays. We also used transfection technology to further elucidate the regulatory mechanism. RESULTS The change of target proteins is most obvious when hypoxia lasts for 24 h (p < 0.01). PBM at 660 nm increased extracellular collagen content (p < 0.001) and downregulated expression of HIF-1α (p < 0.05). This treatment did not affect the migration and proliferation of cells (p > 0.05), and effectively inhibited apoptosis under hypoxia (p < 0.0001). After overexpression of HIF-1α, the effect of PBM was attenuated (p > 0.05). CONCLUSIONS Photobiomodulation at 660 nm promotes collagen synthesis via downregulation of HIF-1α expression without photodamage.
Collapse
Affiliation(s)
- Pengbo Zhang
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xibo Zhang
- Department of Ophthalmology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Huang Zhu
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
16
|
da Silva TG, Ribeiro RS, Mencalha AL, de Souza Fonseca A. Photobiomodulation at molecular, cellular, and systemic levels. Lasers Med Sci 2023; 38:136. [PMID: 37310556 DOI: 10.1007/s10103-023-03801-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/05/2023] [Indexed: 06/14/2023]
Abstract
Since the reporting of Endre Mester's results, researchers have investigated the biological effects induced by non-ionizing radiation emitted from low-power lasers. Recently, owing to the use of light-emitting diodes (LEDs), the term photobiomodulation (PBM) has been used. However, the molecular, cellular, and systemic effects involved in PBM are still under investigation, and a better understanding of these effects could improve clinical safety and efficacy. Our aim was to review the molecular, cellular, and systemic effects involved in PBM to elucidate the levels of biological complexity. PBM occurs as a consequence of photon-photoacceptor interactions, which lead to the production of trigger molecules capable of inducing signaling, effector molecules, and transcription factors, which feature it at the molecular level. These molecules and factors are responsible for cellular effects, such as cell proliferation, migration, differentiation, and apoptosis, which feature PBM at the cellular level. Finally, molecular and cellular effects are responsible for systemic effects, such as modulation of the inflammatory process, promotion of tissue repair and wound healing, reduction of edema and pain, and improvement of muscle performance, which features PBM at the systemic level.
Collapse
Affiliation(s)
- Thayssa Gomes da Silva
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Vila Isabel, Boulevard 28 de Setembro, 87, Rio de Janeiro, 20551030, Brazil.
| | - Rickson Souza Ribeiro
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Vila Isabel, Boulevard 28 de Setembro, 87, Rio de Janeiro, 20551030, Brazil
| | - Andre Luiz Mencalha
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Vila Isabel, Boulevard 28 de Setembro, 87, Rio de Janeiro, 20551030, Brazil
| | - Adenilson de Souza Fonseca
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Vila Isabel, Boulevard 28 de Setembro, 87, Rio de Janeiro, 20551030, Brazil
- Departamento de Ciências Fisiológicas, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rua Frei Caneca, 94, Rio de Janeiro, 20211040, Brazil
| |
Collapse
|
17
|
Su M, Nizamutdinov D, Liu H, Huang JH. Recent Mechanisms of Neurodegeneration and Photobiomodulation in the Context of Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24119272. [PMID: 37298224 DOI: 10.3390/ijms24119272] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease and the world's primary cause of dementia, a condition characterized by significant progressive declines in memory and intellectual capacities. While dementia is the main symptom of Alzheimer's, the disease presents with many other debilitating symptoms, and currently, there is no known treatment exists to stop its irreversible progression or cure the disease. Photobiomodulation has emerged as a very promising treatment for improving brain function, using light in the range from red to the near-infrared spectrum depending on the application, tissue penetration, and density of the target area. The goal of this comprehensive review is to discuss the most recent achievements in and mechanisms of AD pathogenesis with respect to neurodegeneration. It also provides an overview of the mechanisms of photobiomodulation associated with AD pathology and the benefits of transcranial near-infrared light treatment as a potential therapeutic solution. This review also discusses the older reports and hypotheses associated with the development of AD, as well as some other approved AD drugs.
