1
|
Zhang W, Wu P, Song Y, Liang D, Meng G, Zeng H. Immunomodulatory mechanism of Huangqi-Guizhi-Wuwu Decoction in alleviating autoimmune arthritis based on network pharmacology and experimental validation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 143:156644. [PMID: 40339552 DOI: 10.1016/j.phymed.2025.156644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/20/2024] [Accepted: 03/11/2025] [Indexed: 05/10/2025]
Abstract
BACKGROUND Juvenile idiopathic arthritis (JIA) is the most common type of childhood autoimmune arthritis. Huangqi Guizhi Wuwu decoction (HGWD), a traditional Chinese herbal formula, is widely used in China to treat patients with autoimmune arthritis. However, the bioactive ingredients and their complex regulatory mechanisms remain unclear. PURPOSE To investigate the active components of HGWD using a novel comprehensive strategy and clarify the mechanism underlying immunomodulation. METHODS The main active components of HGWD were determined using ultra-high-performance liquid chromatography-high resolution mass spectrometry (UPLCHRMS). The core target and biological immune regulation mechanism of HGWD in alleviating JIA were predicted using combined network pharmacology and molecular docking analyses, followed by in vitro and in vivo experiments. RESULTS A total of 1387 active components were identified by UPLC-MS, of which eight were the main active ingredients. Network pharmacology showed that HGWD acted on core targets, such as STAT3. Further combined analysis revealed that regulation of the Th17 differentiation pathway may be an important mechanism by which HGWD relieves JIA. Molecular docking verification showed that the key component of HGWD can stably bind JAK/STAT-related proteins. The induced differentiation of Th17 and Treg in vitro experiment confirmed the immunoregulatory effects of HGWD. in vivo experiments, HGWD significantly alleviated symptoms of arthritis in a mouse model of collagen-induced arthritis (CIA) and was closely associated with restoring the Th17/Treg balance. CONCLUSION Taken together, serum components/UPLC-MS, network pharmacology, and molecular biology analyses are feasible strategies for exploring the active ingredients in HGWD. This study highlights the clinical potential of HGWD in alleviating JIA and provides evidence of its therapeutic potential through immune regulation.
Collapse
Affiliation(s)
- Wenbo Zhang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The Joint Center for Infection and Immunity, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China; The Joint Center for Infection and Immunity, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ping Wu
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Yue Song
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dandan Liang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Guangxun Meng
- The Joint Center for Infection and Immunity, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; The Center for Microbes, Development and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, University of Chinese Academy of Sciences, Shanghai 200031, China.
| | - Huasong Zeng
- The Joint Center for Infection and Immunity, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China; Department of Allergy, Immunology and Rheumatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China; Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou 510260, China.
| |
Collapse
|
2
|
Wei X, Sui K, Peng Y, Li S, Fang Y, Chen Z, Du X, Xie X, Tang H, Wen Q, Li J, He M, Cheng Q, Zhang W. Human Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes Loaded Mir-29-3p Targets AhR to Improve Juvenile Idiopathic Arthritis via Inhibiting the Expression of IL-22 in CD4 + T Cell. Stem Cell Rev Rep 2025; 21:536-553. [PMID: 39621151 DOI: 10.1007/s12015-024-10827-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 01/03/2025]
Abstract
BACKGROUND Juvenile idiopathic arthritis (JIA) is one of the most common chronic inflammatory rheumatic diseases in children. Human umbilical cord mesenchymal stem cells (HUCMSCs)-derived exosomes (HUCMSCs-Exos) are involved in autoimmune diseases. This study investigates the mechanism of HUCMSC-Exos in improving JIA by targeting AhR through delivery of miR-29-3p to inhibit IL-22 expression in CD4+ T cells. METHODS Collagen induced arthritis (CIA) mouse model was established, and mice were treated with HUCMSCs-Exos and miR-29-3p antagomir, respectively. CD4+ T cells from JIA patients were used for cell experiments. The mechanism was elucidated by histopathological staining, transmission electron microscopy (TEM), immunohistochemistry, CCK-8 assay, flow cytometry, Western blotting, real-time PCR, and enzyme-linked immunosorbent assay (ELISA), laser confocal microscopy, and luciferase assay. RESULT JIA-CD4+ T cells showed higher expression of IL-22 and lower the levels of miR-29-3p, while HUCMSCs-Exos significantly inhibited the expression of IL-22 and increased the levels of miR-29a-3p, miR-29b-3p, and miR-29c-3p in CD4+ T cells from JIA patients. The expression of miR-29a-3p, miR-29b-3p, miR-29c-3p, AhR, and IL-22 in CD4+ T cells was significantly reversed when co-cultured with HUCMSCs transfected with miR-29-3p mimic or miR-29-3p inhibitor. In vivo experiment, HUCMSCs-Exos ameliorated CIA mice by delivering miR-29-3p to inhibit AhR, IL-22, IL-22R1, MMP3, and MMP13 expression. Furthermore, HUCMSCs-Exos also deliver miR-29-3p targeting AhR expression to inhibit IL-22 in JIA-CD4 + T cells through alleviating arthritic synovial fibroblast activation. CONCLUSION HUCMSCs-Exos loaded miR-29-3p targets AhR to improve JIA via inhibiting the expression of IL-22 in CD4+ T cell, which provides a scientific basis for the treatment of JIA.
