1
|
Jia N, Zhang S, Chen R, He X, Dai C, El-Seedi HR, Chen W, Zhao C. Immunomodulatory functions of algal bioactive compounds. Crit Rev Food Sci Nutr 2025:1-18. [PMID: 39901825 DOI: 10.1080/10408398.2025.2460634] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Algae, a crucial constituent of marine systems, serve an indispensable function as primary producers, supporting the marine food web, contributing to carbon sequestration, and providing habitats that sustain biodiversity. This review focuses on the bioactive constituents of algae, including polysaccharides, polyphenols, polypeptides, and terpenoid compounds, and discusses their potential applications in treating immune-related diseases, as well as the mechanisms through which they modulate immune responses. The bioactive substances derived from algae, including polyphenols, bioactive peptides, terpenes, polysaccharides and other compounds, may play a preventive role by modulating allergic responses and reducing the incidence of inflammation and cancer.
Collapse
Affiliation(s)
- Nan Jia
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuangtao Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ruoxin Chen
- College of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xinxin He
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Congjie Dai
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou, Fujian
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| | - Hesham R El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, Saudi Arabia
| | - Weichao Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chao Zhao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
2
|
Lisyte V, Kausaite-Minkstimiene A, Brasiunas B, Popov A, Ramanaviciene A. Surface Plasmon Resonance Immunosensor for Direct Detection of Antibodies against SARS-CoV-2 Nucleocapsid Protein. Int J Mol Sci 2024; 25:8574. [PMID: 39201259 PMCID: PMC11354133 DOI: 10.3390/ijms25168574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 09/02/2024] Open
Abstract
The strong immunogenicity of the SARS-CoV-2 nucleocapsid protein is widely recognized, and the detection of specific antibodies is critical for COVID-19 diagnostics in patients. This research proposed direct, label-free, and sensitive detection of antibodies against the SARS-CoV-2 nucleocapsid protein (anti-SCoV2-rN). Recombinant SARS-CoV-2 nucleocapsid protein (SCoV2-rN) was immobilized by carbodiimide chemistry on an SPR sensor chip coated with a self-assembled monolayer of 11-mercaptoundecanoic acid. When immobilized under optimal conditions, a SCoV2-rN surface mass concentration of 3.61 ± 0.52 ng/mm2 was achieved, maximizing the effectiveness of the immunosensor for the anti-SCoV2-rN determination. The calculated KD value of 6.49 × 10-8 ± 5.3 × 10-9 M confirmed the good affinity of the used monoclonal anti-SCoV2-rN antibodies. The linear range of the developed immunosensor was from 0.5 to 50 nM of anti-SCoV2-rN, where the limit of detection and the limit of quantification values were 0.057 and 0.19 nM, respectively. The immunosensor exhibited good reproducibility and specificity. In addition, the developed immunosensor is suitable for multiple anti-SCoV2-rN antibody detections.
Collapse
Affiliation(s)
| | | | | | - Anton Popov
- NanoTechnas–Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; (V.L.); (A.K.-M.); (B.B.)
| | - Almira Ramanaviciene
- NanoTechnas–Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; (V.L.); (A.K.-M.); (B.B.)
| |
Collapse
|
3
|
Manteghinejad A, Rasti S, Nasirian M, Javanmard SH. Association of Prior COVID-19 Infection with Risk of Breakthrough Infection Following Vaccination: A Cohort Study in Isfahan, Iran. Int J Prev Med 2024; 15:18. [PMID: 39170924 PMCID: PMC11338365 DOI: 10.4103/ijpvm.ijpvm_173_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 02/20/2024] [Indexed: 08/23/2024] Open
Abstract
Background Many people worldwide have developed a combination of natural and vaccine-induced immunity to COVID-19. This study investigated whether exposure to SARS-CoV-2 before full vaccination promotes protection against a breakthrough infection. Methods We studied a total of 2,902,545 people in the Isfahan COVID-19 Registry. All the participants had received two doses of either Sinopharm BIBP, ChAdOx1-nCoV-19, Gam-COVID-Vac, or BIV1-CovIran vaccines. A cohort study examined the association between prior COVID-19 infection and the risk of a breakthrough infection for each vaccine. Cohorts in each pair were matched by gender, age group, calendar week of the first dose, the interval between the first and second doses, and the proportion of healthcare workers. The probable virus variant for the previous infections was also considered. Each individual's follow-up started 14 days after their second vaccine dose until either the end of the study censoring date, occurrence of a COVID-19 infection, or death. The breakthrough infection risk was compared between each cohort pair by using the hazard ratio (HR) and incidence rate ratio (IRR). Results Total breakthrough HRs (95% confidence interval) (previously infected over infection-naïve matched cohort) were 0.36 (0.23-0.55), 0.35 (0.32-0.40), 0.37 (0.30-0.46), and 0.43 (0.32-0.56) for the BIV1-CovIran, Sinopharm BIBP, Gam-COVID-Vac, and ChAdOx1-nCoV-19 vaccine groups, respectively. The breakthrough infection IRRs were approximately similar to the total HRs mentioned above. Conclusion Prior SARS-CoV-2 infection conferred additive immunity against breakthrough after vaccination, no matter which vaccine brand was injected. Such a result could guide health authorities to codify low-cost high-benefit vaccination protocols and protect the community's well-being.
