1
|
Krieghoff J, Gotzmann G, Teichmann T, Schulz-Siegmund M. How to sterilize biodegradable polymers? An in-depth characterization of effects of low energy electron beam irradiation (LEEI) and gamma irradiation on the molecular weight of poly(lactide-co-glycolide) films. Int J Pharm 2025; 678:125684. [PMID: 40334828 DOI: 10.1016/j.ijpharm.2025.125684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/26/2025] [Accepted: 05/03/2025] [Indexed: 05/09/2025]
Abstract
Ionizing radiation is routinely used for sterilization of medical and biomedical products. The most commonly used radiation type for this purpose, gamma rays, features several drawbacks related to the high energy of the radiation, such as being restricted to dedicated external facilities. Low energy electron irradiation (LEEI) is an alternative type of irradiation, suitable for sterilization with significantly lower material penetration, allowing in-process implementation with smaller shielding, but also requiring more involved sample preparation. In this study, we investigated the effect of comparable doses of LEEI and gamma irradiation on the molecular weight distribution of thin films made from PLGA, a biodegradable polyester that is a biomaterial of interest for the design of medical devices and medicinal products such as microparticles for controlled drug release. For the study, the PLGA films were placed into sealed packaging with an inert helium atmosphere, and the effect of this packaging on LEEI absorption was calculated in order to correlate the measured dose under the package to the dose received by the sealed films. For both radiation types, irradiation resulted in a decrease of the PLGA molecular weight that became more pronounced at higher doses. Comparing low energy electrons and gamma rays, no significant differences were found in the characteristic parameters of the molecular weight distribution at the same dose range. Together, these results indicate that single product in-process sterilization by LEEI may be a suitable approach for medical devices and products from PLGA.
Collapse
Affiliation(s)
- Jan Krieghoff
- Pharmaceutical Technology, Institute for Pharmacy, Medical Faculty, Leipzig University, Eilenburger Straße 15a, 04317 Leipzig, Germany.
| | - Gaby Gotzmann
- Fraunhofer-Institute for Electron Beam and Plasma Technology FEP, Winterbergstraße 28, 01277 Dresden, Germany.
| | - Tobias Teichmann
- Fraunhofer-Institute for Electron Beam and Plasma Technology FEP, Winterbergstraße 28, 01277 Dresden, Germany
| | - Michaela Schulz-Siegmund
- Pharmaceutical Technology, Institute for Pharmacy, Medical Faculty, Leipzig University, Eilenburger Straße 15a, 04317 Leipzig, Germany
| |
Collapse
|
2
|
Motamedi-Sedeh F, Khorasani A, Lotfi M, Moosavi SM, Arbabi A, Hosseini SM. Role of gamma irradiation and disaccharide trehalose to induce immune responses in Syrian hamster model against Iranian SARS-CoV-2 virus isolate. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2024; 15:681-689. [PMID: 39816636 PMCID: PMC11729106 DOI: 10.30466/vrf.2024.2022838.4172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/07/2024] [Indexed: 01/18/2025]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus is the causative agent of the emerging zoonotic respiratory disease. One of the most important prerequisites for combating emerging diseases is the development of vaccines within a short period of time. In this study, antigen-irradiated, inactivated SARS-CoV-2 viruses and the disaccharide trehalose were used to enhance immune responses in the Syrian hamster. The SARS-CoV-2 virus was isolated from tracheal swabs, confirmed by real-time polymerase chain reaction, and propagated on Vero cells. For inactivation, it was irradiated with 14.00 kGy gamma radiation. Evaluation of the antigenic properties of the spike protein subunit S1 showed that the antigens were intact after gamma irradiation. The gamma-irradiated and formalin-treated viruses were used to immunize hamsters in four vaccine formulations. Neutralizing antibodies increased significantly in all vaccinated groups three weeks after the second and third vaccinations. The concentration of secretory immunoglobulin A in the irradiated vaccine plus trehalose increased significantly in nasal lavage and nasopharyngeal-associated lymphoid tissue fluids three weeks after the second and third vaccinations. The lymphocyte proliferation test in the spleen showed a significant increase in all vaccinated hamsters, but the increase was greater in irradiated vaccine plus trehalose and irradiated vaccine plus alum. We can recommend the irradiated inactivated vaccine SARS-CoV-2 plus trehalose (intra-nasal) and another irradiated inactivated vaccine SARS-CoV-2 plus alum (subcutaneous) as safe vaccines against coronavirus disease of 2019 (COVID-19), which can stimulate mucosal, humeral, and cellular immunities. However, the protectivity of the vaccine against COVID-19 in vaccinated hamsters must be investigated in a challenge test to assess the potency and efficiency of vaccine.