Collapse
Affiliation(s)
- Xinyi Wei
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Kunpeng Sui
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yuanyuan Peng
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Sha Li
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yu Fang
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Zhi Chen
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xiao Du
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xue Xie
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Haiming Tang
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - QiuYue Wen
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - JingWei Li
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Meilin He
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Qin Cheng
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Wei Zhang
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chief Physician, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, No.1617, Riyue Avenue, Qingyang District, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Li D, Li X, Duan M, Xue X, Tang X, Nan N, Zhao R, Zhang W, Zhang W. Knockdown of PELI1 promotes Th2 and Treg cell differentiation in juvenile idiopathic arthritis. Exp Cell Res 2025; 444:114360. [PMID: 39617092 DOI: 10.1016/j.yexcr.2024.114360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024]
Abstract
Pellino1 (PELI1) is a key regulator of inflammatory and autoimmune diseases. The role of PELI1 in juvenile idiopathic arthritis (JIA) is unclear. The correlation between serum PELI1 mRNA levels and clinical indicators of JIA patients was evaluated by Pearson correlation analysis. The percentage of Th1, Th2, Th17 and Treg cells was analyzed by flow cytometry. ELISA kits were used to detect cytokine levels in serum and cell supernatants. Co-immunoprecipitation experiments were performed to validate PELI1 and TCF-1 interactions. The protein and ubiquitination levels of TCF-1 were detected by western blot. The results showed that JIA patients have high serum PELI1 levels. PELI1 levels were positively correlated with erythrocyte sedimentation rate, C-reactive protein levels and JADAS27 scores in JIA patients. Interfering with PELI1 promoted naïve CD4+ T cell differentiation to Th2 and Treg cells and increased IL-4 and IL-10 levels, while inhibiting their differentiation to Th1 and Th17 cells and decreasing IFN-γ and IL-17 levels. PELI1 increased TCF-1 ubiquitination levels and accelerated its degradation. Inhibition of TCF-1 reduced the effects of interfering with PELI1 on cell differentiation and cytokine levels. In conclusion, Silencing of PELI1 facilitated the naïve CD4+ T cell differentiation into Th2 and Treg cells by TCF-1.
Collapse
Affiliation(s)
- Dan Li
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China; Department of Rheumatology and Immunology, Xi'an Children's Hospital, Xi'an, Shaanxi, 710003, China
| | - Xiaoqing Li
- Department of Rheumatology and Immunology, Xi'an Children's Hospital, Xi'an, Shaanxi, 710003, China
| | - Mingyue Duan
- Department of Clinical Laboratory, Xi'an Children's Hospital, Xi'an, Shaanxi, 710003, China
| | - Xiuhong Xue
- Department of Rheumatology and Immunology, Xi'an Children's Hospital, Xi'an, Shaanxi, 710003, China
| | - Xianyan Tang
- Department of Rheumatology and Immunology, Xi'an Children's Hospital, Xi'an, Shaanxi, 710003, China
| | - Nan Nan
- Department of Rheumatology and Immunology, Xi'an Children's Hospital, Xi'an, Shaanxi, 710003, China
| | - Rui Zhao
- Department of Rheumatology and Immunology, Xi'an Children's Hospital, Xi'an, Shaanxi, 710003, China
| | - Wenhua Zhang
- Department of Rheumatology and Immunology, Xi'an Children's Hospital, Xi'an, Shaanxi, 710003, China
| | - Wanggang Zhang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China.