Collapse
Affiliation(s)
- Amirreza Manteghinejad
- Cancer Prevention Research Center, Omid Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sina Rasti
- Craniofacial and Cleft Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Nasirian
- Department of Epidemiology and Biostatistics, Health School, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
4
|
Hu WH, Cai HL, Yan HC, Wang H, Sun HM, Wei YY, Hao YT. Protective effectiveness of previous infection against subsequent SARS-Cov-2 infection: systematic review and meta-analysis. Front Public Health 2024; 12:1353415. [PMID: 38966699 PMCID: PMC11222391 DOI: 10.3389/fpubh.2024.1353415] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 06/04/2024] [Indexed: 07/06/2024] Open
Abstract
Background The protective effectiveness provided by naturally acquired immunity against SARS-CoV-2 reinfection remain controversial. Objective To systematically evaluate the protective effect of natural immunity against subsequent SARS-CoV-2 infection with different variants. Methods We searched for related studies published in seven databases before March 5, 2023. Eligible studies included in the analysis reported the risk of subsequent infection for groups with or without a prior SARS-CoV-2 infection. The primary outcome was the overall pooled incidence rate ratio (IRR) of SARS-CoV-2 reinfection/infection between the two groups. We also focused on the protective effectiveness of natural immunity against reinfection/infection with different SARS-CoV-2 variants. We used a random-effects model to pool the data, and obtained the bias-adjusted results using the trim-and-fill method. Meta-regression and subgroup analyses were conducted to explore the sources of heterogeneity. Sensitivity analysis was performed by excluding included studies one by one to evaluate the stability of the results. Results We identified 40 eligible articles including more than 20 million individuals without the history of SARS-CoV-2 vaccination. The bias-adjusted efficacy of naturally acquired antibodies against reinfection was estimated at 65% (pooled IRR = 0.35, 95% CI = 0.26-0.47), with higher efficacy against symptomatic COVID-19 cases (pooled IRR = 0.15, 95% CI = 0.08-0.26) than asymptomatic infection (pooled IRR = 0.40, 95% CI = 0.29-0.54). Meta-regression revealed that SARS-CoV-2 variant was a statistically significant effect modifier, which explaining 46.40% of the variation in IRRs. For different SARS-CoV-2 variant, the pooled IRRs for the Alpha (pooled IRR = 0.11, 95% CI = 0.06-0.19), Delta (pooled IRR = 0.19, 95% CI = 0.15-0.24) and Omicron (pooled IRR = 0.61, 95% CI = 0.42-0.87) variant were higher and higher. In other subgroup analyses, the pooled IRRs of SARS-CoV-2 infection were statistically various in different countries, publication year and the inclusion end time of population, with a significant difference (p = 0.02, p < 0.010 and p < 0.010), respectively. The risk of subsequent infection in the seropositive population appeared to increase slowly over time. Despite the heterogeneity in included studies, sensitivity analyses showed stable results. Conclusion Previous SARS-CoV-2 infection provides protection against pre-omicron reinfection, but less against omicron. Ongoing viral mutation requires attention and prevention strategies, such as vaccine catch-up, in conjunction with multiple factors.