Collapse
Affiliation(s)
- Farahnaz Motamedi-Sedeh
- Department of Veterinary and Animal Diseases, Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, Karaj, Iran
| | - Akbar Khorasani
- Department of FMD Vaccine, Razi Vaccine and Serum Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohsen Lotfi
- Department of Quality Control, Razi Vaccine and Serum Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Seyed Morteza Moosavi
- Department of Veterinary and Animal Diseases, Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, Karaj, Iran
- Iran Veterinary Organization, Mashhad, Iran
| | - Arash Arbabi
- MD Student, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
3
|
Eberlein V, Rosencrantz S, Finkensieper J, Besecke JK, Mansuroglu Y, Kamp JC, Lange F, Dressman J, Schopf S, Hesse C, Thoma M, Fertey J, Ulbert S, Grunwald T. Mucosal immunization with a low-energy electron inactivated respiratory syncytial virus vaccine protects mice without Th2 immune bias. Front Immunol 2024; 15:1382318. [PMID: 38646538 PMCID: PMC11026718 DOI: 10.3389/fimmu.2024.1382318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/18/2024] [Indexed: 04/23/2024] Open
Abstract
The respiratory syncytial virus (RSV) is a leading cause of acute lower respiratory tract infections associated with numerous hospitalizations. Recently, intramuscular (i.m.) vaccines against RSV have been approved for elderly and pregnant women. Noninvasive mucosal vaccination, e.g., by inhalation, offers an alternative against respiratory pathogens like RSV. Effective mucosal vaccines induce local immune responses, potentially resulting in the efficient and fast elimination of respiratory viruses after natural infection. To investigate this immune response to an RSV challenge, low-energy electron inactivated RSV (LEEI-RSV) was formulated with phosphatidylcholine-liposomes (PC-LEEI-RSV) or 1,2-dioleoyl-3-trimethylammonium-propane and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DD-LEEI-RSV) for vaccination of mice intranasally. As controls, LEEI-RSV and formalin-inactivated-RSV (FI-RSV) were used via i.m. vaccination. The RSV-specific immunogenicity of the different vaccines and their protective efficacy were analyzed. RSV-specific IgA antibodies and a statistically significant reduction in viral load upon challenge were detected in mucosal DD-LEEI-RSV-vaccinated animals. Alhydrogel-adjuvanted LEEI-RSV i.m. showed a Th2-bias with enhanced IgE, eosinophils, and lung histopathology comparable to FI-RSV. These effects were absent when applying the mucosal vaccines highlighting the potential of DD-LEEI-RSV as an RSV vaccine candidate and the improved performance of this mucosal vaccine candidate.
Collapse
Affiliation(s)
- Valentina Eberlein
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Frankfurt am Main, Germany
| | - Sophia Rosencrantz
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Frankfurt am Main, Germany
- Fraunhofer Institute for Applied Polymer Research (IAP), Potsdam, Germany
| | - Julia Finkensieper
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Frankfurt am Main, Germany
| | - Joana Kira Besecke
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Frankfurt am Main, Germany
- Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology (FEP), Dresden, Germany
| | - Yaser Mansuroglu
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt, Germany
| | - Jan-Christopher Kamp
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Franziska Lange
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Frankfurt am Main, Germany
| | - Jennifer Dressman
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt, Germany
| | - Simone Schopf
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Frankfurt am Main, Germany
- Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology (FEP), Dresden, Germany
| | - Christina Hesse
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Frankfurt am Main, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Martin Thoma
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Frankfurt am Main, Germany
- Fraunhofer Institute for Manufacturing Engineering and Automation (IPA), Stuttgart, Germany
| | - Jasmin Fertey
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Frankfurt am Main, Germany
| | - Sebastian Ulbert
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Frankfurt am Main, Germany
| | - Thomas Grunwald
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Frankfurt am Main, Germany
| |
Collapse
|
4
|
Weiß R, Issmail L, Rockstroh A, Grunwald T, Fertey J, Ulbert S. Immunization with different recombinant West Nile virus envelope proteins induces varying levels of serological cross-reactivity and protection from infection. Front Cell Infect Microbiol 2023; 13:1279147. [PMID: 38035335 PMCID: PMC10684968 DOI: 10.3389/fcimb.2023.1279147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction West Nile Virus (WNV) is a zoonotic flavivirus transmitted by mosquitoes. Especially in the elderly or in immunocompromised individuals an infection with WNV can lead to severe neurological symptoms. To date, no human vaccine against WNV is available. The Envelope (E) protein, located at the surface of flaviviruses, is involved in the invasion into host cells and is the major target for neutralizing antibodies and therefore central to vaccine development. Due to their close genetic and structural relationship, flaviviruses share highly conserved epitopes, such as the fusion loop domain (FL) in the E protein, that are recognized by cross-reactive antibodies. These antibodies can lead to enhancement of infection with heterologous flaviviruses, which is a major concern for potential vaccines in areas with co-circulation of different flaviviruses, e.g. Dengue or Zika viruses. Material To reduce the potential of inducing cross-reactive antibodies, we performed an immunization study in mice using WNV E proteins with either wild type sequence or a mutated FL, and WNV E domain III which does not contain the FL at all. Results and discussion Our data show that all antigens induce high levels of WNV-binding antibodies. However, the level of protection against WNV varied, with the wildtype E protein inducing full, the other antigens only partial protection. On the other hand, serological cross-reactivity to heterologous flaviviruses was significantly reduced after immunization with the mutated E protein or domain III as compared to the wild type version. These results have indications for choosing antigens with the optimal specificity and efficacy in WNV vaccine development.
