1
|
Volpedo G, Riva A, Nobili L, Zara F, Ravizza T, Striano P. Gut-immune-brain interactions during neurodevelopment: from a brain-centric to a multisystem perspective. BMC Med 2025; 23:263. [PMID: 40325407 PMCID: PMC12054192 DOI: 10.1186/s12916-025-04093-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 04/24/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Neurodevelopmental disorders (NDDs) and epileptic syndromes are complex neurological conditions linked by shared abnormal neurobiological processes. Existing therapies mostly target symptoms, rather than addressing the underlying causes of the disease, leaving a burden of unmet clinical needs. MAIN BODY Emerging evidence suggests a significant role for the gut microbiota and associated immune responses in influencing brain development and function, changing the paradigm of a brain-centric origin of NDDs. This review discusses the pivotal interactions within the gut-immune-brain axis, highlighting how microbial dysbiosis and immune signaling contribute to neurological pathologies. We also explore the potential of microbial management and immunomodulation as novel therapeutic avenues, emphasizing the need for a shift towards addressing the root causes of these disorders rather than just their symptoms. CONCLUSIONS This integrated perspective offers new insights into the biological underpinnings of NDDs and epilepsy, proposing innovative biomarkers and therapeutic strategies.
Collapse
Affiliation(s)
- Greta Volpedo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, IRCCS Istituto "Giannina Gaslini", Via Gerolamo Gaslini 5, Genoa, 16147, Italy
| | - Antonella Riva
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, IRCCS Istituto "Giannina Gaslini", Via Gerolamo Gaslini 5, Genoa, 16147, Italy.
| | - Lino Nobili
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, IRCCS Istituto "Giannina Gaslini", Via Gerolamo Gaslini 5, Genoa, 16147, Italy
- Child Neuropsychiatry Unit, IRCCS Istituto "Giannina Gaslini", Via Gerolamo Gaslini 5, Genoa, 16147, Italy
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, IRCCS Istituto "Giannina Gaslini", Via Gerolamo Gaslini 5, Genoa, 16147, Italy
- Unit of Medical Genetics, IRCCS Istituto "Giannina Gaslini", Via Gerolamo Gaslini 5, Genoa, 16147, Italy
| | - Teresa Ravizza
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, IRCCS Istituto "Giannina Gaslini", Via Gerolamo Gaslini 5, Genoa, 16147, Italy
- Paediatric Neurology and Muscular Disease Unit, IRCCS Istituto "Giannina Gaslini", Via Gerolamo Gaslini 5, Genoa, 16147, Italy
| |
Collapse
|
2
|
Prado C, Herrada AA, Hevia D, Goiry LG, Escobedo N. Role of innate immune cells in multiple sclerosis. Front Immunol 2025; 16:1540263. [PMID: 40034690 PMCID: PMC11872933 DOI: 10.3389/fimmu.2025.1540263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/28/2025] [Indexed: 03/05/2025] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune, inflammatory and neurodegenerative disease affecting the central nervous system (CNS). MS is associated with a complex interplay between neurodegenerative and inflammatory processes, mostly attributed to pathogenic T and B cells. However, a growing body of preclinical and clinical evidence indicates that innate immunity plays a crucial role in MS promotion and progression. Accordingly, preclinical and clinical studies targeting different innate immune cells to control MS are currently under study, highlighting the importance of innate immunity in this pathology. Here, we reviewed recent findings regarding the role played by innate immune cells in the pathogenesis of MS. Additionally, we discuss potential new treatments for MS based on targets against innate immune components.