Collapse
Affiliation(s)
- Matthew Su
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - Damir Nizamutdinov
- Department of Neurosurgery, College of Medicine, Texas A&M University, Temple, TX 76508, USA
- Department of Neurosurgery, Neuroscience Institute, Baylor Scott and White Health, Temple, TX 76508, USA
| | - Hanli Liu
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76010, USA
| | - Jason H Huang
- Department of Neurosurgery, College of Medicine, Texas A&M University, Temple, TX 76508, USA
- Department of Neurosurgery, Neuroscience Institute, Baylor Scott and White Health, Temple, TX 76508, USA
| |
Collapse
|
18
|
Zhu Z, Li X, Wang X, Zuo X, Ma Y, Gao X, Liang Z, Zhang Z, Song Z, Ding T, Ju C, Li P, Li K, Zhang J, Quan H, Wang Z, Hu X. Photobiomodulation augments the effects of mitochondrial transplantation in the treatment of spinal cord injury in rats by facilitating mitochondrial transfer to neurons via Connexin 36. Bioeng Transl Med 2023; 8:e10473. [PMID: 37206245 PMCID: PMC10189468 DOI: 10.1002/btm2.10473] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/15/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Mitochondrial transplantation is a promising treatment for spinal cord injury (SCI), but it has the disadvantage of low efficiency of mitochondrial transfer to targeted cells. Here, we demonstrated that Photobiomodulation (PBM) could promote the transfer process, thus augmenting the therapeutic effect of mitochondrial transplantation. In vivo experiments, motor function recovery, tissue repair, and neuronal apoptosis were evaluated in different treatment groups. Under the premise of mitochondrial transplantation, the expression of Connex36 (Cx36), the trend of mitochondria transferred to neurons, and its downstream effects, such as ATP production and antioxidant capacity, were evaluated after PBM intervention. In in vitro experiments, dorsal root ganglia (DRG) were cotreated with PBM and 18β-GA (a Cx36 inhibitor). In vivo experiments showed that PBM combined with mitochondrial transplantation could increase ATP production and reduce oxidative stress and neuronal apoptosis levels, thereby promoting tissue repair and motor function recovery. In vitro experiments further verified that Cx36 mediated the transfer of mitochondria into neurons. PBM could facilitate this progress via Cx36 both in vivo and in vitro. The present study reports a potential method of using PBM to facilitate the transfer of mitochondria to neurons for the treatment of SCI.
Collapse
Affiliation(s)
- Zhijie Zhu
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| | - Xin Li
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
- 967 Hospital of People's Liberation Army Joint Logistic Support ForceDalianLiaoningChina
| | - Xuankang Wang
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| | - Xiaoshuang Zuo
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| | - Yangguang Ma
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| | - Xue Gao
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| | - Zhuowen Liang
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| | - Zhihao Zhang
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| | - Zhiwen Song
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| | - Tan Ding
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| | - Cheng Ju
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| | - Penghui Li
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| | - Kun Li
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| | - Jiawei Zhang
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| | - Huilin Quan
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| | - Zhe Wang
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| | - Xueyu Hu
- Department of OrthopedicsXijing Hospital, Fourth Military Medical UniversityShaanxiChina
| |
Collapse
|
19
|
Tian T, Wang Z, Chen L, Xu W, Wu B. Photobiomodulation activates undifferentiated macrophages and promotes M1/M2 macrophage polarization via PI3K/AKT/mTOR signaling pathway. Lasers Med Sci 2023; 38:86. [PMID: 36932298 DOI: 10.1007/s10103-023-03753-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/13/2023] [Indexed: 03/19/2023]
Abstract
