1
|
Yan X, Yang Z, Cao X, Liang L, Duan Y, Zhang P, Feng Y, Wen T, Luo S, Jia L, Sun J, Han H. Targeting endothelial MYC using siRNA or miR-218 nanoparticles sensitizes chemo- and immuno-therapies by recapitulating the Notch activation-induced tumor vessel normalization. Theranostics 2025; 15:5381-5401. [PMID: 40303332 PMCID: PMC12036866 DOI: 10.7150/thno.112023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/04/2025] [Indexed: 05/02/2025] Open
Abstract
Background: The chaotic, over-activated tumor vasculature promotes tumor growth and erodes most current therapies. Although Notch activation critically regulates angiogenesis, the broad roles of Notch has dampened its druggability. Methods: Gene-modified mice with a Cdh5-CreERT transgene were employed to activate/block Notch signaling in endothelial cells (ECs). Multiple transcriptome analyses were conducted to compare gene expression profiles. qRT-PCR and western blotting were used to determine gene expression level. Immunofluorescence and flow cytometry were used to observe morphological alterations and immune microenvironment in tumors. Nanoparticles (PEI-PEG-cRGD) were used to deliver siRNA into tumor ECs (TECs) in vivo. Results: Genetic Notch activation or blockade in TECs normalizes or deteriorates tumor vessels, respectively. Single-cell RNA sequencing showed that Notch activation selectively reduced the proliferating TEC subset, which accounted for about 30% of TECs and gave rise to other TEC subsets. Notch activation or blockade downregulated or upregulated MYC, respectively. MYC overexpression canceled Notch activation-induced proliferation arrest of TECs in vitro, and a MYC inhibitor normalized tumor vessels in RBPj deficient mice, suggesting that MYC is the authentic Notch target in normalizing tumor vessels. Nanoparticles encapsulated with MYC siRNA (EC-siMYC) or miR-218 (EC-miR-218), a Notch-downstream miRNA suppressing MYC, were able to mitigate Notch inhibition-induced tumor vessel defects. Combination of cisplatin with MYC blockade exhibited improved therapeutic effects. Moreover, MYC blockade promoted T cell infiltration and enhanced anti-PD1 immunotherapy. Conclusions: Together, our data have demonstrated that Notch activation normalizes tumor vessels by repressing the proliferating TEC subset via MYC, and targeting endothelial MYC using nanoparticles bearing siRNA or miRNA is an efficient strategy for tumor anti-angiogenic therapy.
Collapse
Affiliation(s)
- Xianchun Yan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Ziyan Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Xiuli Cao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
- Department of Medical Genetic and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Liang Liang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Yanyan Duan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Peiran Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Yixuan Feng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Ting Wen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Shanqiang Luo
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Lintao Jia
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Jiaxing Sun
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Hua Han
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
2
|
Guo X, Nie F, Jiang H, Che S, Liao HB, Xu J, Guo Y. A bioactive polysaccharide derived from Rosa laevigata fruits: Structural properties, antitumor efficacy, and potential mechanisms. Int J Biol Macromol 2025; 304:140382. [PMID: 39880253 DOI: 10.1016/j.ijbiomac.2025.140382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 01/15/2025] [Accepted: 01/25/2025] [Indexed: 01/31/2025]
Abstract
A heteropolysaccharide, designated JYP70-1, was extracted and purified from the fruits of Rosa laevigata, exhibiting a molecular weight of 1.90 × 104 g/mol. Structural analysis revealed that JYP70-1 was composed of eleven sugar residues, including α-l-Araf-(1→, →3)-α-l-Araf-(1→, →5)-α-l-Araf-(1→, →3,5)-α-l-Araf-(1→, →2,5)-α-l-Araf-(1→, →4)-α-d-Galp-(1→, →6)-β-d-Galp-(1→, →6)-α-d-Glcp-(1→, α-d-Glcp-(1→, →2)-α-d-Manp-(1→, and →3,6)-β-d-Manp-(1→. Following the characterization of the primary structure and conformation of JYP70-1, a series of biological activity assessments were executed, revealing that JYP70-1 significantly inhibited tumor growth and metastasis in a concentration-dependent manner in vivo. Furthermore, a comprehensive array of experiments was strategically designed to elucidate the anti-tumor mechanisms of JYP70-1, focusing on tumor cell migration, angiogenesis, and immune modulation. The identification of the homogeneous polysaccharide JYP70-1 presents a promising candidate for therapeutic applications in oncology.
Collapse
Affiliation(s)
- Xiaoyang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Fan Nie
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Haojing Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Sitong Che
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Hai-Bing Liao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| |
Collapse
|
3
|
Yang S, Fang Y, Ma Y, Wang F, Wang Y, Jia J, Yang Y, Sun W, Zhou Q, Li Z. Angiogenesis and targeted therapy in the tumour microenvironment: From basic to clinical practice. Clin Transl Med 2025; 15:e70313. [PMID: 40268524 PMCID: PMC12017902 DOI: 10.1002/ctm2.70313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 04/02/2025] [Accepted: 04/09/2025] [Indexed: 04/25/2025] Open
Abstract
Angiogenesis, as a core marker of cancer survival and growth, is integral to the processes of tumour growth, invasion and metastasis. In recent years, targeted angiogenesis treatment strategies have gradually become an important direction in cancer treatment. Single-cell sequencing technology can provide new insights into targeted angiogenesis by providing a deeper understanding of the heterogeneity of tumour endothelial cells and exploring the interactions between endothelial cells and surrounding cells in the tumour microenvironment. Here, we systematically review the research progress in endothelial cell pathophysiology and its endothelial‒mesenchymal transition and illustrate the heterogeneity of endothelial cells from a single-cell perspective. Finally, we examine the contributions of different cell types within the tumour microenvironment in relation to tumour angiogenesis, as well as the latest progress and strategies in targeted angiogenesis therapy, hoping to provide useful insights into the clinical application of antiangiogenic treatment. Furthermore, a summary of the present progress in the development of potential angiogenesis inhibitors and the ongoing clinical trials for combination therapies is provided. KEY POINTS: Angiogenesis plays a key role in tumour progression, invasion and metastasis, so strategies targeting angiogenesis are gradually becoming an important direction in cancer therapy. Interactions between endothelial cells and stromal cells and immune cells in the tumour microenvironment are significant in angiogenesis. The application of antiangiogenic immunotherapy and nanotechnology in antiangiogenic therapy provides a vital strategy for prolonging the survival of cancer patients.
