1
|
Zheng Q, Deng S, Chen X, Wang Y, Yang Y. Macrophage inhibition in the alleviation of nonalcoholic steatohepatitis caused by bariatric surgery. Genes Immun 2025:10.1038/s41435-025-00334-6. [PMID: 40374920 DOI: 10.1038/s41435-025-00334-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 04/21/2025] [Accepted: 05/02/2025] [Indexed: 05/18/2025]
Abstract
The incidence of nonalcoholic steatohepatitis (NASH) is increasing worldwide, and effective treatment is urgently needed. To understand the molecular mechanisms behind the effectiveness of bariatric surgery in treating NASH, we integrated single-cell and bulk RNA sequencing data to identify the role of liver macrophage polarization in alleviating NASH and screen possible drugs for treatment. Analysis revealed that bariatric surgery alleviates NASH by inhibiting liver M1 macrophage polarization with 12 differentially expressed M1 macrophage-related genes. Additionally, 56 potentially effective drugs were predicted for NASH treatment. These findings shed light on the effectiveness of bariatric surgery in treating NASH and offer potential drug candidates for further exploration.
Collapse
Affiliation(s)
- Qianwen Zheng
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Shizhou Deng
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xiyu Chen
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yayun Wang
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Yanling Yang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
2
|
Li Y, Cao Z, Lu Y, Lei C, Lyu W. Knowledge landscape of macrophage research in liver fibrosis: a bibliometric review of the literature from WoSCC. Front Pharmacol 2025; 16:1571879. [PMID: 40406489 PMCID: PMC12094998 DOI: 10.3389/fphar.2025.1571879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 04/16/2025] [Indexed: 05/26/2025] Open
Abstract
Recent insights into the immune response in fibrosis have provided valuable perspectives for the treatment of liver fibrosis. Macrophages, as the most abundant immune cells in the liver, are key drivers of liver fibrosis. They are extensively involved in tissue damage, chronic inflammation, and the progression and regression of liver fibrosis. This study aims to conduct a bibliometric analysis and literature review on the mechanisms by which macrophages contribute to liver fibrosis. Specifically, we analyzed a bibliometric dataset comprising 1,312 papers from 59 countries, 1,872 institutions, and 9,784 authors. Keyword co-occurrence analysis identified key research hotspots, including the role of macrophage subtypes in obesity-related metabolic disorders, the crosstalk between macrophages and hepatic stellate cells through mechanoimmunology, emerging strategies for immune modulation targeting macrophages to promote fibrosis regression and liver regeneration, and new discoveries regarding macrophage crosstalk with other immune cells. In conclusion, this study provides a visual analysis of the current research landscape, hotspots, and trends in the field of macrophages and liver fibrosis, and discusses future directions for further exploration in this area.
Collapse
Affiliation(s)
- Yanbo Li
- Department of Infectious Diseases, Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| | - Zhengmin Cao
- Department of Infectious Diseases, Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| | - Yanping Lu
- Shenzhen Bao’an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Chao Lei
- Department of Infectious Diseases, Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| | - Wenliang Lyu
- Department of Infectious Diseases, Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Liu W, Sun M, Zhang H, Wang WT, Song J, Wang MY, Wang CM, Sun HM. Targeting regulation of lipid metabolism with polysaccharide of traditional Chinese medicine for the treatment of non-alcoholic fatty liver disease: A review. Int J Biol Macromol 2025; 306:141660. [PMID: 40032085 DOI: 10.1016/j.ijbiomac.2025.141660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/04/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become one of the most common chronic diseases in the world, and the effective treatment of NAFLD has been listed as a key problem to be solved urgently in contemporary medicine. Polysaccharides in traditional Chinese medicine (TCM) have a wide range of pharmacological activities. A large number of preclinical studies have confirmed that TCM polysaccharides can interfere with the occurrence and development of NAFLD at multiple interrelated levels, such as improving lipid metabolism and insulin resistance, regulating oxidative stress, alleviating immune inflammatory response, and regulating intestinal microbiota, thus showing great potential as a new anti-NAFLD drug. This paper summarizes the prevention and treatment effect and mechanism of TCM polysaccharides on NAFLD, which provides a basis for the application of TCM polysaccharides in plant medicine and modern medicines, and provides a reference for promoting the development and utilization of TCM polysaccharide resources and the research and development of new drugs for NAFLD.
