1
|
Johnston EK, Fang Z, Soto-Gutierrez A, Taner CB, Cook KE, Yang L, Abbott RD. Engineering a three-dimensional liver steatosis model. Biochim Biophys Acta Mol Basis Dis 2025:167888. [PMID: 40328412 DOI: 10.1016/j.bbadis.2025.167888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 04/28/2025] [Accepted: 05/02/2025] [Indexed: 05/08/2025]
Abstract
Liver transplantation is the key treatment for liver failure, yet organ scarcity, exacerbated by high discard rates of steatotic livers, leads to high waitlist mortality. Preclinical models of steatosis are necessary to understand the pathophysiology of the disease and to develop pharmacological interventions to decrease disease burden and liver discard rate. In this paper, we develop an expedited 3D steatotic organoid model containing primary human hepatocytes and non-parenchymal cells. We present our iterative approach as we transition from 2D to 3D models and from immortalized to primary cells to optimize conditions for the development of a 3D human steatosis model. Both primary cell aggregation and steatosis induction time were reduced from the standard, 5-7 days, to 2 days. Our 3D model incorporates human primary hepatocytes from discarded liver tissues, which have not been used in organoids previously due to their rapid loss of phenotype in culture. After optimizing our steatosis induction media there was a mix of macro- and micro-steatosis in these primary hepatocytes which is consistent with the human pathology. Our approach achieves a model reflective of the liver pathology, preserving cellular phenotypes and viability while exhibiting markers of oxidative stress, a key factor contributing to complications in the transplantation of steatotic livers.
Collapse
Affiliation(s)
- Elizabeth K Johnston
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Zhou Fang
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | - C Burcin Taner
- Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Keith E Cook
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Liu Yang
- Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Rosalyn D Abbott
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|
2
|
Gao L, Li YJ, Zhao JM, Liao YX, Qin MC, Li JJ, Shi H, Wong NK, Lyu ZP, Shen JG. Mechanism of Reactive Oxygen/Nitrogen Species in Liver Ischemia-Reperfusion Injury and Preventive Effect of Chinese Medicine. Chin J Integr Med 2025; 31:462-473. [PMID: 38941044 DOI: 10.1007/s11655-024-3810-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 06/29/2024]
Abstract
Liver ischemia-reperfusion injury (LIRI) is a pathological process involving multiple injury factors and cell types, with different stages. Currently, protective drugs targeting a single condition are limited in efficacy, and interventions on immune cells will also be accompanied by a series of side effects. In the current bottleneck research stage, the multi-target and obvious clinical efficacy of Chinese medicine (CM) is expected to become a breakthrough point in the research and development of new drugs. In this review, we summarize the roles of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in various stages of hepatic ischemia-reperfusion and on various types of cells. Combined with the current research progress in reducing ROS/RNS with CM, new therapies and mechanisms for the treatment of hepatic ischemia-reperfusion are discussed.
Collapse
Affiliation(s)
- Lei Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yun-Jia Li
- The First Affiliated Hospital/the First Clinical Medicine School of Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jia-Min Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yu-Xin Liao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Meng-Chen Qin
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Jun-Jie Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Hao Shi
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Nai-Kei Wong
- State Key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, the Second Affiliated Hospital, Shenzhen University, Shenzhen, 518112, Guangdong Province, China
| | - Zhi-Ping Lyu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Jian-Gang Shen
- School of Chinese Medicine, the University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
3
|
Wang D, Zhai Y, Wang Y, Fu X, Ji Y, Li R. Dual-color reversible fluorescent carbon dots designed for dynamic monitoring of cellular superoxide anion radicals. J Mater Chem B 2025; 13:5163-5170. [PMID: 40205991 DOI: 10.1039/d5tb00099h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
The superoxide anion radical (O2˙-) represents the primary reactive oxygen species generated in biological systems. Real-time monitoring of its dynamic fluctuations provides valuable insights into disease progression and enables early diagnosis of hepatic ischemia-reperfusion injury (HIRI). In this work, we developed a novel dual-color fluorescent carbon dot (CD) probe through a one-step hydrothermal synthesis for reversible O2˙- detection. The CDs demonstrated excellent sensitivity, dynamically detecting O2˙- concentrations ranging from 0 to 60 μM with a detection limit of 0.56 μM. The probe exhibited remarkable reversibility, maintaining stable performance through at least three complete oxidation-reduction cycles following glutathione (GSH) treatment. In practical applications, the CDs achieved 95.2-104% recovery rates when detecting O2˙- in serum samples. Cellular imaging experiments confirmed the probe's effectiveness in normal hepatocytes (LO2), showing clear reversible responses to O2˙- fluctuations. Application in a HIRI cell model revealed significant elevation of O2˙- levels and provided new evidence for its role in HIRI-related signaling pathways. This study not only presents an effective dual-color fluorescent probe for dynamic O2˙- monitoring but also establishes a versatile synthetic strategy that could be adapted for imaging other biologically relevant molecules in living cells.
Collapse
Affiliation(s)
- Dan Wang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Yanke Zhai
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China.
| | - Yun Wang
- Laboratory of Emergency Medicine, Lanzhou University Second Hospital, Gansu, Lanzhou, 730000, China.
| | - Xu Fu
- Laboratory of Emergency Medicine, Lanzhou University Second Hospital, Gansu, Lanzhou, 730000, China.
| | - Yibing Ji
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China.
| | - Ruijun Li
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China.
| |
Collapse
|
4
|
Wu Y, Li C, Lu D, Chen K, Su R, Xu S, Gao F, Lian Z, Yang F, Chen J, Wei F, Xu X, Liu Z. Insulin-induced gene 2 alleviates ischemia-reperfusion injury in steatotic liver by inhibiting GPX4-dependent ferroptosis. Cell Death Discov 2025; 11:127. [PMID: 40169542 PMCID: PMC11962074 DOI: 10.1038/s41420-025-02406-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/25/2025] [Accepted: 03/18/2025] [Indexed: 04/03/2025] Open
Abstract
Hepatic steatosis significantly elevates the vulnerability of the graft to ischemia-reperfusion (I/R) injury during liver transplantation (LT). We investigated the protective role of insulin-induced gene 2 (Insig2) in steatotic liver's I/R injury and underlying mechanisms. Employing mouse model with Insig2 knock-out or hepatocyte-specific overexpression and high-fat diets to induce steatosis, we subjected these mice to hepatic I/R injury. The primary hepatocytes isolated from steatotic liver were used in in vitro hypoxia/reoxygenation (H/R) experiment. Our integrated in vivo and in vitro approach uncovered that Insig2 deficiency exacerbated steatotic liver's damage following hepatic I/R injury, whereas its overexpression offers protection. Mechanically, integrative analysis of transcriptome, proteome, and metabolome found that Insig2 deficiency disturbed lipid metabolism and oxidative stress homeostasis, particularly inhibiting GPX4 expression to induce ferroptosis. Furthermore, chemical inhibition of ferroptosis reversed the deleterious effect of Insig2 deficiency; whereas the protective influence of Insig2 overexpression was negated by the target inhibition of GPX4, leading to an exacerbation of hepatic I/R damage. These insights underscored the potential of the Insig2-GPX4 axis as a therapeutic target, presenting a novel avenue for enhancing the resilience of steatotic liver grafts against I/R injury.
Collapse
Affiliation(s)
- Yichao Wu
- Department of Hepatobiliary, Pancreatic and Minimal Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Changbiao Li
- Department of Gastrointestinal-Pancreatic Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Di Lu
- Department of Hepatobiliary, Pancreatic and Minimal Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Institution of Clinical Medicine, Hangzhou Medical College, Hangzhou, China
| | - Kangchen Chen
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Hangzhou, China
| | - Renyi Su
- Zhejiang University School of Medicine, Hangzhou, China
| | - Shengjun Xu
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Hangzhou, China
| | - Fengqiang Gao
- Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengxing Lian
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Fan Yang
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Hangzhou, China
| | - Jun Chen
- Department of Hepatobiliary, Pancreatic and Minimal Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Institution of Clinical Medicine, Hangzhou Medical College, Hangzhou, China
| | - Fangqiang Wei
- Department of Hepatobiliary, Pancreatic and Minimal Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
- Institution of Clinical Medicine, Hangzhou Medical College, Hangzhou, China
| | - Xiao Xu
- Department of Hepatobiliary, Pancreatic and Minimal Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China.
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China.
- Institution of Clinical Medicine, Hangzhou Medical College, Hangzhou, China.
| | - Zhikun Liu
- Department of Hepatobiliary, Pancreatic and Minimal Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China.
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China.
- Institution of Clinical Medicine, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
5
|
Zhang Y, Lv J, Bai J, Zhang X, Wu G, Lei X, Li W, Zhang Z. TXNIP knockdown ameliorates hepatic ischemia/reperfusion injury by inhibiting apoptosis and improving mitochondrial dysfunction via HIF-1α. Mol Cell Biochem 2025; 480:2291-2300. [PMID: 38872070 DOI: 10.1007/s11010-024-05037-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 05/14/2024] [Indexed: 06/15/2024]
Abstract
This study aims to investigate whether thioredoxin-interacting protein (TXNIP) regulates cell viability, cell apoptosis and mitochondrial damage in OGD/R-induced hepatocytes and to explore its underlying mechanism. AML12 cells were cultured under oxygen-glucose deprivation/reperfusion (OGD/R) conditions. TXNIP mRNA was detected using qRT-PCR, and the TXNIP protein was analyzed using western blotting. TXNIP-targeted short hairpin RNA (sh-TXNIP) lentivirus was used to infect the AML12 cells. CCK8 and TUNEL assays were applied to detect cell viability and apoptosis, respectively. DCFH-DA probe was used to determine reactive oxygen species (ROS) release level, and JC-1 probe was used to evaluate mitochondrial membrane potential (MMP). The localization of TXNIP and HIF-1α was observed using immunofluorescence. Our results showed that TXNIP markedly increased in AML12 cells treated with OGD/R. TXNIP knockdown increased cell viability and reduced cell apoptosis under OGD/R treatment. Moreover, MMP significantly increased and ROS release decreased in cells after TXNIP knockdown under OGD/R treatment. Additionally, TXNIP knockdown markedly increased the expression of HIF-1α. HIF-1α exhibited nuclear translocation following OGD/R induction, and TXNIP knockdown further promoted it. Compared with the OGD/R + sh-TXNIP group, HIF-1α agonist ML228 inhibited cell apoptosis and ROS release, and increased MMP. However, HIF-1α inhibitor PX478 had the opposite effect. In summary, TXNIP deletion ameliorated AML12 cell injury caused by OGD/R via promoting HIF-1α expression and nuclear translocation, manifested by inhibiting cell apoptosis and alleviating mitochondrial dysfunction.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Anesthesia, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West 5th Road, Xi'an, 710004, Shaanxi, China
| | - Jianrui Lv
- Department of Anesthesia, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West 5th Road, Xi'an, 710004, Shaanxi, China
| | - Jian Bai
- Department of General Surgery, Xuanwu Hospital Capital Medical University, Beijing, 100032, China
| | - Xue Zhang
- Department of General Practice, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Gang Wu
- Department of Anesthesia, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West 5th Road, Xi'an, 710004, Shaanxi, China
| | - Xiaoming Lei
- Department of Anesthesia, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West 5th Road, Xi'an, 710004, Shaanxi, China
| | - Wei Li
- Department of Anesthesia, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West 5th Road, Xi'an, 710004, Shaanxi, China
| | - Zhenni Zhang
- Department of Anesthesia, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West 5th Road, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
6
|
Liu J, Jin Y, Lv F, Yang Y, Li J, Zhang Y, Zhong L, Liu W. Identification of biomarkers associated with programmed cell death in liver ischemia-reperfusion injury: insights from machine learning frameworks and molecular docking in multiple cohorts. Front Med (Lausanne) 2025; 12:1501467. [PMID: 40160318 PMCID: PMC11949969 DOI: 10.3389/fmed.2025.1501467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/20/2025] [Indexed: 04/02/2025] Open
Abstract
Introduction Liver ischemia-reperfusion injury (LIRI) is a major reason for liver injury that occurs during surgical procedures such as hepatectomy and liver transplantation and is a major cause of graft dysfunction after transplantation. Programmed cell death (PCD) has been found to correlate with the degree of LIRI injury and plays an important role in the treatment of LIRI. We aim to comprehensively explore the expression patterns and mechanism of action of PCD-related genes in LIRI and to find novel molecular targets for early prevention and treatment of LIRI. Methods We first compared the expression profiles, immune profiles, and biological function profiles of LIRI and control samples. Then, the potential mechanisms of PCD-related differentially expressed genes in LIRI were explored by functional enrichment analysis. The hub genes for LIRI were further screened by applying multiple machine learning methods and Cytoscape. GSEA, GSVA, immune correlation analysis, transcription factor prediction, ceRNA network analysis, and single-cell analysis further revealed the mechanisms and regulatory network of the hub gene in LIRI. Finally, potential therapeutic agents for LIRI were explored based on the CMap database and molecular docking technology. Results Forty-seven differentially expressed genes associated with PCD were identified in LIRI, and functional enrichment analysis showed that they were involved in the regulation of the TNF signaling pathway as well as the regulation of hydrolase activity. By utilizing machine learning methods, 11 model genes were identified. ROC curves and confusion matrix from the six cohorts illustrate the superior diagnostic value of our model. MYC was identified as a hub PCD-related target in LIRI by Cytoscape. Finally, BMS-536924 and PF-431396 were identified as potential therapeutic agents for LIRI. Conclusion This study comprehensively characterizes PCD in LIRI and identifies one core molecule, providing a new strategy for early prevention and treatment of LIRI.
Collapse
Affiliation(s)
- Jifeng Liu
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yeheng Jin
- Department of Second Clinical College, China Medical University, Shenyang, Liaoning, China
| | - Fengchen Lv
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yao Yang
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Junchen Li
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yunshu Zhang
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Lei Zhong
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Wei Liu
- Department of Traditional Chinese Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
7
|
Sim SY, Cho HD, Lee SB. Amelioration of Alcoholic Hepatic Steatosis in a Rat Model via Consumption of Poly-γ-Glutamic Acid-Enriched Fermented Protaetia brevitarsis Larvae Using Bacillus subtilis. Foods 2025; 14:861. [PMID: 40077563 PMCID: PMC11899319 DOI: 10.3390/foods14050861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/23/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Alcoholic hepatic steatosis (AHS) is a common early-stage symptom of liver disease caused by alcohol consumption. Accordingly, several aspects of AHS have been studied as potential preventive and therapeutic targets. In this study, a novel strategy was employed to inhibit fatty liver accumulation and counteract AHS through the consumption of microorganism-fermented Protaetia brevitarsis larvae (FPBs). By using an AHS rat model, we assessed the efficacy of FPB by examining the lipid profile of liver/serum and liver function tests to evaluate lipid metabolism modulation. After FPB administration, the lipid profile-including high-density lipoprotein, total cholesterol, and total triglycerides-and histopathological characteristics exhibited improvement in the animal model. Interestingly, AHS amelioration via FPBs administration was potentially associated with poly-γ-glutamic acid (PγG), which is produced by Bacillus species during fermentation. These findings support the formulation of novel natural remedies for AHS through non-clinical animal studies, suggesting that PγG-enriched FPBs are a potentially valuable ingredient for functional foods, providing an ameliorative effect on AHS.