Collapse
Affiliation(s)
- Carolina Prado
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Andrés A. Herrada
- Lymphatic Vasculature and Inflammation Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | - Daniel Hevia
- Center for Studies and Innovation in Dentistry, Facultad de Odontología, Universidad Finis Terrae, Santiago, Chile
| | - Lorna Galleguillos Goiry
- Neurology and Psychiatry Department, Clínica Alemana, Neurology and Neurosurgery Department, Clínica Dávila, Santiago, Chile
| | - Noelia Escobedo
- Lymphatic Vasculature and Inflammation Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| |
Collapse
|
3
|
Rodrigues ABM, Passetti F, Guimarães ACR. Complementary Strategies to Identify Differentially Expressed Genes in the Choroid Plexus of Patients with Progressive Multiple Sclerosis. Neuroinformatics 2025; 23:10. [PMID: 39836313 DOI: 10.1007/s12021-024-09713-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2024] [Indexed: 01/22/2025]
Abstract
Multiple sclerosis (MS) is a neurological disease causing myelin and axon damage through inflammatory and autoimmune processes. Despite affecting millions worldwide, understanding its genetic pathways remains limited. The choroid plexus (ChP) has been studied in neurodegenerative processes and diseases like MS due to its dysregulation, yet its role in MS pathophysiology remains unclear. Our work re-evaluates the ChP transcriptome in progressive MS patients and compares gene expression profiles using diverse methodological strategies. Samples from patient and healthy control RNASeq sequencing of brain tissue from post-mortem patients (GEO: GSE137619) were used. After an evaluation and quality control of these data, they had their transcripts mapped and quantified against the reference transcriptome GRCh38/hg38 of Homo sapiens using three strategies to identify differentially expressed genes in progressive MS patients. Functional analysis of genes revealed their involvement in immune processes, cell adhesion and migration, hormonal actions, amino acid transport, chemokines, metals, and signaling pathways. Our findings can offer valuable insights for progressive MS therapies, suggesting specific genes influence immune cell recruitment and potential ChP microenvironment changes. Combining complementary approaches maximizes literature coverage, facilitating a deeper understanding of the biological context in progressive MS.
Collapse
Affiliation(s)
| | - Fabio Passetti
- Instituto Carlos Chagas - Fiocruz/Paraná, Curitiba, PR, Brazil
| | - Ana Carolina Ramos Guimarães
- Laboratory for Applied Genomics and Bioinnovations, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
4
|
Zhou W, Chen H, Chen X, Gao J, Ji W. Recent advances in research on common targets of neurological and sex hormonal influences on asthma. Clin Transl Allergy 2025; 15:e70022. [PMID: 39800672 PMCID: PMC11725405 DOI: 10.1002/clt2.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/22/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Asthma is currently one of the most common of respiratory diseases, severely affecting the lives of patients. With the in-depth study of the role of the nervous system and sex hormones on the development of asthma, it has been found that the nervous system and sex hormones are related to each other in the pathway of asthma. OBJECTIVE To investigate the effects of sex hormones and the nervous system on the development of asthma. METHODS In this review, we searched for a large number of relevant literature to elucidate the unique mechanisms of sex hormones and the nervous system on asthma development, and summarized several common targets in the pathways of sex hormones and the nervous system on asthma. CONCLUSION We summarize several common important targets in the pathways of action of sex hormones and the nervous system in asthma, provide new directions and ideas for asthma treatment, and discuss current therapeutic limitations and future possibilities. Finally, the article predicts future applications of several important targets in asthma therapy.
Collapse
Affiliation(s)
- Wenting Zhou
- China Chengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Huan Chen
- China Chengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Xinyu Chen
- China Chengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Jing Gao
- China Chengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Wenting Ji
- China Chengdu University of Traditional Chinese MedicineChengduSichuanChina
| |
Collapse
|
5
|
Bottino C, Picant V, Vivier E, Castriconi R. Natural killer cells and engagers: Powerful weapons against cancer. Immunol Rev 2024; 328:412-421. [PMID: 39180430 PMCID: PMC11659922 DOI: 10.1111/imr.13384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Natural killer (NK) cells are innate immune effectors whose functions rely on receptors binding cytokines, recognizing self-molecules, or detecting danger signals expressed by virus-infected or tumor cells. The potent cytotoxic potential makes NK cells promising candidates for cancer immunotherapy. To enhance their activity strategies include cytokine administration, blocking of immune checkpoints, and designing of antibody-based NK cell engagers (NKCEs). NKCEs represent a cutting-edge approach to cancer therapy: they strengthen the NK-to-target cell interactions and optimize tumor killing, possibly overcoming the immunosuppressive tumor microenvironment. NK cells belong to the innate lymphoid cells (ILCs) and are categorized into different subsets also including cells with a memory-like phenotype: this complexity needs to be explored in the context of cancer immunotherapy, particularly when designing NKCEs. Two strategies to enhance NK cell activity in cancer patients can be adopted: activating patients' own NK cells versus the adoptive transfer of ex vivo activated NK cells. Furthermore, the capability of NKCEs to activate γδ T cells could have a significant synergistic effect in immunotherapy.
