1
|
Bayó C, Castellano G, Marín F, Castillo-Iturra J, Ocaña T, Kumari H, Pellisé M, Moreira L, Rivero L, Daca-Alvarez M, Ortiz O, Carballal S, Moreira R, Canet-Hermida J, Pineda M, Gabriel C, Flórez-Grau G, Juan M, Benitez-Ribas D, Balaguer F. Discovery and validation of frameshift-derived neopeptides in Lynch syndrome: paving the way for novel cancer prevention strategies. J Immunother Cancer 2025; 13:e011177. [PMID: 40254392 PMCID: PMC12010338 DOI: 10.1136/jitc-2024-011177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/23/2025] [Indexed: 04/22/2025] Open
Abstract
BACKGROUND Lynch syndrome (LS), caused by germline pathogenic variants in the mismatch repair genes, leads to high rates of frameshift-derived neopeptide (FSDN) expression due to microsatellite instability (MSI). While colorectal cancer (CRC) prevention is effective, most LS-related tumors lack such strategies. Cancer vaccines targeting FSDNs offer a promising approach for immune interception in LS. This study aimed to identify and validate LS-related FSDNs to develop vaccines for cancer prevention. METHODS We identified LS-related coding MS mutations and predicted FSDN with high coverage on common Human Leukocyte Antigen (HLA)-I and II alleles. We validated FSDN-associated mutations in colorectal adenomas (CrAD), endometrial cancers (EC), and CRC samples from patients with LS, non-LS tumors, and cell lines. Immunogenicity was assessed through interferon (IFN)-γ enzyme-linked immunospot and flow cytometry analysis of tissue-infiltrating lymphocytes (TILs) from LS carriers. RESULTS We prioritized 53 HLA-I and 45 HLA-II FSDNs in MSI tumors using in silico predictions. Validation revealed 86.7% of FSDN-associated mutations present in LS-CRC samples, with a median of 7.67 (6.5-9) mutations in CrADs and 6.02 (2-10) in CRCs. Sequencing of CrAD and EC samples showed 95% and 77.5% of predicted FSDN-associated mutations, respectively. MSI cancer cell lines transcribed 69.8% of FSDNs. Immunogenicity assays showed that 71% of potential FSDNs elicited IFN-γ responses, with a median of 7.37 (1-10.75) HLA-I and 6 (2-5.75) HLA-II FSDNs per patient. After prioritizing 24 FSDN, in a cohort of 19 LS-derived samples (4 CrAD and 15 normal mucosa), 52% (10/19) demonstrated T-cell reactivity to an HLA-I neoantigen pool. CD8+CD137+ activation markers increased significantly (p=0.037) over time and peptide-specific cells were detected by pentamer staining. CONCLUSIONS Our predicted FSDN set has optimal coverage among LS carriers and can induce IFN-γ inflammatory responses in LS-derived TILs, offering an opportunity for vaccine development.