Collapse
Affiliation(s)
- So-Yeon Sim
- School of Food Science and Biotechnology, Kyungpook National University, 80 Daehak-ro, Daegu 41566, Republic of Korea;
| | - Hyun-Dong Cho
- Department of Food and Nutrition, Sunchon National University, Sunchon 57922, Republic of Korea;
| | - Sae-Byuk Lee
- School of Food Science and Biotechnology, Kyungpook National University, 80 Daehak-ro, Daegu 41566, Republic of Korea;
- Institute of Fermentation Biotechnology, Kyungpook National University, 80 Daehak-ro, Daegu 41566, Republic of Korea
| |
Collapse
|
8
|
Lai S, Ye Y, Ding Q, Hu X, Fu A, Wu L, Cao W, Liu Q, Dou X, Qi X. Thonningianin A ameliorates acetaminophen-induced liver injury by activating GPX4 and modulating endoplasmic reticulum stress. Front Pharmacol 2025; 16:1531277. [PMID: 40051561 PMCID: PMC11882853 DOI: 10.3389/fphar.2025.1531277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/27/2025] [Indexed: 03/09/2025] Open
Abstract
Introduction Acetaminophen (APAP) is widely used as an analgesic and antipyretic. However overdose APAP can lead to acute liver injury (ALI), representing a significant challenge for public health due to limited treatment options. Current research highlights the need for safer and more effective therapies for APAP-induced liver injury, especially those that target oxidative and endoplasmic reticulum (ER) stress pathways. This study investigates the protective effects of Thonningianin A (TA), a flavonoid compound derived from Penthorum chinense Pursh, in mitigating APAP-induced hepatotoxicity. Methods The experimental design involved administering TA at doses of 20 mg/kg and 40 mg/kg to C57BL/6 mice prior to inducing hepatotoxicity with APAP. Results and discussion TA treatment significantly lowered plasma ALT and AST levels, inhibited the production of inflammatory cytokines, and reduced oxidative stress markers in liver tissues. Furthermore, TA modulated apoptosis-related proteins by increasing BCL-2 expression while decreasing CHOP and BAX levels. It alleviated endoplasmic reticulum (ER) stress by downregulating GRP78, p-PERK, and ATF4. Notably, liver-specific GPX4 knockdown, achieved through AAV-8-mediated shRNA delivery, abolished the hepatoprotective effects of TA, underscoring GPX4's essential role in mediating TA-induced hepatoprotection. These findings suggest TA as a promising therapeutic agent in managing APAP-induced liver injury, with its unique action on both oxidative and ER stress pathways contributing to its hepatoprotective efficacy.
Collapse
Affiliation(s)
- Shanglei Lai
- Department of Medical Research Center, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - Yingyan Ye
- Hangzhou Medical College Affiliated Lin’an People’s Hospital, The First People’s Hospital of Hangzhou Lin’an District, Hangzhou, Zhejiang, China
| | - Qinchao Ding
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiaokai Hu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ai Fu
- Institute of Hepatology and Epidemiology, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Lan Wu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Wenjing Cao
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qingsheng Liu
- Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiaobing Dou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xuchen Qi
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Neurosurgery, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| |
Collapse
|
9
|
Lu K, Li H, Sun L, Dong X, Fan Y, Dong D, Wu Y, Shi Y. Comprehensive analysis of immunogenic cell death-related genes in liver ischemia-reperfusion injury. Front Immunol 2025; 16:1545185. [PMID: 40034711 PMCID: PMC11872941 DOI: 10.3389/fimmu.2025.1545185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 01/28/2025] [Indexed: 03/05/2025] Open
Abstract
Background Liver ischemia-reperfusion injury (LIRI) is a critical condition after liver transplantation. Understanding the role of immunogenic cell death (ICD) may provide insights into its diagnosis and potential therapeutic targets. Methods Differentially expressed genes (DEGs) between LIRI and normal samples were identified, and pathway enrichment analyses were performed, followed by immune infiltration assessment through the CIBERSORT method. The consensus clustering analysis was conducted to separate LIRI clusters and single-sample Gene Set Enrichment Analysis (ssGSEA) was used to analyze the distinct immune states between clusters. Weighted Gene Co-Expression Network Analysis (WGCNA) was employed to identify hub genes associated with ICD. To establish diagnostic models, four machine learning techniques, including Random Forest (RF), XGBoost (XGB), Support Vector Machine (SVM), and Generalized Linear Models (GLM), were applied to filter gene sets. The receiver operating characteristic (ROC) curves were utilized to assess the performance of the models. Results Pathway enrichment results revealed significant involvement of cytokines and chemokines among DEGs of LIRI. Immune infiltration analysis indicated higher levels of specific immune functions in Cluster 2 compared to Cluster 1. WGCNA identified significant modules linked to LIRI with strong correlations between module membership and gene significance. The RF and SVM machine learning algorithms were finally chosen to construct the models. Both demonstrated high predictive accuracy for diagnosing LIRI not only in training cohort GSE151648 but also in validation cohorts GSE23649 and GSE15480. Conclusions The study highlights the pivotal roles of ICD-related genes in LIRI, providing diagnosis models with potential clinical applications for early detection and intervention strategies against LIRI.
Collapse
Affiliation(s)
- Kai Lu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Hanqi Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Liankang Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xuyuan Dong
- Department of Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yangwei Fan
- Department of Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Danfeng Dong
- Department of Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yinying Wu
- Department of Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yu Shi
- Department of Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
10
|
Lu Q, Ling H, Lao Y, Liu J, Su W, Huang Z. Immune-mediated mechanisms in acute osteofascial compartment syndrome: insights from multi-omics analysis. Eur J Med Res 2025; 30:79. [PMID: 39910406 PMCID: PMC11796005 DOI: 10.1186/s40001-025-02285-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/09/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Acute Osteofascial Compartment Syndrome (AOCS) stands as a critical surgical emergency, often secondary to various diseases. Its clinical manifestation arises from increased pressure within the fascial compartment, resulting in diminished tissue perfusion and consequential ischemic damage. Presently, clinical diagnostics lack effective biological markers, and patients face a grim prognosis, experiencing muscle contractures, necrosis, amputations, renal failure, and even mortality. The primary treatment, fasciotomy, poses infection risks and potential nerve damage. Hence, there is an urgent need for research elucidating AOCS's pathogenic mechanism and exploring novel treatments. METHODS To address this, we established a rat model of AOCS, extracting toe flexor muscles from both experimental and control groups. Employing second-generation high-throughput sequencing, we obtained comprehensive mRNA, lncRNA, circRNA, and miRNA data. Comparative analysis of expression differences between AOCS and control groups, followed by in-depth examination, allowed us to unravel the intricacies of AOCS occurrence from a multi-omics perspective. RESULTS Our research findings indicate that AOCS is an immune-mediated inflammatory disease, primarily involving immune cells, especially neutrophils. In addition, genes associated with ferroptosis, a form of regulated cell death, are found to be upregulated in the rat model, with non-coding RNAs playing a role in regulatory interactions. CONCLUSIONS These results suggest that neutrophils may undergo ferroptosis, thereby enhancing inflammation and immune responses in the fascial compartment, which promotes disease progression. Furthermore, these findings reveal the interactions between immune molecules and pathways in AOCS, which are significant for a deeper understanding of the pathogenesis of the disease and the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Qinzhen Lu
- Department of Orthopedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, NO. 6 Shuang Yong Road, Nanning, 530022, Guangxi, China
| | - He Ling
- Department of Orthopedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, NO. 6 Shuang Yong Road, Nanning, 530022, Guangxi, China
| | - Yonghui Lao
- Department of Orthopedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, NO. 6 Shuang Yong Road, Nanning, 530022, Guangxi, China
| | - Junjie Liu
- Department of Orthopedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, NO. 6 Shuang Yong Road, Nanning, 530022, Guangxi, China
| | - Wei Su
- Department of Orthopedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, NO. 6 Shuang Yong Road, Nanning, 530022, Guangxi, China
| | - Zhao Huang
- Department of Orthopedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, NO. 6 Shuang Yong Road, Nanning, 530022, Guangxi, China.
| |
Collapse
|
11
|
Muhtar E, Ylham G, Tiemuer A, Edirs S. Unraveling the Dual Anti-Inflammatory and Antioxidant Mechanisms of Acteoside: Computational Insights and Experimental Validation. Chem Biodivers 2025; 22:e202401564. [PMID: 39365024 DOI: 10.1002/cbdv.202401564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/29/2024] [Accepted: 10/03/2024] [Indexed: 10/05/2024]
Abstract
Acteoside (ACT) is one of the primary bioactive ingredients in Cistanche tubulosa (Schenk). Its remarkable efficacy in treating immune-related and inflammatory disorders has garnered significant interest among scientific circles. However, the anti-inflammatory and antioxidant effects of ACT and its underlying molecular mechanisms require further investigation. In this study, pharmacophore-based reverse docking and molecular dynamics simulations identified potential anti-inflammatory targets in silico. Studies conducted in vitro with lipopolysaccharide (LPS)-induced RAW264.7 cells validated the anti-inflammatory properties of ACT. Methyl thiazolyl tetrazolium (MTT) and lactate dehydrogenase (LDH) assays indicated ACT's non-toxic and growth-promoting effects on cells. ACT significantly reduced nitric oxide (NO) and reactive oxygen species (ROS) production and restored levels of antioxidant enzymes. It also decreased pro-inflammatory cytokines. Western blotting assays indicated that ACT inhibited p38, TNF-α, PI3 K/AKT, and NF-κB signaling pathways. These findings underscore ACT's ability to mitigate acute inflammation in RAW264.7 cells by modulating key signaling pathways and provide the scientific basis for enhancing the medicinal value of ACT and future drug development.
Collapse
Affiliation(s)
- Eldar Muhtar
- Institute of Agro-products Storage and Processing, Xinjiang Key Laboratory of Processing and Preservation of Agricultural Products, Xinjiang Academy of Agricultural Science, Urumqi, Xinjiang, 830091, China
| | - Gulfira Ylham
- Institute of Agro-products Storage and Processing, Xinjiang Key Laboratory of Processing and Preservation of Agricultural Products, Xinjiang Academy of Agricultural Science, Urumqi, Xinjiang, 830091, China
| | - Atawulla Tiemuer
- Institute of Agro-products Storage and Processing, Xinjiang Key Laboratory of Processing and Preservation of Agricultural Products, Xinjiang Academy of Agricultural Science, Urumqi, Xinjiang, 830091, China
| | - Salamet Edirs
- Institute of Agro-products Storage and Processing, Xinjiang Key Laboratory of Processing and Preservation of Agricultural Products, Xinjiang Academy of Agricultural Science, Urumqi, Xinjiang, 830091, China
| |
Collapse
|
12
|
Sheng M, Liu W, Cao Y, Wang S, Lin Y, Yu W. TARGETING S100A9-TLR2 AXIS CONTROLS MACROPHAGE NLRP3 INFLAMMASOME ACTIVATION IN FATTY LIVER ISCHEMIA REPERFUSION INJURY. Shock 2025; 63:292-298. [PMID: 39447083 PMCID: PMC11776876 DOI: 10.1097/shk.0000000000002470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/21/2024] [Indexed: 10/26/2024]
Abstract
ABSTRACT Liver ischemia reperfusion (IR) injury significantly impacts clinical outcomes by increasing the risk of hepatic dysfunction after liver surgery. Fatty livers are more susceptible to IR stress. Recent studies have demonstrated that S100A9 plays a crucial role in both IR injury and the progression of liver steatosis. Nevertheless, the precise mechanisms underlying these effects remain unclear. In our study, transcriptome analysis of fatty livers subjected to IR insult in mice identified S100A9 as an important mediator. Employing loss-of-function approaches, we investigated the immune regulatory function of S100A9 and its downstream signaling in fatty liver IR injury. As expected, S100A9 emerged as one of the most significantly upregulated genes during the reperfusion stage in fatty livers. Genetic knockdown of S100A9 markedly ameliorated liver pathological damage, evidenced by reduced macrophage/neutrophil infiltration as well as the decreased expression of proinflammatory factors. Transcriptome/functional studies revealed that S100A9 triggered liver inflammatory response via regulating toll-like receptor 2 (TLR2)/activating transcription factor 4 (ATF4) signaling. Additionally, TLR2 expression was notably increased in macrophages from ischemic fatty livers. In vitro , recombinant S100A9-stimulated macrophages exhibited the elevated production of proinflammatory factors and TLR2/ATF4 pathway activation. Intriguingly, S100A9 facilitated ATF4 nuclear translocation and enhanced NEK7/NLRP3 inflammasome activation in macrophages. In conclusion, our study identified S100A9 as a key regulator responsible for macrophage NLRP3 inflammasome activation and subsequent inflammatory injury in fatty liver IR process. Targeting TLR2/ATF4 signaling may offer a novel therapeutic strategy for mitigating S100A9-mediated liver injury.
