1
|
Wang S, Cheng W, Wang X, Wu Z, Su J. Progress of microneedle targeted modulation technology in the reconstruction of immune microenvironment in diabetic wounds. Eur J Med Res 2025; 30:405. [PMID: 40394697 PMCID: PMC12090542 DOI: 10.1186/s40001-025-02667-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 05/07/2025] [Indexed: 05/22/2025] Open
Abstract
Wound healing in diabetic patients is mainly hindered by a combination of long-term glycosylation, persistent inflammatory response, and immunosuppressive state. The interaction of these factors not only results in considerable prolongation of the wound healing process but also elevates the likelihood of recurrent ulcer development, profoundly affecting patients' quality of life. Traditional treatments, including surgical debridement, anti-infection, dressing application, vascular intervention, and glycaemic control, can only relieve some symptoms. However, they are often ineffective in addressing the underlying cause of impaired wound healing. It is of concern that the importance of the immune microenvironment in diabetic wound healing has not yet been fully appreciated and investigated, and the homeostasis of the immune microenvironment is crucial for promoting cell proliferation, angiogenesis, and tissue repair. However, this microenvironment is often dysregulated in the diabetic state. This paper reviews the key factors leading to dysregulation of the immune microenvironment, including immune cell dysfunction, abnormal cytokine expression, and disruption of key signalling pathways, and introduces an innovative silicone-based microneedle drug delivery method, which takes advantage of microneedle's precise targeting and highly efficient drug loading capacity to deliver drugs with immunomodulatory functions directly to the wound in a sustained manner, activate the corresponding signalling pathways, promote the polarization of M1 macrophages into the M2 phenotype, and stimulate neovascularization, providing a low inflammatory and pro-angiogenic immune microenvironment for diabetic wound healing, which provides a new therapeutic idea and means for diabetic wound healing.
Collapse
Affiliation(s)
- Shunsheng Wang
- Department of Burn and Plastic Surgery, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, 215000, China
| | - Wei Cheng
- Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou, 215006, China
| | - Xue Wang
- Department of Burn and Plastic Surgery, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, 215000, China
| | - Zhuofan Wu
- Department of Burn and Plastic Surgery, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, 215000, China
| | - Jiandong Su
- Department of Burn and Plastic Surgery, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, 215000, China.
| |
Collapse
|
2
|
Wu G, Wu F, Wang L, Ying L, Lu W, Qian K, Fu T, Wu D, Hu F, Shi Y, Xu L. Application of imaging mass cytometry for spatially profiling the microenvironment of salivary glands in primary Sjögren's syndrome. Cell Death Dis 2025; 16:392. [PMID: 40379615 DOI: 10.1038/s41419-025-07717-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 04/27/2025] [Accepted: 05/02/2025] [Indexed: 05/19/2025]
Abstract
Primary Sjogren's syndrome (pSS) is a slowly progressive, systemic autoimmune disorder characterized by gradual lymphocytic infiltration of exocrine glands. However, the spatially profiling the immune microenvironment in pSS is largely unclear, limiting the understanding of the complex interplay among cells within the microenvironment. Based on imaging mass cytometry (IMC) analysis of clinical pSS samples, we first revealed that labial salivary gland (LSG) comprised of epithelial, immune cells and stromal cells, and epithelial was the main cell type in LSG. Eight immune cells populations were identified, including CD8+ T, CD4+ T, Treg, B, NK cells, neutrophils, resident macrophages and a mixed immune cell cluster. We found that CD8+ T cells, but not CD4+ T cells, were the most prominent T cells in immune infiltrates of pSS LSG. With the increase of pSS disease activity and severity, the infiltration abundance of CD8+ T cells gradually increased and was accompanied by the activation of inflammatory response. sc-RNA-seq analysis based on the GSE272409 dataset confirmed that CD8+ T cells were the main immune cells, and dominated the most intercellular ligand-receptor interactions. CD8+ T cells were further clustered into five cell subsets, of which CD160+CD8+ T cells subset appeared to present only in pSS patients. Further experiments demonstrated that CD160 expression on CD8+ T cells was associated with an enhanced expression of proinflammatory and cytotoxic cytokines IFN-γ, GZMB and TNF-α, and the injury of salivary gland epithelial cells. Besides, proportion of GZMK+CD8+ T cells subset was increased in pSS patients. Trajectory analysis confirmed an enhanced frequency of CD8+ T cell differentiation and activation during the progression of pSS. This study provided single cell profile with spatial information for analyzing the LSG immune microenvironment in pSS, which could not be achieved by conventional immunofluorescence and immunohistochemistry assays.
Collapse
Affiliation(s)
- Guolin Wu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Fangping Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Lipei Wang
- Hangzhou Normal University of Basic Medical Sciences, Hangzhou, Zhejiang, China
| | - Lixiong Ying
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenwen Lu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Kang Qian
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tianxiao Fu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Danbin Wu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fenglin Hu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - YiHang Shi
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Li Xu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Ambrus JL, Jacob A, Shukla AA. Cellular Metabolic Disorders in a Cohort of Patients with Sjogren's Disease. Int J Mol Sci 2025; 26:4668. [PMID: 40429812 PMCID: PMC12112628 DOI: 10.3390/ijms26104668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 05/09/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
Metabolism disorders have been seen in multiple autoimmune diseases, including SLE and Sjogren's disease. The current studies were designed to evaluate mutations in genes involved in metabolism in a cohort of patients with Sjogren's disease, diagnosed from clinical criteria and the presence of antibodies to salivary gland antigens. Patients were from an Immunology clinic that follows a large population of patients with autoimmune and metabolic disorders. The patients included in these studies were patients who met the criteria for Sjogren's disease and for whom we were able to obtain genetic studies, sequencing of the mitochondrial DNA, and whole exome sequencing. There were 194 of these patients, and 192 had mutations in one or more gene involved in metabolism: 188 patients had mutations in mitochondrial respiratory chain genes, 17 patients had mutations in mitochondrial tRNA genes, 10 patients had mutations in mitochondrial DLOOP regions, 6 patients had mutations involved in carnitine transport, 6 patients had mutations in genes causing mitochondrial depletion, and 7 patients had glycogen storage diseases. In all cases, the treatment of the metabolic disorder led to symptomatic improvement in energy, exercise tolerance, gastrointestinal dysmotility, and the management of infections. In conclusion, metabolic disorders are common in patients with Sjogren's disease and may be one of the factors leading to the initiation of the disease. The treatment of patients with Sjogren's disease should include the treatment of the underlying/associated metabolic disorder.
Collapse
Affiliation(s)
- Julian L. Ambrus
- Department of Medicine, SUNY at Buffalo School of Medicine, 875 Ellicott Street, Buffalo, NY 14203, USA;
| | - Alexander Jacob
- Department of Medicine, SUNY at Buffalo School of Medicine, 875 Ellicott Street, Buffalo, NY 14203, USA;
| | - Abhay A. Shukla
- Immco Diagnostics of Trinity Biotech, Amherst, NY 14228, USA;
| |
Collapse
|
4
|
Ha YJ, Choi YS, Choi SR, Yoon J, Ku D, Kim Y, Kang EH, Kim KS, Jeong WJ, Hyon JY, Cha S, Lee YJ. Association of mitochondrial RNA expression levels in saliva and plasma with interferon signature gene expression and disease activity in patients with Sjögren disease. RMD Open 2025; 11:e005166. [PMID: 40360431 DOI: 10.1136/rmdopen-2024-005166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
OBJECTIVE To unveil the clinical implications of mitochondrial RNAs (mt-RNAs) in Sjögren disease (SjD), this study evaluated mt-RNA expression levels in the plasma and saliva of patients with SS and their association with SjD-related features. METHODS Plasma, saliva and/or peripheral blood mononuclear cells (PBMCs) were collected from 111 patients with SjD and 35 healthy controls (HCs), with 40 rheumatoid arthritis (RA) and 40 systemic lupus erythematosus (SLE) disease controls. The expression levels of mt-RNAs and interferon-stimulated genes (ISGs) were quantified by real-time PCR. Composite mt-RNA and ISG scores were calculated using logistic regression models. Their discriminative power was evaluated using receiver operating characteristic curve analyses, and correlations with clinical data were explored. RESULTS Altered mt-RNA expression in saliva or plasma and ISG expression in PBMCs were detected in patients with SjD, compared with HCs. Saliva and plasma mt-RNA scores showed better discriminative ability (area under the curve values=0.847 and 0.789, respectively) than ISG scores in distinguishing SjD from HCs. Plasma mt-RNA scores were significantly higher in patients with SjD than in those with RA and SLE (p<0.05). Saliva mt-RNA scores were positively associated with objective disease activity measures and Raynaud phenomenon in patients with SjD, whereas plasma mt-RNA scores did not show this association. RA and SLE disease activity correlated with plasma mt-RNA scores. CONCLUSIONS Extracellular mt-RNA burden is elevated in SjD, and mt-RNA scores effectively discriminated patients with SjD from HCs. Saliva mt-RNA levels were associated with SjD disease activity, suggesting their potential utility in disease monitoring and stratification of SjD.
Collapse
Affiliation(s)
- You-Jung Ha
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi, Korea (the Republic of)
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea (the Republic of)
| | - Yong Seok Choi
- Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam, Gyeonggi, Korea (the Republic of)
| | - Se Rim Choi
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi, Korea (the Republic of)
| | - Jimin Yoon
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea (the Republic of)
| | - Doyeong Ku
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea (the Republic of)
| | - Yoosik Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea (the Republic of)
| | - Eun Ha Kang
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi, Korea (the Republic of)
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea (the Republic of)
| | - Keun-Suh Kim
- Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam, Gyeonggi, Korea (the Republic of)
| | - Woo-Jin Jeong
- Department of Otorhinolaryngology - Head & Neck Surgery, Seoul National University Bundang Hospital, Seongnam, Gyeonggi, Korea (the Republic of)
| | - Joon Young Hyon
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seongnam, Gyeonggi, Korea (the Republic of)
| | - Seunghee Cha
- Division of Oral Medicine, Department of Oral and Maxillofacial Diagnostic Sciences, University of Florida, Gainesville, Florida, USA
| | - Yun Jong Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi, Korea (the Republic of)
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea (the Republic of)
- Department of Medical Device Development, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
5
|
Wang X, Zhou X, Zhang Z, Shen L, Yan X, Xu H, Redshaw C, Zhang QL. Mitochondria-targeting fluorescent probe with a pH/viscosity response for assisted detection of non-alcoholic fatty liver in mice. J Mater Chem B 2025; 13:3677-3684. [PMID: 39967385 DOI: 10.1039/d4tb02711f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Cancer cells are characterized by high viscosity, low pH and high levels of reactive oxygen species. Both pH and viscosity are key indicators which can respond to the microenvironment of cancer cells and are also important indicators for monitoring fatty liver. Based on this, we have constructed a hemicarbocyanine fluorescent probe (HTC) possessing a D-D'(π)-π-A structure using phenol as an electron donor (D), a thiophene moiety as an electron donor and a partial π bridge. The fluorescent probe HTC exhibits pH-responsive properties, and the fluorescence intensity of the probe at 627 nm gradually decreases and the fluorescence at 720 nm gradually increases with the increase of pH for pH = 7 to 10.5. Meanwhile, with an increase of viscosity the fluorescent probe HTC exhibited gradually enhanced fluorescence at 627 nm, thus revealing a response to the change of viscosity. In addition, the fluorescent probe HTC can target mitochondria for cellular fluorescence imaging, and co-localized fluorescence imaging with the commercial mitochondrial probe Mito-Tracker Green with a Pearson's coefficient of 0.91. We have utilized the properties of the fluorescent probe HTC, which exhibits a pH and viscosity response, and have applied it to monitor the change of pH or viscosity in cells and differentiate between normal and cancerous cells, as well as for the identification of non-alcoholic fatty liver mice. In addition, the probe is easily metabolized in mice and has good biocompatibility.