| |
Collapse
|
4
|
Wood S, Branch J, Vasquez P, DeGuzman MM, Brown A, Sagcal-Gironella AC, Singla S, Ramirez A, Vogel TP. Th17/1 and ex-Th17 cells are detected in patients with polyarticular juvenile arthritis and increase following treatment. Pediatr Rheumatol Online J 2024; 22:32. [PMID: 38431635 PMCID: PMC10908086 DOI: 10.1186/s12969-024-00965-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/11/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND A better understanding of the pathogenesis of polyarticular juvenile idiopathic arthritis (polyJIA) is needed to aide in the development of data-driven approaches to guide selection between therapeutic options. One inflammatory pathway of interest is JAK-STAT signaling. STAT3 is a transcription factor critical to the differentiation of inflammatory T helper 17 cells (Th17s). Previous studies have demonstrated increased STAT3 activation in adult patients with rheumatoid arthritis, but less is known about STAT3 activation in polyJIA. We hypothesized that Th17 cells and STAT3 activation would be increased in treatment-naïve polyJIA patients compared to pediatric controls. METHODS Blood from 17 patients with polyJIA was collected at initial diagnosis and again if remission was achieved (post-treatment). Pediatric healthy controls were also collected. Peripheral blood mononuclear cells were isolated and CD4 + T cell subsets and STAT activation (phosphorylation) were evaluated using flow cytometry. Data were analyzed using Mann-Whitney U and Wilcoxon matched-pairs signed rank tests. RESULTS Treatment-naïve polyJIA patients had increased Th17 cells (CD3 + CD4 + interleukin(IL)-17 +) compared to controls (0.15% v 0.44%, p < 0.05), but Tregs (CD3 + CD4 + CD25 + FOXP3 +) from patients did not differ from controls. Changes in STAT3 phosphorylation in CD4 + T cells following ex vivo stimulation were not significantly different in patients compared to controls. We identified dual IL-17 + and interferon (IFN)γ + expressing CD4 + T cells in patients, but not controls. Further, both Th17/1 s (CCR6 + CD161 + IFNγ + IL-17 +) and ex-Th17s (CCR6 + CD161 + IFNγ + IL-17neg) were increased in patients' post-treatment (Th17/1: 0.3% v 0.07%, p < 0.05 and ex-Th17s: 2.3% v 1.4%, p < 0.05). The patients with the highest IL-17 expressing cells post-treatment remained therapy-bound. CONCLUSIONS Patients with polyJIA have increased baseline Th17 cells, potentially reflecting higher tonic STAT3 activation in vivo. These quantifiable immune markers may identify patients that would benefit upfront from pathway-focused biologic therapies. Our data also suggest that inflammatory CD4 + T cell subsets not detected in controls but increased in post-treatment samples should be further evaluated as a tool to stratify patients in remission on medication. Future work will explore these proposed diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Stephanie Wood
- Division of Rheumatology, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, 1102 Bates Street Suite 330, Houston, TX, 77030, USA
- Center for Human Immunobiology, Texas Children's Hospital, 1102 Bates Street Suite 330, Houston, TX, 77030, USA
| | - Justin Branch
- Division of Rheumatology, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, 1102 Bates Street Suite 330, Houston, TX, 77030, USA
- Center for Human Immunobiology, Texas Children's Hospital, 1102 Bates Street Suite 330, Houston, TX, 77030, USA
| | - Priscilla Vasquez
- Division of Rheumatology, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, 1102 Bates Street Suite 330, Houston, TX, 77030, USA
| | - Marietta M DeGuzman
- Division of Rheumatology, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, 1102 Bates Street Suite 330, Houston, TX, 77030, USA
| | - Amanda Brown
- Division of Rheumatology, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, 1102 Bates Street Suite 330, Houston, TX, 77030, USA
| | - Anna Carmela Sagcal-Gironella
- Division of Rheumatology, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, 1102 Bates Street Suite 330, Houston, TX, 77030, USA
| | - Saimun Singla
- Division of Rheumatology, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, 1102 Bates Street Suite 330, Houston, TX, 77030, USA
| | - Andrea Ramirez
- Division of Rheumatology, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, 1102 Bates Street Suite 330, Houston, TX, 77030, USA
| | - Tiphanie P Vogel
- Division of Rheumatology, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, 1102 Bates Street Suite 330, Houston, TX, 77030, USA.