Collapse
Affiliation(s)
- Mingwei Sheng
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin, China
| | - Weihua Liu
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin, China
| | - Yingli Cao
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin, China
| | - Shixuan Wang
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin, China
| | - Yuanbang Lin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenli Yu
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
13
|
Hamamah S, Iatcu OC, Covasa M. Dietary Influences on Gut Microbiota and Their Role in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Nutrients 2024; 17:143. [PMID: 39796579 PMCID: PMC11722922 DOI: 10.3390/nu17010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a major contributor to liver-related morbidity, cardiovascular disease, and metabolic complications. Lifestyle interventions, including diet and exercise, are first line in treating MASLD. Dietary approaches such as the low-glycemic-index Mediterranean diet, the ketogenic diet, intermittent fasting, and high fiber diets have demonstrated potential in addressing the metabolic dysfunction underlying this condition. The development and progression of MASLD are closely associated with taxonomic shifts in gut microbial communities, a relationship well-documented in the literature. Given the importance of diet as a primary treatment for MASLD, it is important to understand how gut microbiota and their metabolic byproducts mediate favorable outcomes induced by healthy dietary patterns. Conversely, microbiota changes conferred by unhealthy dietary patterns such as the Western diet may induce dysbiosis and influence steatotic liver disease through promoting hepatic inflammation, up-regulating lipogenesis, dysregulating bile acid metabolism, increasing insulin resistance, and causing oxidative damage in hepatocytes. Although emerging evidence has identified links between diet, microbiota, and development of MASLD, significant gaps remain in understanding specific microbial roles, metabolite pathways, host interactions, and causal relationships. Therefore, this review aims to provide mechanistic insights into the role of microbiota-mediated processes through the analysis of both healthy and unhealthy dietary patterns and their contribution to MASLD pathophysiology. By better elucidating the interplay between dietary nutrients, microbiota-mediated processes, and the onset and progression of steatotic liver disease, this work aims to identify new opportunities for targeted dietary interventions to treat MASLD efficiently.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Internal Medicine, Scripps Mercy Hospital, San Diego, CA 92103, USA;
| | - Oana C. Iatcu
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania;
| | - Mihai Covasa
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania;
| |
Collapse
|
14
|
Yue P, Lv X, Cao H, Zou Y, You J, Luo J, Lu Z, Chen H, Liu Z, Zhong Z, Xiong Y, Fan X, Ye Q. Hypothermic oxygenated perfusion inhibits CLIP1-mediated TIRAP ubiquitination via TFPI2 to reduce ischemia‒reperfusion injury of the fatty liver. Exp Mol Med 2024; 56:2588-2601. [PMID: 39617791 DOI: 10.1038/s12276-024-01350-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 12/28/2024] Open
Abstract
The use of fatty livers in liver transplantation has emerged as a crucial strategy to expand the pool of donor livers; however, fatty livers are more sensitive to ischemia‒reperfusion injury (IRI). Excessive congenital inflammatory responses are crucial in IRI. Hypothermic oxygenated perfusion (HOPE) is a novel organ preservation technique that may improve marginal donor liver quality by reducing the inflammatory response. Tissue factor pathway inhibitor-2 (TFPI2) and CAP-Gly domain-containing linker protein 1 (CLIP1) exhibit modulatory effects on the inflammatory response. However, the underlying mechanisms of HOPE in fatty liver and the effects of TFPI2 and CLIP1 in fatty liver IRI remain unclear. Here, we aimed to explore the impact of HOPE on the inflammatory response in a rat model of fatty liver IRI and the mechanisms of action of TFPI2 and CLIP1. HOPE significantly reduces liver injury, especially the inflammatory response, and alleviates damage to hepatocytes and endothelial cells. Mechanistically, HOPE exerts its effects by inhibiting TFPI2, and CLIP1 can rescue the damaging effects of TFPI2. Moreover, HOPE promoted the ubiquitination and subsequent degradation of Toll/interleukin-1 receptor domain-containing adapter protein (TIRAP) by regulating the binding of R24 of the KD1 domain of TFPI2 with CLIP1, thereby negatively regulating the TLR4/NF-κB-mediated inflammatory response and reducing IRI. Furthermore, TFPI2 expression increased and CLIP1 expression decreased following cold ischemia in human fatty livers. Overall, our results suggest that targeting the inflammatory response by modulating the TFPI2/CLIP1/TIRAP signaling pathway via HOPE represents a potential therapeutic approach to ameliorate IRI during fatty liver transplantation.
Collapse
Affiliation(s)
- Pengpeng Yue
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, 430071, Wuhan, China
| | - Xiaoyan Lv
- Department of Hematology, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China
| | - Hankun Cao
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, 430071, Wuhan, China
| | - Yongkang Zou
- Department of Hepatobiliary Surgery, Department of Organ Transplantation, Guizhou Provincial People's Hospital, 550002, Guiyang, China
| | - Jian You
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, 430071, Wuhan, China
| | - Jun Luo
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, 430071, Wuhan, China
| | - Zhongshan Lu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, 430071, Wuhan, China
| | - Hao Chen
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, 430071, Wuhan, China
| | - Zhongzhong Liu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, 430071, Wuhan, China
| | - Zibiao Zhong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, 430071, Wuhan, China
| | - Yan Xiong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, 430071, Wuhan, China
| | - Xiaoli Fan
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, 430071, Wuhan, China.
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, 430071, Wuhan, China.
- The Third Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, 410013, Changsha, China.
| |
Collapse
|
15
|
Goel B, Virmani T, Jain V, Kumar G, Sharma A, Al Noman A. Unveiling the Link Between Breast Cancer Treatment and Osteoporosis: Implications for Anticancer Therapy and Bone Health. BIOMED RESEARCH INTERNATIONAL 2024; 2024:5594542. [PMID: 39574432 PMCID: PMC11581800 DOI: 10.1155/2024/5594542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/19/2024] [Accepted: 10/07/2024] [Indexed: 11/24/2024]
Abstract
Background: The interplay between breast cancer treatment and osteoporosis has important consequences for anticancer therapy and patient bone health. Many breast cancer therapies involve hormonal treatments that lower estrogen levels, which can lead to an increased risk of osteoporosis due to reduced bone mineral density. Aromatase inhibitors, chemotherapy, and surgeries such as oophorectomy can further aggravate bone loss, highlighting the necessity of prioritizing bone health during cancer treatment. Objective: This review is aimed at investigating the complex relationship between breast cancer therapies and bone health by examining the molecular and cellular mechanisms through which anticancer treatments lead to bone loss. It also seeks to assess the effects of various treatment options, such as selective estrogen receptor modulators (SERMs) and bisphosphonates, on reducing bone loss and maintaining bone health during cancer therapy. Method: The review explores the mechanisms underlying bone loss in breast cancer patients undergoing treatment, focusing on factors such as estrogen depletion, inflammatory cytokines, and changes in bone remodelling processes. Additionally, it evaluates the efficacy of different therapeutic interventions, including pharmacological treatments like bisphosphonates and third-generation SERMs, in mitigating bone-related side effects. Results: The findings indicate a critical need to balance the effectiveness of breast cancer treatments with the preservation of bone health. Pharmacological treatments like bisphosphonates and denosumab have been identified as essential for managing bone health in breast cancer patients. Furthermore, third-generation SERMs show potential in reducing bone loss associated with cancer therapy.
Collapse
Affiliation(s)
- Bhawna Goel
- School of Pharmaceutical Sciences, MVN University 121102, Palwal, Haryana, India
| | - Tarun Virmani
- Amity Institute of Pharmacy, Amity University, Greater Noida 2011308, Uttar Pradesh, India
| | - Vikas Jain
- Department of Pharmacy, JSS College of Pharmacy, Sri Shivarathreeshwara Nagara 570015, Mysuru, Karnataka, India
| | - Girish Kumar
- Amity Institute of Pharmacy, Amity University, Greater Noida 2011308, Uttar Pradesh, India
| | - Ashwani Sharma
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences Research University, Delhi, India
| | | |
Collapse
|
16
|
Mohammadi F, Beauparlant CJ, Bianco S, Droit A, Bertrand N, Rudkowska I. Ruminant Trans Fatty Acid Intake Modulates Inflammation Pathways in the Adipose Tissue Transcriptome of C57BL/6 Mice. Mol Nutr Food Res 2024; 68:e2400290. [PMID: 39396377 DOI: 10.1002/mnfr.202400290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/05/2024] [Indexed: 10/15/2024]
Abstract
SCOPE The study aims to analyze transcriptomic profiles in adipose tissues postconsumption of elaidic acid (EA; trans-18:1n-9) and trans-palmitoleic acid (TPA; trans-16:1n-7), elucidating their different effects on inflammation and glucose metabolism. METHODS AND RESULTS Twenty C57BL/6 mice are divided into four groups. Each group receives one of the following formulations in drinking water: lecithin nanovesicles, nanovesicles containing either lecithin with EA or TPA (86:14 w/w), or water (control) for 28 days with a regular fat diet (18% calories from fat). Total RNA is extracted, and paired-end sequencing is performed. TPA intake alters the expression of 351 genes compared to EA intake, including 11 downregulated and 340 upregulated genes (fold change [FC] >1.5, p < 0.05). TPA compares to EA upregulated: Slc5a8, Lcn2, Csf3, Scube1, Mapk13, Bdkrb2, Ctla2a, Slc2a1, Oas3, Cx3cl1, Oas2, Nlrp6, Pycard, Cyba, Ddr1, and Prkab1 and downregulated Fas gene. These genes are related to the NOD-like receptor, lipid and atherosclerosis, IL-17 signaling, TNF, nonalcoholic fatty liver disease, cytokine-cytokine receptor interaction, adipocytokine, glucagon, insulin resistance, and inflammatory mediator regulation of TRP channels signaling. CONCLUSION TPA intake has a distinct impact on the regulation of inflammation and diabetes-related pathways in adipose tissue compared to EA.
Collapse
Affiliation(s)
- Farzad Mohammadi
- Endocrinology and Nephrology Unit, CHU de Québec-Université Laval Research Center, Québec, Canada
- Département de Kinésiologie, Université Laval, Québec, Canada
| | - Charles Joly Beauparlant
- Endocrinology and Nephrology Unit, CHU de Québec-Université Laval Research Center, Québec, Canada
| | - Stéphanie Bianco
- Endocrinology and Nephrology Unit, CHU de Québec-Université Laval Research Center, Québec, Canada
| | - Arnaud Droit
- Endocrinology and Nephrology Unit, CHU de Québec-Université Laval Research Center, Québec, Canada
| | - Nicolas Bertrand
- Endocrinology and Nephrology Unit, CHU de Québec-Université Laval Research Center, Québec, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, G1V0A6, Canada
| | - Iwona Rudkowska
- Endocrinology and Nephrology Unit, CHU de Québec-Université Laval Research Center, Québec, Canada
- Département de Kinésiologie, Université Laval, Québec, Canada
| |
Collapse
|
17
|
Liu J, Luo R, Zhang Y, Li X. Current status and perspective on molecular targets and therapeutic intervention strategy in hepatic ischemia-reperfusion injury. Clin Mol Hepatol 2024; 30:585-619. [PMID: 38946464 PMCID: PMC11540405 DOI: 10.3350/cmh.2024.0222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024] Open
Abstract
Hepatic ischemia‒reperfusion injury (HIRI) is a common and inevitable complication of hepatic trauma, liver resection, or liver transplantation. It contributes to postoperative organ failure or tissue rejection, eventually affecting patient prognosis and overall survival. The pathological mechanism of HIRI is highly complex and has not yet been fully elucidated. The proposed underlying mechanisms include mitochondrial damage, oxidative stress imbalance, abnormal cell death, immune cell hyperactivation, intracellular inflammatory disorders and other complex events. In addition to serious clinical limitations, available antagonistic drugs and specific treatment regimens are still lacking. Therefore, there is an urgent need to not only clarify the exact etiology of HIRI but also reveal the possible reactions and bottlenecks of existing drugs, helping to reduce morbidity and shorten hospitalizations. We analyzed the possible underlying mechanism of HIRI, discussed various outcomes among different animal models and explored neglected potential therapeutic strategies for HIRI treatment. By thoroughly reviewing and analyzing the literature on HIRI, we gained a comprehensive understanding of the current research status in related fields and identified valuable references for future clinical and scientific investigations.
Collapse
Affiliation(s)
- Jia Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Ranyi Luo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yinhao Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
18
|
Jin Y, Yuan H, Liu Y, Zhu Y, Wang Y, Liang X, Gao W, Ren Z, Ji X, Wu D. Role of hydrogen sulfide in health and disease. MedComm (Beijing) 2024; 5:e661. [PMID: 39156767 PMCID: PMC11329756 DOI: 10.1002/mco2.661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 08/20/2024] Open
Abstract
In the past, hydrogen sulfide (H2S) was recognized as a toxic and dangerous gas; in recent years, with increased research, we have discovered that H2S can act as an endogenous regulatory transmitter. In mammals, H2S-catalyzing enzymes, such as cystathionine-β-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase, are differentially expressed in a variety of tissues and affect a variety of biological functions, such as transcriptional and posttranslational modification of genes, activation of signaling pathways in the cell, and metabolic processes in tissues, by producing H2S. Various preclinical studies have shown that H2S affects physiological and pathological processes in the body. However, a detailed systematic summary of these roles in health and disease is lacking. Therefore, this review provides a thorough overview of the physiological roles of H2S in different systems and the diseases associated with disorders of H2S metabolism, such as ischemia-reperfusion injury, hypertension, neurodegenerative diseases, inflammatory bowel disease, and cancer. Meanwhile, this paper also introduces H2S donors and novel release modes, as well as the latest preclinical experimental results, aiming to provide researchers with new ideas to discover new diagnostic targets and therapeutic options.
Collapse
Affiliation(s)
- Yu‐Qing Jin
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Hang Yuan
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Ya‐Fang Liu
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Yi‐Wen Zhu
- School of Clinical MedicineHenan UniversityKaifengHenanChina
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Xiao‐Yi Liang
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Wei Gao
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Zhi‐Guang Ren
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Xin‐Ying Ji
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
- Faculty of Basic Medical SubjectsShu‐Qing Medical College of ZhengzhouZhengzhouHenanChina
| | - Dong‐Dong Wu
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
- School of StomatologyHenan UniversityKaifengHenanChina
- Department of StomatologyHuaihe Hospital of Henan UniversityKaifengHenanChina
| |
Collapse
|
19
|
Li J, Zhang Y, Tang R, Liu H, Li X, Lei W, Chen J, Jin Z, Tang J, Wang Z, Yang Y, Wu X. Glycogen synthase kinase-3β: A multifaceted player in ischemia-reperfusion injury and its therapeutic prospects. J Cell Physiol 2024; 239:e31335. [PMID: 38962880 DOI: 10.1002/jcp.31335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/05/2024] [Accepted: 05/22/2024] [Indexed: 07/05/2024]
Abstract
Ischemia-reperfusion injury (IRI) results in irreversible metabolic dysfunction and structural damage to tissues or organs, posing a formidable challenge in the field of organ implantation, cardiothoracic surgery, and general surgery. Glycogen synthase kinase-3β (GSK-3β) a multifunctional serine/threonine kinase, is involved in a variety of biological processes, including cell proliferation, apoptosis, and immune response. Phosphorylation of its tyrosine 216 and serine 9 sites positively and negatively regulates the activation and inactivation of the enzyme. Significantly, inhibition or inactivation of GSK-3β provides protection against IRI, making it a viable target for drug development. Though numerous GSK-3β inhibitors have been identified to date, the development of therapeutic treatments remains a considerable distance away. In light of this, this review summarizes the complicated network of GSK-3β roles in IRI. First, we provide an overview of GSK-3β's basic background. Subsequently, we briefly review the pathological mechanisms of GSK-3β in accelerating IRI, and highlight the latest progress of GSK-3β in multiorgan IRI, encompassing heart, brain, kidney, liver, and intestine. Finally, we discuss the current development of GSK-3β inhibitors in various organ IRI, offering a thorough and insightful reference for GSK-3β as a potential target for future IRI therapy.