Collapse
Affiliation(s)
- Xue Wang
- School of Basic Medicine, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou Medical University, Guiyang, 561113, P. R. China.
| | - Xu Zhou
- School of Basic Medicine, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou Medical University, Guiyang, 561113, P. R. China.
| | - Ze Zhang
- School of Basic Medicine, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou Medical University, Guiyang, 561113, P. R. China.
| | - Lingyi Shen
- School of Basic Medicine, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou Medical University, Guiyang, 561113, P. R. China.
| | - Xiufang Yan
- College of Tobacco Science/Journal of Editorial Department, Guizhou University, Guiyang, 550025, China.
| | - Hong Xu
- School of Basic Medicine, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou Medical University, Guiyang, 561113, P. R. China.
| | - Carl Redshaw
- Chemistry, School of Natural Sciences, University of Hull, Hull, Yorkshire HU6 7RX, UK
| | - Qi-Long Zhang
- School of Basic Medicine, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou Medical University, Guiyang, 561113, P. R. China.
| |
Collapse
|
6
|
Chang K, Luo P, Guo Z, Yang L, Pu J, Han F, Cai F, Tang J, Wang X. Lipid Metabolism: An Emerging Player in Sjögren's Syndrome. Clin Rev Allergy Immunol 2025; 68:15. [PMID: 39934534 PMCID: PMC11813826 DOI: 10.1007/s12016-025-09023-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2025] [Indexed: 02/13/2025]
Abstract
Sjögren's syndrome (SS) is a chronic autoimmune disorder that primarily affects the exocrine glands. Due to the intricate nature of the disease progression, the exact mechanisms underlying SS are not completely understood. Recent research has highlighted the complex interplay between immune dysregulation and metabolic abnormalities in inflammatory diseases. Notably, lipid metabolism has emerged as a crucial factor in the modulation of immune function and the progression of autoimmune diseases, including SS. This review explores the prevalence of dyslipidemia in SS, emphasizing its role in the onset, progression, and prognosis of the disease. We specifically described the impact of altered lipid metabolism in exocrine glands and its association with disease-specific features, including inflammation and glandular dysfunction. Additionally, we discussed the potential clinical implications of lipid metabolism regulation, including the role of polyunsaturated fatty acids (PUFAs) and their deficits in SS pathogenesis. By identifying lipid metabolism as a promising therapeutic target, this review highlights the need for further research into lipid-based interventions for the management of SS.
Collapse
Affiliation(s)
- Keni Chang
- Department of Rheumatology and Immunology, School of Medicine, Tongji Hospital, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China
| | - Peiming Luo
- Department of Rheumatology and Immunology, School of Medicine, Tongji Hospital, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China
| | - Zizhen Guo
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lufei Yang
- Department of Rheumatology and Immunology, School of Medicine, Tongji Hospital, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China
| | - Jincheng Pu
- Department of Rheumatology and Immunology, School of Medicine, Tongji Hospital, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China
| | - Fang Han
- Department of Rheumatology and Immunology, School of Medicine, Tongji Hospital, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China
| | - Feiyang Cai
- Department of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, Québec, Canada
- Gerald Bronfman Department of Oncology, Segal Cancer Centre, Lady Davis Institute and Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Jianping Tang
- Department of Rheumatology and Immunology, School of Medicine, Tongji Hospital, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China.
| | - Xuan Wang
- Department of Rheumatology and Immunology, School of Medicine, Tongji Hospital, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China.
| |
Collapse
|
7
|
Jacob A, He J, Peck A, Jamil A, Bunya V, Alexander JJ, Ambrus JL. Metabolic changes during evolution of Sjögren's in both an animal model and human patients. Heliyon 2025; 11:e41082. [PMID: 39801970 PMCID: PMC11720936 DOI: 10.1016/j.heliyon.2024.e41082] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
Sjögren's (SS) involves salivary and lacrimal gland dysfunction. These studies examined metabolic profiles in the B6. Il14α transgene mouse model of SS and a cohort of human SS patients at different stages of disease. In B6. Il14α mice, products of glucose and fatty acid were common at 6 months of age, while products of amino acid metabolism were common at 12 months of age. Treating B6. Il14α mice with the glycolysis inhibitor 2-deoxyglucose from 6 to 10 months of age normalized salivary gland secretions, dacryoadenitis, hypergammaglobulinemia and physical performance, while treatment from 10 to 14 months of age failed to improve any of the clinical manifestations. Similarly, SS patients at an early stage of disease showed high glycolysis. SS patients with long-standing disease utilized predominantly amino acid metabolism, like B6. Il14α mice at 10-12 months of age. Additional studies are suggested to further define metabolic activities at the various disease stages.
Collapse
Affiliation(s)
- Alexander Jacob
- Department of Medicine, SUNY at Buffalo School of Medicine, Buffalo, NY, USA
| | - Jing He
- Department of Rheumatology and Immunology, Peking University People's Hospital Beijing China, Beijing, China
| | - Ammon Peck
- Department of Infectious Diseases and Immunology, University of Florida College of Veterinary Medicine, Gainesville, Florida, USA
| | - Ali Jamil
- Department of Medicine, SUNY at Buffalo School of Medicine, Buffalo, NY, USA
| | - Vatinee Bunya
- Department of Ophthalmology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Jessy J. Alexander
- Department of Medicine, SUNY at Buffalo School of Medicine, Buffalo, NY, USA
| | - Julian L. Ambrus
- Department of Medicine, SUNY at Buffalo School of Medicine, Buffalo, NY, USA
| |
Collapse
|
8
|
Tan YN, Jiang GG, Meng XW, Lu ZY, Yan-Ma, Li J, Nan-Xiang, Sun XG, Wang Q, Wang X, Jia XY, Zhang M. CMPK2 Promotes CD4 + T Cell Activation and Apoptosis through Modulation of Mitochondrial Dysfunction in Systemic Lupus Erythematosus. Cell Biochem Biophys 2024; 82:3547-3557. [PMID: 39078538 DOI: 10.1007/s12013-024-01443-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 07/31/2024]
Abstract
Systemic lupus erythematosus (SLE) is a classic autoimmune disease characterized by abnormal autoantibodies, immune complex deposition, and tissue inflammation. Despite extensive research, the exact etiology and progression of SLE remain elusive. Cytidine/uridine monophosphate kinase 2 (CMPK2), a mitochondrial nucleoside monophosphate kinase, has garnered attention for its potential involvement in the development of various diseases, including SLE, where it has been observed to be dysregulated in affected individuals. However, the specific involvement of CMPK2 in the pathogenesis of SLE remains unclear. This study aims to clarify the expression level of CMPK2 in SLE CD4+ T cells and explore its impact on CD4+ T cells. The expression levels of the CMPK2 gene and the corresponding CMPK2 protein in CD4+ T cells of SLE patients were quantified using RT-qPCR and Western blot, respectively. Immunofluorescence and RT-qPCR were used to assess the mitochondrial function of SLE CD4+ T cells. Flow cytometry was used to assess CD4+ T cell activation and apoptosis levels. The impact of CMPK2 on CD4+ T cells was investigated by gene transfection experiment. We found that CMPK2 was significantly upregulated in SLE CD4+ T cells at both gene and protein levels. These cells demonstrated aberrant mitochondrial function, as evidenced by elevated mitochondrial reactive oxygen species (mtROS) levels, mitochondrial membrane potential, and mitochondrial DNA (mtDNA) copy number. Flow cytometry revealed a notable increase in both apoptosis and activation levels of CD4+ T cells in SLE patients. Gene transfection experiments showed that suppressing CMPK2 led to a significant improvement in these conditions. These findings suggest that CMPK2 may be involved in the pathogenesis of SLE by regulating mitochondrial dysfunction in CD4+ T cells and thus affecting CD4+ T cell activation and apoptosis. Our study may provide a new target for the treatment of SLE.
Collapse
Affiliation(s)
- Ya-Nan Tan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
- Division of Life Sciences and Medicine, Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, PR China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, PR China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, PR China
| | - Ge-Ge Jiang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
- Division of Life Sciences and Medicine, Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, PR China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, PR China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, PR China
| | - Xiang-Wen Meng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
- Division of Life Sciences and Medicine, Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, PR China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, PR China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, PR China
| | - Zhi-Yuan Lu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
- Division of Life Sciences and Medicine, Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, PR China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, PR China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, PR China
| | - Yan-Ma
- Division of Life Sciences and Medicine, Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, PR China
| | - Jin Li
- Division of Life Sciences and Medicine, Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, PR China
| | - Nan-Xiang
- Division of Life Sciences and Medicine, Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, PR China
| | - Xiao-Ge Sun
- Division of Life Sciences and Medicine, Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, PR China
| | - Qian Wang
- Division of Life Sciences and Medicine, Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, PR China
| | - Xue Wang
- Division of Life Sciences and Medicine, Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, PR China
| | - Xiao-Yi Jia
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, PR China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, PR China
| | - Min Zhang
- Division of Life Sciences and Medicine, Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, PR China.
| |
Collapse
|
9
|
Ma D, Feng Y, Lin X. Immune and non-immune mediators in the fibrosis pathogenesis of salivary gland in Sjögren's syndrome. Front Immunol 2024; 15:1421436. [PMID: 39469708 PMCID: PMC11513355 DOI: 10.3389/fimmu.2024.1421436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024] Open
Abstract
Sjögren's syndrome (SS) or Sjögren's disease (SjD) is a systemic autoimmune disease clinically manifested as sicca symptoms. This disease primarily impacts the functionality of exocrine glands, specifically the lacrimal and salivary glands (SG). SG fibrosis, an irreversible morphological change, is a severe consequence that occurs in the later stages of the disease due to sustained inflammation. However, the mechanism underlying SG fibrosis in SS remains under-investigated. Glandular fibrosis may arise from chronic sialadenitis, in which the interactions between infiltrating lymphocytes and epithelial cells potentially contributes to fibrotic pathogenesis. Thus, both immune and non-immune cells are closely involved in this process, while their interplays are not fully understood. The molecular mechanism of tissue fibrosis is partly associated with an imbalance of immune responses, in which the transforming growth factor-beta (TGF-β)-dependent epithelial-mesenchymal transition (EMT) and extracellular matrix remodeling are recently investigated. In addition, viral infection has been implicated in the pathogenesis of SS. Viral-specific innate immune response could exacerbate the autoimmune progression, resulting in overt inflammation in SG. Notably, post-COVID patients exhibit typical SS symptoms and severe inflammatory sialadenitis, which are positively correlated with SG damage. In this review, we discuss the immune and non-immune risk factors in SG fibrosis and summarize the evidence to understand the mechanisms upon autoimmune progression in SS.