- Center for Human Immunobiology, Texas Children's Hospital, 1102 Bates Street Suite 330, Houston, TX, 77030, USA.
| |
Collapse
|
5
|
Nijhuis L, Swart JF, Prakken BJ, van Loosdregt J, Vastert SJ. The clinical and experimental treatment of Juvenile Idiopathic Arthritis. Clin Exp Immunol 2023; 213:276-287. [PMID: 37074076 PMCID: PMC10571000 DOI: 10.1093/cei/uxad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/02/2023] [Accepted: 04/18/2023] [Indexed: 04/20/2023] Open
Abstract
Juvenile idiopathic arthritis (JIA) is the most common chronic rheumatic disease in children and comprises of multiple subtypes. The most relevant disease subtypes, grouped upon current insight in disease mechanisms, are nonsystemic (oligo- and polyarticular) JIA and systemic JIA (sJIA). In this review, we summarize some of the main proposed mechanisms of disease in both nonsystemic and sJIA and discuss how current therapeutic modalities target some of the pathogenic immune pathways. Chronic inflammation in nonsystemic JIA is the result of a complex interplay between effector and regulatory immune cell subsets, with adaptive immune cells, specifically T-cell subsets and antigen-presenting cells, in a central role. There is, however, also innate immune cell contribution. SJIA is nowadays recognized as an acquired chronic inflammatory disorder with striking autoinflammatory features in the first phase of the disease. Some sJIA patients develop a refractory disease course, with indications for involvement of adaptive immune pathways as well. Currently, therapeutic strategies are directed at suppressing effector mechanisms in both non-systemic and sJIA. These strategies are often not yet optimally tuned nor timed to the known active mechanisms of disease in individual patients in both non-systemic and sJIA. We discuss current treatment strategies in JIA, specifically the 'Step-up' and 'Treat to Target approach' and explore how increased insight into the biology of disease may translate into future more targeted strategies for this chronic inflammatory disease at relevant time points: preclinical disease, active disease, and clinically inactive disease.
Collapse
Affiliation(s)
- L Nijhuis
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of pediatric rheumatology & immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J F Swart
- Department of pediatric rheumatology & immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- University of Utrecht, Utrecht, The Netherlands
| | - B J Prakken
- Department of pediatric rheumatology & immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- University of Utrecht, Utrecht, The Netherlands
| | - J van Loosdregt
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- University of Utrecht, Utrecht, The Netherlands
| | - S J Vastert
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of pediatric rheumatology & immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- University of Utrecht, Utrecht, The Netherlands
| |
Collapse
|
6
|
Tomé C, Oliveira-Ramos F, Campanilho-Marques R, Mourão AF, Sousa S, Marques C, Melo AT, Teixeira RL, Martins AP, Moeda S, Costa-Reis P, Torres RP, Bandeira M, Fonseca H, Gonçalves M, Santos MJ, Graca L, Fonseca JE, Moura RA. Children with extended oligoarticular and polyarticular juvenile idiopathic arthritis have alterations in B and T follicular cell subsets in peripheral blood and a cytokine profile sustaining B cell activation. RMD Open 2023; 9:e002901. [PMID: 37652558 PMCID: PMC10476142 DOI: 10.1136/rmdopen-2022-002901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 07/03/2023] [Indexed: 09/02/2023] Open
Abstract
OBJECTIVES The main goal of this study was to characterise the frequency and phenotype of B, T follicular helper (Tfh) and T follicular regulatory (Tfr) cells in peripheral blood and the cytokine environment present in circulation in children with extended oligoarticular juvenile idiopathic arthritis (extended oligo JIA) and polyarticular JIA (poly JIA) when compared with healthy controls, children with persistent oligoarticular JIA (persistent oligo JIA) and adult JIA patients. METHODS Blood samples were collected from 105 JIA patients (children and adults) and 50 age-matched healthy individuals. The frequency and phenotype of B, Tfh and Tfr cells were evaluated by flow cytometry. Serum levels of APRIL, BAFF, IL-1β, IL-2, IL-4, IL-6, IL-10, IL-17A, IL-21, IL-22, IFN-γ, PD-1, PD-L1, sCD40L, CXCL13 and TNF were measured by multiplex bead-based immunoassay and/or ELISA in all groups included. RESULTS The frequency of B, Tfh and Tfr cells was similar between JIA patients and controls. Children with extended oligo JIA and poly JIA, but not persistent oligo JIA, had significantly lower frequencies of plasmablasts, regulatory T cells and higher levels of Th17-like Tfh cells in circulation when compared with controls. Furthermore, APRIL, BAFF, IL-6 and IL-17A serum levels were significantly higher in paediatric extended oligo JIA and poly JIA patients when compared with controls. These immunological alterations were not found in adult JIA patients in comparison to controls. CONCLUSIONS Our results suggest a potential role and/or activation profile of B and Th17-like Tfh cells in the pathogenesis of extended oligo JIA and poly JIA, but not persistent oligo JIA.