Collapse
Affiliation(s)
- Wei-Hua Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness and Response, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Huan-Le Cai
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Huan-Chang Yan
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Han Wang
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Hui-Min Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness and Response, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Yong-Yue Wei
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness and Response, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Yuan-Tao Hao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness and Response, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| |
Collapse
|
5
|
Arientová S, Matúšková K, Bartoš O, Holub M, Beran O. Specific immune responses after BNT162b2 mRNA vaccination and COVID-19 infection. Front Immunol 2023; 14:1271353. [PMID: 37920457 PMCID: PMC10619853 DOI: 10.3389/fimmu.2023.1271353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/28/2023] [Indexed: 11/04/2023] Open
Abstract
Although vaccines against COVID-19 are effective tools in preventing severe disease, recent studies have shown enhanced protection after vaccine boosters. The aim of our study was to examine the dynamics and duration of both humoral and cellular immune responses following a three-dose regimen of the BNT162b2 mRNA vaccine. In a longitudinal prospective study we enrolled 86 adults who received the BNT162b2 vaccine, 35 unvaccinated individuals with a history of mild COVID-19 and a control group of 30 healthy SARS-CoV-2 seronegative persons. We assessed the SARS-CoV-2-specific T cell responses and IgG production up to 12 months post the third BNT162b2 dose in 24 subjects. The vaccinated group had significantly higher IgG antibody levels after two doses compared to the convalescent group (p<0.001). After the third dose, IgG levels surged beyond those detected after the second dose (p<0.001). Notably, these elevated IgG levels were maintained 12 months post the third dose. After two doses, specific T cell responses were detected in 87.5% of the vaccinated group. Additionally, there was a significant decrease before the third dose. However, post the third dose, specific T cell responses surged and remained stable up to the 12-month period. Our findings indicate that the BNT162b2 vaccine induces potent and enduring humoral and cellular responses, which are notably enhanced by the third dose and remain persistant without a significant decline a year after the booster. Further research is essential to understand the potential need for subsequent boosters.
Collapse
Affiliation(s)
- Simona Arientová
- Department of Infectious Diseases, First Faculty of Medicine, Charles University and Military University Hospital Prague, Prague, Czechia
| | - Kateřina Matúšková
- Department of Infectious Diseases, First Faculty of Medicine, Charles University and Military University Hospital Prague, Prague, Czechia
| | - Oldřich Bartoš
- Military Health Institute, Military Medical Agency, Prague, Czechia
| | - Michal Holub
- Department of Infectious Diseases, First Faculty of Medicine, Charles University and Military University Hospital Prague, Prague, Czechia
| | - Ondřej Beran
- Department of Infectious Diseases, First Faculty of Medicine, Charles University and Military University Hospital Prague, Prague, Czechia
| |
Collapse
|
6
|
Szinger D, Berki T, Németh P, Erdo-Bonyar S, Simon D, Drenjančević I, Samardzic S, Zelić M, Sikora M, Požgain A, Böröcz K. Following Natural Autoantibodies: Further Immunoserological Evidence Regarding Their Silent Plasticity and Engagement in Immune Activation. Int J Mol Sci 2023; 24:14961. [PMID: 37834409 PMCID: PMC10573785 DOI: 10.3390/ijms241914961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Contradictory reports are available on vaccine-associated hyperstimulation of the immune system, provoking the formation of pathological autoantibodies. Despite being interconnected within the same network, the role of the quieter, yet important non-pathological and natural autoantibodies (nAAbs) is less defined. We hypothesize that upon a prompt immunological trigger, physiological nAAbs also exhibit a moderate plasticity. We investigated their inducibility through aged and recent antigenic triggers. Anti-viral antibodies (anti-MMR n = 1739 and anti-SARS-CoV-2 IgG n = 330) and nAAbs (anti-citrate synthase IgG, IgM n = 1739) were measured by in-house and commercial ELISAs using Croatian (Osijek) anonymous samples with documented vaccination backgrounds. The results were subsequently compared for statistical evaluation. Interestingly, the IgM isotype nAAb showed a statistically significant connection with anti-MMR IgG seropositivity (p < 0.001 in all cases), while IgG isotype nAAb levels were elevated in association with anti-SARS CoV-2 specific seropositivity (p = 0.019) and in heterogeneous vaccine regimen recipients (unvaccinated controls vector/mRNA vaccines p = 0.002). Increasing evidence supports the interplay between immune activation and the dynamic expansion of nAAbs. Consequently, further questions may emerge regarding the ability of nAAbs silently shaping the effectiveness of immunization. We suggest re-evaluating the impact of nAAbs on the complex functioning of the immunological network.