Collapse
Affiliation(s)
- Cristina Bayó
- Immunology, Hospital Clinic de Barcelona, Barcelona, Catalunya, Spain
- Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
| | - Giancarlo Castellano
- Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
| | - Fátima Marín
- Hereditary Cancer Program, Catalan institute of oncology, IDIBELL, Badalona, Catalunya, Spain
- Consortium for Biomedical Research in Cancer, Carlos III Institute of Health, CIBERONC, Madrid, Comunidad de Madrid, Spain
| | - Joaquín Castillo-Iturra
- Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
- Gastroenterology, Hospital Clinic de Barcelona, Barcelona, Catalunya, Spain
| | - Teresa Ocaña
- Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
- Gastroenterology, Hospital Clinic de Barcelona, Barcelona, Catalunya, Spain
| | - Hardeep Kumari
- Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
- Gastroenterology, Hospital Clinic de Barcelona, Barcelona, Catalunya, Spain
| | - Maria Pellisé
- Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
- Gastroenterology, Hospital Clinic de Barcelona, Barcelona, Catalunya, Spain
| | - Leticia Moreira
- Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
- Gastroenterology, Hospital Clinic de Barcelona, Barcelona, Catalunya, Spain
| | - Liseth Rivero
- Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
- Gastroenterology, Hospital Clinic de Barcelona, Barcelona, Catalunya, Spain
| | - Maria Daca-Alvarez
- Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
- Gastroenterology, Hospital Clinic de Barcelona, Barcelona, Catalunya, Spain
| | - Oswaldo Ortiz
- Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
- Gastroenterology, Hospital Clinic de Barcelona, Barcelona, Catalunya, Spain
| | - Sabela Carballal
- Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
- Gastroenterology, Hospital Clinic de Barcelona, Barcelona, Catalunya, Spain
| | - Rebeca Moreira
- Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
- Gastroenterology, Hospital Clinic de Barcelona, Barcelona, Catalunya, Spain
| | - Julia Canet-Hermida
- Hereditary Cancer Program, Catalan institute of oncology, IDIBELL, Badalona, Catalunya, Spain
- Consortium for Biomedical Research in Cancer, Carlos III Institute of Health, CIBERONC, Madrid, Comunidad de Madrid, Spain
| | - Marta Pineda
- Hereditary Cancer Program, Catalan institute of oncology, IDIBELL, Badalona, Catalunya, Spain
- Consortium for Biomedical Research in Cancer, Carlos III Institute of Health, CIBERONC, Madrid, Comunidad de Madrid, Spain
| | - Capella Gabriel
- Hereditary Cancer Program, Catalan institute of oncology, IDIBELL, Badalona, Catalunya, Spain
- Consortium for Biomedical Research in Cancer, Carlos III Institute of Health, CIBERONC, Madrid, Comunidad de Madrid, Spain
| | - Georgina Flórez-Grau
- Immunology, Hospital Clinic de Barcelona, Barcelona, Catalunya, Spain
- Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
| | - Manel Juan
- Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
- Immunology, Servei d'Immunologia. Hospital Clínic de Barcelona, Barcelona, Barcelona, Spain
| | - Daniel Benitez-Ribas
- Immunology, Hospital Clinic de Barcelona, Barcelona, Catalunya, Spain
- Hospital Clinic de Barcelona, Barcelona, Catalunya, Spain
| | - Francesc Balaguer
- Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
- Gastroenterology, Hospital Clinic de Barcelona, Barcelona, Catalunya, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salud, Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
2
|
Lu C, Shang J, Xie M, Zhu Y, Zhong J, He Y, Xiao Z, Chen W, Yang ZA, Tang X, Yin P, Chen J. Bufalin inhibits immune escape in metastatic colorectal cancer by regulating M2 macrophage polarization. Apoptosis 2025:10.1007/s10495-025-02107-y. [PMID: 40186793 DOI: 10.1007/s10495-025-02107-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2025] [Indexed: 04/07/2025]
Abstract
The prognosis for patients with metastatic colorectal cancer (mCRC) remains poor primarily owing to immune escape caused by immunosuppressive tumor microenvironment (TME). M2 tumor-associated macrophages (TAMs) have been considered as a pivotal role in sustaining the immunosuppressive character in TME. Our previous studies have found that highly mCRC cells could promote M2 TAMs polarization, leading to the exhaustion of T cell antitumor immunity. Studies have reported that Bufalin (BU) could reverse the immunosuppressive TME via regulating TAMs polarization, but the mechanisms underlying remain elusive. In this study, we demonstrated that KLF4 secreted by highly mCRC cells not only promoted the polarization to M2 TAMs but also up-regulated the PD-L1 expression in TAMs, leading to suppressing cytotoxic T lymphocyte (CTL) function to facilitate tumor immune escape. Mechanistically, BU targeted the SRC-3 protein to reduce KLF4 release in highly mCRC cells to regulate the polarization of M2 TAMs and down-regulate PD-L1 expression in TAMs, resulting in reprogramming of the TME and enhancing the anti-tumor immunity. These results have also been validated in both subcutaneous tumor models and orthotopic tumor models. Overall, this research further elucidates the anti-tumor mechanism of BU for inhibiting immune escape in mCRC and facilitate exploitation of a new potential macrophage-based mCRC immunotherapeutic modality.