Collapse
Affiliation(s)
- Shuaixi Yang
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yingshuai Fang
- The First Clinical School of MedicineZhengzhou UniversityZhengzhouChina
| | - Yangcheng Ma
- Department of OrthopedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Fuqi Wang
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yuhang Wang
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jiachi Jia
- The First Clinical School of MedicineZhengzhou UniversityZhengzhouChina
| | - Yabing Yang
- The First Clinical School of MedicineZhengzhou UniversityZhengzhouChina
| | - Weipeng Sun
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Quanbo Zhou
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Zhen Li
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
4
|
Ballato M, Germanà E, Ricciardi G, Giordano WG, Tralongo P, Buccarelli M, Castellani G, Ricci-Vitiani L, D’Alessandris QG, Giuffrè G, Pizzimenti C, Fiorentino V, Zuccalà V, Ieni A, Caffo M, Fadda G, Martini M. Understanding Neovascularization in Glioblastoma: Insights from the Current Literature. Int J Mol Sci 2025; 26:2763. [PMID: 40141406 PMCID: PMC11943220 DOI: 10.3390/ijms26062763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/15/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
Glioblastomas (GBMs), among the most aggressive and resilient brain tumors, characteristically exhibit high angiogenic potential, leading to the formation of a dense yet aberrant vasculature, both morphologically and functionally. With these premises, numerous expectations were initially placed on anti-angiogenic therapies, soon dashed by their limited efficacy in concretely improving patient outcomes. Neovascularization in GBM soon emerged as a complex, dynamic, and heterogeneous process, hard to manage with the classical standard of care. Growing evidence has revealed the existence of numerous non-canonical strategies of angiogenesis, variously exploited by GBM to meet its ever-increasing metabolic demand and differently involved in tumor progression, recurrence, and escape from treatments. In this review, we provide an accurate description of each neovascularization mode encountered in GBM tumors to date, highlighting the molecular players and signaling cascades primarily involved. We also detail the key architectural and functional aspects characteristic of the GBM vascular compartment because of an intricate crosstalk between the different angiogenic networks. Additionally, we explore the repertoire of emerging therapies against GBM that are currently under study, concluding with a question: faced with such a challenging scenario, could combined therapies, tailored to the patient's genetic signatures, represent an effective game changer?
Collapse
Affiliation(s)
- Mariagiovanna Ballato
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy; (M.B.); (E.G.); (G.R.); (W.G.G.); (P.T.)
| | - Emanuela Germanà
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy; (M.B.); (E.G.); (G.R.); (W.G.G.); (P.T.)
| | - Gabriele Ricciardi
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy; (M.B.); (E.G.); (G.R.); (W.G.G.); (P.T.)
- Istituto Clinico Polispecialistico C.O.T. Cure Ortopediche Traumatologiche s.pa., 98124 Messina, Italy
| | - Walter Giuseppe Giordano
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy; (M.B.); (E.G.); (G.R.); (W.G.G.); (P.T.)
| | - Pietro Tralongo
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy; (M.B.); (E.G.); (G.R.); (W.G.G.); (P.T.)
| | - Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.)
| | - Giorgia Castellani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.)
| | - Lucia Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.)
| | | | - Giuseppe Giuffrè
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.G.); (V.F.); (V.Z.); (A.I.); (G.F.)
| | | | - Vincenzo Fiorentino
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.G.); (V.F.); (V.Z.); (A.I.); (G.F.)
| | - Valeria Zuccalà
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.G.); (V.F.); (V.Z.); (A.I.); (G.F.)
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.G.); (V.F.); (V.Z.); (A.I.); (G.F.)
| | - Maria Caffo
- Biomedical and Dental Sciences and Morphofunctional Imaging, Unit of Neurosurgery, University of Messina, 98122 Messina, Italy;
| | - Guido Fadda
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.G.); (V.F.); (V.Z.); (A.I.); (G.F.)
| | - Maurizio Martini
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.G.); (V.F.); (V.Z.); (A.I.); (G.F.)
| |
Collapse
|
5
|
Cao C, Wang Y, Deng X, Zhao X, Chen Y, Tan W, Deng F, Li F. Exosomes containing miR-152-3p targeting FGFR3 mediate SLC7A7-induced angiogenesis in bladder cancer. NPJ Precis Oncol 2025; 9:71. [PMID: 40075158 PMCID: PMC11903784 DOI: 10.1038/s41698-025-00859-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Bladder cancer (BCa) is a prevalent malignancy with a poor prognosis. SLC7A7 has been linked to BCa progression and angiogenesis, but its specific role remains unclear. We established a SLC7A7-knockdown BCa cell line to investigate its effects on angiogenesis. In vivo experiments assessed tumor vascularization, while in vitro studies explored exosome involvement. MiRNA sequencing identified miR-152-3p as a key regulator. Further investigation using dual-luciferase reporter assays, qRT-PCR, and Western blot revealed that miR-152-3p inhibits the expression of FGFR3 by binding to its 3' UTR. Meanwhile, functional assays, including angiogenesis assays, Transwell assays, and wound healing assays, were performed to evaluate the effects of miR-152-3p on angiogenesis. We confirmed the significant role of SLC7A7 in BCa progression, specifically in promoting angiogenesis, through the involvement of exosomes and the regulatory axis of miR-152-3p/ FGFR3. Targeting FGFR3 might be a promising strategy to reverse control BCa progression for an improved prognosis.
Collapse
Affiliation(s)
- Chun Cao
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yu Wang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xiaolin Deng
- Department of Urology, Ganzhou People's Hospital, Ganzhou, People's Republic of China
| | - Xinlei Zhao
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yuwen Chen
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Wanlong Tan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
| | - Fan Deng
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China.
| | - Fei Li
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
6
|
Shen Y, Liu Z, Chen Y, Shi X, Dong S, Wang B. Candidate Biomarker of Response to Immunotherapy In Small Cell Lung Cancer. Curr Treat Options Oncol 2025; 26:73-83. [PMID: 39841387 DOI: 10.1007/s11864-025-01292-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2025] [Indexed: 01/23/2025]
Abstract
OPINION STATEMENT Small-cell lung cancer accounts for about 15% of lung cancers with an extremely poor prognosis. The incorporation of immunotherapy to platinum-based chemotherapy offers sustained overall survival benefits and become the standard for the first-line setting of extensive-stage small-cell lung cancer. However, only a limited number of patients derive prolonged benefits. Although novel immunomodulatory agents and combination strategies are currently under investigation, identifying patients who are likely to obtain clinical benefits from this therapeutic approach is urgently needed. The modest therapeutic response to immunotherapy can be explained by various mechanisms. Traditional biomarkers do not guide immunotherapeutic decision-making in small-cell lung cancer. Notably, recent progress in the understanding of the molecular typing of small-cell lung cancer based on multi-omics data might bring new sights. This review summarizes the potential biomarkers for small-cell lung cancer immunotherapy based on clinical trials and preclinical studies. Moreover, important constraints in identifying biomarkers for small-cell lung cancer treatment are discussed.