Macrophages are the main mediators of the inflammatory response and play a major role in the onset and maintenance of periodontitis. Studies revealed that photobiomodulation (PBM) can change the polarization state of macrophages and inflammation reduction, although the cellular mechanisms are not fully elucidated. Here, the present study explored the effect of PBM (980 nm) on undifferentiated and M1-type macrophages and the underlying mechanism. RAW264.7 cells were exposed to laser irradiation under different laser parameters (0.5, 5.0, and 10.0 J/cm2) with or without LY294002 (an inhibitor of PI3K pathway). Then, confocal laser microscopy was used to observe cell differentiation; qPCR was performed to examine the gene expression and western blotting was used to detect the protein in the PI3K/AKT/mTOR pathway and activated macrophage markers. The obtained results revealed that 980 nm PBM increased the mRNA expression of iNOS, Il-10, Arg1, and Il-12 along with the inflammatory cytokines Tnfα, IL-1β, and Il-6 in M0-type macrophages in dose-dependent manner. More interestingly, PBM at 5 J/cm2 decreased the mRNA expression of iNOS, Il-12, Tnfα, IL-1β, and Il-6 and increased the expression of Arg1 and Il-10 by M1-type macrophages, along with the elevated expression of phosphorylation of AKT and mTOR. Moreover, PBM-induced M1-type macrophage polarization was significantly attenuated via LY294002 treatment. These suggest that 980 nm PBM could activate M0-type macrophages and increase M2/M1 ratio via the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Tian Tian
- Department of Endodontics, Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, 143 Dongzong Road, Pingshan District, Shenzhen, 518118, China
| | - Ziting Wang
- Department of pediatric dentistry, Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, 143 Dongzong Road, Pingshan District, Shenzhen, 518118, China
| | - Leyi Chen
- Department of Endodontics, Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, 143 Dongzong Road, Pingshan District, Shenzhen, 518118, China
- School of Stomatology, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Wenan Xu
- Department of pediatric dentistry, Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, 143 Dongzong Road, Pingshan District, Shenzhen, 518118, China.
- School of Stomatology, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
| | - Buling Wu
- Department of Endodontics, Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, 143 Dongzong Road, Pingshan District, Shenzhen, 518118, China.
- School of Stomatology, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
| |
Collapse
|
20
|
Gu G, Zhu B, Ren J, Song X, Fan B, Ding H, Shang J, Wu H, Li J, Wang H, Li J, Wei Z, Feng S. Ang-(1-7)/MasR axis promotes functional recovery after spinal cord injury by regulating microglia/macrophage polarization. Cell Biosci 2023; 13:23. [PMID: 36739421 PMCID: PMC9899400 DOI: 10.1186/s13578-023-00967-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/19/2023] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Inflammatory response is an essential part of secondary injury after spinal cord injury (SCI). During this period, the injury may be exacerbated through the release of a large number of inflammatory factors and the polarization of infiltrating macrophages and microglia towards M1. Ang-(1-7), mainly generated by Ang II via angiotensin-converting enzyme 2 (ACE2), can specifically bind to the G protein-coupled receptor Mas (MasR) and plays an important role in regulating inflammation and alleviating oxidative stress. METHODS We aimed to investigate whether activating the Ang-(1-7)/MasR axis in rats after SCI can regulate local neuroinflammation to achieve functional recovery and obtain its potential mechanism. MasR expression of bone marrow-derived macrophages was determined by Western blot. Immunofluorescence, Western blot, Flow cytometry, and RT-qPCR were applied to evaluate the polarization of Ang-(1-7) on macrophages and the regulation of inflammatory cytokines. Previous evaluation of the spinal cord and bladder after SCI was conducted by hematoxylin-eosin staining, Basso, Beattie, and Bresnahan (BBB) score, inclined plate test, electrophysiology, and catwalk were used to evaluate the functional recovery of rats. RESULTS MasR expression increased in macrophages under inflammatory conditions and further elevated after Ang-(1-7) treatment. Both in vivo and in vitro results confirmed that Ang-(1-7) could regulate the expression of inflammatory cytokines by down-regulating proinflammatory cytokines and up-regulating anti-inflammatory cytokines, and bias the polarization direction of microglia/macrophages to M2 phenotypic. After SCI, Ang-(1-7) administration in situ led to better histological and functional recovery in rats, and this recovery at least partly involved the TLR4/NF-κB signaling pathway. CONCLUSION As shown in our data, activating Ang-(1-7)/MasR axis can effectively improve the inflammatory microenvironment after spinal cord injury, promote the polarization of microglia/macrophages towards the M2 phenotype, and finally support the recovery of motor function. Therefore, we suggest using Ang-(1-7) as a feasible treatment strategy for spinal cord injury to minimize the negative consequences of the inflammatory microenvironment after spinal cord injury.