Collapse
Affiliation(s)
- Cristina Bottino
- Department of Experimental Medicine (DIMES)University of GenovaGenoaItaly
- Laboratory of Clinical and Experimental ImmunologyIRCCS Istituto Giannina GasliniGenoaItaly
| | - Valentin Picant
- Innate Pharma Research LaboratoriesInnate PharmaMarseilleFrance
| | - Eric Vivier
- Innate Pharma Research LaboratoriesInnate PharmaMarseilleFrance
- Centre National de la Recherche Scientifique, INSERM, Centre d'Immunologie de Marseille‐LuminyAix Marseille UniversitéMarseilleFrance
- Assistance Publique‐Hôpitaux de MarseilleHôpital de la Timone, Marseille ImmunopôleMarseilleFrance
| | - Roberta Castriconi
- Department of Experimental Medicine (DIMES)University of GenovaGenoaItaly
- Laboratory of Clinical and Experimental ImmunologyIRCCS Istituto Giannina GasliniGenoaItaly
| |
Collapse
|
6
|
Khodadadi H, Salles ÉL, Naeini SE, Bhandari B, Rogers HM, Gouron J, Meeks W, Terry AV, Pillai A, Yu JC, Morgan JC, Vaibhav K, Hess DC, Dhandapani KM, Wang LP, Baban B. Boosting Acetylcholine Signaling by Cannabidiol in a Murine Model of Alzheimer's Disease. Int J Mol Sci 2024; 25:11764. [PMID: 39519315 PMCID: PMC11546302 DOI: 10.3390/ijms252111764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Alzheimer's disease (AD) is a challenging medical issue that requires efficacious treatment options to improve long-term quality of life. Cannabidiol (CBD) is a cannabis-derived phytocannabinoid with potential health benefits, including reports from our laboratory and others showing a therapeutic role in the pre-clinical treatment of AD; however, the mechanisms whereby CBD affects AD progression remain undefined. Innate lymphoid cells (ILCs) are recently discovered immune cells that initiate and orchestrate inflammatory responses. ILC2, a sub-class of ILCs, is proposed to have a role in cognitive function via unknown mechanisms. In this present study, we explored whether CBD ameliorates AD symptoms via the enhancement of acetylcholine (ACh), a cholinergic neurotransmitter involved in cognition that may regulate ILC2. 5xFAD mice were chronically treated by inhalation of a formulation of broad-spectrum CBD for seven months. ACh production, ILC2s profile, brain histopathology, and long-term behavior were assessed. Together, our studies showed that long-term inhalation of CBD improved cognitive function and reduced senile plaques in a murine AD model, effects that were associated with enhanced ACh production and altered ILC2s distribution within the CNS. These findings indicate that inhaled CBD could offer a cost-effective, non-invasive, and effective treatment for managing AD. The beneficial effects of CBD inhalation may be linked to increased ACh production and an altered distribution of ILC2s, highlighting the need for further research in this area.
Collapse
Affiliation(s)
- Hesam Khodadadi
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (H.K.); (J.C.M.); (D.C.H.)
| | - Évila Lopes Salles
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (É.L.S.); (S.E.N.); (B.B.); (H.M.R.); (J.G.); (L.P.W.)
- Center for Excellence in Research, Scholarship and Innovation (CERSI), Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Sahar Emami Naeini
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (É.L.S.); (S.E.N.); (B.B.); (H.M.R.); (J.G.); (L.P.W.)
- Center for Excellence in Research, Scholarship and Innovation (CERSI), Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Bidhan Bhandari
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (É.L.S.); (S.E.N.); (B.B.); (H.M.R.); (J.G.); (L.P.W.)
- Center for Excellence in Research, Scholarship and Innovation (CERSI), Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
- The Graduate School, Augusta University, Augusta, GA 30912, USA
| | - Hannah M. Rogers
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (É.L.S.); (S.E.N.); (B.B.); (H.M.R.); (J.G.); (L.P.W.)