Collapse
Affiliation(s)
- Jiayan Li
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yan Zhang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Ran Tang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Hui Liu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Xiayun Li
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Wangrui Lei
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Junmin Chen
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Zhenxiao Jin
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jiayou Tang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zheng Wang
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, Wuhan, China
| | - Yang Yang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Xiaopeng Wu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| |
Collapse
|
20
|
Tan H, Mi N, Tong F, Zhang R, Abudurexiti A, Lei Y, Zhong Y, Yan J, Yang J, Ma X. Lactucopicrin promotes fatty acid β-oxidation and attenuates lipid accumulation through adenosine monophosphate-activated protein kinase activation in free fatty acid-induced human hepatoblastoma cancer cells. Food Sci Nutr 2024; 12:5357-5372. [PMID: 39139977 PMCID: PMC11317671 DOI: 10.1002/fsn3.4176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 08/15/2024] Open
Abstract
With its annually increasing prevalence, non-alcoholic fatty liver disease (NAFLD) has become a serious threat to people's life and health. After a preliminary research, we found that Lactucopicrin has pharmacological effects, such as lowering blood lipids and protecting the liver. Further research showed its significant activation for fatty acid β-oxidase hydroxyacyl-coenzyme A (CoA) dehydrogenase trifunctional multienzyme complex subunit alpha (HADHA), so we hypothesized that Lactucopicrin could ameliorate lipid accumulation in hepatocytes by promoting fatty acid β-oxidation. In this study, free fatty acid (FFA)-induced human hepatoblastoma cancer cells (HepG2) were used to establish an in vitro NAFLD model to investigate the molecular basis of Lactucopicrin in regulating lipid metabolism. Staining with Oil red O and measurements of triglyceride (TG) content, fatty acid β-oxidase (FaβO) activity, reactive oxygen species (ROS) content, mitochondrial membrane potential, and adenosine triphosphate (ATP) content were used to assess the extent to which Lactucopicrin ameliorates lipid accumulation and promotes fatty acid β-oxidation. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot methods were used to explore the regulatory effects of Lactucopicrin on factors related to fatty acid β-oxidation. Results showed that Lactucopicrin downregulated phosphorylated mammalian target of rapamycin (P-mTOR) by activating the adenosine monophosphate-activated protein kinase (AMPK) pathway and upregulated the messenger RNA (mRNA) and protein expression levels of coactivators (peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α)), transcription factors (peroxisome proliferator-activated receptor α (PPARα) and peroxisome proliferator-activated receptor γ (PPARγ)), and oxidative factors (carnitine palmitoyltransferase 1A (CPT1A) and HADHA). This phenomenon resulted in a significant increase in FaβO activity, ATP content, and JC-1 and a significant decrease in ROS level, TG content, and intracellular lipid droplets. With the addition of Dorsomorphin, all the effects of Lactucopicrin intervention were suppressed. In summary, Lactucopicrin promotes fatty acid β-oxidation by activating the AMPK pathway, thereby ameliorating FFA-induced intracellular lipid accumulation in HepG2 cells.
Collapse
Affiliation(s)
- Huiwen Tan
- College of PharmacyXinjiang Medical UniversityUrumqiXinjiangChina
- Affiliated Hospital of Chongqing Three Gorges Medical CollegeChongqingChina
| | - Na Mi
- The First Affiliated Hospital of Xinjiang Medical UniversityUrumqiXinjiangChina
| | - Fenglian Tong
- College of PharmacyXinjiang Medical UniversityUrumqiXinjiangChina
| | - Rui Zhang
- College of PharmacyXinjiang Medical UniversityUrumqiXinjiangChina
| | | | - Yi Lei
- College of PharmacyXinjiang Medical UniversityUrumqiXinjiangChina
| | - Yewei Zhong
- College of PharmacyXinjiang Medical UniversityUrumqiXinjiangChina
| | - Junlin Yan
- College of PharmacyXinjiang Medical UniversityUrumqiXinjiangChina
| | - Jian Yang
- College of PharmacyXinjiang Medical UniversityUrumqiXinjiangChina
| | - Xiaoli Ma
- College of PharmacyXinjiang Medical UniversityUrumqiXinjiangChina
| |
Collapse
|
21
|
Li HP, Cheng HL, Ding K, Zhang Y, Gao F, Zhu G, Zhang Z. New recognition of the heart-brain axis and its implication in the pathogenesis and treatment of PTSD. Eur J Neurosci 2024; 60:4661-4683. [PMID: 39044332 DOI: 10.1111/ejn.16445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/04/2024] [Indexed: 07/25/2024]
Abstract
Post-traumatic stress disorder (PTSD) is a complex psychological disorder provoked by distressing experiences, and it remains without highly effective intervention strategies. The exploration of PTSD's underlying mechanisms is crucial for advancing diagnostic and therapeutic approaches. Current studies primarily explore PTSD through the lens of the central nervous system, investigating concrete molecular alterations in the cerebral area and neural circuit irregularities. However, the body's response to external stressors, particularly the changes in cardiovascular function, is often pronounced, evidenced by notable cardiac dysfunction. Consequently, examining PTSD with a focus on cardiac function is vital for the early prevention and targeted management of the disorder. This review undertakes a comprehensive literature analysis to detail the alterations in brain and heart structures and functions associated with PTSD. It also synthesizes potential mechanisms of heart-brain axis interactions relevant to the development of PTSD. Ultimately, by considering cardiac function, this review proposes novel perspectives for PTSD's prophylaxis and therapy.
Collapse
Affiliation(s)
- Hai-Peng Li
- Anhui University of Chinese Medicine, Hefei, China
| | - Hong-Liang Cheng
- The Affiliated Hospital of Acupuncture and Moxibustion, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Keke Ding
- Anhui University of Chinese Medicine, Hefei, China
| | - Yang Zhang
- Anhui University of Chinese Medicine, Hefei, China
| | - Fang Gao
- Anhui University of Chinese Medicine, Hefei, China
| | - Guoqi Zhu
- Anhui University of Chinese Medicine, Hefei, China
| | | |
Collapse
|
22
|
Kim I, Kyun ML, Jung H, Kwon JI, Kim J, Kim JK, Lee YB, Kwon YI, Moon KS. In Vitro Nonalcoholic Fatty Liver Disease Model Elucidating the Effect of Immune Environment on Disease Progression and Alleviation. ACS OMEGA 2024; 9:25094-25105. [PMID: 38882105 PMCID: PMC11171094 DOI: 10.1021/acsomega.4c02433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD), which is a major cause of chronic liver disease, is characterized by fat accumulation in the liver. Existing models struggle to assess medication effects on liver function in the context of NAFLD's unique inflammatory environment. We address this by developing a 3D in vitro NAFLD model using HepG2 and THP-1 cells (mimicking liver and Kupffer cells) cocultured using transwell and hydrogel system. This mimics liver architecture and allows for manipulation of the immune environment. We demonstrate that the model recapitulates key NAFLD features: steatosis (induced by fatty acids), oxidative stress, inflammation, and impaired liver function embodying the interrelationship between NAFLD and the surrounding immune environment. This versatile model offers a valuable tool for preclinical NAFLD research by incorporating a disease-relevant immune environment.
Collapse
Affiliation(s)
- Inhye Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
- Department of Food and Nutrition, Hannam University, Daejeon 34430, Republic of Korea
| | - Mi-Lang Kyun
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Hyewon Jung
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
- Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Ji-In Kwon
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
- Department of Food and Nutrition, Hannam University, Daejeon 34430, Republic of Korea
| | - Jeongha Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
- Department of Food and Nutrition, Hannam University, Daejeon 34430, Republic of Korea
| | - Ju-Kang Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Yu Bin Lee
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Young-In Kwon
- Department of Food and Nutrition, Hannam University, Daejeon 34430, Republic of Korea
| | - Kyoung-Sik Moon
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
- Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
23
|
Shen J, Wang M, Yang C, Cai Q, Jiang Y, Zhang X. Effect of liver transplants with retrograde reperfusion on early postoperative recovery of liver function and its risk factors. BMC Surg 2024; 24:174. [PMID: 38824553 PMCID: PMC11143670 DOI: 10.1186/s12893-024-02467-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 05/24/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND The purpose of this study was to investigate effect of liver Transplants (LT) with retrograde reperfusion on early postoperative recovery of liver function and its risk factors. METHODS We conducted a retrospective analysis of clinical data from 136 liver transplantation (LT) patients at the 900th Hospital of the Chinese People's Liberation Army Joint Support Army, covering the period from January 2015 to January 2021. All participants provided informed consent, adhering to medical ethics guidelines. Patients were stratified into two groups based on the liver perfusion technique used: retrograde reperfusion (RTR, n = 108) and initial portal reperfusion (IPR, n = 28). Our study focused on a subset of 23 patients from each group to compare postoperative liver function recovery. The final analysis included 86 RTR and 28 IPR cases after excluding 8 RTR patients who underwent initial hepatic artery reperfusion and 14 who received simultaneous hepatic artery and portal vein reperfusion. Further subdivision within the RTR group identified 19 patients with early hepatic allograft dysfunction (EAD) and 67 without, allowing for an assessment of the influence of preoperative and intraoperative parameters, as well as perfusion methods, on EAD incidence post-LT. RESULTS Alanine aminotransferase (ALT) was 329 (211 ~ 548) and 176 (98 ~ 282) U/L on the 3rd and 7th day after RTR, respectively, which was significantly lower than 451 (288 ~ 918) and 251 (147 ~ 430) U/L in the IPR group (Z =-1.979, -2.299, P = 0.048, 0.021). Aspartate aminotransferase (AST) on postoperative days 3, 5, and 7 was 252 (193, 522), 105 (79, 163), and 93 (41, 135) U/L in the RTR group, respectively; it was also significantly lower than 328 (251, 724), 179 (129, 306), and 150 (91, 200)U/L in the IPR group (Z=-2.212, -3.221, -2.979; P = 0.027, 0.001, 0.003). Logistic regression analysis showed that MELD score was an independent risk factor for EAD after LT. CONCLUSION RTR LT is more favorable for patients' early postoperative liver function recovery. For patients undergoing LT for RTR, preoperative MELD score was an independent risk factor for their postoperative development of EAD.
Collapse
Affiliation(s)
- Jiajia Shen
- Department of Hepatobiliary and Pancreatic Surgery, 900th Hospital of Joint Support Force, Fuzhou city, 350025, China
| | - Ming Wang
- Department of Hepatobiliary and Pancreatic Surgery, 900th Hospital of Joint Support Force, Fuzhou city, 350025, China
| | - Chengkai Yang
- Department of Hepatobiliary and Pancreatic Surgery, 900th Hospital of Joint Support Force, Fuzhou city, 350025, China
| | - Qiucheng Cai
- Department of Hepatobiliary and Pancreatic Surgery, 900th Hospital of Joint Support Force, Fuzhou city, 350025, China
| | - Yi Jiang
- Department of Hepatobiliary and Pancreatic Surgery, 900th Hospital of Joint Support Force, Fuzhou city, 350025, China.
| | - Xiaojin Zhang
- Department of Hepatobiliary and Pancreatic Surgery, 900th Hospital of Joint Support Force, Fuzhou city, 350025, China.
| |
Collapse
|
24
|
Hui B, Zhang X, Dong D, Shu Y, Li R, Yang Z. High-dose sinomenine attenuates ischemia/reperfusion-induced hepatic inflammation and oxidative stress in rats with diabetes mellitus. Immun Inflamm Dis 2024; 12:e1271. [PMID: 38888355 PMCID: PMC11184649 DOI: 10.1002/iid3.1271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 06/20/2024] Open
Abstract
INTRODUCTION Ischemia-reperfusion (I/R) injury, resulting from blood flow interruption and its subsequent restoration, is a prevalent complication in liver surgery. The liver, as a crucial organ for carbohydrate and lipid metabolism, exhibits decreased tolerance to hepatic I/R in patients with diabetes mellitus (DM), resulting in a significant increase in hepatic dysfunction following surgery. This may be attributed to elevated oxidative stress and inflammation. Our prior research established sinomenine's (SIN) protective role against hepatic I/R injury. Nevertheless, the impact of SIN on hepatic I/R injury in DM rats remains unexplored. OBJECTIVE AND METHODS This study aimed to investigate the therapeutic potential of SIN in hepatic I/R injury in DM rats and elucidate its mechanism. Diabetic and hepatic I/R injury models were established in rats through high-fat/sugar diet, streptozotocin injection, and hepatic blood flow occlusion. Liver function, oxidative stress, inflammatory reaction, histopathology, and Nrf-2/HO-1 signaling pathway were evaluated by using UV spectrophotometry, biochemical assays, enzyme-linked immunosorbent assay, hematoxylin-eosin staining, and Western blot analysis. RESULTS High-dose SIN (300 mg/kg) significantly attenuated hepatic I/R injury in DM rats, reducing serum activities of ALT and AST, decreasing the AST/ALT ratio, enhancing tissue contents of SOD and GSH-Px, suppressing the levels of TNF-α and IL-6, improving the liver histopathology, and activating Nrf-2/HO-1 signaling by promoting Nrf-2 trans-location from cytoplasm to nucleus. Low-dose SIN (100 mg/kg) was ineffective. CONCLUSIONS This study demonstrates that high-dose sinomenine's mitigates hepatic I/R-induced inflammation and oxidative stress in diabetes mellitus (DM) rats via Nrf-2/HO-1 activation, suggesting its potential as a preventive strategy for hepatic I/R injury in DM patients.
Collapse
Affiliation(s)
- Bo Hui
- Department of General Surgery Unit‐4The Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Xiaogang Zhang
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Dinghui Dong
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Yantao Shu
- Department of General Surgery Unit‐4The Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Ren Li
- Department of General Surgery Unit‐4The Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Zhengan Yang
- Department of General Surgery Unit‐4The Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
25
|
Ahn YJ, Kim B, Kim YH, Kim TY, Seo H, Park Y, Park SS, Ahn Y. Enzyme-Treated Zizania latifolia Ethanol Extract Improves Liver-Related Outcomes and Fatigability. Foods 2024; 13:1725. [PMID: 38890953 PMCID: PMC11171771 DOI: 10.3390/foods13111725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024] Open
Abstract
Long-term hepatic damage is associated with human morbidity and mortality owing to numerous pathogenic factors. A variety of studies have focused on improving liver health using natural products and herbal medicines. We aimed to investigate the effect of enzyme-treated Zizania latifolia ethanol extract (ETZL), which increases the content of tricin via enzymatic hydrolysis, for 8 weeks on liver-related outcomes, lipid metabolism, antioxidant activity, and fatigue compared to a placebo. Healthy Korean adult males aged 19-60 years were randomized into ETZL treatment and placebo groups, and alcohol consumption was 24.96 and 28.64 units/week, respectively. Alanine transaminase, a blood marker associated with liver cell injury, significantly decreased after 8 weeks compared to the baseline in the ETZL treatment group (p = 0.004). After 8 weeks, the treatment group showed significant changes in the levels of high-density lipoprotein and hepatic steatosis index compared to the baseline (p = 0.028 and p = 0.004, respectively). ETZL treatment tended to reduce antioxidant-activity-related factors, total antioxidant status, and malondialdehyde, but there was no significant difference. In the multidimensional fatigue scale, ETZL treatment showed a significant reduction in general fatigue and total-fatigue-related values after 8 weeks compared to the baseline (p = 0.012 and p = 0.032, respectively). Taken together, the 8-week treatment of enzyme-treated Zizania latifolia ethanol extract demonstrated positive effects on liver-related outcomes, lipid metabolism, and mental fatigue without adverse effects on safety-related parameters.