Collapse
Affiliation(s)
- Wei Liu
- College of Pharmacy, Beihua University, Jilin 132013, China.
| | - Meng Sun
- College of Pharmacy, Beihua University, Jilin 132013, China
| | - Hao Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Wen-Ting Wang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Jian Song
- College of Pharmacy, Beihua University, Jilin 132013, China
| | - Meng-Yang Wang
- College of Pharmacy, Beihua University, Jilin 132013, China
| | - Chun-Mei Wang
- College of Pharmacy, Beihua University, Jilin 132013, China.
| | - Hai-Ming Sun
- College of Pharmacy, Beihua University, Jilin 132013, China.
| |
Collapse
|
4
|
Tan W, Deng J, Qi L, Tan Z. The role of hepatic sinusoidal microenvironment in NASH: pathogenesis, animal models, and therapeutic prospects. Front Pharmacol 2025; 16:1467950. [PMID: 40356963 PMCID: PMC12066276 DOI: 10.3389/fphar.2025.1467950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 03/28/2025] [Indexed: 05/15/2025] Open
Abstract
The incidence of nonalcoholic steatohepatitis (NASH) is increasing annually, posing a significant threat to human health. NASH is typified by hepatic steatosis, inflammation, and hepatocellular injury, frequently culminating in fibrosis and cirrhosis. Yet, the precise pathogenesis of NASH remains to be fully elucidated. The hepatic sinusoid, which serves as the fundamental structural and functional unit of the liver, is intricately composed of endothelial cells, Kupffer cells, and hepatic stellate cells. Consequently, the homeostasis of the hepatic sinusoidal microenvironment may exert a pivotal influence on the progression and prognosis of NASH. However, the limitations of current NASH animal models have significantly impeded advancements in understanding the disease's pathogenesis and the development of effective therapeutic interventions. In light of these challenges, this review endeavors to delve deeper into the critical role of hepatic sinusoidal microenvironment homeostasis in the pathogenesis of NASH, critically analyze the commonly employed animal models, and comprehensively summarize the most recent and promising developments in drug research and development. It is anticipated that these efforts will collectively expedite the advancement of the field of NASH research and therapeutic innovation.
Collapse
Affiliation(s)
- Wanying Tan
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jiangting Deng
- Sichuan Academy of Chinese Medicine Sciences, Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Chengdu, Sichuan, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Lingjun Qi
- Affiliated Sichuan Gem Flower Hospital of North Sichuan Medical College, Chengdu, Sichuan, China
| | - Zhenghuai Tan
- Sichuan Academy of Chinese Medicine Sciences, Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Zuo R, Wang M, Wang YT, ShenTu Y, Moura AK, Zhou Y, Roudbari K, Hu JZ, Li PL, Hao J, Li X, Zhang Y. Ablation of Hepatic Asah1 Gene Disrupts Hepatic Lipid Homeostasis and Promotes Fibrotic Nonalcoholic Steatohepatitis in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:542-560. [PMID: 39719015 PMCID: PMC11983695 DOI: 10.1016/j.ajpath.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/14/2024] [Accepted: 11/06/2024] [Indexed: 12/26/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) encompasses a spectrum of chronic liver conditions, ranging from simple steatosis to nonalcoholic steatohepatitis, which may progress to fibrosis/cirrhosis. Here, the GSE163211 data set was analyzed, and Asah1 (encoding acid ceramidase) was identified as a crucial lysosomal gene that positively correlated with NAFLD stages in obese patients. To evaluate the role of Asah1 in the progression of NAFLD, Asah1fl/fl/Albcre mice (hepatocyte-specific deletion of Asah1) and Asah1 floxed (Asah1fl/fl/wild-type) mice were fed with either a normal diet or a high-fat, high-cholesterol paigen diet (PD) for 20 weeks. Hepatocyte-specific Asah1 ablation markedly aggravated PD-induced hepatic steatosis, hepatitis, and apoptosis, and resulted in marked fibrotic changes. In addition, Asah1 gene ablation exacerbated PD-induced portal venous hemodynamic abnormality. In cultured hepatocytes, Asah1 gene knockdown resulted in increased ceramide and cholesterol levels but did not affect triglyceride level. Knocking down Asah1 gene also exhibited broad impacts on lipid homeostasis pathways, including lipogenesis, fatty acid uptake, fatty acid oxidation, and lipid transport. Furthermore, Asah1 knockdown resulted in increased endoplasmic reticulum stress and lipid droplet biogenesis. Finally, Asah1 gene knockdown impaired chaperone-mediated autophagy. These results suggest that Asah1 functions as an important regulator of hepatic lipid homeostasis, and its deficiency exacerbates hepatocyte lipotoxicity and injury, and promotes the development of fibrotic nonalcoholic steatohepatitis.