Collapse
Affiliation(s)
- Danbao Ma
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yun Feng
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| | - Xiang Lin
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Chinese Medicine, the University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, China
| |
Collapse
|
10
|
Huang KT, Wagner LE, Takano T, Lin XX, Bagavant H, Deshmukh U, Yule DI. Dysregulated Ca 2+ signaling, fluid secretion, and mitochondrial function in a mouse model of early Sjögren's disease. eLife 2024; 13:RP97069. [PMID: 39259200 PMCID: PMC11390111 DOI: 10.7554/elife.97069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
Abstract
The molecular mechanisms leading to saliva secretion are largely established, but factors that underlie secretory hypofunction, specifically related to the autoimmune disease Sjögren's syndrome (SS) are not fully understood. A major conundrum is the lack of association between the severity of salivary gland immune cell infiltration and glandular hypofunction. SS-like disease was induced by treatment with DMXAA, a small molecule agonist of murine STING. We have previously shown that the extent of salivary secretion is correlated with the magnitude of intracellular Ca2+ signals (Takano et al., 2021). Contrary to our expectations, despite a significant reduction in fluid secretion, neural stimulation resulted in enhanced Ca2+ signals with altered spatiotemporal characteristics in vivo. Muscarinic stimulation resulted in reduced activation of the Ca2+-activated Cl- channel, TMEM16a, although there were no changes in channel abundance or absolute sensitivity to Ca2+. Super-resolution microscopy revealed a disruption in the colocalization of Inositol 1,4,5-trisphosphate receptor Ca2+ release channels with TMEM16a, and channel activation was reduced when intracellular Ca2+ buffering was increased. These data indicate altered local peripheral coupling between the channels. Appropriate Ca2+ signaling is also pivotal for mitochondrial morphology and bioenergetics. Disrupted mitochondrial morphology and reduced oxygen consumption rate were observed in DMXAA-treated animals. In summary, early in SS disease, dysregulated Ca2+ signals lead to decreased fluid secretion and disrupted mitochondrial function contributing to salivary gland hypofunction.
Collapse
Affiliation(s)
- Kai-Ting Huang
- Department of Pharmacology and Physiology, University of RochesterRochesterUnited States
| | - Larry E Wagner
- Department of Pharmacology and Physiology, University of RochesterRochesterUnited States
| | - Takahiro Takano
- Department of Pharmacology and Physiology, University of RochesterRochesterUnited States
| | - Xiao-Xuan Lin
- Department of Pharmacology and Physiology, University of RochesterRochesterUnited States
| | - Harini Bagavant
- Arthritis and Clinical Immunology, Oklahoma Medical Research FoundationOklahoma CityUnited States
| | - Umesh Deshmukh
- Arthritis and Clinical Immunology, Oklahoma Medical Research FoundationOklahoma CityUnited States
| | - David I Yule
- Department of Pharmacology and Physiology, University of RochesterRochesterUnited States
| |
Collapse
|
11
|
Jusic A, Erpapazoglou Z, Dalgaard LT, Lakkisto P, de Gonzalo-Calvo D, Benczik B, Ágg B, Ferdinandy P, Fiedorowicz K, Schroen B, Lazou A, Devaux Y, on behalf of EU-CardioRNA COST Action CA17129, AtheroNET COST Action CA21153. Guidelines for mitochondrial RNA analysis. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102262. [PMID: 39091381 PMCID: PMC11292373 DOI: 10.1016/j.omtn.2024.102262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Mitochondria are the energy-producing organelles of mammalian cells with critical involvement in metabolism and signaling. Studying their regulation in pathological conditions may lead to the discovery of novel drugs to treat, for instance, cardiovascular or neurological diseases, which affect high-energy-consuming cells such as cardiomyocytes, hepatocytes, or neurons. Mitochondria possess both protein-coding and noncoding RNAs, such as microRNAs, long noncoding RNAs, circular RNAs, and piwi-interacting RNAs, encoded by the mitochondria or the nuclear genome. Mitochondrial RNAs are involved in anterograde-retrograde communication between the nucleus and mitochondria and play an important role in physiological and pathological conditions. Despite accumulating evidence on the presence and biogenesis of mitochondrial RNAs, their study continues to pose significant challenges. Currently, there are no standardized protocols and guidelines to conduct deep functional characterization and expression profiling of mitochondrial RNAs. To overcome major obstacles in this emerging field, the EU-CardioRNA and AtheroNET COST Action networks summarize currently available techniques and emphasize critical points that may constitute sources of variability and explain discrepancies between published results. Standardized methods and adherence to guidelines to quantify and study mitochondrial RNAs in normal and disease states will improve research outputs, their reproducibility, and translation potential to clinical application.
Collapse
Affiliation(s)
- Amela Jusic
- HAYA Therapeutics SA, Route De La Corniche 6, SuperLab Suisse - Batiment Serine, 1066 Epalinges, Switzerland
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1445 Strassen, Luxembourg
| | - Zoi Erpapazoglou
- Ιnstitute for Fundamental Biomedical Research, B.S.R.C. “Alexander Fleming”, Vari, 16672 Athens, Greece
| | - Louise Torp Dalgaard
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Päivi Lakkisto
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland
| | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, 25198 Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Bettina Benczik
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Pharmahungary Group, 6722 Szeged, Hungary
| | - Bence Ágg
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Pharmahungary Group, 6722 Szeged, Hungary
| | - Péter Ferdinandy
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Pharmahungary Group, 6722 Szeged, Hungary
| | | | - Blanche Schroen
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, ER 6229 Maastricht, the Netherlands
| | - Antigone Lazou
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1445 Strassen, Luxembourg
| | - on behalf of EU-CardioRNA COST Action CA17129
- HAYA Therapeutics SA, Route De La Corniche 6, SuperLab Suisse - Batiment Serine, 1066 Epalinges, Switzerland
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1445 Strassen, Luxembourg
- Ιnstitute for Fundamental Biomedical Research, B.S.R.C. “Alexander Fleming”, Vari, 16672 Athens, Greece
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, 25198 Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Pharmahungary Group, 6722 Szeged, Hungary
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, 61614 Poznan, Poland
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, ER 6229 Maastricht, the Netherlands
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - AtheroNET COST Action CA21153
- HAYA Therapeutics SA, Route De La Corniche 6, SuperLab Suisse - Batiment Serine, 1066 Epalinges, Switzerland
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1445 Strassen, Luxembourg
- Ιnstitute for Fundamental Biomedical Research, B.S.R.C. “Alexander Fleming”, Vari, 16672 Athens, Greece
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, 25198 Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Pharmahungary Group, 6722 Szeged, Hungary
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, 61614 Poznan, Poland
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, ER 6229 Maastricht, the Netherlands
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
12
|
Soliman Wadan AH, Abdelsattar Ahmed M, Hussein Ahmed A, El-Sayed Ellakwa D, Hamed Elmoghazy N, Gawish A. The Interplay of Mitochondrial Dysfunction in Oral Diseases: Recent Updates in Pathogenesis and Therapeutic Implications. Mitochondrion 2024; 78:101942. [PMID: 39111357 DOI: 10.1016/j.mito.2024.101942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/12/2024] [Accepted: 08/03/2024] [Indexed: 08/15/2024]
Abstract
Mitochondrial dysfunction is linked to various systemic and localized diseases, including oral diseases like periodontitis, oral cancer, and temporomandibular joint disorders. This paper explores the intricate mechanisms underlying mitochondrial dysfunction in oral pathologies, encompassing oxidative stress, inflammation, and impaired energy metabolism. Furthermore, it elucidates the bidirectional relationship between mitochondrial dysfunction and oral diseases, wherein the compromised mitochondrial function exacerbates disease progression, while oral pathologies, in turn, exacerbate mitochondrial dysfunction. Understanding these intricate interactions offers insights into novel therapeutic strategies targeting mitochondrial function for managing oral diseases. This paper pertains to the mechanisms underlying mitochondrial dysfunction, its implications in various oral pathological and inflammatory conditions, and emerging versatile treatment approaches. It reviews current therapeutic strategies to mitigate mitochondrial dysfunction, including antioxidants, mitochondrial-targeted agents, and metabolic modulators.
Collapse
Affiliation(s)
- Al-Hassan Soliman Wadan
- Faculty of Dentistry, Sinai University, Arish Branch, North Sinai, Egypt; Sinai University Research Center (SURC), Sinai University, North Sinai, Egypt.
| | - Mohamed Abdelsattar Ahmed
- Faculty of Dentistry, Sinai University, Kantra Branch, Ismailia, Egypt; Sinai University Research Center (SURC), Sinai University, North Sinai, Egypt
| | - Abdelnaser Hussein Ahmed
- Faculty of Dentistry, Sinai University, Arish Branch, North Sinai, Egypt; Sinai University Research Center (SURC), Sinai University, North Sinai, Egypt
| | - Doha El-Sayed Ellakwa
- Department of Biochemistry & Molecular Biology, Faculty of Pharmacy for Girls, Al-Azhar University, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Sinai University, Kantra Branch, Ismailia, Egypt
| | - Nourhan Hamed Elmoghazy
- Faculty of Dentistry, Sinai University, Arish Branch, North Sinai, Egypt; Sinai University Research Center (SURC), Sinai University, North Sinai, Egypt
| | - Abeer Gawish
- Faculty of Dentistry, Sinai University, Arish Branch, North Sinai, Egypt; Sinai University Research Center (SURC), Sinai University, North Sinai, Egypt; Faculty of Graduate Studies, Sinai University, Arish Branche, North Sinai, Egypt; Oral Medicine, Periodontology, Diagnosis and Radiology Department, Al Azhar University, Egypt
| |
Collapse
|
13
|
Hou J, Feng Y, Yang Z, Ding Y, Cheng D, Shi Z, Li R, Xue L. Primary Sjögren's syndrome: new perspectives on salivary gland epithelial cells. Eur J Med Res 2024; 29:371. [PMID: 39014509 PMCID: PMC11253495 DOI: 10.1186/s40001-024-01967-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 07/09/2024] [Indexed: 07/18/2024] Open
Abstract
Primary Sjögren's syndrome (pSS) is a chronic autoimmune disease primarily affecting exocrine glands such as the salivary glands, leading to impaired secretion and sicca symptoms. As the mainstay of salivation, salivary gland epithelial cells (SGECs) have an important role in the pathology of pSS. Emerging evidence suggests that the interplay between immunological factors and SGECs may not be the initial trigger or the sole mechanism responsible for xerostomia in pSS, challenging conventional perceptions. To deepen our understanding, current research regarding SGECs in pSS was reviewed. Among the extensive aberrations in cellular architecture and function, this review highlighted certain alterations of SGECs that were identified to occur independently of or in absence of lymphocytic infiltration. In particular, some of these alterations may serve as upstream factors of immuno-inflammatory responses. These findings underscore the significance of introspecting the pathogenesis of pSS and developing interventions targeting SGECs in the early stages of the disease.