Collapse
Affiliation(s)
- Yu-Jin Ahn
- Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea;
| | - Boyun Kim
- Department of Smart-Bio, Kyungsung University, Busan 48434, Republic of Korea;
| | - Yoon Hee Kim
- R&D Center, BTC Corporation, Ansan 15588, Republic of Korea
| | - Tae Young Kim
- R&D Center, BTC Corporation, Ansan 15588, Republic of Korea
| | - Hyeyeong Seo
- Department of Food Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
| | - Yooheon Park
- Department of Food Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
| | - Sung-Soo Park
- Department of Food Science and Nutrition, Jeju National University, Jeju 63243, Republic of Korea
| | - Yejin Ahn
- Research Group of Functional Food Materials, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| |
Collapse
|
26
|
Solleiro-Villavicencio H, Méndez-García LA, Ocampo-Aguilera NA, Baltazar-Pérez I, Arreola-Miranda JA, Aguayo-Guerrero JA, Alfaro-Cruz A, González-Chávez A, Fonseca-Sánchez MA, Fragoso JM, Escobedo G. Decreased Hepatic and Serum Levels of IL-10 Concur with Increased Lobular Inflammation in Morbidly Obese Patients. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:862. [PMID: 38929479 PMCID: PMC11205754 DOI: 10.3390/medicina60060862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024]
Abstract
Background and Objectives: Non-alcoholic fatty liver disease (NAFLD) is associated with obesity and ranges from simple steatosis to non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma. Accumulating evidence in animal models suggests that loss of interleukin-10 (IL-10) anti-inflammatory actions might contribute to lobular inflammation, considered one of the first steps toward NASH development. However, the role of IL-10 in lobular inflammation remains poorly explored in humans. We examined mRNA and protein levels of IL-10 in liver biopsies and serum samples from morbidly obese patients, investigating the relationship between IL-10 and lobular inflammation degree. Materials and Methods: We prospectively enrolled morbidly obese patients of both sexes, assessing the lobular inflammation grade by the Brunt scoring system to categorize participants into mild (n = 7), moderate (n = 19), or severe (n = 13) lobular inflammation groups. We quantified the hepatic mRNA expression of IL-10 by quantitative polymerase chain reaction and protein IL-10 levels in liver and serum samples by Luminex Assay. We estimated statistical differences by one-way analysis of variance (ANOVA) and Tukey's multiple comparison test. Results: The hepatic expression of IL-10 significantly diminished in patients with severe lobular inflammation compared with the moderate lobular inflammation group (p = 0.01). The hepatic IL-10 protein levels decreased in patients with moderate or severe lobular inflammation compared with the mild lobular inflammation group (p = 0.008 and p = 0.0008, respectively). In circulation, IL-10 also significantly decreased in subjects with moderate or severe lobular inflammation compared with the mild lobular inflammation group (p = 0.005 and p < 0.0001, respectively). Conclusions: In liver biopsies and serum samples of morbidly obese patients, the protein levels of IL-10 progressively decrease as lobular inflammation increases, supporting the hypothesis that lobular inflammation develops because of the loss of the IL-10-mediated anti-inflammatory counterbalance.
Collapse
Affiliation(s)
| | - Lucía Angélica Méndez-García
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06726, Mexico; (L.A.M.-G.); (N.A.O.-A.); (I.B.-P.); (J.A.A.-M.); (J.A.A.-G.)
| | - Nydia A. Ocampo-Aguilera
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06726, Mexico; (L.A.M.-G.); (N.A.O.-A.); (I.B.-P.); (J.A.A.-M.); (J.A.A.-G.)
| | - Itzel Baltazar-Pérez
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06726, Mexico; (L.A.M.-G.); (N.A.O.-A.); (I.B.-P.); (J.A.A.-M.); (J.A.A.-G.)
| | - José A. Arreola-Miranda
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06726, Mexico; (L.A.M.-G.); (N.A.O.-A.); (I.B.-P.); (J.A.A.-M.); (J.A.A.-G.)
| | - José A. Aguayo-Guerrero
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06726, Mexico; (L.A.M.-G.); (N.A.O.-A.); (I.B.-P.); (J.A.A.-M.); (J.A.A.-G.)
| | - Ana Alfaro-Cruz
- Pathological Anatomy Department, General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06726, Mexico;
| | - Antonio González-Chávez
- Clínica de Atención Integral para Pacientes con Diabetes y Obesidad (CAIDO), General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06726, Mexico;
| | | | - José Manuel Fragoso
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico;
| | - Galileo Escobedo
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06726, Mexico; (L.A.M.-G.); (N.A.O.-A.); (I.B.-P.); (J.A.A.-M.); (J.A.A.-G.)
| |
Collapse
|
27
|
Luo X, Guo J, Deng H, He Z, Wen Y, Si Z, Li J. Unveiling the role of disulfidptosis-related genes in the pathogenesis of non-alcoholic fatty liver disease. Front Immunol 2024; 15:1386905. [PMID: 38812509 PMCID: PMC11133613 DOI: 10.3389/fimmu.2024.1386905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/03/2024] [Indexed: 05/31/2024] Open
Abstract
Backgrounds Non-alcoholic fatty liver disease (NAFLD) presents as a common liver disease characterized by an indistinct pathogenesis. Disulfidptosis is a recently identified mode of cell death. This study aimed to investigate the potential role of disulfidptosis-related genes (DRGs) in the pathogenesis of NAFLD. Methods Gene expression profiles were obtained from the bulk RNA dataset GSE126848 and the single-cell RNA dataset GSE136103, both associated with NAFLD. Our study assessed the expression of DRGs in NAFLD and normal tissues. Weighted gene co-expression network analysis (WGCNA) and differential expression analysis were employed to identify the key NAFLD-specific differentially expressed DRGs (DE-DRGs). To explore the biological functions and immune regulatory roles of these key DE-DRGs, we conducted immune infiltration analysis, functional enrichment analysis, consensus clustering analysis, and single-cell differential state analysis. Finally, we validated the expression and biological functions of DRGs in NAFLD patients using histology and RNA-sequencing transcriptomic assays with human liver tissue samples. Results Through the intersection of WGCNA, differentially expressed genes, and DRGs, two key DE-DRGs (DSTN and MYL6) were identified. Immune infiltration analysis indicated a higher proportion of macrophages, T cells, and resting dendritic cells in NAFLD compared to control liver samples. Based on the key DE-DRGs, Two disulfidptosis clusters were defined in GSE126848. Cluster 1, with higher expression of the key DE-DRGs, exhibited increased immune infiltration abundance and was closely associated with oxidative stress and immune regulation compared to cluster 2. High-resolution analysis of mononuclear phagocytes highlighted the potential role of MYL6 in intrahepatic M1 phenotype Kupffer cells in NAFLD patients. Our transcriptome data revealed that the expression levels of the majority of DRGs were significantly increased in NAFLD patients. NAFLD patients exhibit elevated MYL6 correlating with inflammation, oxidative stress, and disease severity, offering promising diagnostic specificity. Conclusion This comprehensive study provides evidence for the association between NAFLD and disulfidptosis, identifying potential target genes and pathways in NAFLD. The identification of MYL6 as a possible treatment target for NAFLD provided a novel understanding of the disease's development.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhongzhou Si
- Department of Liver Transplant, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiequn Li
- Department of Liver Transplant, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
28
|
Torabi S, Hassanzadeh-Tabrizi SA. Effective antibacterial agents in modern wound dressings: a review. BIOFOULING 2024; 40:305-332. [PMID: 38836473 DOI: 10.1080/08927014.2024.2358913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/17/2024] [Indexed: 06/06/2024]
Abstract
Wound infections are a significant concern in healthcare, leading to long healing times. Traditional approaches for managing wound infections rely heavily on systemic antibiotics, which are associated with the emergence of antibiotic-resistant bacteria. Therefore, the development of alternative antibacterial materials for wound care has gained considerable attention. In today's world, new generations of wound dressing are commonly used to heal wounds. These new dressings keep the wound and the area around it moist to improve wound healing. However, this moist environment can also foster an environment that is favorable for the growth of bacteria. Excessive antibiotic use poses a significant threat to human health and causes bacterial resistance, so new-generation wound dressings must be designed and developed to reduce the risk of infection. Wound dressings using antimicrobial compounds minimize wound bacterial colonization, making them the best way to avoid open wound infection. We aim to provide readers with a comprehensive understanding of the latest advancements in antibacterial materials for wound management.
Collapse
Affiliation(s)
- Sadaf Torabi
- Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Sayed Ali Hassanzadeh-Tabrizi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| |
Collapse
|
29
|
Xiao F, Huang G, Yuan G, Li S, Wang Y, Tan Z, Liu Z, Tomlinson S, He S, Ouyang G, Zeng Y. Identification and validation of potential diagnostic signature and immune cell infiltration for HIRI based on cuproptosis-related genes through bioinformatics analysis and machine learning. Front Immunol 2024; 15:1372441. [PMID: 38690269 PMCID: PMC11058647 DOI: 10.3389/fimmu.2024.1372441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND AND AIMS Cuproptosis has emerged as a significant contributor in the progression of various diseases. This study aimed to assess the potential impact of cuproptosis-related genes (CRGs) on the development of hepatic ischemia and reperfusion injury (HIRI). METHODS The datasets related to HIRI were sourced from the Gene Expression Omnibus database. The comparative analysis of differential gene expression involving CRGs was performed between HIRI and normal liver samples. Correlation analysis, function enrichment analyses, and protein-protein interactions were employed to understand the interactions and roles of these genes. Machine learning techniques were used to identify hub genes. Additionally, differences in immune cell infiltration between HIRI patients and controls were analyzed. Quantitative real-time PCR and western blotting were used to verify the expression of the hub genes. RESULTS Seventy-five HIRI and 80 control samples from three databases were included in the bioinformatics analysis. Three hub CRGs (NLRP3, ATP7B and NFE2L2) were identified using three machine learning models. Diagnostic accuracy was assessed using a receiver operating characteristic (ROC) curve for the hub genes, which yielded an area under the ROC curve (AUC) of 0.832. Remarkably, in the validation datasets GSE15480 and GSE228782, the three hub genes had AUC reached 0.904. Additional analyses, including nomograms, decision curves, and calibration curves, supported their predictive power for diagnosis. Enrichment analyses indicated the involvement of these genes in multiple pathways associated with HIRI progression. Comparative assessments using CIBERSORT and gene set enrichment analysis suggested elevated expression of these hub genes in activated dendritic cells, neutrophils, activated CD4 memory T cells, and activated mast cells in HIRI samples versus controls. A ceRNA network underscored a complex regulatory interplay among genes. The genes mRNA and protein levels were also verified in HIRI-affected mouse liver tissues. CONCLUSION Our findings have provided a comprehensive understanding of the association between cuproptosis and HIRI, establishing a promising diagnostic pattern and identifying latent therapeutic targets for HIRI treatment. Additionally, our study offers novel insights to delve deeper into the underlying mechanisms of HIRI.
Collapse
Affiliation(s)
- Fang Xiao
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Guozhen Huang
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Guandou Yuan
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Shuangjiang Li
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Yong Wang
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Zhi Tan
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Zhipeng Liu
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Songqing He
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Guoqing Ouyang
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Yonglian Zeng
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| |
Collapse
|
30
|
Shen L, Fan L, Luo H, Li W, Cao S, Yu S. Cow placenta extract ameliorates d-galactose-induced liver damage by regulating BAX/CASP3 and p53/p21/p16 pathways. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117685. [PMID: 38171467 DOI: 10.1016/j.jep.2023.117685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Placenta is a kind of traditional Chinese medicine, known as "Ziheche", which has the function of tonifying qi and blood, nourishing liver and kidney. Placenta extract (PE) has been used for delaying organismal aging and treating various liver diseases. Cow placenta is a rich natural resource with large mass. Its composition is similar to that of human placenta, but it has not been effectively utilized. However, little is known about the effect of CPE on the liver of aging mice. AIM OF THE STUDY The aim of this study is to explore the protective effect and mechanism of CPE on the liver of d-galactose (D-gal) induced aging mice. MATERIALS AND METHODS Statistical methods were used to calculate mouse body weight and liver index. Hematoxylin-eosin (H&E) and transmission electron microscopy (TEM) were used to detect the morphological structure of the liver. Automatic biochemical analyzer was used to measure serum biochemical indicators. Three special staining methods were used to observe hepatocytes apoptosis, senescence and proliferation respectively. Relative kits were used to detect oxidative, inflammatory, and aging markers in the liver. Finally, real-time quantitative polymerase chain reaction and western-blot were used to detect aging related signaling pathways. RESULTS CPE significantly improved the morphological damage and dysfunction of liver, restored the activities of liver enzymes in serum, and alleviated liver oxidative stress and inflammatory response in D-gal induced aging mice. Furthermore, CPE inhibited hepatocyte apoptosis and senescence, and promoted hepatocyte proliferation by regulating BAX/CASP3 and p53/p21/p16 signaling pathways, ultimately reduced the effects of aging on the liver. CONCLUSION CPE effectively ameliorated the impact of aging on the liver by inhibiting free radical production or scavenging excessive free radicals, and its mechanism is associated to the regulation of apoptosis and proliferation-related factors.