Collapse
Affiliation(s)
- Catarina Tomé
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Filipa Oliveira-Ramos
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, EPE, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Raquel Campanilho-Marques
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, EPE, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Ana F Mourão
- Rheumatology Department, Hospital de São Francisco Xavier, Centro Hospitalar Lisboa Ocidental, EPE, Lisbon, Portugal
| | - Sandra Sousa
- Reumatology Department, Hospital Garcia de Orta, EPE, Almada, Portugal
| | - Cláudia Marques
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Ana T Melo
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, EPE, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Rui L Teixeira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, EPE, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Ana P Martins
- Pediatric Surgery Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, EPE, Lisbon, Portugal
| | - Sofia Moeda
- Department of Pediatrics, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, EPE, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Patrícia Costa-Reis
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- Department of Pediatrics, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, EPE, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Rita P Torres
- Rheumatology Department, Hospital de São Francisco Xavier, Centro Hospitalar Lisboa Ocidental, EPE, Lisbon, Portugal
| | - Matilde Bandeira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, EPE, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Helena Fonseca
- Department of Pediatrics, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, EPE, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Miroslava Gonçalves
- Pediatric Surgery Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, EPE, Lisbon, Portugal
| | - Maria J Santos
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- Reumatology Department, Hospital Garcia de Orta, EPE, Almada, Portugal
| | - Luis Graca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - João E Fonseca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, EPE, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Rita A Moura
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| |
Collapse
|
7
|
Zhong W, Feng L, Tian W, Qu H, Xu H, Ning K, Liu L, Liu W, Gong X, Chen H. SMURF1 inhibits the Th17 and Th17.1 polarization and improves the Treg/Th17 imbalance in systemic lupus erythematosus through the ubiquitination of RORγt. Mol Immunol 2023; 157:186-194. [PMID: 37054520 DOI: 10.1016/j.molimm.2023.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 03/03/2023] [Accepted: 03/26/2023] [Indexed: 04/15/2023]
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease. This study aimed to investigate the role of SMAD specific E3 ubiquitin protein ligase 1 (SMURF1) in the Th17 and Th17.1 differentiation and Treg/Th17 imbalance, which are major factors contributing to the pathogenesis of SLE. SLE patients and healthy individuals were recruited to detect the SMURF1 levels in naïve CD4+ cells from peripheral blood. Purified and expanded naïve CD4+ T cells were employed to evaluate the effects of SMURF1 on Th17 and Th17.1 polarization in vitro. MRL/lpr lupus model was employed to explore the disease phenotype as well as Treg/Th17 balance in vivo. The results showed that SMURF1 was down-regulated in naïve CD4+ T cells in peripheral blood of patients with SLE and in spleen of MRL/lpr mice. SMURF1 overexpression suppressed the polarization of naïve CD4+ T cells toward Th17 and Th17.1 phenotype and down-regulated the expression of retinoid-related orphan receptor-gammat (RORγt). Subsequently, SMURF1 down-regulation aggravated the disease phenotype, inflammation, and the Treg/Th17 imbalance in MRL/lpr mice. Furthermore, we found that SMURF overexpression promoted the ubiquitination and decreases the stability of RORγt. In conclusion, SMURF1 inhibited the polarization of Th17 and Th17.1 cells and improved the Treg/Th17 imbalance in SLE, which was mediated as least partly by the ubiquitination of RORγt.
Collapse
Affiliation(s)
- Wei Zhong
- Department of Rheumatology and Immunology, The First Hospital of Qiqihar, Qiqihar City, Heilongjiang Province, PR China; Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar City, Heilongjiang Province, PR China
| | - Leheng Feng
- Department of Rheumatology and Immunology, The First Hospital of Qiqihar, Qiqihar City, Heilongjiang Province, PR China; Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar City, Heilongjiang Province, PR China
| | - Wei Tian
- Department of Rheumatology and Immunology, The First Hospital of Qiqihar, Qiqihar City, Heilongjiang Province, PR China; Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar City, Heilongjiang Province, PR China
| | - Hongbo Qu
- Department of Rheumatology and Immunology, The First Hospital of Qiqihar, Qiqihar City, Heilongjiang Province, PR China; Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar City, Heilongjiang Province, PR China
| | - Haibo Xu
- Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar City, Heilongjiang Province, PR China; Department of Endocrinology, The First Hospital of Qiqihar, Qiqihar City, Heilongjiang Province, PR China
| | - Ke Ning
- Department of International Medical Service, Affiliated Zhongshan Hospital of Dalian University, Dalian City, Liaoning Province, PR China
| | - Li Liu
- Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar City, Heilongjiang Province, PR China; Department of Imaging, The First Hospital of Qiqihar, Qiqihar City, Heilongjiang Province, PR China
| | - Wei Liu
- Department of Rheumatology and Immunology, Qinhuangdao Jungong Hospital, Qinhuangdao City, Hebei Province, PR China
| | - Xiaowei Gong
- Department of Rheumatology and Immunology, The First Hospital of Qiqihar, Qiqihar City, Heilongjiang Province, PR China; Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar City, Heilongjiang Province, PR China
| | - Hong Chen
- Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar City, Heilongjiang Province, PR China; TCM Geriatric Department, The First Hospital of Qiqihar, Qiqihar City, Heilongjiang Province, PR China; Heilongjiang Academy of Traditional Chinese Medicine, Harbin City, Heilongjiang Province, PR China.