Collapse
Affiliation(s)
- Rui Zuo
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Mi Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas; Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun-Ting Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - YangPing ShenTu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas; Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Alexandra K Moura
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Ying Zhou
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas; Department Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kiana Roudbari
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Jenny Z Hu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - JiuKuan Hao
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Xiang Li
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Yang Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas.
| |
Collapse
|
6
|
Ma S, Xia E, Zhang M, Hu Y, Tian S, Zheng X, Li B, Ma G, Su R, Sun K, Fan Q, Yang F, Guo G, Guo C, Shang Y, Zhou X, Zhou X, Wang J, Han Y. Role of the FOXM1/CMA/ER stress axis in regulating the progression of nonalcoholic steatohepatitis. Clin Transl Med 2025; 15:e70202. [PMID: 39924645 PMCID: PMC11807764 DOI: 10.1002/ctm2.70202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 01/09/2025] [Accepted: 01/16/2025] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND/AIMS The molecular mechanisms driving nonalcoholic steatohepatitis (NASH) progression are poorly understood. This research examines the involvement of chaperone-mediated autophagy (CMA) in NASH progression. METHODS Hepatic CMA activity was analysed in NASH mice and patients. Lysosome-associated membrane protein 2A (LAMP2A) was knocked down or overexpressed to assess the effects of hepatocyte-specific CMA on NASH progression. Mice received a high-fat diet or a methionine and choline-deficient diet to induce NASH. Palmitic acid was employed to mimic lipotoxicity-induced hepatocyte damage in vitro. The promoter activity of FOXM1 was evaluated via ChIP and dual-luciferase reporter assays. RESULTS Hepatic CMA activity was substantially low in NASH mice and patients. LAMP2A knockdown resulted in hepatocyte-specific CMA deficiency, which promoted fibrosis and hepatic inflammation in NASH mice. Both in vitro and in vivo, CMA deficiency also exacerbated hepatocyte damage and endoplasmic reticulum (ER) stress. Mechanistically, CMA deficiency in hepatocytes increased cholesterol accumulation by blocking the degradation of 3-hydroxy-3-methylglutaryl coenzyme A (HMGCR), a key cholesterol synthesis-related enzyme, and the accumulated cholesterol subsequently induced ER stress and hepatocyte damage. The restoration of hepatocyte-specific CMA activity effectively ameliorated diet-induced NASH and ER stress in vivo and in vitro. FOXM1 directly bound to LAMP2A promoter and negatively regulated its transcription. The upregulation of FOXM1 expression impaired CMA and enhanced ER stress, which in turn increased FOXM1 expression, resulting in a vicious cycle and promoting NASH development. CONCLUSIONS This study highlights the significance of the FOXM1/CMA/ER stress axis in NASH progression and proposes novel therapeutic targets for NASH. KEY POINTS Chaperone-mediated autophagy (CMA) deficiency in hepatocytes promotes hepatic inflammation and fibrosis in mice with nonalcoholic steatohepatitis (NASH) by inducing cholesterol accumulation and endoplasmic reticulum (ER) stress. Upregulated FOXM1 impairs CMA by suppressing the transcription of lysosome-associated membrane protein 2A (LAMP2A), a rate-limiting component of CMA. ER stress increases FOXM1 expression and cholesterol accumulation. FOXM1/CMA/ER stress axis forms a vicious circle and promotes the development of NASH.