Collapse
Affiliation(s)
- Jiaqi Hou
- Rheumatology Department, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| | - Yiyi Feng
- Rheumatology Department, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| | - Zhixia Yang
- Rheumatology Department, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| | - Yimei Ding
- Rheumatology Department, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| | - Dandan Cheng
- Shanghai Skin Diseases Hospital, 200 Wuyi Road, Changning District, Shanghai, 200050, China
| | - Zhonghao Shi
- Rheumatology Department, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| | - Rouxin Li
- Rheumatology Department, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| | - Luan Xue
- Rheumatology Department, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China.
| |
Collapse
|
14
|
Huang KT, Wagner LE, Takano T, Lin XX, Bagavant H, Deshmukh U, Yule DI. Dysregulated Ca 2+ signaling, fluid secretion, and mitochondrial function in a mouse model of early Sjögren's syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.585719. [PMID: 38562738 PMCID: PMC10983907 DOI: 10.1101/2024.03.19.585719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Saliva is essential for oral health. The molecular mechanisms leading to physiological fluid secretion are largely established, but factors that underlie secretory hypofunction, specifically related to the autoimmune disease Sjögren's syndrome (SS) are not fully understood. A major conundrum is the lack of association between the severity of inflammatory immune cell infiltration within the salivary glands and glandular hypofunction. In this study, we investigated in a mouse model system, mechanisms of glandular hypofunction caused by the activation of the stimulator of interferon genes (STING) pathway. Glandular hypofunction and SS-like disease were induced by treatment with 5,6-Dimethyl-9-oxo-9H-xanthene-4-acetic acid (DMXAA), a small molecule agonist of murine STING. Contrary to our expectations, despite a significant reduction in fluid secretion in DMXAA-treated mice, in vivo imaging demonstrated that neural stimulation resulted in greatly enhanced spatially averaged cytosolic Ca2+ levels. Notably, however, the spatiotemporal characteristics of the Ca2+ signals were altered to signals that propagated throughout the entire cytoplasm as opposed to largely apically confined Ca2+ rises observed without treatment. Despite the augmented Ca2+ signals, muscarinic stimulation resulted in reduced activation of TMEM16a, although there were no changes in channel abundance or absolute sensitivity to Ca2+. However, super-resolution microscopy revealed a disruption in the intimate colocalization of Inositol 1,4,5-trisphosphate receptor Ca2+ release channels in relation to TMEM16a. TMEM16a channel activation was also reduced when intracellular Ca2+ buffering was increased. These data are consistent with altered local coupling between the channels contributing to the reduced activation of TMEM16a. Appropriate Ca2+ signaling is also pivotal for mitochondrial morphology and bioenergetics and secretion is an energetically expensive process. Disrupted mitochondrial morphology, a depolarized mitochondrial membrane potential, and reduced oxygen consumption rate were observed in DMXAA-treated animals compared to control animals. We report that early in SS disease, dysregulated Ca2+ signals lead to decreased fluid secretion and disrupted mitochondrial function contributing to salivary gland hypofunction and likely the progression of SS disease.
Collapse
Affiliation(s)
- Kai-Ting Huang
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY. 14526
| | - Larry E. Wagner
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY. 14526
| | - Takahiro Takano
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY. 14526
| | - Xiao-Xuan Lin
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY. 14526
| | - Harini Bagavant
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, 825 NE 13 Street, Oklahoma City, OK 73104
| | - Umesh Deshmukh
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, 825 NE 13 Street, Oklahoma City, OK 73104
| | - David I. Yule
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY. 14526
| |
Collapse
|
15
|
Kurien BT, Ice JA, Wood R, Pharaoh G, Cavett J, Lewis V, Bhaskaran S, Rasmussen A, Lessard CJ, Farris AD, Sivils KL, Koelsch KA, Van Remmen H, Scofield RH. Mitochondrial Dysfunction and Fatigue in Sjögren's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.598269. [PMID: 38948768 PMCID: PMC11212898 DOI: 10.1101/2024.06.17.598269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Objectives Sjögren's disease (SjD) is a common exocrine disorder typified by chronic inflammation and dryness, but also profound fatigue, suggesting a pathological basis in cellular bioenergetics. In healthy states, damaged or dysfunctional mitochondrial components are broken down and recycled by mitophagy, a specialized form of autophagy. In many autoimmune disorders, however, evidence suggests that dysfunctional mitophagy allows poorly functioning mitochondria to persist and contribute to a cellular milieu with elevated reactive oxygen species. We hypothesized that mitophagic processes are dysregulated in SjD and that dysfunctional mitochondria contribute to overall fatigue. We sought to link fatigue with mitochondrial dysfunction directly in SjD, heretofore unexamined, and further sought to assess the pathogenic extent and implications of dysregulated mitophagy in SjD. Methods We isolated pan T cells via negative selection from the peripheral blood mononuclear cells of 17 SjD and 8 age-matched healthy subjects, all of whom completed fatigue questionnaires prior to phlebotomy. Isolated T cells were analyzed for mitochondrial oxygen consumption rate (OCR) and glycolysis using Seahorse, and linear correlations with fatigue measures were assessed. A mitophagy transcriptional signature in SjD was identified by reanalysis of whole-blood microarray data from 190 SjD and 32 healthy subjects. Differential expression analyses were performed by case/control and subgroup analyses comparing SjD patients by mitophagy transcriptional cluster against healthy subjects followed by bioinformatic interpretation using gene set enrichment analysis. Results Basal OCR, ATP-linked respiration, maximal respiration, and reserve capacity were significantly lower in SjD compared to healthy subjects with no observed differences in non-mitochondrial respiration, basal glycolysis, or glycolytic stress. SjD lymphocytic mitochondria show structural alterations compared to healthy subjects. Fatigue scores related to pain/discomfort in SjD correlated with the altered OCR. Results from subgroup analyses by mitophagic SjD clusters revealed highly variable inter-cluster differentially expressed genes (DEGs) and expanded the number of SjD-associated gene targets by tenfold within the same dataset. Conclusion Mitochondrial dysfunction, associated with fatigue, is a significant problem in SjD and warrants further investigation.
Collapse
|
16
|
Maleki-Fischbach M, Anderson K, Fernández Pérez ER. Transcriptomic Profiling of Peripheral B Cells in Antibody Positive Sjogren's Patients Reveals Interferon Signature. Genes (Basel) 2024; 15:628. [PMID: 38790257 PMCID: PMC11120746 DOI: 10.3390/genes15050628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/14/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Sjögren's disease (SjD) is a common systemic autoimmune disease that affects mainly women. Key pathologic features include the infiltration of exocrine glands by lymphocytes and the activation of B lymphocytes with the production of autoantibodies. We aimed to analyze the transcriptome of circulating B cells from patients with SJD and healthy controls to decipher the B-cell-specific contribution to SJD. METHODS RNA from peripheral blood B cells of five untreated female patients with SjD and positive ANA, positive anti-SSA (both Ro-52 and Ro-60), positive anti-SSB and positive rheumatoid-factor, and five healthy controls was subjected to whole-transcriptome sequencing. A false discovery rate of < 0.1 was applied to define differentially expressed genes (DEG). RESULTS RNA-sequencing identified 56 up and 23 down DEG. Hierarchal clustering showed a clear separation between the two groups. Ingenuity pathway analysis revealed that these genes may play a role in interferon signaling, chronic mycobacterial infection, and transformation to myeloproliferative disorders. CONCLUSIONS We found upregulated expression of type-I and type-II interferon (IFN)-induced genes, as well as genes that may contribute to other concomitant conditions, including infections and a higher risk of myeloproliferative disorders. This adds insight into the autoimmune process and suggests potential targets for future functional and prognostic studies.
Collapse
Affiliation(s)
| | - Kelsey Anderson
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206, USA;
| | - Evans R. Fernández Pérez
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO 80206, USA
| |
Collapse
|
17
|
Wu Z, Zhang C, Sha J, Jing Z, He J, Bai Y, Wu J, Zhang S, Shi P. Ultrabright Xanthene Fluorescence Probe for Mitochondrial Super-Resolution Imaging. Anal Chem 2024; 96:5134-5142. [PMID: 38507805 DOI: 10.1021/acs.analchem.3c05154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Mitochondria are important organelles that provide energy for cellular physiological activities. Changes in their structures may indicate the occurrence of diseases, and the super-resolution imaging of mitochondria is of great significance. However, developing fluorescent probes for mitochondrial super-resolution visualization still remains challenging due to insufficient fluorescence brightness and poor stability. Herein, we rationally synthesized an ultrabright xanthene fluorescence probe Me-hNR for mitochondria-specific super-resolution imaging using structured illumination microscopy (SIM). The rigid structure of Me-hNR provided its ultrahigh fluorescence quantum yield of up to 0.92 and ultrahigh brightness of up to 16,000. Occupying the para-position of the O atom in the xanthene skeleton by utilizing the smallest methyl group ensured its excellent stability. The study of the photophysical process indicated that Me-hNR mainly emitted fluorescence via radiative decay, and nonradiative decay and inter-system crossing were rare due to the slow nonradiative decay rate and large energy gap (ΔEst = 0.55 eV). Owing to these excellent merits, Me-hNR can specifically light up mitochondria at ultralow concentrations down to 5 nM. The unprecedented spatial resolution for mitochondria with an fwhm of 174 nm was also achieved. Therefore, this ultrabright xanthene fluorescence probe has great potential in visualizing the structural changes of mitochondria and revealing the pathogenesis of related diseases using SIM.
Collapse
Affiliation(s)
- Ziyong Wu
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, College of Medicine, Linyi University, Linyi 276000, P.R. China
| | - Chuangli Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, College of Medicine, Linyi University, Linyi 276000, P.R. China
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Jie Sha
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Ziyang Jing
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, College of Medicine, Linyi University, Linyi 276000, P.R. China
| | - Jing He
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, College of Medicine, Linyi University, Linyi 276000, P.R. China
| | - Yang Bai
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, College of Medicine, Linyi University, Linyi 276000, P.R. China
| | - Jiasheng Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Shusheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, College of Medicine, Linyi University, Linyi 276000, P.R. China
| | - Pengfei Shi
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, College of Medicine, Linyi University, Linyi 276000, P.R. China
| |
Collapse
|
18
|
徐 思, 魏 洁, 谢 静. [Research Progress of Cellular Lipid Droplets in Oral Diseases]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:475-481. [PMID: 38645850 PMCID: PMC11026902 DOI: 10.12182/20240160102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Indexed: 04/23/2024]
Abstract
Lipid droplets are dynamic multifunctional organelles composed of a neutral lipid core and a phospholipid monolayer membrane modified by a specific set of proteins. PAT family proteins are the most characteristic lipid droplet proteins, playing an important role in regulating lipid droplet structure, function, and metabolism. The biogenesis of lipid droplets involves neutral lipid synthesis and the nucleation, budding, and growth of the lipid droplets. Lipid droplets not only serve as the energy metabolism reserve of cells but also participate in intracellular signal transduction and the development of inflammation and tumor. Lipid droplets are closely connected to and interact with various organelles, regulating the division, the transportation, and the genetics of organelles. The complexity of lipid droplets biogenesis and the diversity of their functions may have provided a physiological basis for the pathogenesis and development of diseases, but further research is needed in order to better understand the relevant processes. Published findings have helped elucidate the association between lipid droplets and diseases, such as obesity, non-alcoholic fatty liver disease, neurodegenerative disease, cancer, and cardiovascular disease, but the relationship between lipid droplets and oral diseases has not been fully studied. Topics that warrant further research include the role and mechanisms of lipid droplets in the pathogenesis and development of oral diseases, the relationship between oral diseases and systemic diseases, and translation of the effect of lipid droplets on oral diseases into valuable clinical diagnostic and treatment methods. Herein, we reviewed the biogenesis and functions of lipid droplets and the progress in research concerning lipid droplets in oral diseases, including mouth neoplasms, periodontitis, and dental caries.