Collapse
Affiliation(s)
- Yili Shen
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, Huzhou, Zhejiang, China
- Huzhou Key Laboratory of Precision Diagnosis and Treatment in Respiratory Diseases, Huzhou Central Hospital, Huzhou, Zhejiang, China
| | - Zhicong Liu
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, Huzhou, Zhejiang, China
- Huzhou Key Laboratory of Precision Diagnosis and Treatment in Respiratory Diseases, Huzhou Central Hospital, Huzhou, Zhejiang, China
| | - Yi Chen
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, Huzhou, Zhejiang, China
- Huzhou Key Laboratory of Precision Diagnosis and Treatment in Respiratory Diseases, Huzhou Central Hospital, Huzhou, Zhejiang, China
| | - Xuefei Shi
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, Huzhou, Zhejiang, China.
- Huzhou Key Laboratory of Precision Diagnosis and Treatment in Respiratory Diseases, Huzhou Central Hospital, Huzhou, Zhejiang, China.
| | - Shunli Dong
- Huzhou Key Laboratory of Precision Diagnosis and Treatment in Respiratory Diseases, Huzhou Central Hospital, Huzhou, Zhejiang, China.
- Department of Central Laboratory, Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, Huzhou, Zhejiang, China.
| | - Bin Wang
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, Huzhou, Zhejiang, China.
- Huzhou Key Laboratory of Precision Diagnosis and Treatment in Respiratory Diseases, Huzhou Central Hospital, Huzhou, Zhejiang, China.
| |
Collapse
|
7
|
Zuo M, Li T, Wang Z, Xiang Y, Chen S, Liu Y. Research progress on platelets in glioma. Chin Med J (Engl) 2025; 138:28-37. [PMID: 39252160 PMCID: PMC11717503 DOI: 10.1097/cm9.0000000000003282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Indexed: 09/11/2024] Open
Abstract
ABSTRACT Gliomas are the most common primary neuroepithelial tumors of the central nervous system in adults, of which glioblastoma is the deadliest subtype. Apart from the intrinsically indestructible characteristics of glioma (stem) cells, accumulating evidence suggests that the tumor microenvironment also plays a vital role in the refractoriness of glioblastoma. The primary functions of platelets are to stop bleeding and regulate thrombosis under physiological conditions. Furthermore, platelets are also active elements that participate in a variety of processes of tumor development, including tumor growth, invasion, and chemoresistance. Glioma cells recruit and activate resting platelets to become tumor-educated platelets (TEPs), which in turn can promote the proliferation, invasion, stemness, and chemoresistance of glioma cells. TEPs can be used to obtain genetic information about gliomas, which is helpful for early diagnosis and monitoring of therapeutic effects. Platelet membranes are intriguing biomimetic materials for developing efficacious drug carriers to enhance antiglioma activity. Herein, we review the recent research referring to the contribution of platelets to the malignant characteristics of gliomas and focusing on the molecular mechanisms mediating the interaction between TEPs and glioma (stem) cells, as well as present the challenges and opportunities in targeting platelets for glioma therapy.
Collapse
Affiliation(s)
- Mingrong Zuo
- Department of Pediatric Neurosurgery, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tengfei Li
- Department of Pediatric Neurosurgery, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhihao Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yufan Xiang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Siliang Chen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yanhui Liu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
8
|
Dai Y, Tian X, Ye X, Gong Y, Xu L, Jiao L. Role of the TME in immune checkpoint blockade resistance of non-small cell lung cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:52. [PMID: 39802954 PMCID: PMC11724356 DOI: 10.20517/cdr.2024.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025]
Abstract
Primary and secondary resistance to immune checkpoint blockade (ICB) reduces its efficacy. The mechanisms underlying immunotherapy resistance are highly complex. In non-small cell lung cancer (NSCLC), these mechanisms are primarily associated with the loss of programmed cell death-ligand 1 (PD-L1) expression, genetic mutations, circular RNA axis and transcription factor regulation, antigen presentation disorders, and dysregulation of signaling pathways. Additionally, alterations in the tumor microenvironment (TME) play a pivotal role in driving immunotherapy resistance. Primary resistance is mainly attributed to TME alterations, including mutations and co-mutations, modulation of T cell infiltration, enrichment of M2 tumor-associated macrophages (M2-TAMs) and mucosal-associated invariant T (MAIT) cells, vascular endothelial growth factor (VEGF), and pulmonary fibrosis. Acquired resistance mainly stems from changes in cellular infiltration patterns leading to "cold" or "hot" tumors, altered interferon (IFN) signaling pathway expression, involvement of extracellular vesicles (EVs), and oxidative stress responses, as well as post-treatment gene mutations and circadian rhythm disruption (CRD). This review presents an overview of various mechanisms underlying resistance to ICB, elucidates the alterations in the TME during primary, adaptive, and acquired resistance, and discusses existing strategies for overcoming ICB resistance.
Collapse
Affiliation(s)
- Yuening Dai
- Department of Oncology I, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xueqi Tian
- Department of Oncology I, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xuanting Ye
- Department of Oncology I, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yabin Gong
- Department of Oncology I, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Ling Xu
- Department of Oncology I, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Institute of Translational Cancer Research for Integrated Chinese and Western Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Lijing Jiao
- Department of Oncology I, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Institute of Translational Cancer Research for Integrated Chinese and Western Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| |
Collapse
|
9
|
Zhu Y, Li X, Yue GGL, Lee JKM, Gao S, Wang M, Wong CK, Xiao WL, Lau CBS. Broussoflavonol F exhibited anti-proliferative and anti-angiogenesis effects in colon cancer via modulation of the HER2-RAS-MEK-ERK pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156243. [PMID: 39547096 DOI: 10.1016/j.phymed.2024.156243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/02/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND A prenylated flavonoid, broussoflavonol F (BFF), was isolated from Macaranga genus with cytotoxicities against various cancer cells, though its underlying mechanisms have not been fully elucidated. HYPOTHESIS This study aimed to investigate the anti-tumor and anti-angiogenesis activities of BFF and its underlying mechanisms in colon cancer. METHOD In the in vitro study, the cytotoxic effects of BFF in human colon cancer HCT-116 and LoVo cells were examined using MTT assay, BrdU assay and colony formation assay. The anti-proliferative effects of BFF in these cells were assessed via cell apoptosis and cell cycle analysis using flow cytometry. The anti-angiogenesis effects of BFF in human endothelial HEMC-1 cells were also detected using scratch wound healing assay and tube formation assay. While the in vivo effects of BFF in colon cancer were further examined in zebrafish embryos and HCT116 tumor-bearing mice. The underlying mechanisms of BFF were predicted using network pharmacology analysis, and Western blotting was performed to validate both in vitro and in vivo results. RESULTS BFF exhibited cytotoxicities on 5 colon cancer cell lines, as well as anti-proliferative activities via inducing apoptosis and cell cycle arrest at the G0/G1 phase in HCT116 and LoVo cells. BFF at 1.25-5 µM also suppressed cell proliferation in these two colon cancer cell lines by downregulating HER2, RAS, p-BRAF, p-MEK and p-Erk protein expressions. In addition, BFF at 2.5-5 µM could significantly decrease the length of subintestinal vessels of zebrafish embryos through decreasing mRNA expressions of NRP1a, PDGFba, PDGFRb, KDR, FLT1 and VEGRaa. Besides, BFF exhibited anti-angiogenesis activity via inhibiting cell proliferation, motility and tube formation in HMEC-1 cells. Furthermore, intraperitoneal administration of BFF (10 mg/kg) suppressed tumor growth and decreased the expression of tumor proliferation marker Ki-67 and angiogenesis marker CD31 in the tumor tissues in HCT116 tumor-bearing mice. BFF treatment could also significantly decrease expressions of RAS, p-BRAF, p-MEK and p-Erk in the tumor section, which are consistent with the in vitro results. CONCLUSIONS This study revealed the anti-tumor and anti-angiogenesis effects of BFF in colon cancer. This is the first report of the in vitro and in vivo anti-proliferative activity of BFF in colon cancer through regulating the HER2-RAS-MEK-ERK pathway. These findings further support the research development of BFF as an anti-cancer agent in colon cancer.