Collapse
Affiliation(s)
- Liuhong Shen
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Lei Fan
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hao Luo
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Weiyao Li
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Suizhong Cao
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shumin Yu
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
31
|
Yu Y, Liu S, Yang L, Song P, Liu Z, Liu X, Yan X, Dong Q. Roles of reactive oxygen species in inflammation and cancer. MedComm (Beijing) 2024; 5:e519. [PMID: 38576456 PMCID: PMC10993368 DOI: 10.1002/mco2.519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 01/21/2024] [Accepted: 02/23/2024] [Indexed: 04/06/2024] Open
Abstract
Reactive oxygen species (ROS) constitute a spectrum of oxygenic metabolites crucial in modulating pathological organism functions. Disruptions in ROS equilibrium span various diseases, and current insights suggest a dual role for ROS in tumorigenesis and the immune response within cancer. This review rigorously examines ROS production and its role in normal cells, elucidating the subsequent regulatory network in inflammation and cancer. Comprehensive synthesis details the documented impacts of ROS on diverse immune cells. Exploring the intricate relationship between ROS and cancer immunity, we highlight its influence on existing immunotherapies, including immune checkpoint blockade, chimeric antigen receptors, and cancer vaccines. Additionally, we underscore the promising prospects of utilizing ROS and targeting ROS modulators as novel immunotherapeutic interventions for cancer. This review discusses the complex interplay between ROS, inflammation, and tumorigenesis, emphasizing the multifaceted functions of ROS in both physiological and pathological conditions. It also underscores the potential implications of ROS in cancer immunotherapy and suggests future research directions, including the development of targeted therapies and precision oncology approaches. In summary, this review emphasizes the significance of understanding ROS-mediated mechanisms for advancing cancer therapy and developing personalized treatments.
Collapse
Affiliation(s)
- Yunfei Yu
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Shengzhuo Liu
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Luchen Yang
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Pan Song
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Zhenghuan Liu
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Xiaoyang Liu
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Xin Yan
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Qiang Dong
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
32
|
Wang K, Wang A, Deng J, Yang J, Chen Q, Chen G, Ye M, Lin D. Rivaroxaban down-regulates pyroptosis and the TLR4/NF-κB/NLRP3 signaling pathway to promote flap survival. Int Immunopharmacol 2024; 128:111568. [PMID: 38266447 DOI: 10.1016/j.intimp.2024.111568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/06/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Flap placement remains the primary method for wound repair, but postoperative ischemic flap necrosis is of major concern. This study explored whether rivaroxaban, a factor Xa inhibitor, enhanced flap survival. METHODS Thirty-six rats were randomly divided into control, low-dose rivaroxaban (3 mg/kg/day), and high-dose rivaroxaban (7 mg/kg/day) groups. On postoperative day 7, the flap survival rate was analyzed and the average survival area calculated. After the rats were euthanized, immunological and molecular biological techniques were employed to assess vascular regeneration, pyroptosis, and inflammation. RESULTS Rivaroxaban upregulated VEGF expression, in turn enhancing angiogenesis, and it downregulated IL-1β, IL-6, and TNF-α expression, thereby mitigating inflammation. The drug also suppressed TLR4, NF-κB p65, NLRP3, caspase-1, and IL-18 syntheses, thus inhibiting pyroptosis. CONCLUSIONS Rivaroxaban enhanced random flap survival by down-regulating the TLR4/NF-κB/NLRP3 signaling pathway to suppress pyroptosis, promoting vascular regeneration and inhibiting inflammation.
Collapse
Affiliation(s)
- Kaitao Wang
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - An Wang
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jiapeng Deng
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jialong Yang
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Qingyu Chen
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Guodong Chen
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Minle Ye
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Dingsheng Lin
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
33
|
Yang M, Shu W, Zhai X, Yang X, Zhou H, Pan B, Li C, Lu D, Cai J, Zheng S, Jin B, Wei X, Xu X. Integrated multi-omic analysis identifies fatty acid binding protein 4 as a biomarker and therapeutic target of ischemia-reperfusion injury in steatotic liver transplantation. Cell Mol Life Sci 2024; 81:83. [PMID: 38341383 PMCID: PMC10858962 DOI: 10.1007/s00018-023-05110-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 02/12/2024]
Abstract
BACKGROUND AND AIMS Due to a lack of donor grafts, steatotic livers are used more often for liver transplantation (LT). However, steatotic donor livers are more sensitive to ischemia-reperfusion (IR) injury and have a worse prognosis after LT. Efforts to optimize steatotic liver grafts by identifying injury targets and interventions have become a hot issue. METHODS Mouse LT models were established, and 4D label-free proteome sequencing was performed for four groups: normal control (NC) SHAM, high-fat (HF) SHAM, NC LT, and HF LT to screen molecular targets for aggravating liver injury in steatotic LT. Expression detection of molecular targets was performed based on liver specimens from 110 donors to verify its impact on the overall survival of recipients. Pharmacological intervention using small-molecule inhibitors on an injury-related target was used to evaluate the therapeutic effect. Transcriptomics and metabolomics were performed to explore the regulatory network and further integrated bioinformatics analysis and multiplex immunofluorescence were adopted to assess the regulation of pathways and organelles. RESULTS HF LT group represented worse liver function compared with NC LT group, including more apoptotic hepatocytes (P < 0.01) and higher serum transaminase (P < 0.05). Proteomic results revealed that the mitochondrial membrane, endocytosis, and oxidative phosphorylation pathways were upregulated in HF LT group. Fatty acid binding protein 4 (FABP4) was identified as a hypoxia-inducible protein (fold change > 2 and P < 0.05) that sensitized mice to IR injury in steatotic LT. The overall survival of recipients using liver grafts with high expression of FABP4 was significantly worse than low expression of FABP4 (68.5 vs. 87.3%, P < 0.05). Adoption of FABP4 inhibitor could protect the steatotic liver from IR injury during transplantation, including reducing hepatocyte apoptosis, reducing serum transaminase (P < 0.05), and alleviating oxidative stress damage (P < 0.01). According to integrated transcriptomics and metabolomics analysis, cAMP signaling pathway was enriched following FABP4 inhibitor use. The activation of cAMP signaling pathway was validated. Microscopy and immunofluorescence staining results suggested that FABP4 inhibitors could regulate mitochondrial membrane homeostasis in steatotic LT. CONCLUSIONS FABP4 was identified as a hypoxia-inducible protein that sensitized steatotic liver grafts to IR injury. The FABP4 inhibitor, BMS-309403, could activate of cAMP signaling pathway thereby modulating mitochondrial membrane homeostasis, reducing oxidative stress injury in steatotic donors.
Collapse
Affiliation(s)
- Mengfan Yang
- Department of Organ Transplantation, Qilu Hospital of Shandong University, Jinan, 250012, China
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Wenzhi Shu
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Xiangyu Zhai
- Department of Hepatobiliary Surgery, The Second Hospital, Shandong University, Jinan, 250033, China
| | - Xinyu Yang
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Huaxin Zhou
- Department of Hepatobiliary Surgery, The Second Hospital, Shandong University, Jinan, 250033, China
| | - Binhua Pan
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Changbiao Li
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Di Lu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Jinzhen Cai
- Organ Transplantation Center, Affiliated Hospital of Qingdao University, Qingdao, 266035, China
| | - Shusen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Bin Jin
- Department of Organ Transplantation, Qilu Hospital of Shandong University, Jinan, 250012, China.
- Department of Hepatobiliary Surgery, The Second Hospital, Shandong University, Jinan, 250033, China.
| | - Xuyong Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China.
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Xiao Xu
- Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China.
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China.
| |
Collapse
|
34
|
Soto A, Spongberg C, Martinino A, Giovinazzo F. Exploring the Multifaceted Landscape of MASLD: A Comprehensive Synthesis of Recent Studies, from Pathophysiology to Organoids and Beyond. Biomedicines 2024; 12:397. [PMID: 38397999 PMCID: PMC10886580 DOI: 10.3390/biomedicines12020397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a widespread contributor to chronic liver disease globally. A recent consensus on renaming liver disease was established, and metabolic dysfunction-associated steatotic liver disease, MASLD, was chosen as the replacement for NAFLD. The disease's range extends from the less severe MASLD, previously known as non-alcoholic fatty liver (NAFL), to the more intense metabolic dysfunction-associated steatohepatitis (MASH), previously known as non-alcoholic steatohepatitis (NASH), characterized by inflammation and apoptosis. This research project endeavors to comprehensively synthesize the most recent studies on MASLD, encompassing a wide spectrum of topics such as pathophysiology, risk factors, dietary influences, lifestyle management, genetics, epigenetics, therapeutic approaches, and the prospective trajectory of MASLD, particularly exploring its connection with organoids.
Collapse
Affiliation(s)
- Allison Soto
- Department of Surgery, University of Illinois College of Medicine, Chicago, IL 60607, USA;
| | - Colby Spongberg
- Touro College of Osteopathic Medicine, Great Falls, MT 59405, USA
| | | | - Francesco Giovinazzo
- General Surgery and Liver Transplant Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
35
|
Fan C, Ling-Hu A, Sun D, Gao W, Zhang C, Duan X, Li H, Tian W, Yu Q, Ke Z. Nobiletin Ameliorates Hepatic Lipid Deposition, Oxidative Stress, and Inflammation by Mechanisms That Involve the Nrf2/NF-κB Axis in Nonalcoholic Fatty Liver Disease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20105-20117. [PMID: 38073108 DOI: 10.1021/acs.jafc.3c06498] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Nobiletin (NOB), a flavonoid with significant antioxidant potential, holds promise for treating nonalcoholic fatty liver disease (NAFLD). In this work, we aim to assess the effects and investigate the molecular mechanisms of NOB on NAFLD. After using a methionine choline-deficient diet to induce C57BL/6J mice, as well as oleic acid to induce HepG2 and L02 cells, we administered NOB as an intervention. The results indicated that the NOB significantly ameliorated lipid deposition, oxidative stress, and inflammation in NAFLD in both models. Its mechanism may involve the Nrf2, SREBP-1c, and NF-κB signaling pathways. Furthermore, Nrf2 is not only a direct target for NOB to improve oxidative damage but also indirectly involved in lipid-lowering and anti-inflammatory processes in NAFLD. By inhibiting Nrf2, we found that the regulatory role of Nrf2 in lipid metabolism is not related to SREBP-1c but is closely associated with NF-κB in terms of inflammation. Our results suggest that Nrf2 is one of the most critical targets for NOB against NAFLD in multiple aspects.
Collapse
Affiliation(s)
- Chaowen Fan
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| | - Anli Ling-Hu
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| | - Dali Sun
- Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Weiman Gao
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| | - Chenfang Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| | - Xueqing Duan
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| | - Haiyang Li
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| | - Weiyi Tian
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| | - Qi Yu
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| | - Zunli Ke
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| |
Collapse
|
36
|
Liu X, Wang Y, Liu X, Zeng B, Zhu B, Zhang Y, Zhuang Y, Zhang Y, Dai F. Higher oxidative balance scores are associated with lower nonalcoholic fatty liver disease and not with fibrosis in US adults. Nutr Metab Cardiovasc Dis 2023; 33:2488-2496. [PMID: 37798234 DOI: 10.1016/j.numecd.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/11/2023] [Accepted: 08/04/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND AND AIMS Little research have focused on the relationship between systemic oxidative stress status and NAFLD and fibrosis. The Oxidative Balance Score (OBS) is employed to evaluate whole-body lifestyle and diet exposures related to oxidative stress, with higher OBS scores implying exposure to more antioxidants. This study aimed to explore whether OBS is correlated with NAFLD and NAFLD-related fibrosis. METHODS AND RESULTS 12,223 participants from NHANES 2003-2018 were enrolled in this study. NAFLD was defined as USFLI ≥30 and liver fibrosis was determined as FIB-4 ≥ 2.67. OBS was scored by 20 lifestyle and dietary factors. Weighted logistic regression and restricted cubic splines were used to assess the association between OBS and NAFLD and fibrosis. The prevalence of NAFLD was 29.67%. There was a significant negative correlation between OBS, dietary OBS, lifestyle OBS and NAFLD and no correlation with NAFLD-related fibrosis. Compared to the lowest quartile, the adjusted ORs for the highest quartile of OBS, lifestyle OBS, dietary OBS and NAFLD were 0.55(95%CI:0.35,0.85), 0.12(95%CI:0.08,0.16), 0.70(95%CI:0.52,0.94) respectively. In stratified analyses, lifestyle OBS was negatively associated with NAFLD across gender, dietary OBS was only negatively correlated with NAFLD in men, and any OBS was not observed to be relevant to NAFLD-related fibrosis. CONCLUSIONS OBS was negatively associated with NAFLD, but not with NAFLD-related fibrosis. The findings underline the significance of adhering to an antioxidant lifestyle and diet, which can help prevent NAFLD but seems to be ineffective in preventing fibrosis in individuals with NAFLD.
Collapse
Affiliation(s)
- Xuna Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yiwen Wang
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xuyan Liu
- Department of Medicine, Northwest Minzu University, Lanzhou, 730030, China
| | - Beibei Zeng
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Boxu Zhu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yue Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yan Zhuang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yanqi Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Fei Dai
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
37
|
Lin X, Zhou Y, Ye L, Wang B, Jiao Y, Yu W, Gao P, Yang L. A bibliometric and visualized analysis of hepatic ischemia-reperfusion injury (HIRI) from 2002 to 2021. Heliyon 2023; 9:e22644. [PMID: 38074868 PMCID: PMC10700868 DOI: 10.1016/j.heliyon.2023.e22644] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 10/07/2023] [Accepted: 11/15/2023] [Indexed: 03/14/2025] Open
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is a complex pathological phenomenon dominated by the innate immune system and involves a variety of immune cells. This condition frequently occurs during hepatectomy, liver transplantation or hemorrhagic shock. HIRI represents an important factor in the poor prognosis of patients after liver surgery. However, there is still a lack of effective intervention to reduce the incidence of HIRI. In this study, we aimed to describe the overall structure of scientific research on HIRI over the past 20 years and provide valuable information and guidelines for future researchers. Bibliometric analysis was used to comprehensively review developments in HIRI and changes in our understanding of HIRI over the past two decades. We identified a total of 4267 articles on HIRI that were published over the past 20 years of which basic research was predominant. Collaboration network analysis revealed that China, the University of California Los Angeles, and Ronald W Busuttil were the most influential country, institute, and scholar, respectively. Co-occurrence cluster analysis revealed that ischemic preconditioning, liver cirrhosis, hepatic I/R injury, autophagy, acute liver failure, oxygen, donation after circulatory death, Nlrp3, remote organ, and microdialysis were the top 10 clusters. Keyword burst detection indicated that autophagy, inflammation, and early allograft dysfunction represent the current research hotspots. In summary, this is the first bibliometric analysis of HIRI research. Our timely analysis of these hotpots and research trends may provide a framework for future researchers and further promote research on the key mechanisms and therapeutic measures in this field.