- Center for Excellence in Research, Scholarship and Innovation (CERSI), Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Jules Gouron
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (É.L.S.); (S.E.N.); (B.B.); (H.M.R.); (J.G.); (L.P.W.)
- Center for Excellence in Research, Scholarship and Innovation (CERSI), Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - William Meeks
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Alvin V. Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Anilkumar Pillai
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA;
| | - Jack C. Yu
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - John C. Morgan
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (H.K.); (J.C.M.); (D.C.H.)
| | - Kumar Vaibhav
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (K.V.); (K.M.D.)
| | - David C. Hess
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (H.K.); (J.C.M.); (D.C.H.)
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Krishnan M. Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (K.V.); (K.M.D.)
| | - Lei P. Wang
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (É.L.S.); (S.E.N.); (B.B.); (H.M.R.); (J.G.); (L.P.W.)
- Center for Excellence in Research, Scholarship and Innovation (CERSI), Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Babak Baban
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (H.K.); (J.C.M.); (D.C.H.)
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (É.L.S.); (S.E.N.); (B.B.); (H.M.R.); (J.G.); (L.P.W.)
- Center for Excellence in Research, Scholarship and Innovation (CERSI), Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| |
Collapse
|
7
|
Hoyer-Kimura C, Hay M, Konhilas JP, Morrison HW, Methajit M, Strom J, Polt R, Salcedo V, Fricks JP, Kalya A, Pires PW. PNA5, A Novel Mas Receptor Agonist, Improves Neurovascular and Blood-Brain-Barrier Function in a Mouse Model of Vascular Cognitive Impairment and Dementia. Aging Dis 2024; 15:1927-1951. [PMID: 37815905 PMCID: PMC11272189 DOI: 10.14336/ad.2023.0928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023] Open
Abstract
It is well established that decreased brain blood flow, increased reactive oxygen species production (ROS), and pro-inflammatory mechanisms accelerate neurodegenerative disease progressions, including vascular cognitive impairment and dementia (VCID). Previous studies in our laboratory have shown that our novel glycosylated Angiotensin-(1-7) Mas receptor agonist PNA5 reverses cognitive deficits, decreases ROS production, and inhibits inflammatory cytokine production in our preclinical mouse model of VCID that is induced by chronic heart failure (VCID-HF). In the present study, the effects of VCID-HF and treatment with PNA5 on microglia activation, blood-brain-barrier (BBB) integrity, and neurovascular coupling were assessed in our mouse model of VCID-HF. Three-month-old male C57BL/6J mice were subjected to myocardial infarction (MI) to induce heart failure for four weeks and then treated with subcutaneous injections of extended-release PNA5. Microglia activation, BBB permeability, cerebral perfusion, and neurovascular coupling were assessed. Results show that in our VCID-HF model, there was an increase in microglial activation and recruitment within the CA1 and CA3 regions of the hippocampus, a disruption in BBB integrity, and a decrease in neurovascular coupling. Treatment with PNA5 reversed these neuropathological effects of VCID-HF, suggesting that PNA5 may be an effective disease-modifying therapy to treat and prevent VCID. This study identifies potential mechanisms by which heart failure may induce VCID and highlights the possible mechanisms by which treatment with our novel glycosylated Angiotensin-(1-7) Mas receptor agonist, PNA5, may protect cognitive function in our model of VCID.
Collapse
Affiliation(s)
| | - Meredith Hay
- Department of Physiology, The University of Arizona, Tucson, AZ 85724, USA.
- Evelyn F. McKnight Brain Institute, The University of Arizona, Tucson, AZ 85724, USA.
- ProNeurogen, Inc, Tucson, AZ, USA
| | - John P Konhilas
- Department of Physiology, The University of Arizona, Tucson, AZ 85724, USA.
| | - Helena W Morrison
- College of Nursing, The University of Arizona, Tucson, AZ 85724, USA.
| | - Methawasin Methajit
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ 85724, USA.
| | - Joshua Strom
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ 85724, USA.
| | - Robin Polt
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85724, USA.
| | - Victoria Salcedo
- Department of Physiology, The University of Arizona, Tucson, AZ 85724, USA.
| | | | - Anjna Kalya
- Department of Physiology, The University of Arizona, Tucson, AZ 85724, USA.
| | - Paulo W Pires
- Department of Physiology, The University of Arizona, Tucson, AZ 85724, USA.