| |
Collapse
|
8
|
Wedderburn LR, Ramanan AV, Croft AP, Hyrich KL, Dick AD. Towards molecular-pathology informed clinical trials in childhood arthritis to achieve precision medicine in juvenile idiopathic arthritis. Ann Rheum Dis 2023; 82:449-456. [PMID: 36600186 PMCID: PMC10086280 DOI: 10.1136/ard-2022-222553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
In childhood arthritis, collectively known as Juvenile idiopathic arthritis (JIA), the rapid rise of available licensed biological and targeted small molecule treatments in recent years has led to improved outcomes. However, real-world data from multiple countries and registries show that despite a large number of available drugs, many children and young people continue to suffer flares and experience significant periods of time with active disease for many years. More than 50% of young people with JIA require ongoing immune suppression well into adult life, and they may have to try multiple different treatments in that time. There are currently no validated tools with which to select specific treatments, nor biomarkers of response to assist in such choices, therefore, current management uses essentially a trial-and-error approach. A further consequence of recent progress is a reducing pool of available children or young people who are eligible for new trials. In this review we consider how progress towards a molecular based approach to defining treatment targets and informing trial design in JIA, combined with novel approaches to clinical trials, could provide strategies to maximise discovery and progress, in order to move towards precision medicine for children with arthritis.
Collapse
Affiliation(s)
- Lucy R Wedderburn
- UCL GOS Institute of Child Health, University College London, London, UK
- Centre for Adolescent Rheumatology Versus Arthritis at UCL UCLH and GOSH, UCL, London, UK
- National Institute of Health Research Biomedical Research Centre at GOSH London UK, Great Ormond Street Hospital, London, UK
| | - Athimalaipet V Ramanan
- Department of Paediatric Rheumatology, Bristol Royal Hospital for Children, Bristol, UK
- Translational Health Sciences, University of Bristol, Bristol, UK
| | - Adam P Croft
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- National Institute of Health Research Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Kimme L Hyrich
- Centre for Epidemiology Versus Arthritis, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- National Institute of Health Research Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Andrew D Dick
- Translational Health Sciences, University of Bristol, Bristol, UK
- UCL Institute of Ophthalmology, University College London, London, UK
- National Institute of Health Research Biomedical Research Centre, Moorfields and UCL Institute of Ophthalmology, London, UK
| |
Collapse
|
9
|
Zheng J, Wang Y, Hu J. Study of the shared gene signatures of polyarticular juvenile idiopathic arthritis and autoimmune uveitis. Front Immunol 2023; 14:1048598. [PMID: 36969183 PMCID: PMC10030950 DOI: 10.3389/fimmu.2023.1048598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
ObjectiveTo explore the shared gene signatures and potential molecular mechanisms of polyarticular juvenile idiopathic arthritis (pJIA) and autoimmune uveitis (AU).MethodThe microarray data of pJIA and AU from the Gene Expression Omnibus (GEO) database were downloaded and analyzed. The GEO2R tool was used to identify the shared differentially expressed genes (DEGs) and genes of extracellular proteins were identified among them. Then, weighted gene co-expression network analysis (WGCNA) was used to identify the shared immune-related genes (IRGs) related to pJIA and AU. Moreover, the shared transcription factors (TFs) and microRNAs (miRNAs) in pJIA and AU were acquired by comparing data from HumanTFDB, hTFtarget, GTRD, HMDD, and miRTarBase. Finally, Metascape and g: Profiler were used to carry out function enrichment analyses of previously identified gene sets.ResultsWe found 40 up-regulated and 15 down-regulated shared DEGs via GEO2R. Then 24 shared IRGs in positivity-related modules, and 18 shared IRGs in negatively-related modules were found after WGCNA. After that, 3 shared TFs (ARID1A, SMARCC2, SON) were screened. And the constructed TFs-shared DEGs network indicates a central role of ARID1A. Furthermore, hsa-miR-146 was found important in both diseases. The gene sets enrichment analyses suggested up-regulated shared DEGs, TFs targeted shared DEGs, and IRGs positivity-correlated with both diseases mainly enriched in neutrophil degranulation process, IL-4, IL-13, and cytokine signaling pathways. The IRGs negatively correlated with pJIA and AU mainly influence functions of the natural killer cell, cytotoxicity, and glomerular mesangial cell proliferation. The down-regulated shared DEGs and TFs targeted shared DEGs did not show particular functional enrichment.ConclusionOur study fully demonstrated the flexibility and complexity of the immune system disorders involved in pJIA and AU. Neutrophil degranulation may be considered the shared pathogenic mechanism, and the roles of ARID1A and MiR-146a are worthy of further in-depth study. Other than that, the importance of periodic inspection of kidney function is also noteworthy.