Collapse
Affiliation(s)
| | | | | | | | | | - Sebastian Ulbert
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Vaccines and Infection Models, Leipzig, Germany
| |
Collapse
|
5
|
Eberlein V, Ahrends M, Bayer L, Finkensieper J, Besecke JK, Mansuroglu Y, Standfest B, Lange F, Schopf S, Thoma M, Dressman J, Hesse C, Ulbert S, Grunwald T. Mucosal Application of a Low-Energy Electron Inactivated Respiratory Syncytial Virus Vaccine Shows Protective Efficacy in an Animal Model. Viruses 2023; 15:1846. [PMID: 37766253 PMCID: PMC10535182 DOI: 10.3390/v15091846] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a leading cause of acute lower respiratory tract infections in the elderly and in children, associated with pediatric hospitalizations. Recently, first vaccines have been approved for people over 60 years of age applied by intramuscular injection. However, a vaccination route via mucosal application holds great potential in the protection against respiratory pathogens like RSV. Mucosal vaccines induce local immune responses, resulting in a fast and efficient elimination of respiratory viruses after natural infection. Therefore, a low-energy electron irradiated RSV (LEEI-RSV) formulated with phosphatidylcholine-liposomes (PC-LEEI-RSV) was tested ex vivo in precision cut lung slices (PCLSs) for adverse effects. The immunogenicity and protective efficacy in vivo were analyzed in an RSV challenge model after intranasal vaccination using a homologous prime-boost immunization regimen. No side effects of PC-LEEI-RSV in PCLS and an efficient antibody induction in vivo could be observed. In contrast to unformulated LEEI-RSV, the mucosal vaccination of mice with PC formulated LEEI-RSV showed a statistically significant reduction in viral load after challenge. These results are a proof-of-principle for the use of LEEI-inactivated viruses formulated with liposomes to be administered intranasally to induce a mucosal immunity that could also be adapted for other respiratory viruses.
Collapse
Affiliation(s)
- Valentina Eberlein
- Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany; (V.E.)
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, 60596 Frankfurt am Main, Germany (Y.M.)
| | - Mareike Ahrends
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, 60596 Frankfurt am Main, Germany (Y.M.)
- Fraunhofer Institute for Toxicology and Experimental Medicine, 30625 Hannover, Germany
| | - Lea Bayer
- Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany; (V.E.)
| | - Julia Finkensieper
- Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany; (V.E.)
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, 60596 Frankfurt am Main, Germany (Y.M.)
| | - Joana Kira Besecke
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, 60596 Frankfurt am Main, Germany (Y.M.)
- Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, 01277 Dresden, Germany
| | - Yaser Mansuroglu
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, 60596 Frankfurt am Main, Germany (Y.M.)
- Fraunhofer Institute for Translational Medicine and Pharmacology, 60596 Frankfurt, Germany
| | - Bastian Standfest
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, 60596 Frankfurt am Main, Germany (Y.M.)
- Fraunhofer Institute for Manufacturing Engineering and Automation, 70569 Stuttgart, Germany
| | - Franziska Lange
- Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany; (V.E.)
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, 60596 Frankfurt am Main, Germany (Y.M.)
| | - Simone Schopf
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, 60596 Frankfurt am Main, Germany (Y.M.)
- Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, 01277 Dresden, Germany
| | - Martin Thoma
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, 60596 Frankfurt am Main, Germany (Y.M.)