| |
Collapse
|
8
|
Muzio L, Perego J. CNS Resident Innate Immune Cells: Guardians of CNS Homeostasis. Int J Mol Sci 2024; 25:4865. [PMID: 38732082 PMCID: PMC11084235 DOI: 10.3390/ijms25094865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Although the CNS has been considered for a long time an immune-privileged organ, it is now well known that both the parenchyma and non-parenchymal tissue (meninges, perivascular space, and choroid plexus) are richly populated in resident immune cells. The advent of more powerful tools for multiplex immunophenotyping, such as single-cell RNA sequencing technique and upscale multiparametric flow and mass spectrometry, helped in discriminating between resident and infiltrating cells and, above all, the different spectrum of phenotypes distinguishing border-associated macrophages. Here, we focus our attention on resident innate immune players and their primary role in both CNS homeostasis and pathological neuroinflammation and neurodegeneration, two key interconnected aspects of the immunopathology of multiple sclerosis.
Collapse
Affiliation(s)
- Luca Muzio
- Neuroimmunology Lab, IRCCS San Raffaele Scientific Institute, Institute of Experimental Neurology, 20133 Milan, Italy;
| | | |
Collapse
|
9
|
Xie X, Wang L, Dong S, Ge S, Zhu T. Immune regulation of the gut-brain axis and lung-brain axis involved in ischemic stroke. Neural Regen Res 2024; 19:519-528. [PMID: 37721279 PMCID: PMC10581566 DOI: 10.4103/1673-5374.380869] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/11/2023] [Accepted: 06/12/2023] [Indexed: 09/19/2023] Open
Abstract
Local ischemia often causes a series of inflammatory reactions when both brain immune cells and the peripheral immune response are activated. In the human body, the gut and lung are regarded as the key reactional targets that are initiated by brain ischemic attacks. Mucosal microorganisms play an important role in immune regulation and metabolism and affect blood-brain barrier permeability. In addition to the relationship between peripheral organs and central areas and the intestine and lung also interact among each other. Here, we review the molecular and cellular immune mechanisms involved in the pathways of inflammation across the gut-brain axis and lung-brain axis. We found that abnormal intestinal flora, the intestinal microenvironment, lung infection, chronic diseases, and mechanical ventilation can worsen the outcome of ischemic stroke. This review also introduces the influence of the brain on the gut and lungs after stroke, highlighting the bidirectional feedback effect among the gut, lungs, and brain.
Collapse
Affiliation(s)
- Xiaodi Xie
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Lei Wang
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Shanshan Dong
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - ShanChun Ge
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Ting Zhu
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
10
|
Garmendia JV, De Sanctis CV, Das V, Annadurai N, Hajduch M, De Sanctis JB. Inflammation, Autoimmunity and Neurodegenerative Diseases, Therapeutics and Beyond. Curr Neuropharmacol 2024; 22:1080-1109. [PMID: 37898823 PMCID: PMC10964103 DOI: 10.2174/1570159x22666231017141636] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/13/2023] [Accepted: 08/03/2023] [Indexed: 10/30/2023] Open
Abstract
Neurodegenerative disease (ND) incidence has recently increased due to improved life expectancy. Alzheimer's (AD) or Parkinson's disease (PD) are the most prevalent NDs. Both diseases are poly genetic, multifactorial and heterogenous. Preventive medicine, a healthy diet, exercise, and controlling comorbidities may delay the onset. After the diseases are diagnosed, therapy is needed to slow progression. Recent studies show that local, peripheral and age-related inflammation accelerates NDs' onset and progression. Patients with autoimmune disorders like inflammatory bowel disease (IBD) could be at higher risk of developing AD or PD. However, no increase in ND incidence has been reported if the patients are adequately diagnosed and treated. Autoantibodies against abnormal tau, β amyloid and α- synuclein have been encountered in AD and PD and may be protective. This discovery led to the proposal of immune-based therapies for AD and PD involving monoclonal antibodies, immunization/ vaccines, pro-inflammatory cytokine inhibition and anti-inflammatory cytokine addition. All the different approaches have been analysed here. Future perspectives on new therapeutic strategies for both disorders are concisely examined.