Collapse
Affiliation(s)
- Chang Lu
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- Fifth Clinical Medical College, Anhui Medical University, Hefei, 230022, Anhui, China
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Jing Shang
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- Department of Radiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Manli Xie
- Department of Medical Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Yuan Zhu
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Jiani Zhong
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Yujie He
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Zengyou Xiao
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- Fifth Clinical Medical College, Anhui Medical University, Hefei, 230022, Anhui, China
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Wen Chen
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- Fifth Clinical Medical College, Anhui Medical University, Hefei, 230022, Anhui, China
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Ze-An Yang
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- Fifth Clinical Medical College, Anhui Medical University, Hefei, 230022, Anhui, China
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Xiaoxia Tang
- Department of Medical Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
| | - Peihao Yin
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
- Fifth Clinical Medical College, Anhui Medical University, Hefei, 230022, Anhui, China.
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Hefei, China.
- Department of General Surgery, Putuo People's Hospital, Tongji University School of Medicine, Shanghai, 200060, China.
- Shanghai Key Laboratory of Wearable Robotics and Human-Machine Interaction, Shanghai, China.
| | - Jinbao Chen
- Department of Medical Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
| |
Collapse
|
3
|
Maoz A, Bleday R, Goldsmith J, Matalon SA, Redston MS, Nestor M, Nowak JA, Yurgelun MB. Intratumoral Heterogeneity of Mismatch Repair Status and Outcome of Treatment With Dostarlimab in a Patient With Locally Advanced Rectal Adenocarcinoma. JCO Precis Oncol 2025; 9:e2500041. [PMID: 40294354 DOI: 10.1200/po-25-00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/23/2025] [Accepted: 03/18/2025] [Indexed: 04/30/2025] Open
Affiliation(s)
- Asaf Maoz
- Dana-Farber Cancer Institute, Boston, MA
- Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Ronald Bleday
- Dana-Farber Cancer Institute, Boston, MA
- Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Jeffrey Goldsmith
- Harvard Medical School, Boston, MA
- Boston Children's Hospital, Boston, MA
| | - Shanna A Matalon
- Dana-Farber Cancer Institute, Boston, MA
- Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Mark S Redston
- Dana-Farber Cancer Institute, Boston, MA
- Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | | | - Jonathan A Nowak
- Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Matthew B Yurgelun
- Dana-Farber Cancer Institute, Boston, MA
- Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| |
Collapse
|
4
|
Chen T, Yang Y, Huang Z, Pan F, Xiao Z, Gong K, Huang W, Xu L, Liu X, Fang C. Prognostic risk modeling of endometrial cancer using programmed cell death-related genes: a comprehensive machine learning approach. Discov Oncol 2025; 16:280. [PMID: 40056247 DOI: 10.1007/s12672-025-02039-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/03/2025] [Indexed: 03/10/2025] Open
Abstract
BACKGROUND Endometrial cancer represents a significant health challenge, with rising incidence and complex prognostic challenges. This study aimed to develop a robust predictive model integrating programmed cell death-related genes and advanced machine learning techniques. METHODS Utilizing transcriptomic data from TCGA-UCEC and GSE119041 datasets, we employed a comprehensive approach involving 117 machine learning algorithms. Key methodologies included differential gene expression analysis, weighted gene co-expression network analysis, functional enrichment studies, immune landscape evaluation, and multi-dimensional risk stratification. RESULTS We identified 10 critical genes (PTGIS, TIMP3, SRPX, SNCA, HIC1, BAK1, STXBP2, TRIB3, RTKN2, E2F1) and constructed a prognostic model with superior predictive performance. The StepCox[forward] + plsRcox algorithm combination demonstrated excellent predictive accuracy (AUC > 0.8). Kaplan-Meier analysis revealed significant survival differences between high- and low-risk groups in both training (HR = 3.37, p < 0.001) and validation cohorts (HR = 2.05, p = 0.021). The model showed strong correlations with clinical characteristics, immune cell infiltration patterns, and potential therapeutic responses. CONCLUSIONS This study presents a novel, comprehensive approach to endometrial cancer prognosis, integrating machine learning and molecular insights to provide a more precise risk stratification tool with potential clinical translation.