Collapse
Affiliation(s)
- David Szinger
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary; (D.S.)
| | - Timea Berki
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary; (D.S.)
| | - Péter Németh
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary; (D.S.)
| | - Szabina Erdo-Bonyar
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary; (D.S.)
| | - Diana Simon
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary; (D.S.)
| | - Ines Drenjančević
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
- Scientific Centre for Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Senka Samardzic
- Department of Public Health, Teaching Institute of Public Health for The Osijek-Baranja County, 31000 Osijek, Croatia
| | - Marija Zelić
- Department of Public Health, Teaching Institute of Public Health for The Osijek-Baranja County, 31000 Osijek, Croatia
| | - Magdalena Sikora
- Department of Public Health, Teaching Institute of Public Health for The Osijek-Baranja County, 31000 Osijek, Croatia
| | - Arlen Požgain
- Department of Public Health, Teaching Institute of Public Health for The Osijek-Baranja County, 31000 Osijek, Croatia
- Department of Microbiology, Parasitology, and Clinical Laboratory Diagnostics, Medical Faculty of Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Katalin Böröcz
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary; (D.S.)
| |
Collapse
|
7
|
Santos CNO, Caldas GC, de Oliveira FA, da Silva AM, da Silva JS, da Silva RLL, de Jesus AR, Magalhães LS, de Almeida RP. COVID-19 recurrence is related to disease-early profile T cells while detection of anti-S1 IgG is related to multifunctional T cells. Med Microbiol Immunol 2023; 212:339-347. [PMID: 37488347 DOI: 10.1007/s00430-023-00776-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023]
Abstract
COVID-19 is caused by SARS-CoV-2 infection and leads from asymptomatic to severe outcomes. The recurrence of the COVID-19 has been described, however, mechanisms involved remains unclear. Thus, the work aimed to investigate the role of multifunctional T cells in patients with recurrent COVID-19. We evaluated clinical characteristics, presence of anti-S1 and anti-Nucleocapsid IgG in patients' sera, and multifunctional T cells (for IFN-γ, IL-2, and TNF-α) in patients with multiple episodes of COVID-19 and controls. Data demonstrate that patients with recurrent COVID-19 have a T cell pattern predominantly related to IFN-γ production. Also, patients with COVID-19 history and absence of anti-S1 IgG had lower levels of CD4+ IFN + IL-2 + TNF + T cells independently of number of disease episodes. Complementary, vaccination changed the patterns of T cells phenotypes and induced IgG seroconversion, despite not induce higher levels of multifunctional T cells in all patients. In conclusion, the data suggest that recurrent disease is related to early-disease T cell profile and absence of anti-S1 IgG is related to lower multifunctional CD4 T cell response, what suggests possibility of new episodes of COVID-19 in these patients.
Collapse
Affiliation(s)
- Camilla Natália O Santos
- Laboratório de Imunologia e Biologia Molecular, Universidade Federal de Sergipe, Aracaju, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Sergipe, Aracaju, Brazil
| | - Gustavo C Caldas
- Laboratório de Imunologia e Biologia Molecular, Universidade Federal de Sergipe, Aracaju, Brazil
- Departamento de Medicina, Hospital Universitário, Universidade Federal de Sergipe, Aracaju, Brazil
| | - Fabricia A de Oliveira
- Laboratório de Imunologia e Biologia Molecular, Universidade Federal de Sergipe, Aracaju, Brazil
| | - Angela Maria da Silva
- Laboratório de Imunologia e Biologia Molecular, Universidade Federal de Sergipe, Aracaju, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Sergipe, Aracaju, Brazil
- Departamento de Medicina, Hospital Universitário, Universidade Federal de Sergipe, Aracaju, Brazil
| | - João S da Silva
- Plataforma de Medicina Translacional da Fundação Oswaldo Cruz e Faculdade de Medicina de Ribeirão Preto, Ribeirao Preto, Brazil
| | - Ricardo Luís L da Silva
- Laboratório de Imunologia e Biologia Molecular, Universidade Federal de Sergipe, Aracaju, Brazil
- Departamento de Educação em Saúde, Universidade Federal de Sergipe, Lagarto, Brazil
| | - Amélia R de Jesus
- Laboratório de Imunologia e Biologia Molecular, Universidade Federal de Sergipe, Aracaju, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Sergipe, Aracaju, Brazil
- Departamento de Medicina, Hospital Universitário, Universidade Federal de Sergipe, Aracaju, Brazil
- Instituto de Investigação em Imunologia (iii), Instituto Nacional de Ciência e Tecnologia, São Paulo, Brazil
| | - Lucas S Magalhães
- Laboratório de Imunologia e Biologia Molecular, Universidade Federal de Sergipe, Aracaju, Brazil.