Collapse
Affiliation(s)
- 思群 徐
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 洁雅 魏
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 静 谢
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
19
|
Yang H, Sun C, Wang X, Wang T, Xie C, Li Z. Identification of ferroptosis-related diagnostic markers in primary Sjögren's syndrome based on machine learning. Med Oral Patol Oral Cir Bucal 2024; 29:e203-e210. [PMID: 37823298 PMCID: PMC10945879 DOI: 10.4317/medoral.26190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/03/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Primary Sjogren's syndrome (pSS) is a common autoimmune disorder that affects up to 0.3-3% of the global population. Ferroptosis has recently been identified to play a significant role in autoimmune diseases. However, the molecular mechanisms of ferroptosis in the initiation and progression of pSS remains unclear. MATERIAL AND METHODS To investigate the molecular mechanisms underlying the occurrence and progression of pSS, we utilized a comprehensive approach by integrating data obtained from the Gene Expression Omnibus (GEO) database with data from the FerrDb database to identify the ferroptosis-related differentially expressed genes (DEGs). Furthermore, we implemented an innovative transcriptomic analysis method utilizing a computer-aided algorithm to establish a network between hub genes associated with ferroptosis and the immune microenvironment in pSS patients. RESULTS Our results revealed significant differences in the gene expression profiles of pSS samples compared to normal tissues, with 1,830 significantly up-regulated genes and 1,310 significantly down-regulated genes. In addition, our results showed a significant increase in the proportions of B cells and CD4+ T cells in pSS samples compared to normal tissues. AND then, our analysis revealed that a combination of six ferroptosis-related genes, including TBK1, SLC1A4, PIK3CA, ENO3, EGR1, and ATG5, could serve as optimal markers for the diagnosis of pSS. The combined analysis of these six genes accurately diagnosed the occurrence of pSS. CONCLUSIONS This study offers valuable insights into the pathogenesis of pSS and highlights the importance of targeting ferroptosis-related DEGs, which suggests a novel treatment strategy for pSS.
Collapse
Affiliation(s)
- H Yang
- Department of Rheumatology and Immunology the First Affiliated Hospital of Bengbu Medical College No. 287 Changhuai Road, Bengbu, 233004, China
| | | | | | | | | | | |
Collapse
|
20
|
Hong J, Cheng H, Wang P, Wu Y, Lu S, Zhou Y, Wang XB, Zhu X. CXCL9 may serve as a potential biomarker for primary Sjögren's syndrome with extra-glandular manifestations. Arthritis Res Ther 2024; 26:26. [PMID: 38229121 PMCID: PMC10792874 DOI: 10.1186/s13075-023-03229-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 12/03/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Primary Sjögren's syndrome (pSS) is an autoimmune condition that causes harm to exocrine glands and also has extra-glandular manifestations (EGM). pSS patients with EGM have a worse prognosis than those with only sicca symptoms. Previous studies have shown that the minor salivary glands (MSG) of pSS patients exhibit a unique profile of cytokines and chemokines compared to healthy controls. However, there is a lack of research comparing pSS with EGM (pSS-EGM) and pSS without EGM (pSS-non-EGM). This study aims to explore potential biomarkers associated with pSS, particularly pSS with EGM. METHODS By utilizing RNA sequencing, we conducted an analysis on the gene expression profiles of MSG in 63 patients diagnosed with pSS, as well as 12 non-pSS individuals. Furthermore, we also investigated the MSG of pSS patients, both with and without EGM. Through bioinformatics analysis, we identified genes with differential expression (DEGs) and determined the core hub genes using PPI network. We then analyzed the top 20 DEGs and their correlation with the patients' clinical characteristics, and validated our findings using peripheral blood plasma. RESULTS A total of 725 differentially expressed genes (DEGs) were identified in the comparison between pSS and non-pSS groups, and 727 DEGs were observed between pSS-EGM and pSS-non-EGM. It is noteworthy that the expression levels of CXCL9 were higher in both pSS patients and pSS-EGM when compared to the control group. Taking into consideration the significance of the top 20 DEGs in relation to clinical parameters and the central hub genes, we ultimately chose CXCL9. In comparison to the non-pSS group, pSS patients exhibited notably greater expression of the CXCL9 gene in the MSG, as well as higher levels of CXCL9 protein in their plasma (p < 0.001). Furthermore, the expression of the CXCL9 gene and levels of CXCL9 protein were notably higher in pSS patients accompanied by EGM and those with SSA antibodies. Additionally, a correlation was found between the expression of the CXCL9 gene and the EULAR Sjogren's Syndrome Disease Activity Index (ESSDAI), as well as with immunoglobulin G (IgG) levels and erythrocyte sedimentation rate (ESR). Meanwhile, the protein levels of CXCL9 were found to be correlated with IgG levels and ESSDAI. CONCLUSION CXCL9 proves to be a valuable biomarker in pSS, specifically due to its strong ability to differentiate between pSS patients with EGM and those without EGM. There is a significant correlation between CXCL9 and various clinical parameters both at the gene and protein level. Therefore, CXCL9 could be a potential target for future treatment of pSS.
Collapse
Affiliation(s)
- Jingwei Hong
- Rheumatology Department, First Affiliated Hospital of Wenzhou Medical University, Nanbai Xiang Street, Ouhai District, Wenzhou, China
| | - Hui Cheng
- Rheumatology Department, First Affiliated Hospital of Wenzhou Medical University, Nanbai Xiang Street, Ouhai District, Wenzhou, China
| | - Ping Wang
- Rheumatology Department, First Affiliated Hospital of Wenzhou Medical University, Nanbai Xiang Street, Ouhai District, Wenzhou, China
| | - Yanzhi Wu
- Rheumatology Department, First Affiliated Hospital of Wenzhou Medical University, Nanbai Xiang Street, Ouhai District, Wenzhou, China
| | - Saisai Lu
- Rheumatology Department, First Affiliated Hospital of Wenzhou Medical University, Nanbai Xiang Street, Ouhai District, Wenzhou, China
| | - Yan Zhou
- Rheumatology Department, First Affiliated Hospital of Wenzhou Medical University, Nanbai Xiang Street, Ouhai District, Wenzhou, China
| | - Xiao Bing Wang
- Rheumatology Department, First Affiliated Hospital of Wenzhou Medical University, Nanbai Xiang Street, Ouhai District, Wenzhou, China.
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China.
| | - Xiaofang Zhu
- Rheumatology Department, First Affiliated Hospital of Wenzhou Medical University, Nanbai Xiang Street, Ouhai District, Wenzhou, China.
| |
Collapse
|
21
|
Cinat D, Souza ALD, Soto-Gamez A, Jellema-de Bruin AL, Coppes RP, Barazzuol L. Mitophagy induction improves salivary gland stem/progenitor cell function by reducing senescence after irradiation. Radiother Oncol 2024; 190:110028. [PMID: 38007043 DOI: 10.1016/j.radonc.2023.110028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/15/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND AND PURPOSE Patients undergoing radiotherapy for head and neck cancer often experience a decline in their quality of life due to the co-irradiation of salivary glands. Radiation-induced cellular senescence is a key factor contributing to salivary gland dysfunction. Interestingly, mitochondrial dysfunction and cellular senescence have been reported to be strongly interconnected and thus implicated in several aging-related diseases. This study aims to investigate the role of mitochondrial dysfunction in senescence induction in salivary gland stem/progenitor cells after irradiation. MATERIALS AND METHODS A dose of 7 Gy photons was used to irradiate mouse salivary gland organoids. Senescent markers and mitochondrial function were assessed using rt-qPCR, western blot analysis, SA-β-Gal staining and flow cytometry analysis. Mitochondrial dynamics-related proteins were detected by western blot analysis while Mdivi-1 and MFI8 were used to modulate the mitochondrial fission process. To induce mitophagy, organoids were treated with Urolithin A and PMI and subsequently stem/progenitor cell self-renewal capacity was assessed as organoid forming efficiency. RESULTS Irradiation led to increased senescence and accumulation of dysfunctional mitochondria. This was accompanied by a strong downregulation of mitochondrial fission-related proteins and mitophagy-related genes. After irradiation, treatment with the mitophagy inducer Urolithin A attenuated the senescent phenotype and improved organoid growth and stem/progenitor cell self-renewal capacity. CONCLUSION This study shows the important interplay between senescence and mitochondrial dysfunction after irradiation. Importantly, activation of mitophagy improved salivary gland stem/progenitor cell function thereby providing a novel therapeutic strategy to restore the regenerative capacity of salivary glands following irradiation.
Collapse
Affiliation(s)
- Davide Cinat
- Department of Biomedical Sciences of Cells & Systems, Section of Molecular Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Anna Lena De Souza
- Department of Biomedical Sciences of Cells & Systems, Section of Molecular Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Abel Soto-Gamez
- Department of Biomedical Sciences of Cells & Systems, Section of Molecular Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Anne L Jellema-de Bruin
- Department of Biomedical Sciences of Cells & Systems, Section of Molecular Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Rob P Coppes
- Department of Biomedical Sciences of Cells & Systems, Section of Molecular Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Lara Barazzuol
- Department of Biomedical Sciences of Cells & Systems, Section of Molecular Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
22
|
He W, Lu Y, Shi R, An Q, Zhao J, Gao X, Zhang L, Ma D. Application of omics in Sjögren's syndrome. Inflamm Res 2023; 72:2089-2109. [PMID: 37878024 DOI: 10.1007/s00011-023-01797-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/27/2023] [Accepted: 09/10/2023] [Indexed: 10/26/2023] Open
Abstract
OBJECTIVE The pathogenesis, diagnosis, and treatment of Sjögren's syndrome (SS) face many challenges, and there is an urgent need to develop new technologies to improve our understanding of SS. METHODS By searching the literature published domestically and internationally in the past 20 years, this artical reviewed the research of various omics techniques in SS. RESULTS Omics technology provided valuable insights into the pathogenesis, early diagnosis, condition and efficacy evaluation of SS. It is helpful to reveal the pathogenesis of the disease and explore new treatment schemes, which will open a new era for the study of SS. CONCLUSION At present, omics research has made some gratifying achievements, but there are still many uncertainties. Therefore, in the future, we should improve research techniques, standardize the collection of samples, and adopt a combination of multi-omics techniques to jointly study the pathogenesis of SS and provide new schemes for its treatment.
Collapse
Affiliation(s)
- Wenqin He
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Yangyang Lu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Rongjing Shi
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Qi An
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Jingwen Zhao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Xinnan Gao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Liyun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Dan Ma
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China.
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Taiyuan, China.
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China.
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, 030032, China.
| |
Collapse
|
23
|
Nibali L, Stephen AS, Allaker RP, Di Pino A, Terranova V, Pisano M, Di Marca S, Ferrara V, Scicali R, Purrello F, Donos N, Regolo M, Malatino L. Associations between Host Genetic Variants and Subgingival Microbiota in Patients with the Metabolic Syndrome. Int J Mol Sci 2023; 24:16649. [PMID: 38068972 PMCID: PMC10706808 DOI: 10.3390/ijms242316649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Host genetic variants may affect oral biofilms, playing a role in the periodontitis-systemic disease axis. This is the first study to assess the associations between host genetic variants and subgingival microbiota in patients with metabolic syndrome (MetS); 103 patients with MetS underwent medical and periodontal examinations and had blood and subgingival plaque samples taken. DNA was extracted and processed, assessing a panel of selected single nucleotide polymorphisms (SNPs) first (hypothesis testing) and then expanding to a discovery phase. The subgingival plaque microbiome from these patients was profiled. Analysis of associations between host genetic and microbial factors was performed and stratified for periodontal diagnosis. Specific SNPs within RUNX2, CAMTA1 and VDR genes were associated with diversity metrics with no genome-wide associations detected for periodontitis severity or Mets components at p < 10-7. Severe periodontitis was associated with pathogenic genera and species. Some SNPs correlated with specific bacterial genera as well as with microbial taxa, notably VDR (rs12717991) with Streptococcus mutans and RUNX2 (rs3749863) with Porphyromonas gingivalis. In conclusion, variation in host genotypes may play a role in the dysregulated immune responses characterizing periodontitis and thus the oral microbiome, suggesting that systemic health-associated host traits further interact with oral health and the microbiome.