Collapse
Affiliation(s)
- Tianshu Chen
- Department of Gynecology, Taihe Hospital, Hubei University of Medicine, Shiyan, No. 32 Renmin, South Road, 442000, Hubei, China
| | - Yuhan Yang
- Department of Gynecology, Taihe Hospital, Hubei University of Medicine, Shiyan, No. 32 Renmin, South Road, 442000, Hubei, China
| | - Zhizhong Huang
- Department of Gynecology, Taihe Hospital, Hubei University of Medicine, Shiyan, No. 32 Renmin, South Road, 442000, Hubei, China
| | - Feng Pan
- Department of Gynecology, Taihe Hospital, Hubei University of Medicine, Shiyan, No. 32 Renmin, South Road, 442000, Hubei, China
| | - Zhendi Xiao
- Department of Gynecology, Taihe Hospital, Hubei University of Medicine, Shiyan, No. 32 Renmin, South Road, 442000, Hubei, China
| | - Kunxue Gong
- Department of Gynecology, Taihe Hospital, Hubei University of Medicine, Shiyan, No. 32 Renmin, South Road, 442000, Hubei, China
| | - Wenguang Huang
- Department of Gynecology, Taihe Hospital, Hubei University of Medicine, Shiyan, No. 32 Renmin, South Road, 442000, Hubei, China
| | - Liu Xu
- Department of Gynecology, Taihe Hospital, Hubei University of Medicine, Shiyan, No. 32 Renmin, South Road, 442000, Hubei, China
| | - Xueqin Liu
- Department of Gynecology, Taihe Hospital, Hubei University of Medicine, Shiyan, No. 32 Renmin, South Road, 442000, Hubei, China.
| | - Caiyun Fang
- Department of Gynecology, Taihe Hospital, Hubei University of Medicine, Shiyan, No. 32 Renmin, South Road, 442000, Hubei, China.
| |
Collapse
|
5
|
Mestrallet G, Brown M, Vaninov N, Cho NW, Velazquez L, Ananthanarayanan A, Spitzer M, Vabret N, Cimen Bozkus C, Samstein RM, Bhardwaj N. Coordinated macrophage and T cell interactions mediate response to checkpoint blockade in colorectal cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637954. [PMID: 40027748 PMCID: PMC11870396 DOI: 10.1101/2025.02.12.637954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Mismatch repair deficiency (MMRd), either due to inherited or somatic mutation, is prevalent in colorectal cancer (CRC) and other cancers. While anti-PD-1 therapy is utilized in both local and advanced disease, up to 50% of MMRd CRC fail to respond. Using animal and human models of MMRd, we determined that interactions between MHC+ C1Q+ CXCL9+ macrophages and TCF+ BHLHE40+ PRF1+ T cell subsets are associated with control of MMRd tumor growth, during anti-PD-1 treatment. In contrast, resistance is associated with upregulation of TIM3, LAG3, TIGIT, and PD-1 expression on T cells, and infiltration of the tumor with immunosuppressive TREM2+ macrophages and monocytes. By combining anti-PD-1 with anti-LAG3/CTLA4/TREM2, up to 100% tumor eradication was achieved in MMRd CRC and remarkably, in >70% in MMRp CRC. This study identifies key T cell and macrophage subsets mediating the efficacy of immunotherapy in overcoming immune escape in both MMRd and MMRp CRC settings. Abstract Figure Highlights Anti-PD-1 therapy leads to the accumulation and colocalization of MHCI/II+ C1Q+ CXCL9+ macrophages and DCs with TCF+ CCL5+ T cells that have high TCR diversity.Resistance to anti-PD-1 therapy involves multiple T cell checkpoints, TREM2+ macrophages, IL1B+ TREM1+ monocytes and neutrophils, and IFITM+ tumor cells.Simultaneous blockade of PD-1, LAG3, CTLA-4 and TREM2 dramatically prevents progression of both MMRd and MMRp tumors.Combination therapy completely eliminates tumors by leveraging MHC+ macrophage, CD4+ and CD8+ T cell interactions, facilitating durable anti-tumor effects.