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Sergipe, Aracaju, Brazil.
- Setor de Parasitologia e Patologia, Instituto de Ciência Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Brazil.
| | - Roque P de Almeida
- Laboratório de Imunologia e Biologia Molecular, Universidade Federal de Sergipe, Aracaju, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Sergipe, Aracaju, Brazil
- Departamento de Medicina, Hospital Universitário, Universidade Federal de Sergipe, Aracaju, Brazil
- Instituto de Investigação em Imunologia (iii), Instituto Nacional de Ciência e Tecnologia, São Paulo, Brazil
| |
Collapse
|
8
|
García-García A, Fortuny C, Fumadó V, Jordan I, Ruiz-López L, González-Navarro EA, Egri N, Esteve-Solé A, Luo Y, Vlagea A, Cabedo MM, Launes C, Soler A, Codina A, Juan M, Pascal M, Deyà-Martínez A, Alsina L. Acute and long-term immune responses to SARS-CoV-2 infection in unvaccinated children and young adults with inborn errors of immunity. Front Immunol 2023; 14:1084630. [PMID: 36742319 PMCID: PMC9896004 DOI: 10.3389/fimmu.2023.1084630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/03/2023] [Indexed: 01/22/2023] Open
Abstract
Purpose To describe SARS-CoV-2 infection outcome in unvaccinated children and young adults with inborn errors of immunity (IEI) and to compare their specific acute and long-term immune responses with a sex-, age-, and severity-matched healthy population (HC). Methods Unvaccinated IEI patients up to 22 years old infected with SARS-CoV-2 were recruited along with a cohort of HC. SARS-CoV-2 serology and ELISpot were performed in the acute phase of infection (up to 6 weeks) and at 3, 6, 9, and 12 months. Results Twenty-five IEI patients (median age 14.3 years, min.-max. range 4.5-22.8; 15/25 males; syndromic combined immunodeficiencies: 48.0%, antibody deficiencies: 16.0%) and 17 HC (median age 15.3 years, min.-max. range 5.4-20.0; 6/17 males, 35.3%) were included. Pneumonia occurred in 4/25 IEI patients. In the acute phase SARS-CoV-2 specific immunoglobulins were positive in all HC but in only half of IEI in whom it could be measured (n=17/25): IgG+ 58.8% (10/17) (p=0.009); IgM+ 41.2% (7/17)(p<0.001); IgA+ 52.9% (9/17)(p=0.003). Quantitative response (index) was also lower compared with HC: IgG IEI (3.1 ± 4.4) vs. HC (3.5 ± 1.5)(p=0.06); IgM IEI (1.9 ± 2.4) vs. HC (3.9 ± 2.4)(p=0.007); IgA IEI (3.3 ± 4.7) vs. HC (4.6 ± 2.5)(p=0.04). ELISpots positivity was qualitatively lower in IEI vs. HC (S-ELISpot IEI: 3/11, 27.3% vs. HC: 10/11, 90.9%; p=0.008; N-ELISpot IEI: 3/9, 33.3% vs. HC: 11/11, 100%; p=0.002) and also quantitatively lower (S-ELISpot IEI: mean index 3.2 ± 5.0 vs. HC 21.2 ± 17.0; p=0.001; N-ELISpot IEI: mean index 9.3 ± 16.6 vs. HC: 39.1 ± 23.7; p=0.004). As for long term response, SARS-CoV-2-IgM+ at 6 months was qualitatively lower in IEI(3/8, 37.5% vs. 9/10 HC: 90.0%; p=0.043), and quantitatively lower in all serologies IgG, M, and A (IEI n=9, 1.1 ± 0.9 vs. HC n=10, 2.1 ± 0.9, p=0.03; IEI n=9, 1.3 ± 1.5 vs. HC n=10, 2.9 ± 2.8, p=0.02; and IEI n=9, 0.6 ± 0.5 vs. HC n=10, 1.7 ± 0.8, p=0.002 -respectively) but there were no differences at remaining time points. Conclusions Our IEI pediatric cohort had a higher COVID-19 pneumonia rate than the general age-range population, with lower humoral and cellular responses in the acute phase (even lower compared to the reported IEI serological response after SARS-CoV-2 vaccination), and weaker humoral responses at 6 months after infection compared with HC.