Collapse
Affiliation(s)
- Xiaoqi Lin
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, China
| | - Yanyu Zhou
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, China
| | - Lina Ye
- Maternal and Child Care Service Centre, Changxing County, Zhejiang, China
| | - Baoshan Wang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, China
| | - Yingfu Jiao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, China
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, China
| | - Po Gao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, China
| | - Liqun Yang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, China
| |
Collapse
|
38
|
Xia K, Wang T, Chen Z, Guo J, Yu B, Chen Q, Qiu T, Zhou J, Zheng S. Hepatocellular SETDB1 Regulates Hepatic Ischemia-Reperfusion Injury through Targeting Lysine Methylation of ASK1 Signal. RESEARCH (WASHINGTON, D.C.) 2023; 6:0256. [PMID: 37915765 PMCID: PMC10616969 DOI: 10.34133/research.0256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/07/2023] [Indexed: 11/03/2023]
Abstract
Background: Hepatic ischemia-reperfusion injury (HIRI) stands as an unavoidable complication arising from liver surgery, profoundly intertwined with its prognosis. The role of lysine methyltransferase SET domain bifurcated 1 (SETDB1) in HIRI remains elusive, despite its confirmation as a potential therapeutic target for diverse diseases. Here, we investigated the mechanism by which SETDB1 regulated HIRI. Methods: RNA sequencing data were used to identify the expression and potential targets of SETDB1 through bioinformatics analysis. To elucidate the impact of SETDB1 on HIRI, both an in vivo model of HIRI in mice and an in vitro model of hepatocyte hypoxia/reoxygenation were established. Biochemical and histological analyses were used to investigate the influence of SETDB1 on liver damage mediated by HIRI. Chromatin immunoprecipitation and coimmunoprecipitation were implemented to explore the in-depth mechanism of SETDB1 regulating HIRI. Results: We confirmed that hepatocellular SETDB1 was up-regulated during HIRI and had a close correlation with HIRI-related inflammation and apoptosis. Moreover, inhibition of SETDB1 could mitigate HIRI-induced liver damage, inflammation, and apoptosis. Through our comprehensive mechanistic investigation, we revealed that SETDB1 interacts with apoptosis-signal-regulating kinase 1 (ASK1) and facilitates the methylation of its lysine residues. Inhibition of SETDB1 resulted in reduced phosphorylation of ASK1, leading to a marked suppression of downstream c-Jun N-terminal kinase (JNK)/p38 signaling pathway activation. The therapeutic effect on inflammation and apoptosis achieved through SETDB1 inhibition was nullified by the restoration of JNK/p38 signaling activation through ASK1 overexpression. Conclusions: The findings from our study indicate that SETDB1 mediates lysine methylation of ASK1 and modulates the activation of the ASK1-JNK/p38 pathway, thus involved in HIRI-induced inflammation and apoptosis. These results suggest that SETDB1 holds promise as a potential therapeutic target for mitigating HIRI.
Collapse
Affiliation(s)
- Kang Xia
- Department of Organ Transplantation,
Renmin Hospital of Wuhan University, Wuhan, China
- Department of Urology,
Renmin Hospital of Wuhan University, Wuhan, China
- Department of general surgery,
Renmin Hospital of Wuhan University, Wuhan, China
| | - Tianyu Wang
- Department of Organ Transplantation,
Renmin Hospital of Wuhan University, Wuhan, China
- Department of Urology,
Renmin Hospital of Wuhan University, Wuhan, China
- Department of general surgery,
Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhongbao Chen
- Department of Organ Transplantation,
Renmin Hospital of Wuhan University, Wuhan, China
- Department of Urology,
Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiayu Guo
- Department of Organ Transplantation,
Renmin Hospital of Wuhan University, Wuhan, China
- Department of Urology,
Renmin Hospital of Wuhan University, Wuhan, China
| | - Bo Yu
- Department of Organ Transplantation,
Renmin Hospital of Wuhan University, Wuhan, China
- Department of Urology,
Renmin Hospital of Wuhan University, Wuhan, China
- Department of general surgery,
Renmin Hospital of Wuhan University, Wuhan, China
| | - Qi Chen
- Department of Organ Transplantation,
Renmin Hospital of Wuhan University, Wuhan, China
- Department of Urology,
Renmin Hospital of Wuhan University, Wuhan, China
| | - Tao Qiu
- Department of Organ Transplantation,
Renmin Hospital of Wuhan University, Wuhan, China
- Department of Urology,
Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiangqiao Zhou
- Department of Organ Transplantation,
Renmin Hospital of Wuhan University, Wuhan, China
- Department of Urology,
Renmin Hospital of Wuhan University, Wuhan, China
| | - Shusen Zheng
- Department of Organ Transplantation,
Renmin Hospital of Wuhan University, Wuhan, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou, China
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China
- Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang Province, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China
| |
Collapse
|
39
|
Zhang L, Wang M, An R, Dai J, Liu S, Chen M, Ding H. Activation of NLRP3 Inflammasome via Drp1 Overexpression in Kupffer Cells Aggravates Ischemia-reperfusion Injury in Hepatic Steatosis. J Clin Transl Hepatol 2023; 11:1069-1078. [PMID: 37577223 PMCID: PMC10412692 DOI: 10.14218/jcth.2022.00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/23/2023] [Accepted: 03/16/2023] [Indexed: 07/03/2023] Open
Abstract
Background and Aims Donors with fatty livers are considered to address the shortage of livers for transplantation, but those livers are particularly sensitive to ischemia-reperfusion injury (IRI), and an increased incidence of graft failure is observed. Kupffer cells account for 20-35% of liver nonparenchymal cells, and have been shown to participate in the process of IRI and inflammatory reactions of hepatic steatosis. NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) is an intracellular sensor activated by Kupffer cells to promote generation and participates in IRI. Dynamics-associated protein 1 (Drp1) is one of the main proteins regulating mitochondrial division and exacerbates IRI by affecting mitochondrial dynamics. The mechanism of interaction of Kupffer cells with Drp1 and NLRP3 to aggravate IRI has not been clarified. Methods A mouse model of hepatic steatosis was established by feeding the mice with a high-fat diet. In vitro experiments were performed using AML12 normal mouse liver cells and RAW264.7 mononuclear macrophage cells cultured in medium with palmitate and oleic acid. Western blotting and immunohistochemical (IHC) staining were used to detect the expression of NLRPP3 and Drp1 in IRI in the control and high-fat diet groups. The expression of F4/80+ cells during IRI in hepatic steatosis was verified by IHC staining, and the role of NLRPP3 and Drp1 in Kupffer-cell mediated IRI was investigated by targeting Drp-1 inhibition. Results Drp1 and NLRP3 expression was increased during IRI in hepatic steatosis, and the expression of Drp1 and NLRP3 were decreased after the elimination of Kupffer cells. That indicated Kupffer cells were involved in the process of IRI in hepatic steatosis through the action of Drp1 and NLRP3. After Drp1 inhibition, liver function was restored and NLRP3 expression level was reduced. Conclusions Kupffer cells aggravated IRI in hepatic steatosis via NLRP3 and Drp1. Drp1 inhibitors might be useful as specific therapeutics to alleviate IRI in hepatic steatosis and may have promise in case of liver donor shortage.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Mingfu Wang
- Surgery Department I, Zhangjiagang Traditional Chinese Medicine Hospital, Suzhou, Jiangsu, China
| | - Ran An
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Jun Dai
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Shujun Liu
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ming Chen
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Haoran Ding
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| |
Collapse
|
40
|
Xia M, Wu Z, Wang J, Buist-Homan M, Moshage H. The Coumarin-Derivative Esculetin Protects against Lipotoxicity in Primary Rat Hepatocytes via Attenuating JNK-Mediated Oxidative Stress and Attenuates Free Fatty Acid-Induced Lipid Accumulation. Antioxidants (Basel) 2023; 12:1922. [PMID: 38001774 PMCID: PMC10669015 DOI: 10.3390/antiox12111922] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Coumarin derivates have been proposed as a potential treatment for metabolic-dysfunction-associated fatty liver disease (MAFLD). However, the mechanisms underlying their beneficial effects remain unclear. In the present study, we explored the potential of the coumarin derivate esculetin in MAFLD, focusing on hepatocyte lipotoxicity and lipid accumulation. Primary cultures of rat hepatocytes were exposed to palmitic acid (PA) and palmitic acid plus oleic acid (OA/PA) as models of lipotoxicity and lipid accumulation, respectively. Esculetin significantly reduced oxidative stress in PA-treated hepatocytes, as shown by decreased total reactive oxygen species (ROS) and mitochondrial superoxide production and elevated expression of antioxidant genes, including Nrf2 and Gpx1. In addition, esculetin protects against PA-induced necrosis. Esculetin also improved lipid metabolism in primary hepatocytes exposed to nonlipotoxic OA/PA by decreasing the expression of the lipogenesis-related gene Srebp1c and increasing the expression of the fatty acid β-oxidation-related gene Ppar-α. Moreover, esculetin attenuated lipid accumulation in OA/PA-treated hepatocytes. The protective effects of esculetin against lipotoxicity and lipid accumulation were shown to be dependent on the inhibition of JNK and the activation of AMPK, respectively. We conclude that esculetin is a promising compound to target lipotoxicity and lipid accumulation in the treatment of MAFLD.
Collapse
Affiliation(s)
- Mengmeng Xia
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (M.X.); (Z.W.); (J.W.); (M.B.-H.)
| | - Zongmei Wu
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (M.X.); (Z.W.); (J.W.); (M.B.-H.)
| | - Junyu Wang
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (M.X.); (Z.W.); (J.W.); (M.B.-H.)
| | - Manon Buist-Homan
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (M.X.); (Z.W.); (J.W.); (M.B.-H.)
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Han Moshage
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (M.X.); (Z.W.); (J.W.); (M.B.-H.)
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
41
|
Huo CL, Wang B, Zhang X, Sun ZG. Skimmianine attenuates liver ischemia/reperfusion injury by regulating PI3K-AKT signaling pathway-mediated inflammation, apoptosis and oxidative stress. Sci Rep 2023; 13:18232. [PMID: 37880319 PMCID: PMC10600244 DOI: 10.1038/s41598-023-45354-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 10/18/2023] [Indexed: 10/27/2023] Open
Abstract
Liver ischemia/reperfusion (I/R) injury is a common injury after liver transplantation and hepatectomy. Skimmianine (Ski) has antibacterial, antiviral pharmacological effects. However, it is not clear whether Ski has a protective effect against liver I/R injury. In the present study, we established a mouse liver I/R model and an AML12 cell hypoxia-reoxygenation (H/R) model, both pretreated with different concentrations of Ski. Serum transaminase levels, necrotic liver area, cell viability, inflammatory factors, oxidative stress and apoptosis-related levels were measured to assess the protective effect of Ski against liver I/R injury. Western blotting was used to detect apoptosis-related proteins and PI3K-AKT pathway-related proteins. Mice and cells were also treated with PI3K inhibitor LY294002 to assess changes in indicators of liver injury. The results showed that Ski significantly reduced transaminase levels, liver necrosis area, oxidative stress, and apoptosis levels in mice with I/R. Ski also inhibited cell injury and apoptosis after H/R. Moreover, Ski activated phosphorylation of PI3K-AKT pathway-related proteins after liver I/R and cell H/R. Importantly, the PI3K inhibitor LY294002 effectively reversed the alleviation of I/R injury caused by Ski. These results confirm that Ski exerts a protective effect against liver I/R injury through activation of the PI3K-AKT pathway.
Collapse
Affiliation(s)
- Cheng-Long Huo
- Department of Hepatobiliary Surgery, Jingzhou Hospital Affiliated to Yangtze University, No. 26, Chuyuan Avenue, Jingzhou District, Jingzhou, Hubei, China
| | - Bing Wang
- Department of Hepatobiliary Surgery, Jingzhou Hospital Affiliated to Yangtze University, No. 26, Chuyuan Avenue, Jingzhou District, Jingzhou, Hubei, China
| | - Xuewen Zhang
- Department of Hepatobiliary Surgery, Jingzhou Hospital Affiliated to Yangtze University, No. 26, Chuyuan Avenue, Jingzhou District, Jingzhou, Hubei, China
| | - Zhen-Gang Sun
- Department of Hepatobiliary Surgery, Jingzhou Hospital Affiliated to Yangtze University, No. 26, Chuyuan Avenue, Jingzhou District, Jingzhou, Hubei, China.
| |
Collapse
|
42
|
Baechle JJ, Chen N, Makhijani P, Winer S, Furman D, Winer DA. Chronic inflammation and the hallmarks of aging. Mol Metab 2023; 74:101755. [PMID: 37329949 PMCID: PMC10359950 DOI: 10.1016/j.molmet.2023.101755] [Citation(s) in RCA: 111] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/30/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023] Open
Abstract
BACKGROUND Recently, the hallmarks of aging were updated to include dysbiosis, disabled macroautophagy, and chronic inflammation. In particular, the low-grade chronic inflammation during aging, without overt infection, is defined as "inflammaging," which is associated with increased morbidity and mortality in the aging population. Emerging evidence suggests a bidirectional and cyclical relationship between chronic inflammation and the development of age-related conditions, such as cardiovascular diseases, neurodegeneration, cancer, and frailty. How the crosstalk between chronic inflammation and other hallmarks of aging underlies biological mechanisms of aging and age-related disease is thus of particular interest to the current geroscience research. SCOPE OF REVIEW This review integrates the cellular and molecular mechanisms of age-associated chronic inflammation with the other eleven hallmarks of aging. Extra discussion is dedicated to the hallmark of "altered nutrient sensing," given the scope of Molecular Metabolism. The deregulation of hallmark processes during aging disrupts the delicate balance between pro-inflammatory and anti-inflammatory signaling, leading to a persistent inflammatory state. The resultant chronic inflammation, in turn, further aggravates the dysfunction of each hallmark, thereby driving the progression of aging and age-related diseases. MAIN CONCLUSIONS The crosstalk between chronic inflammation and other hallmarks of aging results in a vicious cycle that exacerbates the decline in cellular functions and promotes aging. Understanding this complex interplay will provide new insights into the mechanisms of aging and the development of potential anti-aging interventions. Given their interconnectedness and ability to accentuate the primary elements of aging, drivers of chronic inflammation may be an ideal target with high translational potential to address the pathological conditions associated with aging.