Collapse
Affiliation(s)
- Shuoyi Ma
- State Key Laboratory of Cancer BiologyXijing Hospital of Digestive Diseases, The Fourth Military Medical UniversityXi'anChina
| | - Erzhuo Xia
- State Key Laboratory of Cancer BiologyXijing Hospital of Digestive Diseases, The Fourth Military Medical UniversityXi'anChina
| | - Miao Zhang
- State Key Laboratory of Cancer BiologyXijing Hospital of Digestive Diseases, The Fourth Military Medical UniversityXi'anChina
| | - Yinan Hu
- State Key Laboratory of Cancer BiologyXijing Hospital of Digestive Diseases, The Fourth Military Medical UniversityXi'anChina
| | - Siyuan Tian
- State Key Laboratory of Cancer BiologyXijing Hospital of Digestive Diseases, The Fourth Military Medical UniversityXi'anChina
| | - Xiaohong Zheng
- State Key Laboratory of Cancer BiologyXijing Hospital of Digestive Diseases, The Fourth Military Medical UniversityXi'anChina
| | - Bo Li
- State Key Laboratory of Cancer BiologyXijing Hospital of Digestive Diseases, The Fourth Military Medical UniversityXi'anChina
| | - Gang Ma
- State Key Laboratory of Cancer BiologyXijing Hospital of Digestive Diseases, The Fourth Military Medical UniversityXi'anChina
| | - Rui Su
- State Key Laboratory of Cancer BiologyXijing Hospital of Digestive Diseases, The Fourth Military Medical UniversityXi'anChina
| | - Keshuai Sun
- Department of GastroenterologyThe Air Force Hospital From Eastern Theater of PLANanjingChina
| | - Qingling Fan
- State Key Laboratory of Cancer BiologyXijing Hospital of Digestive Diseases, The Fourth Military Medical UniversityXi'anChina
| | - Fangfang Yang
- State Key Laboratory of Cancer BiologyXijing Hospital of Digestive Diseases, The Fourth Military Medical UniversityXi'anChina
| | - Guanya Guo
- State Key Laboratory of Cancer BiologyXijing Hospital of Digestive Diseases, The Fourth Military Medical UniversityXi'anChina
| | - Changcun Guo
- State Key Laboratory of Cancer BiologyXijing Hospital of Digestive Diseases, The Fourth Military Medical UniversityXi'anChina
| | - Yulong Shang
- State Key Laboratory of Cancer BiologyXijing Hospital of Digestive Diseases, The Fourth Military Medical UniversityXi'anChina
| | - Xinmin Zhou
- State Key Laboratory of Cancer BiologyXijing Hospital of Digestive Diseases, The Fourth Military Medical UniversityXi'anChina
| | - Xia Zhou
- State Key Laboratory of Cancer BiologyXijing Hospital of Digestive Diseases, The Fourth Military Medical UniversityXi'anChina
| | - Jingbo Wang
- Science and Technology Innovation Research InstituteTangdu Hospital, The Fourth Military Medical UniversityXi'anChina
| | - Ying Han
- State Key Laboratory of Cancer BiologyXijing Hospital of Digestive Diseases, The Fourth Military Medical UniversityXi'anChina
| |
Collapse
|
7
|
Xu Y, Hillman H, Chang M, Ivanov S, Williams JW. Identification of conserved and tissue-restricted transcriptional profiles for lipid associated macrophages (LAMs). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614807. [PMID: 39386558 PMCID: PMC11463620 DOI: 10.1101/2024.09.24.614807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Macrophages are essential immune cells present in all tissues, and are vital for maintaining tissue homeostasis, immune surveillance, and immune responses. Considerable efforts have identified shared and tissue-specific gene programs for macrophages across organs during homeostasis. This information has dramatically enhanced our understanding of tissue-restricted macrophage programming and function. However, few studies have addressed the overlapping and tissue-specific responses of macrophage subsets following inflammatory responses. One subset of macrophages that has been observed across several studies, lipid-associated macrophages (LAMs), have gained interest due to their unique role in lipid metabolism and potential as a therapeutic