Collapse
Affiliation(s)
- Yiying Zhu
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Xiaoli Li
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, and School of Pharmacy, Yunnan University, Kunming 650091, China
| | - Grace Gar-Lee Yue
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Julia Kin-Ming Lee
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Si Gao
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Mengru Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, and School of Pharmacy, Yunnan University, Kunming 650091, China
| | - Chun Kwok Wong
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Wei-Lie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, and School of Pharmacy, Yunnan University, Kunming 650091, China.
| | - Clara Bik-San Lau
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
10
|
Qi MH, Li JT, Zhai B. Mechanisms of vascular co-option as a potential therapeutic target in hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2024; 32:827-834. [DOI: 10.11569/wcjd.v32.i11.827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/24/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers, which has an insidious onset, and most of the patients have already lost the chance of radical surgery at the time of the first diagnosis, so systematic antitumor therapy has become the key to the treatment of intermediate and advanced HCC. The emergence of drug resistance to antitumor drugs is one of the most important reasons for the poor efficacy, which affects the prognosis of HCC patients, and how to improve the therapeutic efficacy for HCC is still the main focus of the present research. Although the research on antitumor drugs based on neovascularization has been deepening both domestically and abroad, less research has been done on the vascular co-option mode, which shares blood vessels of normal tissues to meet the metabolic needs of the tumor itself, and its impact on the progression of HCC and antitumor therapy has not been extensively studied. In this paper, we provide an overview of the impact of vascular co-option on multiple treatment modalities for hepatocellular carcinoma and related mechanisms, with a view to laying a theoretical foundation for improving drug resistance in HCC.
Collapse
Affiliation(s)
- Ming-Hao Qi
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150000, Heilongjiang Province, China
| | - Jing-Tao Li
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150000, Heilongjiang Province, China
| | - Bo Zhai
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150000, Heilongjiang Province, China
| |
Collapse
|
11
|
Khan M, Nasim M, Feizy M, Parveen R, Gull A, Khan S, Ali J. Contemporary strategies in glioblastoma therapy: Recent developments and innovations. Neuroscience 2024; 560:211-237. [PMID: 39368608 DOI: 10.1016/j.neuroscience.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/30/2024] [Accepted: 09/12/2024] [Indexed: 10/07/2024]
Abstract
Glioblastoma multiforme (GBM) represents one of the most prevailing and aggressive primary brain tumors among adults. Despite advances in therapeutic approaches, the complex microenvironment of GBM poses significant challenges in its optimal therapy, which are attributed to immune evasion, tumor repopulation by stem cells, and limited drug penetration across the blood-brain barrier (BBB). Nanotechnology has emerged as a promising avenue for GBM treatment, offering biosafety, sustained drug release, enhanced solubility, and improved BBB penetrability. In this review, a comprehensive overview of recent advancements in nanocarrier-based drug delivery systems for GBM therapy is emphasized. The conventional and novel treatment modalities for GBM and the potential of nanocarriers to overcome existing limitations are comprehensively covered. Furthermore, the updates in the clinical landscape of GBM therapeutics are presented in addition to the current status of drugs and patents in the same context. Through a critical evaluation of existing literature, the therapeutic prospect and limitations of nanocarrier-based drug delivery strategies are highlighted offering insights into future research directions and clinical translation.
Collapse
Affiliation(s)
- Mariya Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, Delhi, India
| | - Modassir Nasim
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, Delhi, India
| | - Mohammadamin Feizy
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, Delhi, India
| | - Rabea Parveen
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, Delhi, India
| | - Azka Gull
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, Delhi, India
| | - Saba Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, Delhi, India.
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, Delhi, India.
| |
Collapse
|
12
|
Wu S, Dong C, Hu C, Hui K, Jiang X. Case report: Combination therapy of envafolimab with endostar for advanced non-small cell lung cancer with low PD-L1 expression. Front Oncol 2024; 14:1437260. [PMID: 39575420 PMCID: PMC11578815 DOI: 10.3389/fonc.2024.1437260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/18/2024] [Indexed: 11/24/2024] Open
Abstract
In the management of advanced non-squamous non-small cell lung cancer (NSCLC) without driver gene mutations, the current therapeutic strategies encompass chemotherapy, chemotherapy combined with anti-angiogenic therapy, and chemotherapy combined with immunotherapy. For patients with high programmed death-ligand 1(PD-L1) expression, monotherapy with immune checkpoint inhibitors is a viable option. Recognizing that some patients cannot tolerate or decline chemotherapy, clinical practice has introduced non-chemotherapeutic treatment regimens, which have shown promising results. This article presents a clinical case of advanced NSCLC with low PD-L1 expression and negative driver gene mutations. The patient was treated with a chemotherapy-free regimen combining envafolimab with endostar. After 17 months of follow-up, both the primary tumor and metastatic lesions exhibited significant reduction, and no notable adverse reactions were observed. This case demonstrates the efficacy of envafolimab combined with endostar in the treatment of advanced NSCLC. This regimen enhances treatment safety and patient compliance, potentially offering a novel therapeutic option for patients with advanced NSCLC characterized by low PD-L1 expression and negative driver gene mutations.