- Fraunhofer Institute for Manufacturing Engineering and Automation, 70569 Stuttgart, Germany
| | - Jennifer Dressman
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, 60596 Frankfurt am Main, Germany (Y.M.)
- Fraunhofer Institute for Translational Medicine and Pharmacology, 60596 Frankfurt, Germany
| | - Christina Hesse
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, 60596 Frankfurt am Main, Germany (Y.M.)
- Fraunhofer Institute for Toxicology and Experimental Medicine, 30625 Hannover, Germany
| | - Sebastian Ulbert
- Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany; (V.E.)
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, 60596 Frankfurt am Main, Germany (Y.M.)
| | - Thomas Grunwald
- Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany; (V.E.)
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, 60596 Frankfurt am Main, Germany (Y.M.)
| |
Collapse
|
6
|
Finkensieper J, Mayerle F, Rentería-Solís Z, Fertey J, Makert GR, Lange F, Besecke J, Schopf S, Poremba A, König U, Standfest B, Thoma M, Daugschies A, Ulbert S. Apicomplexan parasites are attenuated by low-energy electron irradiation in an automated microfluidic system and protect against infection with Toxoplasma gondii. Parasitol Res 2023:10.1007/s00436-023-07880-w. [PMID: 37233817 DOI: 10.1007/s00436-023-07880-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/14/2023] [Indexed: 05/27/2023]
Abstract
Radiation-attenuated intracellular parasites are promising immunization strategies. The irradiated parasites are able to invade host cells but fail to fully replicate, which allows for the generation of an efficient immune response. Available radiation technologies such as gamma rays require complex shielding constructions and are difficult to be integrated into pharmaceutical production processes. In this study, we evaluated for the first time low-energy electron irradiation (LEEI) as a method to generate replication-deficient Toxoplasma gondii and Cryptosporidium parvum. Similar to other radiation technologies, LEEI mainly damages nucleic acids; however, it is applicable in standard laboratories. By using a novel, continuous, and microfluidic-based LEEI process, tachyzoites of T. gondii and oocysts of C. parvum were irradiated and subsequently analyzed in vitro. The LEEI-treated parasites invaded host cells but were arrested in intracellular replication. Antibody-based analysis of surface proteins revealed no significant structural damage due to LEEI. Similarly, excystation rates of sporozoites from irradiated C. parvum oocysts were similar to those from untreated controls. Upon immunization of mice, LEEI-attenuated T. gondii tachyzoites induced high levels of antibodies and protected the animals from acute infection. These results suggest that LEEI is a useful technology for the generation of attenuated Apicomplexan parasites and has potential for the development of anti-parasitic vaccines.
Collapse
Affiliation(s)
- Julia Finkensieper
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Perlickstrasse 1, 04103, Leipzig, Germany
| | - Florian Mayerle
- Fraunhofer Institute for Manufacturing Engineering and Automation IPA, Nobelstrasse 12, 70569, Stuttgart, Germany
| | - Zaida Rentería-Solís
- Institute of Parasitology, Centre for Infection Medicine, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 35, 04103, Leipzig, Germany
- Albrecht-Daniel-Thaer Institute, Rudolf-Breitscheid-Str. 35, 04463 Großpösna, Germany
| | - Jasmin Fertey
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Perlickstrasse 1, 04103, Leipzig, Germany
| | - Gustavo R Makert
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Perlickstrasse 1, 04103, Leipzig, Germany
| | - Franziska Lange
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Perlickstrasse 1, 04103, Leipzig, Germany
| | - Joana Besecke
- Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, Winterbergstrasse 28, 01277, Dresden, Germany
| | - Simone Schopf
- Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, Winterbergstrasse 28, 01277, Dresden, Germany
| | - Andre Poremba
- Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, Winterbergstrasse 28, 01277, Dresden, Germany
| | - Ulla König
- Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, Winterbergstrasse 28, 01277, Dresden, Germany
| | - Bastian Standfest
- Fraunhofer Institute for Manufacturing Engineering and Automation IPA, Nobelstrasse 12, 70569, Stuttgart, Germany
| | - Martin Thoma
- Fraunhofer Institute for Manufacturing Engineering and Automation IPA, Nobelstrasse 12, 70569, Stuttgart, Germany
| | - Arwid Daugschies
- Institute of Parasitology, Centre for Infection Medicine, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 35, 04103, Leipzig, Germany
| | - Sebastian Ulbert
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Perlickstrasse 1, 04103, Leipzig, Germany.
| |
Collapse
|