target. LAMs have been associated with regulating disease outcomes in metabolically related disorders including atherosclerosis, obesity, and nonalcoholic fatty liver disease (NAFLD). In this study, we utilized single-cell RNA sequencing (scRNAseq) data to profile LAMs across multiple tissues and sterile inflammatory conditions in mice and humans. Integration of data from various disease models revealed that LAMs share a set of conserved transcriptional profiles, including Trem2 and Lpl, but also identified key sets of tissue-specific LAM gene programs. Importantly, the shared LAM markers were highly conserved with human LAM populations that also emerge in chronic inflammatory settings. Overall, this analysis provides a detailed transcriptional landscape of tissue-restricted and shared LAM gene programs and offers insights into their roles in metabolic and chronic inflammatory diseases. These data may help instruct appropriate targets for broad or tissue-restricted therapeutic interventions to modulate LAM populations in disease.
Collapse
Affiliation(s)
- Yingzheng Xu
- Center for Immunology, University of Minnesota, Minneapolis, MN USA
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN USA
| | - Hannah Hillman
- Center for Immunology, University of Minnesota, Minneapolis, MN USA
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN USA
| | - Michael Chang
- Center for Immunology, University of Minnesota, Minneapolis, MN USA
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN USA
| | | | - Jesse W. Williams
- Center for Immunology, University of Minnesota, Minneapolis, MN USA
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN USA
| |
Collapse
|
8
|
Monti F, Perazza F, Leoni L, Stefanini B, Ferri S, Tovoli F, Zavatta G, Piscaglia F, Petroni ML, Ravaioli F. RANK-RANKL-OPG Axis in MASLD: Current Evidence Linking Bone and Liver Diseases and Future Perspectives. Int J Mol Sci 2024; 25:9193. [PMID: 39273141 PMCID: PMC11395242 DOI: 10.3390/ijms25179193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD)-and its worse form, metabolic-associated steatohepatitis (MASH), characterised by inflammation and liver damage-corresponds to the liver's involvement in metabolic syndrome, which constitutes an economic burden for healthcare systems. However, the biomolecular pathways that contribute to steatotic liver disease are not completely clear. Abnormalities of bone metabolism are frequent in people affected by metabolic liver disease, with reduced bone density and an increased risk of fracture. Receptor activator of NF-κB (RANK), receptor activator of NF-κB ligand (RANKL), and osteoprotegerin(OPG) are critical regulators of bone metabolism, performing pleiotropic effects, and may have potential involvement in metabolic disorders like MASLD, resulting in a topic of great interest and intrigue. This narrative review aims to investigate this potential role and its implications in MASLD development and progression and in hepatocellular carcinoma, which represents its worst complication.
Collapse
Affiliation(s)
- Federico Monti
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.M.); (F.P.); (B.S.); (F.T.); (G.Z.); (F.P.); (M.L.P.)
| | - Federica Perazza
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.M.); (F.P.); (B.S.); (F.T.); (G.Z.); (F.P.); (M.L.P.)
| | - Laura Leoni
- Department of Dietetics and Clinical Nutrition, Maggiore-Bellaria Hospital, Azienda Unità Sanitaria Locale (AUSL), 40138 Bologna, Italy;
| | - Bernardo Stefanini
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.M.); (F.P.); (B.S.); (F.T.); (G.Z.); (F.P.); (M.L.P.)
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Silvia Ferri
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Francesco Tovoli
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.M.); (F.P.); (B.S.); (F.T.); (G.Z.); (F.P.); (M.L.P.)