Collapse
Affiliation(s)
- Guangjin Gu
- grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, National Spinal Cord Injury International Cooperation Base, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052 China
| | - Bin Zhu
- grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, National Spinal Cord Injury International Cooperation Base, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052 China
| | - Jie Ren
- grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, National Spinal Cord Injury International Cooperation Base, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052 China
| | - Xiaomeng Song
- grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, National Spinal Cord Injury International Cooperation Base, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052 China
| | - Baoyou Fan
- grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, National Spinal Cord Injury International Cooperation Base, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052 China
| | - Han Ding
- grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, National Spinal Cord Injury International Cooperation Base, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052 China
| | - Jun Shang
- grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, National Spinal Cord Injury International Cooperation Base, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052 China
| | - Heng Wu
- grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Junjin Li
- grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, National Spinal Cord Injury International Cooperation Base, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052 China
| | - Hongda Wang
- grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, National Spinal Cord Injury International Cooperation Base, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052 China
| | - Jinze Li
- grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, National Spinal Cord Injury International Cooperation Base, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052 China
| | - Zhijian Wei
- grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, National Spinal Cord Injury International Cooperation Base, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052 China ,Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, Jinan, Shandong China
| | - Shiqing Feng
- grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, National Spinal Cord Injury International Cooperation Base, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300052 China ,Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, Jinan, Shandong China
| |
Collapse
|
21
|
Ju C, Ma Y, Zuo X, Wang X, Song Z, Zhang Z, Zhu Z, Li X, Liang Z, Ding T, Hu X, Wang Z. Photobiomodulation promotes spinal cord injury repair by inhibiting macrophage polarization through lncRNA TUG1-miR-1192/TLR3 axis. Cell Mol Biol Lett 2023; 28:5. [PMID: 36658478 PMCID: PMC9854040 DOI: 10.1186/s11658-023-00417-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Secondary spinal cord injury (SCI) often causes the aggravation of inflammatory reaction and nerve injury, which affects the recovery of motor function. Bone-marrow-derived macrophages (BMDMs) were recruited to the injured area after SCI, and the M1 polarization is the key process for inducing inflammatory response and neuronal apoptosis. We previously showed that photobiomodulation (PBM) can inhibit the polarization of M1 phenotype of BMDMs and reduce inflammation, but the underlying mechanisms are unclear. The purpose of this study is to explore the potential target and mechanism of PBM in treating SCI. METHODS Transcriptome sequencing and bioinformatics analysis showed that long noncoding RNA taurine upregulated gene 1 (lncRNA TUG1) was a potential target of PBM. The expression and specific mechanism of lncRNA TUG1 were detected by qPCR, immunofluorescence, flow cytometry, western blotting, fluorescence in situ hybridization, and luciferase assay. The Basso mouse scale (BMS) and gait analysis were used to evaluate the recovery of motor function in mice. RESULTS Results showed that lncRNA TUG1 may be a potential target of PBM, regulating the polarization of BMDMs, inflammatory response, and the axial growth of DRG. Mechanistically, TUG1 competed with TLR3 for binding to miR-1192 and attenuated the inhibitory effect of miR-1192 on TLR3. This effect protected TLR3 from degradation, enabling the high expression of TLR3, which promoted the activation of downstream NF-κB signal and the release of inflammatory cytokines. In vivo, PBM treatment could reduce the expression of TUG1, TLR3, and inflammatory cytokines and promoted nerve survival and motor function recovery in SCI mice. CONCLUSIONS Our study clarified that the lncRNA TUG1/miR-1192/TLR3 axis is an important pathway for PBM to inhibit M1 macrophage polarization and inflammation, which provides theoretical support for its clinical application in patients with SCI.