Collapse
|
6
|
Acha-Sagredo A, Andrei P, Clayton K, Taggart E, Antoniotti C, Woodman CA, Afrache H, Fourny C, Armero M, Moinudeen HK, Green M, Bhardwaj N, Mikolajczak A, Rodriguez-Lopez M, Crawford M, Connick E, Lim S, Hobson P, Linares J, Ignatova E, Pelka D, Smyth EC, Diamantis N, Sosnowska D, Carullo M, Ciraci P, Bergamo F, Intini R, Nye E, Barral P, Mishto M, Arnold JN, Lonardi S, Cremolini C, Fontana E, Rodriguez-Justo M, Ciccarelli FD. A constitutive interferon-high immunophenotype defines response to immunotherapy in colorectal cancer. Cancer Cell 2025; 43:292-307.e7. [PMID: 39824178 DOI: 10.1016/j.ccell.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 10/21/2024] [Accepted: 12/19/2024] [Indexed: 01/20/2025]
Abstract
Fewer than 50% of metastatic deficient mismatch repair (dMMR) colorectal cancer (CRC) patients respond to immune checkpoint inhibition (ICI). Identifying and expanding this patient population remains a pressing clinical need. Here, we report that an interferon-high immunophenotype locally enriched in cytotoxic lymphocytes and antigen-presenting macrophages is required for response. This immunophenotype is not exclusive to dMMR CRCs but comprises a subset of MMR proficient (pMMR) CRCs. Single-cell spatial analysis and in vitro cell co-cultures indicate that interferon-producing cytotoxic T cells induce overexpression of antigen presentation in adjacent macrophages and tumor cells, including MHC class II invariant chain CD74. dMMR CRCs expressing high levels of CD74 respond to ICI and a subset of CD74 high pMMR CRC patients show better progression free survival when treated with ICI. Therefore, CD74 abundance can identify the constitutive interferon-high immunophenotype determining clinical benefit in CRC, independently of tumor mutational burden or MMR status.
Collapse
Affiliation(s)
- Amelia Acha-Sagredo
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Centre for Cancer Evolution, Bart's Cancer Institute, Queen Mary University London, London EC1M 6AU, UK
| | - Pietro Andrei
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Centre for Cancer Evolution, Bart's Cancer Institute, Queen Mary University London, London EC1M 6AU, UK
| | - Kalum Clayton
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Centre for Cancer Evolution, Bart's Cancer Institute, Queen Mary University London, London EC1M 6AU, UK
| | - Emma Taggart
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Centre for Cancer Evolution, Bart's Cancer Institute, Queen Mary University London, London EC1M 6AU, UK
| | - Carlotta Antoniotti
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Chloé A Woodman
- School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 1UL, UK
| | - Hassnae Afrache
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London SE1 1UL, UK; Molecular Immunology Laboratory, Francis Crick Institute, London NW1 1AT, UK
| | - Constance Fourny
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London SE1 1UL, UK; Molecular Immunology Laboratory, Francis Crick Institute, London NW1 1AT, UK
| | - Maria Armero
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Centre for Cancer Evolution, Bart's Cancer Institute, Queen Mary University London, London EC1M 6AU, UK
| | - Hafsa Kaja Moinudeen
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Mary Green
- Experimental Histopathology, The Francis Crick Institute, London NW1 1AT, UK
| | - Nisha Bhardwaj
- Experimental Histopathology, The Francis Crick Institute, London NW1 1AT, UK
| | - Anna Mikolajczak
- Experimental Histopathology, The Francis Crick Institute, London NW1 1AT, UK
| | | | - Marg Crawford
- Advanced Sequencing Facility, The Francis Crick Institute, London NW1 1AT, UK
| | - Emma Connick
- Advanced Sequencing Facility, The Francis Crick Institute, London NW1 1AT, UK
| | - Steven Lim
- Flow Cytometry Facility, The Francis Crick Institute, London NW1 1AT, UK
| | - Philip Hobson
- Flow Cytometry Facility, The Francis Crick Institute, London NW1 1AT, UK
| | - Josep Linares