Collapse
Affiliation(s)
- Jordan J Baechle
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA
| | - Nan Chen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada
| | - Priya Makhijani
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA; Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Shawn Winer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - David Furman
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA; Stanford 1000 Immunomes Project, Stanford University School of Medicine, Stanford, CA, USA; Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral, CONICET, Pilar, Argentina.
| | - Daniel A Winer
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
43
|
Dery KJ, Yao S, Cheng B, Kupiec-Weglinski JW. New therapeutic concepts against ischemia-reperfusion injury in organ transplantation. Expert Rev Clin Immunol 2023; 19:1205-1224. [PMID: 37489289 PMCID: PMC10529400 DOI: 10.1080/1744666x.2023.2240516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023]
Abstract
INTRODUCTION Ischemia-reperfusion injury (IRI) involves a positive amplification feedback loop that stimulates innate immune-driven tissue damage associated with organ procurement from deceased donors and during transplantation surgery. As our appreciation of its basic immune mechanisms has improved in recent years, translating putative biomarkers into therapeutic interventions in clinical transplantation remains challenging. AREAS COVERED This review presents advances in translational/clinical studies targeting immune responses to reactive oxygen species in IRI-stressed solid organ transplants, especially livers. Here we focus on novel concepts to rejuvenate suboptimal donor organs and improve transplant function using pharmacologic and machine perfusion (MP) strategies. Cellular damage induced by cold ischemia/warm reperfusion and the latest mechanistic insights into the microenvironment's role that leads to reperfusion-induced sterile inflammation is critically discussed. EXPERT OPINION Efforts to improve clinical outcomes and increase the donor organ pool will depend on improving donor management and our better appreciation of the complex mechanisms encompassing organ IRI that govern the innate-adaptive immune interface triggered in the peritransplant period and subsequent allo-Ag challenge. Computational techniques and deep machine learning incorporating the vast cellular and molecular mechanisms will predict which peri-transplant signals and immune interactions are essential for improving access to the long-term function of life-saving transplants.
Collapse
Affiliation(s)
- Kenneth J. Dery
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Siyuan Yao
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Brian Cheng
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jerzy W. Kupiec-Weglinski
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
44
|
Minjares M, Wu W, Wang JM. Oxidative Stress and MicroRNAs in Endothelial Cells under Metabolic Disorders. Cells 2023; 12:1341. [PMID: 37174741 PMCID: PMC10177439 DOI: 10.3390/cells12091341] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/28/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023] Open
Abstract
Reactive oxygen species (ROS) are radical oxygen intermediates that serve as important second messengers in signal transduction. However, when the accumulation of these molecules exceeds the buffering capacity of antioxidant enzymes, oxidative stress and endothelial cell (EC) dysfunction occur. EC dysfunction shifts the vascular system into a pro-coagulative, proinflammatory state, thereby increasing the risk of developing cardiovascular (CV) diseases and metabolic disorders. Studies have turned to the investigation of microRNA treatment for CV risk factors, as these post-transcription regulators are known to co-regulate ROS. In this review, we will discuss ROS pathways and generation, normal endothelial cell physiology and ROS-induced dysfunction, and the current knowledge of common metabolic disorders and their connection to oxidative stress. Therapeutic strategies based on microRNAs in response to oxidative stress and microRNA's regulatory roles in controlling ROS will also be explored. It is important to gain an in-depth comprehension of the mechanisms generating ROS and how manipulating these enzymatic byproducts can protect endothelial cell function from oxidative stress and prevent the development of vascular disorders.
Collapse
Affiliation(s)
- Morgan Minjares
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA;
| | - Wendy Wu
- Vera P Shiffman Medical Library, Wayne State University, 320 E Canfield St., Detroit, MI 48201, USA;
| | - Jie-Mei Wang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA;
- Center for Molecular Medicine and Genetics, Wayne State University, 320 E Canfield St., Detroit, MI 48201, USA
- Barbara Ann Karmanos Cancer Institute, 4100 John R St., Detroit, MI 48201, USA
| |
Collapse
|
45
|
Chen CS, Zhang YG, Wang HJ, Fan HN. Effect and mechanism of reactive oxygen species-mediated NOD-like receptor family pyrin domain-containing 3 inflammasome activation in hepatic alveolar echinococcosis. World J Gastroenterol 2023; 29:2153-2171. [PMID: 37122606 PMCID: PMC10130966 DOI: 10.3748/wjg.v29.i14.2153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/01/2023] [Accepted: 03/16/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is a significant component of the innate immune system that plays a vital role in the development of various parasitic diseases. However, its role in hepatic alveolar echinococcosis (HAE) remains unclear.
AIM To investigate the NLRP3 inflammasome and its mechanism of activation in HAE.
METHODS We assessed the expression of NLRP3, caspase-1, interleukin (IL)-1β, and IL-18 in the marginal zone and corresponding normal liver of 60 patients with HAE. A rat model of HAE was employed to investigate the role of the NLRP3 inflammasome in the marginal zone of HAE. Transwell experiments were conducted to investigate the effect of Echinococcus multilocularis (E. multilocularis) in stimulating Kupffer cells and hepatocytes. Furthermore, immunohistochemistry, Western blotting, and enzyme-linked immunosorbent assay were used to evaluate NLRP3, caspase-1, IL-1β, and IL-18 expression; flow cytometry was used to detect apoptosis and reactive oxygen species (ROS).
RESULTS NLRP3 inflammasome activation was significantly associated with ROS. Inhibition of ROS production decreased NLRP3-caspase-1-IL-1β pathway activation and mitigated hepatocyte damage and inflammation.
CONCLUSION E. multilocularis induces hepatocyte damage and inflammation by activating the ROS-mediated NLRP3-caspase-1-IL-1β pathway in Kupffer cells, indicating that ROS may serve as a potential target for the treatment of HAE.
Collapse
Affiliation(s)
- Cai-Song Chen
- Research Center for High Altitude Medicine of Qinghai University, Affiliated Hospital of Qinghai University, Xining 810001, Qinghai Province, China
| | - Yao-Gang Zhang
- Qinghai Province Research Key Laboratory for Echinococcosis, Affiliated Hospital of Qinghai University, Xining 810001, Qinghai Province, China
| | - Hai-Jiu Wang
- Qinghai Province Research Key Laboratory for Echinococcosis, Affiliated Hospital of Qinghai University, Xining 810001, Qinghai Province, China
| | - Hai-Ning Fan
- Department of Hepatobiliary and Pancreatic Surgery, Qinghai Province Research Key Laboratory for Echinococcosis, Affiliated Hospital of Qinghai University, Xining 810001, Qinghai Province, China
| |
Collapse
|
46
|
Xu Y, Chen Y, Yao M, You Y, Nie B, Zeng M, Jiang H. MicroRNA-146a Improved Acute Lung Injury Induced by hepatic Ischemia-reperfusion Injury by Inhibiting PRDX1. Dose Response 2023; 21:15593258231169805. [PMID: 37063344 PMCID: PMC10103257 DOI: 10.1177/15593258231169805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/27/2023] [Indexed: 04/18/2023] Open
Abstract
Hepatic ischemia-reperfusion injury (HIRI)-induced acute lung injury (ALI) is characterized by high incidence and poor prognosis. The regulatory role of microRNA-146a (miR-146a) in HIRI has been reported, but if miR-146a could affect the progression of HIRI-induced ALI has not been reported. The mice HIRI model was established by ligating left hepatic portal vein and hepatic artery for 60 minutes and then treating with reperfusion for 4 hours. Hypoxia-reoxygenation (HR) was performed to establish cell model. The binding site between miR-146a and Peroxidase 1 (PRDX1) was predicted and validated. The levels of inflammation factors and redox markers were detected with commercial kits. Significant lower expression of miR-146a and higher expression of PRDX1 in HIRI animal model were observed. miR-146a inhibited the liver injury after HIRI induction through targeting PRDX1. miR-146a inhibited the lung injury caused by HIRI via regulating PRDX1. The inhibition of cell apoptosis and inflammation factors by miR-146a were reversed by pcDNA-PRDX1. This research demonstrated that miR-146a improved ALI caused by HIRI by inhibiting apoptosis, inflammation, oxidative condition through targeting PRDX1. This study might provide a novel thought for the prevention and treatment of ALI caused by HIRI by regulating miR-146a/PRDX1 axis.
Collapse
Affiliation(s)
- Yiping Xu
- Department of Anesthesiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Yili Chen
- Department of Anesthesiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Mengxia Yao
- Department of Anesthesiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Yisheng You
- Department of Anesthesiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Bin Nie
- Department of Anesthesiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Meina Zeng
- Department of Anesthesiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Hui Jiang
- Department of Anesthesiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Hui Jiang, Department of Anesthesiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No 420 Fuma Road, 350014, Fuzhou, Fujian Province, China.
| |
Collapse
|
47
|
Zhang Q, Piao C, Xu J, Wang Y, Liu T, Ma H, Wang H. ADSCs-exo attenuates hepatic ischemia-reperfusion injury after hepatectomy by inhibiting endoplasmic reticulum stress and inflammation. J Cell Physiol 2023; 238:659-669. [PMID: 36780378 DOI: 10.1002/jcp.30968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/10/2023] [Accepted: 01/23/2023] [Indexed: 02/15/2023]
Abstract
Hepatic ischemia-reperfusion (I/R) injury commonly occurs during liver surgery. Exosomes from adipose-derived stem cells (ADSCs-exo) induce a hepatoprotective effect during hepatic I/R injury. This study aimed to investigate the possible mechanism by which ADSCs-exo attenuates hepatic I/R injury in rats. Rats were randomly divided into four groups: Sham, I30R + PH, ADSCs, and ADSCs-exo groups. Liver tissues were collected immediately after 24 h of reperfusion for further analyses. The content of inflammatory factors in liver tissue was detected using enzyme-linked immunosorbent assay. The pathological changes in liver tissue were analyzed using HE staining. Transmission electron microscopy was used to visualize the ultrastructural changes of hepatocytes. Real-time quantitative polymerase chain reaction (RT-qPCR) and western blot analysis were used to detect the expression of endoplasmic reticulum stress (ERS)-related genes and proteins. Liver histomorphology and hepatocyte ultrastructure changes improved after ADSCs-exo treatment. Moreover, ADSCs-exo treatment significantly downregulated tumor necrosis factor-α, interleukin-1β (IL-1β), and IL-6 levels while upregulating IL-10 levels. Western blot analysis suggested that the protein expressions of GRP78, p-PERK, p-eIF2α, p-IRE1α, XBP1s, ATF-6, ATF-4, CHOP, p-JNK, cleaved-Caspase-3, cleaved Caspase-9, and cleaved Caspase-12 significantly decreased after ADSCs-exo treatment. RT-qPCR results demonstrated that mRNA expression of GRP78, IRE1α, XBP1, ATF-6, ATF-4, CHOP, JNK, Caspase-3, Caspase-9, and Caspase-12 markedly reduced after ADSCs-exo treatment. In conclusion, ADSCs-exo protects against hepatic I/R injury after hepatectomy by inhibiting ERS and inflammation. Therefore, ADSCs-exo can be considered as a viable option for the treatment of hepatic I/R injury.
Collapse
Affiliation(s)
- Qianzhen Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, P.R. China
| | - Chenxi Piao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Jiayuan Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Yue Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Tao Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Haiyang Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Hongbin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| |
Collapse
|
48
|
Yu C, Chen P, Miao L, Di G. The Role of the NLRP3 Inflammasome and Programmed Cell Death in Acute Liver Injury. Int J Mol Sci 2023; 24:3067. [PMID: 36834481 PMCID: PMC9959699 DOI: 10.3390/ijms24043067] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Acute liver injury (ALI) is a globally important public health issue that, when severe, rapidly progresses to acute liver failure, seriously compromising the life safety of patients. The pathogenesis of ALI is defined by massive cell death in the liver, which triggers a cascade of immune responses. Studies have shown that the aberrant activation of the nod-like receptor protein 3 (NLRP3) inflammasome plays an important role in various types of ALI and that the activation of the NLRP3 inflammasome causes various types of programmed cell death (PCD), and these cell death effectors can in turn regulate NLRP3 inflammasome activation. This indicates that NLRP3 inflammasome activation is inextricably linked to PCD. In this review, we summarize the role of NLRP3 inflammasome activation and PCD in various types of ALI (APAP, liver ischemia reperfusion, CCl4, alcohol, Con A, and LPS/D-GalN induced ALI) and analyze the underlying mechanisms to provide references for future relevant studies.
Collapse
Affiliation(s)
- Chaoqun Yu
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, China
| | - Peng Chen
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, China
| | - Longyu Miao
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, China
| | - Guohu Di
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, China
- Institute of Stem Cell and Regenerative Medicine, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| |
Collapse
|
49
|
Health-Promoting Activities and Associated Mechanisms of Polygonati Rhizoma Polysaccharides. Molecules 2023; 28:molecules28031350. [PMID: 36771015 PMCID: PMC9919897 DOI: 10.3390/molecules28031350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/14/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Polygonati Rhizoma, a typical homology of medicine and food, possesses remarkable anti-fatigue, anti-aging, metabolic regulatory, immunomodulatory, anti-inflammatory, neuroprotective, anti-diabetes, and anti-cancer effects. Among bioactive phytochemicals in Polygonati Rhizoma, polysaccharides play important roles in the health-promoting activities through the mechanisms mentioned above and potential synergistic effects with other bioactives. In this review, we briefly introduce the updated biosynthesis of polysaccharides, the purification method, the structure characterization, and food applications, and discuss in detail the biological activities of Polygonati Rhizoma polysaccharides and associated mechanisms, aiming at broadening the usage of Polygonati Rhizoma as functional food and medicine.
Collapse
|
50
|
Qiu X, Xu H, Wang K, Gao F, Xu X, He H. P-21 Activated Kinases in Liver Disorders. Cancers (Basel) 2023; 15:cancers15020551. [PMID: 36672500 PMCID: PMC9857091 DOI: 10.3390/cancers15020551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
The p21 Activated Kinases (PAKs) are serine threonine kinases and play important roles in many biological processes, including cell growth, survival, cytoskeletal organization, migration, and morphology. Recently, PAKs have emerged in the process of liver disorders, including liver cancer, hepatic ischemia-reperfusion injury, hepatitis, and liver fibrosis, owing to their effects in multiple signaling pathways in various cell types. Activation of PAKs promotes liver cancer growth and metastasis and contributes to the resistance of liver cancer to radiotherapy and chemotherapy, leading to poor survival of patients. PAKs also play important roles in the development and progression of hepatitis and other pathological processes of the liver such as fibrosis and ischemia-reperfusion injury. In this review, we have summarized the currently available studies about the role of PAKs in liver disorders and the mechanisms involved, and further explored the potential therapeutic application of PAK inhibitors in liver disorders, with the aim to provide a comprehensive overview on current progress and perspectives of PAKs in liver disorders.
Collapse
Affiliation(s)
- Xun Qiu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Hanzhi Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Kai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Correspondence: (K.W.); (H.H.)
| | - Fengqiang Gao
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiao Xu
- Zhejiang University School of Medicine, Hangzhou 310058, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou 310006, China
| | - Hong He
- Department of Surgery, University of Melbourne, Austin Health, 145 Studley Rd., Heidelberg, VIC 3084, Australia
- Correspondence: (K.W.); (H.H.)
| |
Collapse
|