Collapse
Affiliation(s)
- Shuo Wu
- Department of Radiation Oncology, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
| | - Changhong Dong
- Department of Radiation Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, China
| | - Chenxi Hu
- Department of Radiation Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, China
| | - Kaiyuan Hui
- Department of Radiation Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, China
| | - Xiaodong Jiang
- Department of Radiation Oncology, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
- Department of Radiation Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, China
| |
Collapse
|
13
|
Nandi S, Sikder R, Nag A, Khatua S, Sen S, Chakraborty N, Naskar A, Zhakipbekov K, Acharya K, Habtemariam S, Arslan Ateşşahin D, Goloshvili T, Ahmed Aldahish A, Sharifi‐Rad J, Calina D. Updated aspects of alpha-Solanine as a potential anticancer agent: Mechanistic insights and future directions. Food Sci Nutr 2024; 12:7088-7107. [PMID: 39479710 PMCID: PMC11521658 DOI: 10.1002/fsn3.4221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/11/2024] [Accepted: 05/01/2024] [Indexed: 11/02/2024] Open
Abstract
Cancer remains a critical global health challenge, with limited progress in reducing mortality despite advancements in diagnosis and treatment. The growing resistance of tumors to existing chemotherapy exacerbates this burden. In response, the search for new anticancer compounds from plants has intensified, given their historical success in yielding effective treatments. This review focuses on α-solanine, a glycoalkaloid primarily derived from potato tubers and nightshade family plants, recognized for its diverse biological activities, including anti-allergic, antipyretic, anti-inflammatory, anti-diabetic, and antibiotic properties. Recently, α-solanine has gained attention as a potential anticancer agent. Utilizing resources like PubMed/MedLine, ScienceDirect, Web of Science, Scopus, the American Chemical Society, Google Scholar, Springer Link, Wiley, and various commercial websites, this review consolidates two decades of research on α-solanine's anticancer effects and mechanisms against nine different cancers, highlighting its role in modulating various signaling pathways. It also discusses α-solanine's potential as a lead compound in cancer therapy. The abundant availability of potato peel, often discarded as waste or sold cheaply, is suggested as a sustainable source for large-scale α-solanine extraction. The study concludes that α-solanine holds promise as a standalone or adjunctive cancer treatment. However, further research is necessary to optimize this lead compound and mitigate its toxicity through various strategies.
Collapse
Affiliation(s)
- Sudeshna Nandi
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of BotanyUniversity of CalcuttaKolkataIndia
| | - Rimpa Sikder
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of BotanyUniversity of CalcuttaKolkataIndia
| | - Anish Nag
- Department of Life SciencesCHRIST (Deemed to be University)BangaloreKarnatakaIndia
| | - Somanjana Khatua
- Department of Botany, Faculty of ScienceUniversity of AllahabadPrayagrajUttar PradeshIndia
| | - Surjit Sen
- Department of BotanyFakir Chand CollegeKolkataIndia
| | | | - Arghya Naskar
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of BotanyUniversity of CalcuttaKolkataIndia
| | - Kairat Zhakipbekov
- Department of Organization and Management and Economics of Pharmacy and Clinical PharmacyAsfendiyarov Kazakh National Medical UniversityAlmatyKazakhstan
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of BotanyUniversity of CalcuttaKolkataIndia
| | | | - Dilek Arslan Ateşşahin
- Department of Plant and Animal Production, Baskil Vocational SchoolFırat UniversityElazıgTurkey
| | - Tamar Goloshvili
- Department of Plant Physiology and Genetic ResourcesInstitute of Botany, Ilia State UniversityTbilisiGeorgia
| | - Afaf Ahmed Aldahish
- Department of Pharmacology, College of PharmacyKing Khalid UniversityAbhaKingdom of Saudi Arabia
| | - Javad Sharifi‐Rad
- Department of Biomedical SciencesCollege of Medicine, Korea UniversitySeoulRepublic of Korea
| | - Daniela Calina
- Department of Clinical PharmacyUniversity of Medicine and Pharmacy of CraiovaCraiovaRomania
| |
Collapse
|
14
|
Guo M, Sun Y, Wang X, Wang Z, Yuan X, Chen X, Yuan X, Wang L. The MCIB Model: A Novel Theory for Describing the Spatial Heterogeneity of the Tumor Microenvironment. Int J Mol Sci 2024; 25:10486. [PMID: 39408814 PMCID: PMC11476373 DOI: 10.3390/ijms251910486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
The tumor microenvironment (TME) can be regarded as a complex and dynamic microecosystem generated by the interactions of tumor cells, interstitial cells, the extracellular matrix, and their products and plays an important role in the occurrence, progression and metastasis of tumors. In a previous study, we constructed an IEO model (prI-, prE-, and pOst-metastatic niche) according to the chronological sequence of TME development. In this paper, to fill the theoretical gap in spatial heterogeneity in the TME, we defined an MCIB model (Metabolic, Circulatory, Immune, and microBial microenvironment). The MCIB model divides the TME into four subtypes that interact with each other in terms of mechanism, corresponding to the four major links of metabolic reprogramming, vascular remodeling, immune response, and microbial action, providing a new way to assess the TME. The combination of the MCIB model and IEO model comprehensively depicts the spatiotemporal evolution of the TME and can provide a theoretical basis for the combination of clinical targeted therapy, immunotherapy, and other comprehensive treatment modalities for tumors according to the combination and crosstalk of different subtypes in the MCIB model and provide a powerful research paradigm for tumor drug-resistance mechanisms and tumor biological behavior.
Collapse
Affiliation(s)
- Minghao Guo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.Y.); (X.C.)
| | - Yinan Sun
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.S.)
| | - Xiaohui Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Zikun Wang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.S.)
| | - Xun Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.Y.); (X.C.)
| | - Xinyi Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.Y.); (X.C.)
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.Y.); (X.C.)
| | - Lu Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.Y.); (X.C.)
| |
Collapse
|
15
|
Yi M, Li T, Niu M, Zhang H, Wu Y, Wu K, Dai Z. Targeting cytokine and chemokine signaling pathways for cancer therapy. Signal Transduct Target Ther 2024; 9:176. [PMID: 39034318 PMCID: PMC11275440 DOI: 10.1038/s41392-024-01868-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 07/23/2024] Open
Abstract
Cytokines are critical in regulating immune responses and cellular behavior, playing dual roles in both normal physiology and the pathology of diseases such as cancer. These molecules, including interleukins, interferons, tumor necrosis factors, chemokines, and growth factors like TGF-β, VEGF, and EGF, can promote or inhibit tumor growth, influence the tumor microenvironment, and impact the efficacy of cancer treatments. Recent advances in targeting these pathways have shown promising therapeutic potential, offering new strategies to modulate the immune system, inhibit tumor progression, and overcome resistance to conventional therapies. In this review, we summarized the current understanding and therapeutic implications of targeting cytokine and chemokine signaling pathways in cancer. By exploring the roles of these molecules in tumor biology and the immune response, we highlighted the development of novel therapeutic agents aimed at modulating these pathways to combat cancer. The review elaborated on the dual nature of cytokines as both promoters and suppressors of tumorigenesis, depending on the context, and discussed the challenges and opportunities this presents for therapeutic intervention. We also examined the latest advancements in targeted therapies, including monoclonal antibodies, bispecific antibodies, receptor inhibitors, fusion proteins, engineered cytokine variants, and their impact on tumor growth, metastasis, and the tumor microenvironment. Additionally, we evaluated the potential of combining these targeted therapies with other treatment modalities to overcome resistance and improve patient outcomes. Besides, we also focused on the ongoing research and clinical trials that are pivotal in advancing our understanding and application of cytokine- and chemokine-targeted therapies for cancer patients.