Collapse
Affiliation(s)
- Cheng Ju
- grid.233520.50000 0004 1761 4404Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Changle West Road No. 127, Xi’an, 710032 Shaanxi China
| | - Yangguang Ma
- grid.233520.50000 0004 1761 4404Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Changle West Road No. 127, Xi’an, 710032 Shaanxi China
| | - Xiaoshuang Zuo
- grid.233520.50000 0004 1761 4404Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Changle West Road No. 127, Xi’an, 710032 Shaanxi China
| | - Xuankang Wang
- grid.233520.50000 0004 1761 4404Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Changle West Road No. 127, Xi’an, 710032 Shaanxi China
| | - Zhiwen Song
- grid.233520.50000 0004 1761 4404Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Changle West Road No. 127, Xi’an, 710032 Shaanxi China
| | - Zhihao Zhang
- grid.233520.50000 0004 1761 4404Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Changle West Road No. 127, Xi’an, 710032 Shaanxi China
| | - Zhijie Zhu
- grid.233520.50000 0004 1761 4404Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Changle West Road No. 127, Xi’an, 710032 Shaanxi China
| | - Xin Li
- grid.233520.50000 0004 1761 4404Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Changle West Road No. 127, Xi’an, 710032 Shaanxi China
| | - Zhuowen Liang
- grid.233520.50000 0004 1761 4404Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Changle West Road No. 127, Xi’an, 710032 Shaanxi China
| | - Tan Ding
- grid.233520.50000 0004 1761 4404Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Changle West Road No. 127, Xi’an, 710032 Shaanxi China
| | - Xueyu Hu
- grid.233520.50000 0004 1761 4404Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Changle West Road No. 127, Xi’an, 710032 Shaanxi China
| | - Zhe Wang
- grid.233520.50000 0004 1761 4404Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Changle West Road No. 127, Xi’an, 710032 Shaanxi China
| |
Collapse
|
22
|
Protective Effect of Photobiomodulation against Hydrogen Peroxide-Induced Oxidative Damage by Promoting Autophagy through Inhibition of PI3K/AKT/mTOR Pathway in MC3T3-E1 Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7223353. [DOI: 10.1155/2022/7223353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/10/2022] [Accepted: 10/22/2022] [Indexed: 11/24/2022]
Abstract
Photobiomodulation (PBM) has been repeatedly reported to play a major role in the regulation of osteoblast proliferation and mineralization. Autophagy is closely associated with various pathophysiological processes in osteoblasts, while its role in oxidative stress is even more critical. However, there is still no clear understanding of the mechanism of the role of autophagy in the regulation of osteoblast mineralization and apoptosis under oxidative stress by PBM. It was designed to investigate the impact of 808 nm PBM on autophagy and apoptosis in mouse preosteoblast MC3T3-E1 treated with hydrogen peroxide (H2O2) through PI3K/AKT/mTOR pathway. PBM could inhibit MC3T3-E1 cell apoptosis under oxidative stress and promote the expression of osteogenic proteins, while enhancing the level of autophagy. In contrast, 3-methyladenine (3-MA) inhibited the expression of osteoblast autophagy under oxidative stress conditions, increased apoptosis, and plus counteracted the effect of PBM on osteoblasts. We also found that PBM suppressed the activated PI3K/AKT/mTOR pathway during oxidative stress and induced autophagy in osteoblasts. PBM promoted autophagy of MC3T3 cells and was further blocked by 740 Y-P, which reversed the effect of PBM on MC3T3 cells with H2O2. In conclusion, PBM promotes autophagy and improves the level of osteogenesis under oxidative stress by inhibiting the PI3K/AKT/mTOR pathway. Our results can lay the foundation for the clinical usage of PBM in the treatment of osteoporosis.