Collapse
Affiliation(s)
- Jenny Valentina Garmendia
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, The Czech Republic
| | - Claudia Valentina De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, The Czech Republic
| | - Viswanath Das
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, The Czech Republic
- The Czech Advanced Technology and Research Institute (Catrin), Palacky University, Olomouc, The Czech Republic
| | - Narendran Annadurai
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, The Czech Republic
| | - Marián Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, The Czech Republic
- The Czech Advanced Technology and Research Institute (Catrin), Palacky University, Olomouc, The Czech Republic
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, The Czech Republic
- The Czech Advanced Technology and Research Institute (Catrin), Palacky University, Olomouc, The Czech Republic
| |
Collapse
|
11
|
Gong Z, Gao R, Ba L, Liu Y, Hou H, Zhang M. The Peripheral Immune Traits Changed in Patients with Multiple System Atrophy. Brain Sci 2023; 13:brainsci13020205. [PMID: 36831748 PMCID: PMC9953988 DOI: 10.3390/brainsci13020205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/28/2023] Open
Abstract
A growing body of evidence suggests immune involvement in the pathology of multiple system atrophy (MSA). Research on detailed peripheral immune indices, however, is relatively sparse, and is one of the intriguing aspects of MSA yet to be elucidated. A total of 26 MSA patients and 56 age-and sex-matched healthy controls (HC) were enrolled in the current case-control study to delineate the peripheral immune traits of MSA patients. The ratio of CD4+/CD8+ T cells, natural killer cells, CD28 expression on both CD4+ T cells and CD8+ T cells increased in MSA patients compared to HC, but CD8+ T cells and active marker (HLA-DR) expression on total T cells decreased (p < 0.05). This study sheds light on the dysregulation of cellular immunity in MSA, pointing to future mechanistic research.
Collapse
Affiliation(s)
- Zhenxiang Gong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Rong Gao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Ba
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yang Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongyan Hou
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence: (H.H.); (M.Z.)
| | - Min Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence: (H.H.); (M.Z.)
| |
Collapse
|
12
|
Gong Z, Liu Y, Ding F, Ba L, Zhang M. Natural killer cells-related immune traits and amyotrophic lateral sclerosis: A Mendelian randomization study. Front Neurosci 2022; 16:981371. [PMID: 36248644 PMCID: PMC9562140 DOI: 10.3389/fnins.2022.981371] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundObservational studies have suggested that peripheral immune disorders are associated with amyotrophic lateral sclerosis (ALS). Previous studies predominantly focused on changes in adaptive immunity. However, emerging evidence showed natural killer (NK) cells, an essential component of innate immunity, were involved in the degeneration of motor neurons. However, the causal relationship between dysregulated NK cells-related immune traits and ALS remains unclear.ObjectiveThis study aimed to explore the causal relationship between NK cells-related immune traits and the risk of ALS.Materials and methodsSingle nucleotide polymorphisms (SNPs) significantly associated with NK cells-related immune traits were selected as instrumental variables to estimate their causal effects on ALS. SNPs from a genome-wide association study (GWAS) on NK cells-related immune traits were used as exposure instruments, including an absolute NK-cells count, absolute HLA-DR+ NK-cells count, NK cells/lymphocytes, NK cells/CD3– lymphocytes, HLA DR+ NK cells/NK cells, HLA DR+ NK cells/CD3– lymphocytes, and the median fluorescence intensities of CD16–CD56+ on NK cells and HLA-DR+ NK cells. Summary-level GWAS statistics of ALS were used as the outcome data. Exposure and outcome data were analyzed using the two-sample Mendelian randomization (MR) method.ResultsEach one standard deviation increase in the expression levels of CD16–CD56+ on NK cells and HLA-DR+ NK cells were associated with a lower risk of ALS in both the MR-Egger and inverse variance weighted methods (P < 0.05). The results proved robust under all sensitivity analyses. Neither instrumental outliers nor heterogeneity were detected.ConclusionOur results suggest that higher expression levels of CD16–CD56+ on NK cells and HLA-DR+ NK cells are associated with a lower risk of ALS.