Collapse
Affiliation(s)
- Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Haoxiang Zhang
- Department of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, Fuzhou, 350001, People's Republic of China
| | - Yuze Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
16
|
Yang M, Mu Y, Yu X, Gao D, Zhang W, Li Y, Liu J, Sun C, Zhuang J. Survival strategies: How tumor hypoxia microenvironment orchestrates angiogenesis. Biomed Pharmacother 2024; 176:116783. [PMID: 38796970 DOI: 10.1016/j.biopha.2024.116783] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
During tumor development, the tumor itself must continuously generate new blood vessels to meet their growth needs while also allowing for tumor invasion and metastasis. One of the most common features of tumors is hypoxia, which drives the process of tumor angiogenesis by regulating the tumor microenvironment, thus adversely affecting the prognosis of patients. In addition, to overcome unsuitable environments for growth, such as hypoxia, nutrient deficiency, hyperacidity, and immunosuppression, the tumor microenvironment (TME) coordinates angiogenesis in several ways to restore the supply of oxygen and nutrients and to remove metabolic wastes. A growing body of research suggests that tumor angiogenesis and hypoxia interact through a complex interplay of crosstalk, which is inextricably linked to the TME. Here, we review the TME's positive contribution to angiogenesis from an angiogenesis-centric perspective while considering the objective impact of hypoxic phenotypes and the status and limitations of current angiogenic therapies.
Collapse
Affiliation(s)
- Mengrui Yang
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Yufeng Mu
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Xiaoyun Yu
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Dandan Gao
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Wenfeng Zhang
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Ye Li
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, 999078, Macao Special Administrative Region of China
| | - Jingyang Liu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, 999078, Macao Special Administrative Region of China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261053, China; Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261000, China.
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261000, China.
| |
Collapse
|
17
|
Xiao X, Zheng Y, Wang T, Zhang X, Fang G, Zhang Z, Zhang Z, Zhao J. Enhancing anti-angiogenic immunotherapy for melanoma through injectable metal-organic framework hydrogel co-delivery of combretastatin A4 and poly(I:C). NANOSCALE ADVANCES 2024; 6:3135-3145. [PMID: 38868828 PMCID: PMC11166098 DOI: 10.1039/d4na00079j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/29/2024] [Indexed: 06/14/2024]
Abstract
The interplay between vascularization and macrophage-induced immune suppression plays a crucial role in melanoma treatment. In this study, we propose a novel combination approach to combat melanoma by simultaneously inhibiting tumor vascularization and enhancing macrophage-mediated anti-tumor responses. We investigate the potential of combining combretastatin A4 (CA4), a vascular-disrupting agent, with poly(I:C) (PIC), an immunostimulatory adjuvant. This combination approach effectively suppresses melanoma cell proliferation, disrupts vascularization, and promotes macrophage polarization towards the M1 phenotype for melanoma suppression. To facilitate efficient co-delivery of CA4 and PIC for enhanced anti-angiogenic immunotherapy, we develop an injectable metal-organic framework hydrogel using Zeolitic Imidazolate Framework-8 (ZIF-8) and hyaluronic acid (HA) (ZIF-8/HA). Our findings demonstrate that ZIF-8 enables efficient loading of CA4 and enhances the stability of PIC against RNAase degradation in vitro. Furthermore, the developed co-delivery hydrogel system, PIC/CA4@ZIF-8/HA, exhibits improved rheological properties, good injectability and prolonged drug retention. Importantly, in vivo experiments demonstrate that the PIC/CA4@ZIF-8/HA formulation significantly reduces the dosage and administration frequency while achieving a more pronounced therapeutic effect. It effectively inhibits melanoma growth by suppressing angiogenesis, destroying blood vessels, promoting M1 macrophage infiltration, and demonstrating excellent biocompatibility. In conclusion, our study advances anti-angiogenic immunotherapy for melanoma through the potent combination of PIC/CA4, particularly when administered using the PIC/CA4@ZIF-8/HA formulation. These findings provide a new perspective on clinical anti-angiogenic immunotherapy for melanoma, emphasizing the importance of targeting tumor vascularization and macrophage-mediated immune suppression simultaneously.
Collapse
Affiliation(s)
- Xufeng Xiao
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu International Joint Center of Genomics, School of Life Sciences, Jiangsu Normal University Xuzhou 221116 Jiangsu China
| | - Yunuo Zheng
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital Xuzhou 221009 Jiangsu China
| | - Tianlong Wang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu International Joint Center of Genomics, School of Life Sciences, Jiangsu Normal University Xuzhou 221116 Jiangsu China
| | - Xiaoqing Zhang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu International Joint Center of Genomics, School of Life Sciences, Jiangsu Normal University Xuzhou 221116 Jiangsu China
| | - Gaochuan Fang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu International Joint Center of Genomics, School of Life Sciences, Jiangsu Normal University Xuzhou 221116 Jiangsu China
| | - Zhonghai Zhang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu International Joint Center of Genomics, School of Life Sciences, Jiangsu Normal University Xuzhou 221116 Jiangsu China
| | - Zhengkui Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University Xuzhou 221002 Jiangsu China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University Xuzhou 221002 Jiangsu China
| | - Jiaojiao Zhao
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu International Joint Center of Genomics, School of Life Sciences, Jiangsu Normal University Xuzhou 221116 Jiangsu China
| |
Collapse
|
18
|
Yunye MAO, Shu SHENG, An WANG, Jinzhao ZHAI, Xiangwei GE, Di LU, Jinliang WANG. [Current Status and Prospect of PD-1/PD-L1 Immune Checkpoint Inhibitor Therapy
in Elderly Patients with Advanced NSCLC]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2024; 27:367-375. [PMID: 38880924 PMCID: PMC11183317 DOI: 10.3779/j.issn.1009-3419.2024.106.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Indexed: 06/18/2024]
Abstract
The incidence of cancer is closely correlated with age, as 75% of non-small cell lung cancer (NSCLC) patients are aged at least 65 years. The availability of immune checkpoint inhibitors (ICIs) has altered the available NSCLC therapeutic pattern. Limited studies on elderly patients have demonstrated that ICIs as monotherapy provide substantial benefits for patients aged 65-75 years, showing no significant difference compared to younger patients. This benefit is also observed in combination with immune-combined chemotherapy or radiotherapy. For individuals older than 75 years, the survival effect was not evident, though. Immune-related adverse events (irAEs) with ICIs alone were similar in incidence across age categories. Immune-combination chemotherapy resulted in a higher incidence of irAEs than chemotherapy alone, and patients ≥75 years of age were more likely to experience higher-grade irAEs. Besides the fact that immunosenescence in older patients influences the immune milieu in a multifaceted manner, which in turn impacts the effectiveness of immunotherapy, the prognosis is also influenced by the Eastern Cooperative Oncology Group performance status (ECOG PS) score, among other factors. For certain individuals aged ≥75 years or in poor physical health, immunotherapy combined with low-intensity chemotherapy has emerged as a viable treatment option. However, there are fewer related studies, so there should be a conscious effort to increase the number of elderly patients enrolled in the trial and a comprehensive assessment to explore individualized treatment options. To provide additional references and guidance for immunotherapy in elderly NSCLC patients and to propose new therapeutic perspectives in combination with their characteristics, this review aims to summarize and analyze the pertinent studies on the application of programmed cell death protein 1 (PD-1)/programmed cell death ligand 1 (PD-L1) inhibitors in these patients.