- Department of Histopathology, University College London Cancer Institute, London, UK
| | | | - Diana Pelka
- Drug Development Unit, Sarah Cannon Research Institute UK, London, UK
| | - Elizabeth C Smyth
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford OX3 7LE, UK
| | - Nikolaos Diamantis
- Department of Medical Oncology, Royal Free London NHS Foundation Trust, London WC1E 6BT, UK
| | - Dominika Sosnowska
- School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 1UL, UK
| | - Martina Carullo
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Paolo Ciraci
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Francesca Bergamo
- Oncology Unit 1, Department of Oncology Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Rossana Intini
- Oncology Unit 1, Department of Oncology Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Emma Nye
- Experimental Histopathology, The Francis Crick Institute, London NW1 1AT, UK
| | - Patricia Barral
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London SE1 1UL, UK; Immune Responses to Lipids Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Michele Mishto
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London SE1 1UL, UK; Molecular Immunology Laboratory, Francis Crick Institute, London NW1 1AT, UK
| | - James N Arnold
- School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 1UL, UK
| | - Sara Lonardi
- Oncology Unit 1, Department of Oncology Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Chiara Cremolini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Elisa Fontana
- Drug Development Unit, Sarah Cannon Research Institute UK, London, UK
| | | | - Francesca D Ciccarelli
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Centre for Cancer Evolution, Bart's Cancer Institute, Queen Mary University London, London EC1M 6AU, UK.
| |
Collapse
|
7
|
Liu Y, Wang Y, Tan S, Shi X, Wen J, Chen D, Zhao Y, Pan W, Jia Z, Lu C, Lou G. Characterization of G2/M checkpoint classifier for personalized treatment in uterine corpus endometrial carcinoma. Cancer Cell Int 2025; 25:34. [PMID: 39920729 PMCID: PMC11806828 DOI: 10.1186/s12935-025-03667-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/29/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Uterine Corpus Endometrial Carcinoma (UCEC) is a highly heterogeneous tumor, and limitations in current diagnostic methods, along with treatment resistance in some patients, pose significant challenges for managing UCEC. The excessive activation of G2/M checkpoint genes is a crucial factor affecting malignancy prognosis and promoting treatment resistance. METHODS Gene expression profiles and clinical feature data mainly came from the TCGA-UCEC cohort. Unsupervised clustering was performed to construct G2/M checkpoint (G2MC) subtypes. The differences in biological and clinical features of different subtypes were compared through survival analysis, clinical characteristics, immune infiltration, tumor mutation burden, and drug sensitivity analysis. Ultimately, an artificial neural network (ANN) and machine learning were employed to develop the G2MC subtypes classifier. RESULTS We constructed a classifier based on the overall activity of the G2/M checkpoint signaling pathway to identify patients with different risks and treatment responses, and attempted to explore potential therapeutic targets. The results showed that two G2MC subtypes have completely different G2/M checkpoint-related gene expression profiles. Compared with the subtype C2, the subtype C1 exhibited higher G2MC scores and was associated with faster disease progression, higher clinical staging, poorer pathological types, and lower therapy responsiveness of cisplatin, radiotherapy and immunotherapy. Experiments targeting the feature gene KIF23 revealed its crucial role in reducing HEC-1A sensitivity to cisplatin and radiotherapy. CONCLUSION In summary, our study developed a classifier for identifying G2MC subtypes, and this finding holds promise for advancing precision treatment strategies for UCEC.