Collapse
Affiliation(s)
- Ana García-García
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Department of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- Clinical Immunology Program, Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
| | - Claudia Fortuny
- Department of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- Paediatric Infectious Diseases Unit, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- CIBER of Epidemiology and Public Health, Madrid, Spain
- Translational Research Network in Paediatric Infectious Diseases (RITIP), Madrid, Spain
| | - Victoria Fumadó
- Department of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- Paediatric Infectious Diseases Unit, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- CIBER of Epidemiology and Public Health, Madrid, Spain
- Translational Research Network in Paediatric Infectious Diseases (RITIP), Madrid, Spain
| | - Iolanda Jordan
- Department of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Translational Research Network in Paediatric Infectious Diseases (RITIP), Madrid, Spain
- Paediatric Intensive Care Unit, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
| | - Laura Ruiz-López
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Program, Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
| | | | - Natalia Egri
- Department of Immunology-CDB, Hospital Clínic-IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Ana Esteve-Solé
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Program, Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
| | - Yiyi Luo
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Program, Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
| | - Alexandru Vlagea
- Clinical Immunology Program, Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
- Department of Immunology-CDB, Hospital Clínic-IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Manel Monsonís Cabedo
- Department of Microbiology, Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Cristian Launes
- Department of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- Paediatrics Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Paediatric Infectious Diseases Research Group, Institut de Recerca Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
| | - Aleix Soler
- Paediatrics Department, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Anna Codina
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Pathology Department and Biobank Department, Hospital Sant Joan de Deu, Esplugues de Llobregat, Barcelona, Spain
| | - Manel Juan
- Clinical Immunology Program, Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
- Department of Immunology-CDB, Hospital Clínic-IDIBAPS, Universitat de Barcelona, Barcelona, Spain
- Immunotherapy Platform, Hospital Sant Joan de Déu-Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Mariona Pascal
- Clinical Immunology Program, Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
- Department of Immunology-CDB, Hospital Clínic-IDIBAPS, Universitat de Barcelona, Barcelona, Spain
- Spanish Network for Allergy - RETIC de Asma, Reacciones Adversas y Alérgicas (ARADYAL), Madrid, Spain
| | - Angela Deyà-Martínez
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Department of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- Clinical Immunology Program, Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
| | - Laia Alsina
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Department of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- Clinical Immunology Program, Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
- Immunotherapy Platform, Hospital Sant Joan de Déu-Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
9
|
Muacevic A, Adler JR. Herd Immunity to Fight Against COVID-19: A Narrative Review. Cureus 2023; 15:e33575. [PMID: 36779140 PMCID: PMC9909126 DOI: 10.7759/cureus.33575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/09/2023] [Indexed: 01/11/2023] Open
Abstract
The advent of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its consequent illness, coronavirus disease 2019 (COVID-19), has revealed the severe impact of new, contagious pathogens on the population throughout the globe. Here, we describe the fundamental notions of herd immunity and discuss their consequences from the perspective of COVID-19, along with the obstacles to acquiring herd immunity. SARS-CoV-2 causes COVID-19, a contagious respiratory infection. It is a major global health issue, with more than 179 million positive cases and 3.8 million deaths globally. It has impacted more than 159 countries; hence, the World Health Organization designated it a pandemic. Different vaccines have been developed against coronavirus to slow the spread of this deadly virus. Immunizing people against coronavirus is the key to getting through this infectious virus. The central concept of this review article is the effect of vaccinating a large population to achieve herd immunity and the reasons for the delay in developing herd immunity. Herd immunity can prove highly beneficial for dealing with reinfection. Moreover, it can reduce the severity of the reinfection in many people who are twice infected with COVID-19. Herd immunity can prevent people in the high-risk group such as immunocompromised individuals; those on immunosuppressants; organ transplant recipients; particular age groups such as neonates, infants, toddlers, and elderly; those with impaired immunity; those with anaphylaxis reactions; and people with chronic diseases. However, due to repeated mutations of the virus, it is evolving into new strains with more severity. Its consequences on the immune system and response to a vaccine are still a big challenge to overcome. How new variants of COVID-19 impacted herd immunity needs to be investigated. The duration required for the development of herd immunity and how long it would last is still under research, along with the number of doses needed, booster doses, and the proportion of the population to be vaccinated.