.
Collapse
|
19
|
Tang H, Chen L, Liu X, Zeng S, Tan H, Chen G. Pan-cancer dissection of vasculogenic mimicry characteristic to provide potential therapeutic targets. Front Pharmacol 2024; 15:1346719. [PMID: 38694917 PMCID: PMC11061449 DOI: 10.3389/fphar.2024.1346719] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/30/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction Vasculogenic mimicry (VM) represents a novel form of tumor angiogenesis that is associated with tumor invasiveness and drug resistance. However, the VM landscape across cancer types remains poorly understood. In this study, we elucidate the characterizations of VM across cancers based on multi-omics data and provide potential targeted therapeutic strategies. Methods Multi-omics data from The Cancer Genome Atlas was used to conduct comprehensive analyses of the characteristics of VM related genes (VRGs) across cancer types. Pan-cancer vasculogenic mimicry score was established to provide a depiction of the VM landscape across cancer types. The correlation between VM and cancer phenotypes was conducted to explore potential regulatory mechanisms of VM. We further systematically examined the relationship between VM and both tumor immunity and tumor microenvironment (TME). In addition, cell communication analysis based on single-cell transcriptome data was used to investigate the interactions between VM cells and TME. Finally, transcriptional and drug response data from the Genomics of Drug Sensitivity in Cancer database were utilized to identify potential therapeutic targets and drugs. The impact of VM on immunotherapy was also further clarified. Results Our study revealed that VRGs were dysregulated in tumor and regulated by multiple mechanisms. Then, VM level was found to be heterogeneous among different tumors and correlated with tumor invasiveness, metastatic potential, malignancy, and prognosis. VM was found to be strongly associated with epithelial-mesenchymal transition (EMT). Further analyses revealed cancer-associated fibroblasts can promote EMT and VM formation. Furthermore, the immune-suppressive state is associated with a microenvironment characterized by high levels of VM. VM score can be used as an indicator to predict the effect of immunotherapy. Finally, seven potential drugs targeting VM were identified. Conclusion In conclusion, we elucidate the characteristics and key regulatory mechanisms of VM across various cancer types, underscoring the pivotal role of CAFs in VM. VM was further found to be associated with the immunosuppressive TME. We also provide clues for the research of drugs targeting VM. Our study provides an initial overview and reference point for future research on VM, opening up new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Haibin Tang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liuxun Chen
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xvdong Liu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shengjie Zeng
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Tan
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Gang Chen
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
20
|
Zhang X, Ma L, Xue M, Sun Y, Wang Z. Advances in lymphatic metastasis of non-small cell lung cancer. Cell Commun Signal 2024; 22:201. [PMID: 38566083 PMCID: PMC10986052 DOI: 10.1186/s12964-024-01574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/16/2024] [Indexed: 04/04/2024] Open
Abstract
Lung cancer is a deeply malignant tumor with high incidence and mortality. Despite the rapid development of diagnosis and treatment technology, abundant patients with lung cancer are still inevitably faced with recurrence and metastasis, contributing to death. Lymphatic metastasis is the first step of distant metastasis and an important prognostic indicator of non-small cell lung cancer. Tumor-induced lymphangiogenesis is involved in the construction of the tumor microenvironment, except promoting malignant proliferation and metastasis of tumor cells, it also plays a crucial role in individual response to treatment, especially immunotherapy. Thus, this article reviews the current research status of lymphatic metastasis in non-small cell lung cancer, in order to provide some insights for the basic research and clinical and translational application in this field.
Collapse
Affiliation(s)
- Xiaofei Zhang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Li Ma
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Man Xue
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Yanning Sun
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Zhaoxia Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China.
| |
Collapse
|
21
|
Li X, Li J, He S, Luan S, Zhang H, Yang Y, Chen X, Chen Y, Zhou J, Fang P, Xiao X, Liang Z, Zeng X, Gao H, Yuan Y. Self-Assembled Acid-Responsive Nanosystem for Synergistic Anti-Angiogenic/Photothermal/Ferroptosis Therapy against Esophageal Cancer. Adv Healthc Mater 2024; 13:e2302787. [PMID: 37988243 DOI: 10.1002/adhm.202302787] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/11/2023] [Indexed: 11/23/2023]
Abstract
Esophageal cancer (EC) treatment via anti-angiogenic therapy faces challenges due to non-cytotoxicity and non-specific biodistribution of the anti-angiogenic agents. Hence, the quest for a synergistic treatment modality and a targeted delivery approach to effectively address EC has become imperative. In this study, an acid-responsive release nanosystem (Bev-IR820@FeIII TA) that involves the conjugation of bevacizumab, an anti-angiogenic monoclonal antibody, with TA and Fe3+ to form a metal-phenolic network, followed by loading with the near-infrared photothermal agent (IR820) to achieve combinational therapy, is designed. The construction of Bev-IR820@FeIII TA can be realized through a facile self-assembly process. The Bev-IR820@FeIII TA exhibits tumor-targeting capabilities and synergistic therapeutic effects, encompassing anti-angiogenic therapy, photothermal therapy (PTT), and ferroptosis therapy (FT). Bev-IR820@FeIII TA exhibits remarkable proficiency in delivering drugs to EC tissue through its pH-responsive release properties. Consequently, bevacizumab exerts its therapeutic effects by obstructing tumor angiogenesis, thereby impeding tumor growth. Meanwhile, PTT facilitates localized thermal ablation at the tumor site, directly eradicating EC cells. FT synergistically collaborates with PTT, giving rise to the formation of a reactive oxygen species (ROS) storm, subsequently culminating in the demise of EC cells. In summary, this amalgamated treatment modality carries substantial promise for synergistically impeding EC progression and showcases auspicious prospects for future EC treatment.