Collapse
|
10
|
La Bella S, Rinaldi M, Di Ludovico A, Di Donato G, Di Donato G, Salpietro V, Chiarelli F, Breda L. Genetic Background and Molecular Mechanisms of Juvenile Idiopathic Arthritis. Int J Mol Sci 2023; 24:ijms24031846. [PMID: 36768167 PMCID: PMC9916312 DOI: 10.3390/ijms24031846] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/07/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Juvenile idiopathic arthritis (JIA) is the most common chronic rheumatic disease in the paediatric population. JIA comprises a heterogeneous group of disorders with different onset patterns and clinical presentations with the only element in common being chronic joint inflammation. This review sought to evaluate the most relevant and up-to-date evidence on current knowledge regarding the pathogenesis of JIA subtypes to provide a better understanding of these disorders. Despite significant improvements over the past decade, the aetiology and molecular mechanisms of JIA remain unclear. It has been suggested that the immunopathogenesis is characterised by complex interactions between genetic background and environmental factors that may differ between JIA subtypes. Human leukocyte antigen (HLA) haplotypes and non-HLA genes play a crucial role in the abnormal activation of both innate and adaptive immune cells that cooperate in causing the inflammatory process. This results in the involvement of proinflammatory cytokines, including tumour necrosis factor (TNF)α, interleukin (IL)-1, IL-6, IL-10, IL-17, IL-21, IL-23, and others. These mediators, interacting with the surrounding tissue, cause cartilage stress and bone damage, including irreversible erosions. The purpose of this review is to provide a comprehensive overview of the genetic background and molecular mechanisms of JIA.
Collapse
Affiliation(s)
- Saverio La Bella
- Paediatric Department, University of Chieti “G. D’Annunzio”, 66100 Chieti, Italy
| | - Marta Rinaldi
- Paediatric Department, Buckinghamshire Healthcare NHS Trust, Aylesbury-Thames Valley Deanery, Aylesbury HP21 8AL, UK
| | - Armando Di Ludovico
- Paediatric Department, University of Chieti “G. D’Annunzio”, 66100 Chieti, Italy
| | - Giulia Di Donato
- Paediatric Department, University of Chieti “G. D’Annunzio”, 66100 Chieti, Italy
| | - Giulio Di Donato
- Paediatric Department, University of L’Aquila, 67100 L’Aquila, Italy
| | | | - Francesco Chiarelli
- Paediatric Department, University of Chieti “G. D’Annunzio”, 66100 Chieti, Italy
| | - Luciana Breda
- Paediatric Department, University of Chieti “G. D’Annunzio”, 66100 Chieti, Italy
- Correspondence: ; Tel.: +39-0871-357377
| |
Collapse
|
11
|
Zou Y, Zhao Q, Zhang X, Yu H, Zhou Y, Li Z, Xiao M, Xiang Q, Zhang L, Shi W, Tao H, Chen L, Han B, Yin S. The immunosuppressive effects and mechanisms of loureirin B on collagen-induced arthritis in rats. Front Immunol 2023; 14:1094649. [PMID: 37168850 PMCID: PMC10165104 DOI: 10.3389/fimmu.2023.1094649] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/30/2023] [Indexed: 05/13/2023] Open
Abstract
Introduction Rheumatoid arthritis (RA) is a common disease mainly affecting joints of the hands and wrists. The discovery of autoantibodies in the serum of patients revealed that RA belonged to the autoimmune diseases and laid a theoretical basis for its immunosuppressive therapy. The pathogenesis of autoimmune diseases mainly involves abnormal activation and proliferation of effector memory T cells, which is closely related to the elevated expression of Kv1.3, a voltage-gated potassium (Kv) channel on the effector memory T cell membrane. Drugs blocking the Kv1.3 channel showed a strong protective effect in RA model animals, suggesting that Kv1.3 is a target for the discovery of specific RA immunosuppressive drugs. Methods In the present study, we synthesized LrB and studied the effects of LrB on collagen- induced arthritis (CIA) in rats. The clinical score, paw volume and joint morphology of CIA model rats were compared. The percentage of CD3+, CD4+ and CD8+ T cells in rat peripheral blood mononuclear and spleen were analyzed with flow cytometry. The concentrations of inflammatory cytokines interleukin (IL)-1b, IL-2, IL-4, IL-6, IL-10 and IL-17 in the serum of CIA rats were analyzed