Collapse
Affiliation(s)
- Zhenxiang Gong
- Department of Neurology and Psychiatry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Liu
- Department of Neurology and Psychiatry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengfei Ding
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Li Ba
- Department of Neurology and Psychiatry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Li Ba,
| | - Min Zhang
- Department of Neurology and Psychiatry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Li Ba,
| |
Collapse
|
13
|
Zhou L, Liang J, Xiong T. Research progress of mesenchymal stem cell-derived exosomes on inflammatory response after ischemic stroke. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:500-506. [PMID: 37202091 PMCID: PMC10264999 DOI: 10.3724/zdxbyxb-2022-0077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/24/2022] [Indexed: 05/20/2023]
Abstract
Ischemic stroke is characterized by cute onset and high mortality. The suppression of neuroinflammation is crucial in the treatment of ischemic stroke. Exosomes derived from mesenchymal stem cell (MSC) have attracted extensive research attention due to their wide origin, small size, and containing large number of active components. Recent studies have shown that MSC-derived exosomes can inhibit the proinflammatory activity of microglia and astrocytes and stimulate their neuroprotective activity; also can inhibit neuroinflammation by regulating immune cells and inflammatory mediators. This article reviews the roles and related mechanism of MSC-derived exosomes in neuroinflammation after ischemic stroke, hoping to provide ideas and references for the development of a novel approach for the treatment of ischemic stroke diseases.
Collapse
Affiliation(s)
- Lujia Zhou
- 1. Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, Jiangsu Province, China
| | - Jingyan Liang
- 1. Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, Jiangsu Province, China
- 2. Jiangsu Provincial Key Laboratory of Geriatric Disease Prevention and Control, Yangzhou 225001, Jiangsu Province, China
| | - Tianqing Xiong
- 1. Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, Jiangsu Province, China
- 2. Jiangsu Provincial Key Laboratory of Geriatric Disease Prevention and Control, Yangzhou 225001, Jiangsu Province, China
| |
Collapse
|
14
|
Liu Y, Yang X, Kadasah S, Peng C. Clinical Value of the Prognostic Nutrition Index in the Assessment of Prognosis in Critically Ill Patients with Stroke: A Retrospective Analysis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4889920. [PMID: 35586667 PMCID: PMC9110188 DOI: 10.1155/2022/4889920] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 11/24/2022]
Abstract
Purpose The purpose of study was to evaluate the association between prognostic nutritional index (PNI) and all-cause mortality of critically ill patients with stroke. Methods Clinical data derived from Multiparameter Intelligent Monitoring in Intensive Care were analyzed. The primary endpoint was 30-day all-cause mortality; secondary endpoints were 90-day mortality and one-year cause mortality. The potential prognostic roles of PNI were analyzed by Cox proportional hazard models. The independent prognostic roles of PNI in the cases were analyzed by smooth curve fitting. Results Concerning 30-day mortality, the HR (95% CI) for a high PNI (≥39.7) was 0.700 (0.544, 0.900; P = 0.00539), compared to a low PNI (<39.7). After adjusting for multiple confounders, the HR (95% CI) for a high PNI (≥39.7) was 0.732 (0.547, 0.978; P = 0.03514), compared to a low PNI (<39.7). Regarding 90-day and one-year mortality, a similar trend was observed. In addition, a nonlinear association between PNI and 30-day mortality was found. Using recursive algorithm and two-piecewise linear regression model, inflection point (IP) was calculated, which was 49.4. On the right side of the IP, there was a positive relationship between PNI and 30-day mortality, and the effect size, 95% CI, and P value were 1.04 (1.01, 1.07), P = 0.0429, respectively. On the left of the IP, the effect size, 95% CI, and P value were 0.97 (0.96, 0.99) and 0.0011, respectively. Conclusions The PNI was an independent predicting factor of 30-day, 90-day, and 1-year mortality of the critically ill patients with stroke. In addition, there was a U-shaped relationship between PNI and all-cause mortality of stroke patients. PNI was a risk factor for the outcome of stroke when PNI was >49.4, while PNI was a protective factor for outcome of stroke when PNI was <49.4.
Collapse
Affiliation(s)
- Yang Liu
- Department of Health Medicine, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Xiaobin Yang
- Day Clinic Area, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Sultan Kadasah
- Department of Biology, Faculty of Science, University of Bisha, Saudi Arabia
| | - Chaosheng Peng
- Day Clinic Area, The Sixth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|