Collapse
Affiliation(s)
- Xiaokun Li
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610044, China
| | - Jiamei Li
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu, 610044, China
| | - Siqin He
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu, 610044, China
| | - Siyuan Luan
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610044, China
| | - Haowen Zhang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610044, China
| | - Yushang Yang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610044, China
| | - Xiaoting Chen
- Animal Experimental Center, West China Hospital, Sichuan University, Chengdu, 610044, China
| | - Yilong Chen
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610044, China
| | - Jianfeng Zhou
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610044, China
| | - Pinhao Fang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610044, China
| | - Xin Xiao
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610044, China
| | - Zhiwen Liang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610044, China
| | - Xiaoxi Zeng
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610044, China
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu, 610044, China
| | - Yong Yuan
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610044, China
| |
Collapse
|
22
|
Yang J, Shu G, Chen T, Dong A, Dong C, Li W, Sun X, Zhou Y, Li D, Zhou J. ESM1 Interacts with c-Met to Promote Gastric Cancer Peritoneal Metastasis by Inducing Angiogenesis. Cancers (Basel) 2023; 16:194. [PMID: 38201620 PMCID: PMC10778290 DOI: 10.3390/cancers16010194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
The peritoneum is the most common metastatic site of advanced gastric cancer and is associated with extremely poor prognosis. Endothelial-specific molecule 1 (ESM1) was found to be significantly associated with gastric cancer peritoneal metastasis (GCPM); however, the biological functions and molecular mechanisms of ESM1 in regulating GCPM remain unclear. Herein, we demonstrated that ESM1 expression was significantly upregulated in gastric cancer tissues and positively correlated with platelet endothelial cell adhesion molecule-1 (CD31) levels. Moreover, clinical validation, in in vitro and in vivo experiments, confirmed that ESM1 promoted gastric cancer angiogenesis, eventually promoting gastric cancer peritoneal metastasis. Mechanistically, ESM1 promoted tumor angiogenesis by binding to c-Met on the vascular endothelial cell membrane. In addition, our results confirmed that ESM1 upregulated VEGFA, HIF1α, and MMP9 expression and induced angiogenesis by activating the MAPK/ERK pathway. In conclusion, our findings identified the role of ESM1 in gastric cancer angiogenesis and GCPM, thus providing insights into the diagnosis and treatment of advanced gastric cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Dongbao Li
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; (J.Y.); (G.S.); (T.C.); (A.D.); (C.D.); (W.L.); (X.S.); (Y.Z.)
| | - Jin Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; (J.Y.); (G.S.); (T.C.); (A.D.); (C.D.); (W.L.); (X.S.); (Y.Z.)
| |
Collapse
|
23
|
Agrafiotis AC, Berzenji L, Koyen S, Vermeulen D, Winthagen R, Hendriks JMH, Van Schil PE. An Overview of the Use of Anti-Angiogenic Agents in the Treatment of Thymic Epithelial Tumors. Int J Mol Sci 2023; 24:17065. [PMID: 38069386 PMCID: PMC10707176 DOI: 10.3390/ijms242317065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Angiogenesis significantly influences the carcinogenesis of thymic epithelial tumors (TET). Both thymomas and thymic carcinoma (TC) overexpress VEGF-A and VEGFR-1 and -2. This review aims to provide an appraisal of the use of anti-angiogenics in the treatment of TET. The literature research identified 16 studies that were deemed eligible for further analysis. Seven studies assessed the clinical efficacy of sunitinib and five studies the use of apatinib and/or anlotinib. The multicenter Japanese phase II REMORA trial investigated the efficacy of lenvatinib, which is a multi-targeted inhibitor of VEGFR, FGFR, RET, c-Kit, and other kinases. The objective response rate was 38% (25.6-52%), which is the highest documented in TET that progressed after first-line chemotherapy. Anti-angiogenic agents may be useful in the treatment of TET, which are not amenable to curative treatment. Their toxicity profile seems to be acceptable. However, angiogenesis inhibitors do not appear to have a major influence on either thymomas or TC, although multikinase inhibitors may have some effect on TC. The current evidence suggests that the most active agent is lenvatinib, whereas sunitinib could be proposed as an acceptable second-line therapy for TC. Further research concerning the combination of immune checkpoint inhibitors with anti-angiogenic drugs is warranted.
Collapse
Affiliation(s)
- Apostolos C. Agrafiotis
- Department of Thoracic and Vascular Surgery, Antwerp University Hospital, B-2650 Edegem, Belgium
- Department of Thoracic and Vascular Surgery, Wallonie Picarde Hospital Center (Centre Hospitalier de Wallonie Picarde—CHwapi), B-7500 Tournai, Belgium
| | - Lawek Berzenji
- Department of Thoracic and Vascular Surgery, Antwerp University Hospital, B-2650 Edegem, Belgium
| | - Stien Koyen
- Department of Thoracic and Vascular Surgery, Antwerp University Hospital, B-2650 Edegem, Belgium
| | - Dries Vermeulen
- Department of Thoracic and Vascular Surgery, Antwerp University Hospital, B-2650 Edegem, Belgium
| | - Rachel Winthagen
- Department of Thoracic and Vascular Surgery, Antwerp University Hospital, B-2650 Edegem, Belgium
| | - Jeroen M. H. Hendriks
- Department of Thoracic and Vascular Surgery, Antwerp University Hospital, B-2650 Edegem, Belgium
- ASTARC, University of Antwerp, B-2610 Wilrijk, Belgium
| | - Paul E. Van Schil
- Department of Thoracic and Vascular Surgery, Antwerp University Hospital, B-2650 Edegem, Belgium
- ASTARC, University of Antwerp, B-2610 Wilrijk, Belgium
| |
Collapse
|
24
|
Gacche RN. Changing landscape of anti-angiogenic therapy: Novel approaches and clinical perspectives. Biochim Biophys Acta Rev Cancer 2023; 1878:189020. [PMID: 37951481 DOI: 10.1016/j.bbcan.2023.189020] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023]
Abstract
Targeting angiogenesis has remained one of the important aspects in disease biology in general and cancer in particular. Currently (June 2023), over 593 clinical trials have been registered at ClinicalTrials.gov having inference of term 'angiogenesis'. A panel of 14 anti-angiogenic drugs have been approved by FDA for the treatment of variety of cancers and other human ailments. Although the anti-angiogenic therapy (AAT) has gained significant clinical attention as a promising approach in the treatment of various diseases, particularly cancer, however, sizable literature has accumulated in the recent past describing the aggressive nature of tumours after the drug holidays, evolving drug resistance and off-target toxicities. Nevertheless, the emergence of inscrutable compensatory or alternative angiogenic mechanisms is limiting the efficacy of anti-angiogenic drugs and focussing the therapeutic regime as a puzzle of 'Lernaean hydra'. This review offers an overview of recent updates on the efficacy of antiangiogenic therapy and the current clinical performance of aaRTK inhibitors. Additionally, it also explores the changing application landscape of AAT, focusing on its role in diabetic nephropathy, age-related macular degeneration and other neovascular ocular disorders. Combination therapy with antiangiogenic drugs and immune check point inhibitors (ICIs) has emerged as a potential strategy to enhance the therapeutic index of cancer immunotherapy. While clinical studies have demonstrated the clinical efficacy of this approach, they also highlight the complex and sometimes unpredictable adverse events associated with it. Normalizing tumour vasculature has been identified as a key factor in unlocking the full potential of ICIs, thereby providing hope for improved treatment outcomes. The future prospects and challenges of AAT have been described with special reference to integration of technological advances for enhancing its efficacy and applications beyond its discovery.
Collapse
Affiliation(s)
- Rajesh N Gacche
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, MS, India.
| |
Collapse
|