Collapse
|
23
|
Zhu Z, Wang X, Song Z, Zuo X, Ma Y, Zhang Z, Ju C, Liang Z, Li K, Hu X, Wang Z. Photobiomodulation promotes repair following spinal cord injury by restoring neuronal mitochondrial bioenergetics via AMPK/PGC-1α/TFAM pathway. Front Pharmacol 2022; 13:991421. [PMID: 36172183 PMCID: PMC9512226 DOI: 10.3389/fphar.2022.991421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/17/2022] [Indexed: 11/21/2022] Open
Abstract
Background: Insufficient neuronal mitochondrial bioenergetics supply occurs after spinal cord injury (SCI), leading to neuronal apoptosis and impaired motor function. Previous reports have shown that photobiomodulation (PBM) could reduce neuronal apoptosis and promote functional recovery, but the underlying mechanism remains unclear. Therefore, we aimed to investigate whether PBM improved prognosis by promoting neuronal mitochondrial bioenergetics after SCI. Methods: Sprague Dawley rats were randomly divided into four groups: a Sham group, an SCI group, an SCI + PBM group and an SCI + PBM + Compound C group. After SCI model was established, PBM and Compound C (an AMPK inhibitor) injection were carried out. The level of neuron apoptosis, the recovery of motor function and mitochondrial function were observed at different times (7, 14, and 28 days). The AMPK/PGC-1α/TFAM pathway was hypothesized to be a potential target through which PBM could affect neuronal mitochondrial bioenergetics. In vitro, ventral spinal cord 4.1 (VSC4.1) cells were irradiated with PBM and cotreated with Compound C after oxygen and glucose deprivation (OGD). Results: PBM promoted the recovery of mitochondrial respiratory chain complex activity, increased ATP production, alleviated neuronal apoptosis and reversed motor dysfunction after SCI. The activation of the AMPK/PGC-1α/TFAM pathway after SCI were facilitated by PBM but inhibited by Compound C. Equally important, PBM could inhibit OGD-induced VSC4.1 cell apoptosis by increasing ATP production whereas these changes could be abolished by Compound C. Conclusion: PBM activated AMPK/PGC-1α/TFAM pathway to restore mitochondrial bioenergetics and exerted neuroprotective effects after SCI.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xueyu Hu
- *Correspondence: Zhe Wang, ; Xueyu Hu,
| | - Zhe Wang
- *Correspondence: Zhe Wang, ; Xueyu Hu,
| |
Collapse
|
24
|
Carroll JD. Photobiomodulation Literature Watch April 2022. Photobiomodul Photomed Laser Surg 2022; 40:656-658. [DOI: 10.1089/photob.2022.29025.lit] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
25
|
Androsov NS, Matiakin GG, Melenchuk IP, Shumaeva OD, Sushchikhina MA. [Short-term results of radiotherapy of cancer of the tongue and mouth floor mucosa using 60Co and 252Cf]. Lasers Med Sci 1986; 31:3-7. [PMID: 3724383 DOI: 10.1007/s10103-023-03786-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/12/2023] [Indexed: 05/29/2023]
Abstract
The authors presented the immediate and 3-year results of interstitial and combined therapy of 90 patients with cancer of the tongue and oral fundus mucosa. 60Co- and 252Cf-sources were employed in interstitial radiotherapy. There were no significant differences in therapeutic efficacy using different radiation sources. Some methodological aspects of administration of interstitial radiotherapy, radiation reactions and complications were covered.
Collapse
|