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Guido Zavatta
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.M.); (F.P.); (B.S.); (F.T.); (G.Z.); (F.P.); (M.L.P.)
- Division of Endocrinology and Diabetes Prevention and Care, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Fabio Piscaglia
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.M.); (F.P.); (B.S.); (F.T.); (G.Z.); (F.P.); (M.L.P.)
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Maria Letizia Petroni
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.M.); (F.P.); (B.S.); (F.T.); (G.Z.); (F.P.); (M.L.P.)
- Unit of Clinical Nutrition and Metabolism, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Federico Ravaioli
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.M.); (F.P.); (B.S.); (F.T.); (G.Z.); (F.P.); (M.L.P.)
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| |
Collapse
|
9
|
Zhang J, Wang Y, Fan M, Guan Y, Zhang W, Huang F, Zhang Z, Li X, Yuan B, Liu W, Geng M, Li X, Xu J, Jiang C, Zhao W, Ye F, Zhu W, Meng L, Lu S, Holmdahl R. Reactive oxygen species regulation by NCF1 governs ferroptosis susceptibility of Kupffer cells to MASH. Cell Metab 2024; 36:1745-1763.e6. [PMID: 38851189 DOI: 10.1016/j.cmet.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 11/17/2023] [Accepted: 05/13/2024] [Indexed: 06/10/2024]
Abstract
Impaired self-renewal of Kupffer cells (KCs) leads to inflammation in metabolic dysfunction-associated steatohepatitis (MASH). Here, we identify neutrophil cytosolic factor 1 (NCF1) as a critical regulator of iron homeostasis in KCs. NCF1 is upregulated in liver macrophages and dendritic cells in humans with metabolic dysfunction-associated steatotic liver disease and in MASH mice. Macrophage NCF1, but not dendritic cell NCF1, triggers KC iron overload, ferroptosis, and monocyte-derived macrophage infiltration, thus aggravating MASH progression. Mechanistically, elevated oxidized phospholipids induced by macrophage NCF1 promote Toll-like receptor (TLR4)-dependent hepatocyte hepcidin production, leading to increased KC iron deposition and subsequent KC ferroptosis. Importantly, the human low-functional polymorphic variant NCF190H alleviates KC ferroptosis and MASH in mice. In conclusion, macrophage NCF1 impairs iron homeostasis in KCs by oxidizing phospholipids, triggering hepatocyte hepcidin release and KC ferroptosis in MASH, highlighting NCF1 as a therapeutic target for improving KC fate and limiting MASH progression.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Infectious Diseases and National-Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China; Institute of Molecular and Translational Medicine and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China
| | - Yu Wang
- Institute of Molecular and Translational Medicine and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China
| | - Meiyang Fan
- Institute of Molecular and Translational Medicine and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China
| | - Yanglong Guan
- Institute of Molecular and Translational Medicine and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China
| | - Wentao Zhang
- Institute of Molecular and Translational Medicine and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China
| | - Fumeng Huang
- Institute of Molecular and Translational Medicine and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China
| | - Zhengqiang Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Xiaomeng Li
- Institute of Molecular and Translational Medicine and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China
| | - Bingyu Yuan
- Institute of Molecular and Translational Medicine and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China
| | - Wenbin Liu
- Institute of Molecular and Translational Medicine and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China
| | - Manman Geng
- Department of Infectious Diseases and National-Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Xiaowei Li
- Department of Infectious Diseases and National-Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Jing Xu
- Institute of Molecular and Translational Medicine and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China
| | - Congshan Jiang
- Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Xi'an 710003, Shaanxi, China
| | - Wenjuan Zhao
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Feng Ye
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Wenhua Zhu
- Institute of Molecular and Translational Medicine and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China.
| | - Liesu Meng
- Department of Infectious Diseases and National-Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China; Institute of Molecular and Translational Medicine and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China.