Collapse
|
10
|
McGowan J, Borucki M, Omairi H, Varghese M, Vellani S, Chakravarty S, Fan S, Chattopadhyay S, Siddiquee M, Thissen JB, Mulakken N, Moon J, Kimbrel J, Tiwari AK, Taylor RT, Kang DW, Jaing C, Chakravarti R, Chattopadhyay S. SARS-CoV-2 Monitoring in Wastewater Reveals Novel Variants and Biomarkers of Infection. Viruses 2022; 14:2032. [PMID: 36146835 PMCID: PMC9503862 DOI: 10.3390/v14092032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 12/02/2022] Open
Abstract
Wastewater-based epidemiology (WBE) is a popular tool for the early indication of community spread of infectious diseases. WBE emerged as an effective tool during the COVID-19 pandemic and has provided meaningful information to minimize the spread of infection. Here, we present a combination of analyses using the correlation of viral gene copies with clinical cases, sequencing of wastewater-derived RNA for the viral mutants, and correlative analyses of the viral gene copies with the bacterial biomarkers. Our study provides a unique platform for potentially using the WBE-derived results to predict the spread of COVID-19 and the emergence of new variants of concern. Further, we observed a strong correlation between the presence of SARS-CoV-2 and changes in the microbial community of wastewater, particularly the significant changes in bacterial genera belonging to the families of Lachnospiraceae and Actinomycetaceae. Our study shows that microbial biomarkers could be utilized as prediction tools for future infectious disease surveillance and outbreak responses. Overall, our comprehensive analyses of viral spread, variants, and novel bacterial biomarkers will add significantly to the growing body of literature on WBE and COVID-19.
Collapse
Affiliation(s)
- Jenna McGowan
- Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Monica Borucki
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Hicham Omairi
- Department of Civil and Environmental Engineering, University of Toledo College of Engineering, Toledo, OH 43607, USA
| | - Merina Varghese
- Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Shahnaz Vellani
- Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Sukanya Chakravarty
- Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Shumin Fan
- Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Srestha Chattopadhyay
- College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Mashuk Siddiquee
- Department of Civil and Environmental Engineering, University of Toledo College of Engineering, Toledo, OH 43607, USA
| | - James B. Thissen
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Nisha Mulakken
- Computing Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Joseph Moon
- Computing Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Jeffrey Kimbrel
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Amit K. Tiwari
- College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43606, USA
- Center for Medical Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Roger Travis Taylor
- Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Dae-Wook Kang
- Department of Civil and Environmental Engineering, University of Toledo College of Engineering, Toledo, OH 43607, USA
| | - Crystal Jaing
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Ritu Chakravarti
- Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Saurabh Chattopadhyay
- Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| |
Collapse
|
11
|
Seid AG, Yirko T, Sayeed S, Plipat N. Infection with SARS-CoV-2 Omicron Variant 24 Days after Non-Omicron Infection, Pennsylvania, USA. Emerg Infect Dis 2022; 28:1911-1913. [PMID: 35914519 PMCID: PMC9423919 DOI: 10.3201/eid2809.220539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A 42-year-old man, with up-to-date COVID-19 vaccination, experienced symptomatic SARS-CoV-2 infection in December 2021. Mutation tests suggested a non-Omicron variant. After his recovery, and 24 days after the first positive SARS-CoV-2 test, he had onset of symptomatic infection with the BA.1.1 (Omicron) variant, which was confirmed by whole-genome sequencing.
Collapse
|