Collapse
Affiliation(s)
- Luigi Nibali
- Periodontology Unit, Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London WC2R 2LS, UK;
| | - Abish S. Stephen
- Centre for Immunobiology & Regenerative Medicine and Centre for Oral Clinical Research, Institute of Dentistry, Faculty of Medicine and Dentistry, Queen Mary University of London (QMUL), London E1 4NS, UK; (A.S.S.); (R.P.A.); (N.D.)
| | - Robert P. Allaker
- Centre for Immunobiology & Regenerative Medicine and Centre for Oral Clinical Research, Institute of Dentistry, Faculty of Medicine and Dentistry, Queen Mary University of London (QMUL), London E1 4NS, UK; (A.S.S.); (R.P.A.); (N.D.)
| | - Antonino Di Pino
- Department of Clinical and Experimental Medicine, Garibaldi-Nesima Hospital, University of Catania, 95123 Catania, Italy (R.S.); (F.P.)
| | - Valentina Terranova
- Department of Clinical and Experimental Medicine, Cannizzaro Hospital, University of Catania, 95123 Catania, Italy (M.R.)
| | - Marcella Pisano
- Department of Clinical and Experimental Medicine, Cannizzaro Hospital, University of Catania, 95123 Catania, Italy (M.R.)
| | - Salvatore Di Marca
- Department of Clinical and Experimental Medicine, Cannizzaro Hospital, University of Catania, 95123 Catania, Italy (M.R.)
| | - Viviana Ferrara
- Department of Clinical and Experimental Medicine, Garibaldi-Nesima Hospital, University of Catania, 95123 Catania, Italy (R.S.); (F.P.)
| | - Roberto Scicali
- Department of Clinical and Experimental Medicine, Garibaldi-Nesima Hospital, University of Catania, 95123 Catania, Italy (R.S.); (F.P.)
| | - Francesco Purrello
- Department of Clinical and Experimental Medicine, Garibaldi-Nesima Hospital, University of Catania, 95123 Catania, Italy (R.S.); (F.P.)
| | - Nikolaos Donos
- Centre for Immunobiology & Regenerative Medicine and Centre for Oral Clinical Research, Institute of Dentistry, Faculty of Medicine and Dentistry, Queen Mary University of London (QMUL), London E1 4NS, UK; (A.S.S.); (R.P.A.); (N.D.)
| | - Matteo Regolo
- Department of Clinical and Experimental Medicine, Cannizzaro Hospital, University of Catania, 95123 Catania, Italy (M.R.)
- Academic Unit of Internal Medicine, Cannizzaro Hospital, Via Messina 829, 95126 Catania, Italy
| | - Lorenzo Malatino
- Department of Clinical and Experimental Medicine, Cannizzaro Hospital, University of Catania, 95123 Catania, Italy (M.R.)
- Academic Unit of Internal Medicine, Cannizzaro Hospital, Via Messina 829, 95126 Catania, Italy
| |
Collapse
|
24
|
Anderson G. Melatonin, BAG-1 and cortisol circadian interactions in tumor pathogenesis and patterned immune responses. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:962-993. [PMID: 37970210 PMCID: PMC10645470 DOI: 10.37349/etat.2023.00176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/07/2023] [Indexed: 11/17/2023] Open
Abstract
A dysregulated circadian rhythm is significantly associated with cancer risk, as is aging. Both aging and circadian dysregulation show suppressed pineal melatonin, which is indicated in many studies to be linked to cancer risk and progression. Another independently investigated aspect of the circadian rhythm is the cortisol awakening response (CAR), which is linked to stress-associated hypothalamus-pituitary-adrenal (HPA) axis activation. CAR and HPA axis activity are primarily mediated via activation of the glucocorticoid receptor (GR), which drives patterned gene expression via binding to the promotors of glucocorticoid response element (GRE)-expressing genes. Recent data shows that the GR can be prevented from nuclear translocation by the B cell lymphoma-2 (Bcl-2)-associated athanogene 1 (BAG-1), which translocates the GR to mitochondria, where it can have diverse effects. Melatonin also suppresses GR nuclear translocation by maintaining the GR in a complex with heat shock protein 90 (Hsp90). Melatonin, directly and/or epigenetically, can upregulate BAG-1, suggesting that the dramatic 10-fold decrease in pineal melatonin from adolescence to the ninth decade of life will attenuate the capacity of night-time melatonin to modulate the effects of the early morning CAR. The interactions of pineal melatonin/BAG-1/Hsp90 with the CAR are proposed to underpin how aging and circadian dysregulation are associated with cancer risk. This may be mediated via differential effects of melatonin/BAG-1/Hsp90/GR in different cells of microenvironments across the body, from which tumors emerge. This provides a model of cancer pathogenesis that better integrates previously disparate bodies of data, including how immune cells are regulated by cancer cells in the tumor microenvironment, at least partly via the cancer cell regulation of the tryptophan-melatonin pathway. This has a number of future research and treatment implications.
Collapse
|
25
|
Dong Z, Wu L, Hong H. Mitochondrial Dysfunction in the Pathogenesis and Treatment of Oral Inflammatory Diseases. Int J Mol Sci 2023; 24:15483. [PMID: 37895162 PMCID: PMC10607498 DOI: 10.3390/ijms242015483] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Oral inflammatory diseases (OIDs) include many common diseases such as periodontitis and pulpitis. The causes of OIDs consist microorganism, trauma, occlusal factors, autoimmune dis-eases and radiation therapy. When treated unproperly, such diseases not only affect oral health but also pose threat to people's overall health condition. Therefore, identifying OIDs at an early stage and exploring new therapeutic strategies are important tasks for oral-related research. Mitochondria are crucial organelles for many cellular activities and disruptions of mitochondrial function not only affect cellular metabolism but also indirectly influence people's health and life span. Mitochondrial dysfunction has been implicated in many common polygenic diseases, including cardiovascular and neurodegenerative diseases. Recently, increasing evidence suggests that mitochondrial dysfunction plays a critical role in the development and progression of OIDs and its associated systemic diseases. In this review, we elucidated the critical insights into mitochondrial dysfunction and its involvement in the inflammatory responses in OIDs. We also summarized recent research progresses on the treatment of OIDs targeting mitochondrial dysfunction and discussed the underlying mechanisms.
Collapse
Affiliation(s)
- Zhili Dong
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Z.D.); (L.W.)
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Liping Wu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Z.D.); (L.W.)
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Hong Hong
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Z.D.); (L.W.)
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| |
Collapse
|
26
|
Li Z, Peng L, Sun L, Si J. A link between mitochondrial damage and the immune microenvironment of delayed onset muscle soreness. BMC Med Genomics 2023; 16:196. [PMID: 37612729 PMCID: PMC10464284 DOI: 10.1186/s12920-023-01621-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/31/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Delayed onset muscle soreness (DOMS) is a self-healing muscle pain disorder. Inflammatory pain is the main feature of DOMS. More and more researchers have realized that changes in mitochondrial morphology are related to pain. However, the role of mitochondria in the pathogenesis of DOMS and the abnormal immune microenvironment is still unknown. METHODS Mitochondria-related genes and gene expression data were obtained from MitoCarta3.0 and NCBI GEO databases. The network of mitochondrial function and the immune microenvironment of DOMS was constructed by computer algorithm. Subsequently, the skeletal muscle of DOMS rats was subjected to qPCR to verify the bioinformatics results. DOMS and non-DOMS histological samples were further studied by staining and transmission electron microscopy. RESULTS Bioinformatics results showed that expression of mitochondria-related genes was changed in DOMS. The results of qPCR showed that four hub genes (AMPK, PGC1-α, SLC25A25, and ARMCX1) were differentially expressed in DOMS. These hub genes are related to the degree of skeletal muscle immune cell infiltration, mitochondrial respiratory chain complex, DAMPs, the TCA cycle, and mitochondrial metabolism. Bayesian network inference showed that IL-6 and PGC1-α may be the main regulatory genes of mitochondrial damage in DOMS. Transmission electron microscopy revealed swelling of skeletal muscle mitochondria and disorganization of myofilaments. CONCLUSIONS Our study found that skeletal muscle mitochondrial damage is one of the causes of inflammatory factor accumulation in DOMS. According to the screened-out hub genes, this study provides a reference for follow-up clinical application.
Collapse
Affiliation(s)
- Zheng Li
- College of Sport Human Sciences, Harbin Sport University, No. 1, Dacheng Road, Nangang District, 150008, Harbin, China
| | - Lina Peng
- College of Sport Human Sciences, Harbin Sport University, No. 1, Dacheng Road, Nangang District, 150008, Harbin, China
| | - Lili Sun
- College of Sport Human Sciences, Harbin Sport University, No. 1, Dacheng Road, Nangang District, 150008, Harbin, China.
| | - Juncheng Si
- College of Sport Human Sciences, Harbin Sport University, No. 1, Dacheng Road, Nangang District, 150008, Harbin, China
| |
Collapse
|
27
|
Luo D, Li L, Yang Y, Ye Y, Hu J, Zong Y, Zhao J, Gao Y, Xu H, Li N, Xie Y, Jiang L. Unraveling the transcriptome-based network of tfh cells in primary sjogren syndrome: insights from a systems biology approach. Front Immunol 2023; 14:1216379. [PMID: 37638029 PMCID: PMC10448518 DOI: 10.3389/fimmu.2023.1216379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Background Primary Sjogren Syndrome (pSS) is an autoimmune disease characterized by immune cell infiltration. While the presence of follicular T helper (Tfh) cells in the glandular microenvironment has been observed, their biological functions and clinical significance remain poorly understood. Methods We enrolled a total of 106 patients with pSS and 46 patients without pSS for this study. Clinical data and labial salivary gland (LSG) biopsies were collected from all participants. Histological staining was performed to assess the distribution of Tfh cells and B cells. Transcriptome analysis using RNA-sequencing (RNA-seq) was conducted on 56 patients with pSS and 26 patients without pSS to uncover the underlying molecular mechanisms of Tfh cells. To categorize patients, we employed the single-sample gene set enrichment analysis (ssGSEA) algorithm, dividing them into low- and high-Tfh groups. We then utilized gene set enrichment analysis (GSEA), weighted gene co-expression network analysis (WGCNA), and deconvolution tools to explore functional and immune infiltration differences between the low- and high-Tfh groups. Results Patients with pSS had a higher positive rate of the antinuclear antibody (ANA), anti-Ro52, anti-SSA, anti-SSB and hypergammaglobulinaemia and higher levels of serum IgG compared to the non-pSS. Histopathologic analyses revealed the presence of Tfh cells (CD4+CXCR5+ICOS+) in germinal centers (GC) within the labial glands of pSS patients. GSEA, WGCNA, and correlation analysis indicated that the high-Tfh group was associated with an immune response related to virus-mediated IFN response and metabolic processes, primarily characterized by hypoxia, elevated glycolysis, and oxidative phosphorylation levels. In pSS, most immune cell types exhibited significantly higher infiltration levels in the high-Tfh group compared to the low-Tfh group. Additionally, patients in the Tfh-high group demonstrated a higher positive rate of the ANA, rheumatoid factor (RF), and hypergammaglobulinaemia, as well as higher serum IgG levels. Conclusion Our study suggests that Tfh cells may play a crucial role in the pathogenesis of pSS and could serve as potential therapeutic targets in pSS patients.