with enzyme-linked immunosorbent assay. The IL-1b and IL-6 expression in joints and the Kv1.3 expression in peripheral blood mononuclear cells (PBMCs) were quantified by qPCR. To further study the mechanisms of immunosuppressive effects of LrB, western blot and immunofluorescence were utilized to study the expression of Kv1.3 and Nuclear Factor of Activated T Cells 1 (NFAT1) in two cell models - Jurkat T cell line and extracted PBMCs. Results LrB effectively reduced the clinical score and relieved joint swelling. LrB could also decrease the percentage of CD4+ T cells, while increase the percentage of CD8+ T cells in peripheral blood mononuclear and spleen of rats with CIA. The concentrations of inflammatory cytokines interleukin (IL)-1b, IL-2, IL-6, IL-10 and IL-17 in the serum of CIA rats were significantly reduced by LrB. The results of qPCR showed that Kv1.3 mRNA in the PBMCs of CIA rats was significantly higher than that of the control and significantly decreased in the LrB treatment groups. In addition, we confirmed in cell models that LrB significantly decreased Kv1.3 protein on the cell membrane and inhibited the activation of Nuclear Factor of Activated T Cells 1 (NFAT1) with immune stimulus. Conclusion In summary, this study revealed that LrB could block NFAT1 activation and reduce Kv1.3 expression in activated T cells, thus inhibiting the proliferation of lymphocytes and the release of inflammatory cytokines, thereby effectively weakening the autoimmune responses in CIA rats. The effects of immunosuppression due to LrB revealed its potential medicinal value in the treatment of RA.
Collapse
Affiliation(s)
- Yan Zou
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
- Ethnopharmacology Level 3 Laboratory, National Administration of Traditional Chinese Medicine, Wuhan, China
- Department of Cardiology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Qianru Zhao
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
- Ethnopharmacology Level 3 Laboratory, National Administration of Traditional Chinese Medicine, Wuhan, China
| | - Xu Zhang
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
- Ethnopharmacology Level 3 Laboratory, National Administration of Traditional Chinese Medicine, Wuhan, China
| | - Hui Yu
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
- Ethnopharmacology Level 3 Laboratory, National Administration of Traditional Chinese Medicine, Wuhan, China
| | - Yongsheng Zhou
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
- Ethnopharmacology Level 3 Laboratory, National Administration of Traditional Chinese Medicine, Wuhan, China
| | - Ziyi Li
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
- Ethnopharmacology Level 3 Laboratory, National Administration of Traditional Chinese Medicine, Wuhan, China
| | - Min Xiao
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
- Ethnopharmacology Level 3 Laboratory, National Administration of Traditional Chinese Medicine, Wuhan, China
| | - Qiu Xiang
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
- Ethnopharmacology Level 3 Laboratory, National Administration of Traditional Chinese Medicine, Wuhan, China
| | - Lirong Zhang
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
- Ethnopharmacology Level 3 Laboratory, National Administration of Traditional Chinese Medicine, Wuhan, China
| | - Wenyi Shi
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
- Ethnopharmacology Level 3 Laboratory, National Administration of Traditional Chinese Medicine, Wuhan, China
| | - Haobo Tao
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
- Ethnopharmacology Level 3 Laboratory, National Administration of Traditional Chinese Medicine, Wuhan, China
| | - Lvyi Chen
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
- Ethnopharmacology Level 3 Laboratory, National Administration of Traditional Chinese Medicine, Wuhan, China
| | - Bing Han
- Department of Cardiology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
- *Correspondence: Bing Han, ; Shijin Yin,
| | - Shijin Yin
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
- Ethnopharmacology Level 3 Laboratory, National Administration of Traditional Chinese Medicine, Wuhan, China
- *Correspondence: Bing Han, ; Shijin Yin,
| |
Collapse
|