| | - Shemin Lu
- Institute of Molecular and Translational Medicine and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Rikard Holmdahl
- Department of Infectious Diseases and National-Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China; Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China; Medical Inflammation Research Group, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
10
|
Keingeski MB, Longo L, Brum da Silva Nunes V, Figueiró F, Dallemole DR, Pohlmann AR, Vier Schmitz TM, da Costa Lopez PL, Álvares-da-Silva MR, Uribe-Cruz C. Extracellular Vesicles and Their Correlation with Inflammatory Factors in an Experimental Model of Steatotic Liver Disease Associated with Metabolic Dysfunction. Metab Syndr Relat Disord 2024; 22:394-401. [PMID: 38498801 DOI: 10.1089/met.2023.0284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024] Open
Abstract
Background/Aims: Extracellular vesicles (EVs) are promising as a biomarker of metabolic dysfunction associated steatotic liver disease (MASLD). The objective is to study EVs and their involvement in MASLD concerning the disease's pathogenesis and progression characteristics. Methods: Male adult Sprague Dawley rats were randomly assigned into two experimental models of MASLD: MASLD-16 and MASLD-28, animals received a choline-deficient high-fat diet (CHFD) and Control-16 and Control-28, animals received a standard diet (SD) for 16 and 28 weeks, respectively. Biological samples from these animal models were used, as well as previously registered variables. EVs from hepatic tissue were characterized using confocal microscopy. EVs were isolated through differential ultracentrifugation from serum and characterized using NanoSight. The data from the EVs were correlated with biochemical, molecular, and histopathological parameters. Results: Liver EVs were identified through the flotillin-1 protein. EVs were isolated from the serum of all groups. There was a decrease of EVs concentration in MASLD-28 in comparison with Control-28 (P < 0.001) and a significant increase in EVs concentration in Control-28 compared with Control-16 (P < 0.001). There was a strong correlation between serum EVs concentration with hepatic gene expression of interleukin (Il)6 (r2 = 0.685, P < 0.05), Il1b (r2 = 0.697, P < 0.05) and tumor necrosis factor-alpha (Tnfa; r2 = 0.636, P < 0.05) in MASLD-16. Moreover, there was a strong correlation between serum EVs size and Il10 in MASLD-28 (r2 = 0.762, P < 0.05). Conclusion: The concentration and size of EVs correlated with inflammatory markers, suggesting their involvement in the systemic circulation, cellular communication, and development and progression of MASLD, demonstrating that EVs have the potential to serve as noninvasive biomarkers for MASLD diagnosis and prognosis.
Collapse
Affiliation(s)
- Melina Belén Keingeski
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Larisse Longo
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Vitória Brum da Silva Nunes
- Laboratory of Cancer Immunobiochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Fabrício Figueiró
- Laboratory of Cancer Immunobiochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Danieli Rosane Dallemole
- Graduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Adriana Raffin Pohlmann
- Graduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Thalia Michele Vier Schmitz
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Patrícia Luciana da Costa Lopez
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Mário Reis Álvares-da-Silva
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Division of Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brasília, Brazil
| | - Carolina Uribe-Cruz
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Departamento de Investigación de la Facultad de Ciencias de la Salud, (UCAMI) Universidad Católica de las Misiones, Posadas, Argentina
| |
Collapse
|
11
|
Nair DG, Weiskirchen R. Recent Advances in Liver Tissue Engineering as an Alternative and Complementary Approach for Liver Transplantation. Curr Issues Mol Biol 2023; 46:262-278. [PMID: 38248320 PMCID: PMC10814863 DOI: 10.3390/cimb46010018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Acute and chronic liver diseases cause significant morbidity and mortality worldwide, affecting millions of people. Liver transplantation is the primary intervention method, replacing a non-functional liver with a functional one. However, the field of liver transplantation faces challenges such as donor shortage, postoperative complications, immune rejection, and ethical problems. Consequently, there is an urgent need for alternative therapies that can complement traditional transplantation or serve as an alternative method. In this review, we explore the potential of liver tissue engineering as a supplementary approach to liver transplantation, offering benefits to patients with severe liver dysfunctions.
Collapse
Affiliation(s)
- Dileep G. Nair
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, D-52074 Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, D-52074 Aachen, Germany
| |
Collapse
|