Collapse
Affiliation(s)
- Danyang Luo
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Li
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Yang
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yulin Ye
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiawei Hu
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Zong
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiawen Zhao
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yiming Gao
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Haimin Xu
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Li
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yinyin Xie
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Shanghai, China
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liting Jiang
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
28
|
Luo D, Li L, Wu Y, Yang Y, Ye Y, Hu J, Gao Y, Zeng N, Fei X, Li N, Jiang L. Mitochondria-related genes and metabolic profiles of innate and adaptive immune cells in primary Sjögren's syndrome. Front Immunol 2023; 14:1156774. [PMID: 37497211 PMCID: PMC10366690 DOI: 10.3389/fimmu.2023.1156774] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
Background Primary Sjogren's syndrome (pSS) is a prototypical systemic autoimmune disease characterised by lymphocyte infiltration and immune-complex deposition in multiple organs. The specific distribution of immune cell populations and their relationship with mitochondria remain unknown. Methods Histological analysis was performed to assess the specific distribution of innate and adaptive immune cell populations in labial salivary gland (LSG) samples from 30 patients with pSS and 13 patients with non-pSS. The ultrastructural morphometric features of mitochondria within immune cells were observed under the transmission electron microscope (TEM). RNA sequencing was performed on LSG samples from 40 patients with pSS and 7 non-pSS patients. The Single-sample Gene Set Enrichment Analysis (ssGSEA), ESTIMATE, and CIBERSORT algorithms and Pearson correlation coefficients were used to examine the relationship between mitochondria-related genes and immune infiltration. Weighted Gene Co-expression Network Analysis (WGCNA) was used to identify the mitochondria-specific genes and the related pathways based on the immune cell types. Results HE staining revealed a massive infiltration of plasma cells with abundant immunoglobulin protein distributed around phenotypically normal-appearing acinar and ductal tissues of patients with pSS. Immunohistochemical analyses revealed that innate immune cells (macrophages, eosinophils and NK cells) were distributed throughout the glandular tissue. Dominant adaptive immune cell infiltration composed of B cells, CD4+T cells and CD8+ T cells or ectopic lymphoid follicle-like structures were observed in the LSGs of patients with pSS. TEM validated the swelling of mitochondria with disorganised cristae in some lymphocytes that had invaded the glandular tissue. Subsequently, bioinformatic analysis revealed that innate and adaptive immune cells were associated with different mitochondrial metabolism pathways. Mitochondrial electron transport and respiratory chain complexes in the glandular microenvironment were positively correlated with innate immune cells, whereas amino acid and nucleic acid metabolism were negatively correlated with adaptive immune cells. In addition, mitochondrial biogenesis and mitochondrial apoptosis in the glandular microenvironment were closely associated with adaptive immune cells. Conclusion Innate and adaptive immune cells have distinct distribution profiles in the salivary gland tissues of patients with pSS and are associated with different mitochondrial metabolic pathways, which may contribute to disease progression.
Collapse
Affiliation(s)
- Danyang Luo
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Li
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yicheng Wu
- Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Yang
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yulin Ye
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiawei Hu
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yiming Gao
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Naiyan Zeng
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaochun Fei
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Li
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Liting Jiang
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
29
|
Li N, Ye Y, Wu Y, Li L, Hu J, Luo D, Li Y, Yang J, Gao Y, Hai W, Xie Y, Jiang L. Alterations in histology of the aging salivary gland and correlation with the glandular inflammatory microenvironment. iScience 2023; 26:106571. [PMID: 37124415 PMCID: PMC10131127 DOI: 10.1016/j.isci.2023.106571] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/29/2022] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
Aging-related salivary dysfunction typically causes reduced saliva volumes, which leads to debilitating consequences, even affecting patient quality of life. Understanding the respective clinicopathological characteristics and molecular mechanisms underlying salivary gland functioning during aging is vital for therapeutic purposes. Here, we provide a detailed atlas of the salivary gland microenvironment during aging, and we identified several phenotypes characteristic of aging salivary glands, including acini atrophy, increased inflammatory cells, altered immune responses, and accumulation of lysosomes and autophagosomes in aging cells, which may reflect progressive degeneration of salivary gland function. Furthermore, our analyses suggested significant enrichment of metabolic pathways in aging glands. Our results revealed complex cellular cross-talk among aging acinar cells, inflammatory factors, and immune responses. A natural aging animal model was established to verify these findings. This study provides mechanistic insights into age-related clinicopathogenesis, important implications for early diagnosis, and identification of new targets for improving salivary gland dysfunction.
Collapse
Affiliation(s)
- Ning Li
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yulin Ye
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yicheng Wu
- Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Lei Li
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiawei Hu
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Danyang Luo
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yusi Li
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Yang
- Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yiming Gao
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Wangxi Hai
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Corresponding author
| | - Yinyin Xie
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Corresponding author
| | - Liting Jiang
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- Corresponding author
| |
Collapse
|
30
|
Key Genes of Immunity Associated with Pterygium and Primary Sjögren's Syndrome. Int J Mol Sci 2023; 24:ijms24032047. [PMID: 36768371 PMCID: PMC9916617 DOI: 10.3390/ijms24032047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/05/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023] Open
Abstract
Pterygium and primary Sjögren's Syndrome (pSS) share many similarities in clinical symptoms and ocular pathophysiological changes, but their etiology is unclear. To identify the potential genes and pathways related to immunity, two published datasets, GSE2513 containing pterygium information and GSE176510 containing pSS information, were selected from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) of pterygium or pSS patients compared with healthy control conjunctiva, and the common DEGs between them were analyzed. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were conducted for common DEGs. The protein-protein interaction (PPI) network was constructed using the STRING database to find the hub genes, which were verified in clinical samples. There were 14 co-upregulated DEGs. The GO and KEGG analyses showed that these common DEGs were enriched in pathways correlated with virus infection, antigen processing and presentation, nuclear factor-kappa B (NF-κB) and Th17 cell differentiation. The hub genes (IL1R1, ICAM1, IRAK1, S100A9, and S100A8) were selected by PPI construction. In the era of the COVID-19 epidemic, the relationship between virus infection, vaccination, and the incidence of pSS and pterygium growth deserves more attention.
Collapse
|
31
|
Xiang M, Zhao X, Lu Y, Zhang Y, Ding F, Lv L, Wang Y, Shen Z, Li L, Cui X. Modified Linggui Zhugan Decoction protects against ventricular remodeling through ameliorating mitochondrial damage in post-myocardial infarction rats. Front Cardiovasc Med 2023; 9:1038523. [PMID: 36704451 PMCID: PMC9872118 DOI: 10.3389/fcvm.2022.1038523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction Modified Linggui Zhugan Decoction (MLZD) is a Traditional Chinese Medicine prescription developed from Linggui Zhugan Decoction (LZD) that has been used for the clinical treatment of ischemic cardiovascular diseases. However, the cardioprotective mechanism of MLZD against post-myocardial infarction (MI) ventricular remodeling remains unclear. Methods We explored the effects of MLZD on ventricular remodeling and their underlying mechanisms, respectively, in SD rats with MI models and in H9c2 cardiomyocytes with oxygen-glucose deprivation (OGD) models. The cardiac structure and function of rats were measured by echocardiography, HE staining, and Masson staining. Apoptosis, inflammation, mitochondrial structure and function, and sirtuin 3 (SIRT3) expression were additionally examined. Results MLZD treatment significantly ameliorated cardiac structure and function, and thus reversed ventricular remodeling, compared with the control. Further research showed that MLZD ameliorated mitochondrial structural disruption, protected against mitochondrial dynamics disorder, restored impaired mitochondrial function, inhibited inflammation, and thus inhibited apoptosis. Moreover, the decreased expression level of SIRT3 was enhanced after MLZD treatment. The protective effects of MLZD on SIRT3 and mitochondria, nevertheless, were blocked by 3-TYP, a selective inhibitor of SIRT3. Discussion These findings together revealed that MLZD could improve the ventricular remodeling of MI rats by ameliorating mitochondrial damage and its associated apoptosis, which might exert protective effects by targeting SIRT3.
Collapse
Affiliation(s)
- Mi Xiang
- Department of Cardiovascular, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xin Zhao
- Department of Cardiovascular, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingdong Lu
- Department of Pathology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Zhang
- Department of Cardiovascular, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China,First Clinical Medical School, Shandong University of Chinese Medicine, Shandong, China
| | - Fan Ding
- Department of Cardiovascular, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lifei Lv
- Department of Cardiovascular, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuling Wang
- Department of Cardiovascular, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zihuan Shen
- Department of Cardiovascular, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Li
- Department of Pathology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China,Li Li,
| | - Xiangning Cui
- Department of Cardiovascular, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China,*Correspondence: Xiangning Cui,
| |
Collapse
|
32
|
PSMC6 induces immune cell infiltration and inflammatory response to aggravate primary Sjögren's syndrome. J Hum Genet 2023; 68:263-271. [PMID: 36599955 DOI: 10.1038/s10038-022-01107-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 01/06/2023]
Abstract
Increasing evidence suggests that immune cell infiltration is involved in primary Sjögren's syndrome (pSS), while the underlying molecular mechanisms remain elusive. Herein, this study aims to explore the key molecular mechanism in immune cell infiltration in pSS based on Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were obtained, followed by weighted gene co-expression network analysis to acquire the pSS-related module genes. Moreover, pSS-related DEGs and module genes were intersected. Additionally, the correlation between key genes and immune cell infiltration was analyzed by CIBERSORT algorithm. Furthermore, pSS mouse models were established to explore the effects of PSMC6 on immune cell infiltration and inflammatory responses in pSS. A total of 51 DEGs and 334 key module genes were involved in the occurrence of pSS. The immune cell infiltration was correlated with pSS, and PSMC6, highly expressed in pSS samples, may be the key immune gene. In vivo animal experiments demonstrated that PSMC6 was upregulated in pSS, and PSMC6 knockdown could reduce lymphocytic infiltration in salivary glands and lacrimal glands and the levels of related inflammatory factors in the pSS and increase the proportion of Treg cells. Collectively, PSMC6 could induce immune cell infiltration and inflammatory responses to promote the occurrence of pSS, providing us with a potential therapeutic target for treating pSS.
Collapse
|
33
|
He F, Liu H, Yu C. N 6-Methyladenosine Regulator-Mediated RNA Methylation Is Involved in Primary Sjögren's Syndrome Immunoinfiltration. DISEASE MARKERS 2022; 2022:5242287. [PMID: 36457545 PMCID: PMC9708334 DOI: 10.1155/2022/5242287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 10/04/2023]
Abstract
The crucial role of epigenetic regulation, especially the modifications of RNA N6-methyladenosine (m6A), in immunity is a current research hotspot. However, the m6A modifications in primary Sjögren's syndrome (pSS) and the immune infiltration pattern they govern remain unknown. Thus, the patterns of 23 m6A regulator-mediated RNA modifications in parotid or blood samples from pSS patients were evaluated by bioinformatics analysis in the current study. Comparing m6A regulators between control and pSS patients showed that m6A regulators are associated with pSS, and regulators also had differential correlations. Further clustering analysis and comparison of gene expression and immune cell infiltration between m6A modification patterns revealed that each modification pattern had its own unique genetic and immune profile. Multiple immune cell infiltrations were differentially expressed between the patterns. The enrichment of gene ontology between the two patterns in parotid was concentrated on RNA metabolism and processing. The KEGG pathway enrichment and weighted correlation network analysis further showed that the autophagy pathway might be involved in the m6A modification patterns in pSS. Together, these findings suggest that m6A regulators play a certain role in the immune cell infiltration of parotid tissue in pSS.
Collapse
Affiliation(s)
- Fang He
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hexu Liu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Changyin Yu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
34
|
De Benedittis G, Latini A, Colafrancesco S, Priori R, Perricone C, Novelli L, Borgiani P, Ciccacci C. Alteration of Mitochondrial DNA Copy Number and Increased Expression Levels of Mitochondrial Dynamics-Related Genes in Sjögren's Syndrome. Biomedicines 2022; 10:2699. [PMID: 36359219 PMCID: PMC9687724 DOI: 10.3390/biomedicines10112699] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 07/26/2023] Open
Abstract
Sjögren's syndrome (SS) is a chronic autoimmune multifactorial disease characterized by inflammation and lymphocytic infiltration of the exocrine glands. Several studies have highlighted the involvement of oxidative stress in this pathology, suggesting that it could induce mitochondrial dysfunctions. Mitochondria could have a role in inflammatory and immune processes. Since the mitochondrial DNA (mtDNA) copy number could change in response to physiological or environmental stimuli, this study aimed to evaluate possible alterations in the mtDNA copy number in SS. We have analyzed the amount of mtDNA in the peripheral blood of 74 SS patients and 61 healthy controls by qPCR. Then, since mitochondrial fusion and fission play a crucial role in maintaining the number of mitochondria, we investigated the expression variability of the genes most commonly involved in mitochondrial dynamics in a subgroup of SS patients and healthy controls. Interestingly, we observed a highly significant decrease in mtDNA copies in the SS patients compared to healthy controls (p = 1.44 × 10-12). Expression levels of mitochondrial fission factor (MFF), mitofusin-1 (MFN1), and mitochondrial transcription factor A (TFAM) genes were analyzed, showing a statistically significant increase in the expression of MFF (p = 0.003) and TFAM (p = 0.022) in the SS patients compared to healthy controls. These results give further insight into the possible involvement of mitochondrial dysfunctions in SS disease.
Collapse
Affiliation(s)
- Giada De Benedittis
- Genetics Section, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Andrea Latini
- Genetics Section, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Serena Colafrancesco
- Division of Rheumatology, Department of Clinical Internal, Anaesthesiologic and Cardiovascular Sciences, Sapienza University, 00133 Rome, Italy
| | - Roberta Priori
- Division of Rheumatology, Department of Clinical Internal, Anaesthesiologic and Cardiovascular Sciences, Sapienza University, 00133 Rome, Italy
- UniCamillus—Saint Camillus International University of Health Sciences, 00131 Rome, Italy
| | - Carlo Perricone
- Rheumatology Department of Medicine, University of Perugia, Piazzale Giorgio Menghini 1, 06129 Perugia, Italy
| | - Lucia Novelli
- UniCamillus—Saint Camillus International University of Health Sciences, 00131 Rome, Italy
| | - Paola Borgiani
- Genetics Section, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Cinzia Ciccacci
- UniCamillus—Saint Camillus International University of Health Sciences, 00131 Rome, Italy
| |
Collapse
|
35
|
Zhang N, Ji C, Peng X, Tang M, Bao X, Yuan C. Bioinformatics analysis identified immune infiltration, risk and drug prediction models of copper-induced death genes involved in salivary glands damage of primary Sjögren's syndrome. Medicine (Baltimore) 2022; 101:e31050. [PMID: 36254059 PMCID: PMC9575826 DOI: 10.1097/md.0000000000031050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
This study aimed to identify copper-induced death genes in primary Sjögren's syndrome (pSS) and explore immune infiltration, risk and drug prediction models for salivary glands (SGs) damage. The 3 datasets, including GSE40611, GSE23117, and GSE7451 from the Gene Expression Omnibus database were downloaded. The datasets were processed using the affy in R (version 4.0.3). In immune cells, copper-induced death genes were strongly expressed in "activated" dendritic cells (aDCs), macrophages and regulatory T cells (Treg). In immune functions, copper-induced death genes were strongly expressed in major histocompatibility complex (MHC) class I, human leukocyte antigen (HLA) and type I interferon (IFN) response. Correlation analysis showed that 5 genes including SLC31A1, PDHA1, DLD, ATP7B, and ATP7A were significantly correlated with immune infiltration. The nomogram suggested that the low expression of PDHA1 was significant for predicting the risk of pSS and the area under curve was 0.678. Drug model suggested that "Bathocuproine disulfonate CTD 00001350," "Vitinoin CTD 00007069," and "Resveratrol CTD 00002483" were the drugs most strongly associated with copper-induced death genes. In summary, copper-induced death genes are associated with SGs injury in pSS, which is worthy of clinicians' attention.
Collapse
Affiliation(s)
- Naidan Zhang
- Department of Clinical Laboratory, Peoples Hospital of Deyang City, Deyang, China
| | - Chaixia Ji
- Department of Clinical Laboratory, Peoples Hospital of Deyang City, Deyang, China
| | - Xinyin Peng
- Chengdu University of Chinese Medicine, Chengdu, China
| | - Maoju Tang
- North Sichuan Medical College, Nanchong, China
| | - Xiao Bao
- Department of Rheumatology, Peoples Hospital of Deyang City, Deyang, China
| | - Chengliang Yuan
- Department of Clinical Laboratory, Peoples Hospital of Deyang City, Deyang, China
- *Correspondence: Chengliang Yuan, Department of Clinical Laboratory, Peoples Hospital of Deyang City, North Taishan Road No. 173, Deyang, Sichuan 618000, China (e-mail: )
| |
Collapse
|
36
|
Cui L, Weiyao J, Chenghong S, Limei L, Xinghua Z, Bo Y, Xiaozheng D, Haidong W. Rheumatoid arthritis and mitochondrial homeostasis: The crossroads of metabolism and immunity. Front Med (Lausanne) 2022; 9:1017650. [PMID: 36213670 PMCID: PMC9542797 DOI: 10.3389/fmed.2022.1017650] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
Rheumatoid arthritis is an autoimmune disease characterized by chronic symmetric synovial inflammation and erosive bone destruction. Mitochondria are the main site of cellular energy supply and play a key role in the process of energy metabolism. They possess certain self-regulatory and repair capabilities. Mitochondria maintain relative stability in number, morphology, and spatial structure through biological processes, such as biogenesis, fission, fusion, and autophagy, which are collectively called mitochondrial homeostasis. An imbalance in the mitochondrial homeostatic environment will affect immune cell energy metabolism, synovial cell proliferation, apoptosis, and inflammatory signaling. These biological processes are involved in the onset and development of rheumatoid arthritis. In this review, we found that in rheumatoid arthritis, abnormal mitochondrial homeostasis can mediate various immune cell metabolic disorders, and the reprogramming of immune cell metabolism is closely related to their inflammatory activation. In turn, mitochondrial damage and homeostatic imbalance can lead to mtDNA leakage and increased mtROS production. mtDNA and mtROS are active substances mediating multiple inflammatory pathways. Several rheumatoid arthritis therapeutic agents regulate mitochondrial homeostasis and repair mitochondrial damage. Therefore, modulation of mitochondrial homeostasis would be one of the most attractive targets for the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Liu Cui
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jing Weiyao
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Su Chenghong
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Liu Limei
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhang Xinghua
- Acupuncture and Moxibustion Department, Gansu Provincial Hospital of Traditional Chinese Medicine (TCM), Lanzhou, China
| | - Yuan Bo
- Acupuncture and Pain Department, Affiliated Hospital of Gansu University of Traditional Chinese Medicine (TCM), Lanzhou, China
| | - Du Xiaozheng
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
- *Correspondence: Du Xiaozheng
| | - Wang Haidong
- Rheumatoid Bone Disease Center, Gansu Provincial Hospital of Traditional Chinese Medicine (TCM), Lanzhou, China
- Wang Haidong
| |
Collapse
|
37
|
Tan Z, Wang L, Li X. Composition and regulation of the immune microenvironment of salivary gland in Sjögren’s syndrome. Front Immunol 2022; 13:967304. [PMID: 36177010 PMCID: PMC9513852 DOI: 10.3389/fimmu.2022.967304] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Primary Sjögren’s syndrome (pSS) is a systemic autoimmune disease characterized by exocrine gland dysfunction and inflammation. Patients often have dry mouth and dry eye symptoms, which seriously affect their lives. Improving dry mouth and eye symptoms has become a common demand from patients. For this reason, researchers have conducted many studies on external secretory glands. In this paper, we summarize recent studies on the salivary glands of pSS patients from the perspective of the immune microenvironment. These studies showed that hypoxia, senescence, and chronic inflammation are the essential characteristics of the salivary gland immune microenvironment. In the SG of pSS, genes related to lymphocyte chemotaxis, antigen presentation, and lymphocyte activation are upregulated. Interferon (IFN)-related genes, DNA methylation, sRNA downregulation, and mitochondrial-related differentially expressed genes are also involved in forming the immune microenvironment of pSS, while multiple signaling pathways are involved in regulation. We further elucidated the regulation of the salivary gland immune microenvironment in pSS and relevant, targeted treatments.
Collapse
|
38
|
Luo H, Zhou X. Bioinformatics analysis of potential common pathogenic mechanisms for COVID-19 infection and primary Sjogren’s syndrome. Front Immunol 2022; 13:938837. [PMID: 35958619 PMCID: PMC9360424 DOI: 10.3389/fimmu.2022.938837] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/01/2022] [Indexed: 12/04/2022] Open
Abstract
BackgroundAccumulating evidence has revealed that the prevalence of Coronavirus 2019 (COVID-19) was significantly higher in patients with primary Sjogren’s syndrome (pSS) compared to the general population. However, the mechanism remains incompletely elucidated. This study aimed to further investigate the molecular mechanisms underlying the development of this complication.MethodsThe gene expression profiles of COVID-19 (GSE157103) and pSS (GSE40611) were downloaded from the Gene Expression Omnibus (GEO) database. After identifying the common differentially expressed genes (DEGs) for pSS and COVID-19, functional annotation, protein-protein interaction (PPI) network, module construction and hub gene identification were performed. Finally, we constructed transcription factor (TF)-gene regulatory network and TF-miRNA regulatory network for hub genes.ResultsA total of 40 common DEGs were selected for subsequent analyses. Functional analyses showed that cellular components and metabolic pathways collectively participated in the development and progression of pSS and COVID-19. Finally, 12 significant hub genes were identified using the cytoHubba plugin, including CMPK2, TYMS, RRM2, HERC5, IFI44L, IFI44, IFIT2, IFIT1, IFIT3, MX1, CDCA2 and TOP2A, which had preferable values as diagnostic markers for COVID-19 and pSS.ConclusionsOur study reveals common pathogenesis of pSS and COVID-19. These common pathways and pivotal genes may provide new ideas for further mechanistic studies.
Collapse
Affiliation(s)
- Hong Luo
- Department of Tuberculosis and Respiratory, Wuhan Jinyintan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xia Zhou
- Department of Tuberculosis and Respiratory, Wuhan Jinyintan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Clinical Research Center for Infectious Diseases, Wuhan, China
- Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Wuhan, China
- Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, China
- *Correspondence: Xia Zhou,
| |
Collapse
|