Collapse
Affiliation(s)
- Yiming Liu
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yusi Wang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Shu Tan
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xiaochen Shi
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jinglin Wen
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Dejia Chen
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yue Zhao
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wenjing Pan
- Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhaoyang Jia
- Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chunru Lu
- Department of Gynecology, Suihua Maternity and Health Care Hospital, Suihua, China.
| | - Ge Lou
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
8
|
Luo D, Zhou J, Ruan S, Zhang B, Zhu H, Que Y, Ying S, Li X, Hu Y, Song Z. Overcoming immunotherapy resistance in gastric cancer: insights into mechanisms and emerging strategies. Cell Death Dis 2025; 16:75. [PMID: 39915459 PMCID: PMC11803115 DOI: 10.1038/s41419-025-07385-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/07/2025] [Accepted: 01/22/2025] [Indexed: 02/09/2025]
Abstract
Gastric cancer (GC) remains a leading cause of cancer-related mortality worldwide, with limited treatment options in advanced stages. Immunotherapy, particularly immune checkpoint inhibitors (ICIs) targeting PD1/PD-L1, has emerged as a promising therapeutic approach. However, a significant proportion of patients exhibit primary or acquired resistance, limiting the overall efficacy of immunotherapy. This review provides a comprehensive analysis of the mechanisms underlying immunotherapy resistance in GC, including the role of the tumor immune microenvironment, dynamic PD-L1 expression, compensatory activation of other immune checkpoints, and tumor genomic instability. Furthermore, the review explores GC-specific factors such as molecular subtypes, unique immune evasion mechanisms, and the impact of Helicobacter pylori infection. We also discuss emerging strategies to overcome resistance, including combination therapies, novel immunotherapeutic approaches, and personalized treatment strategies based on tumor genomics and the immune microenvironment. By highlighting these key areas, this review aims to inform future research directions and clinical practice, ultimately improving outcomes for GC patients undergoing immunotherapy.
Collapse
Affiliation(s)
- Dingtian Luo
- Gastroenterology Department, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Jing Zhou
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Shuiliang Ruan
- Gastroenterology Department, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Binzhong Zhang
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Huali Zhu
- Gastroenterology Department, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Yangming Que
- Gastroenterology Department, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Shijie Ying
- Gastroenterology Department, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Xiaowen Li
- Pathology Department, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Yuanmin Hu
- Intensive Care Unit, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| | - Zhengwei Song
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| |
Collapse
|
9
|
Balmaceda NB, Kim SS. Evolving Strategies in the Management of Microsatellite Instability-High/Mismatch Repair Deficient Esophagogastric Adenocarcinoma. Curr Oncol Rep 2025; 27:81-94. [PMID: 39832053 DOI: 10.1007/s11912-024-01624-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2024] [Indexed: 01/22/2025]
Abstract
PURPOSE OF REVIEW This review addresses the current treatment paradigm and new advancements in the management of microsatellite instability-high/mismatch repair deficient (MSI-H/dMMR) esophagogastric cancer (EGC). RECENT FINDINGS While chemotherapy and surgery remain the cornerstone of EGC treatment, MSI-H/dMMR tumors harbor high tumor mutational burden and represent a subset of patients who benefit from immune checkpoint inhibitors (ICI). ICI has been incorporated in the front line setting with and without chemotherapy for advanced disease. Recently, ICI has been studied in the perioperative setting for resectable disease. Though perioperative ICI results in improved response rates, it is not yet clear whether this translates to a survival benefit. Despite high response rates with ICI in this patient population, many do not respond to therapy, representing a major challenge in treatment. Preclinical studies have highlighted potential mechanisms of resistance which will guide drug development and clinical trials.
Collapse
Affiliation(s)
- Nicole Baranda Balmaceda
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sunnie S Kim
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
10
|
Vlachavas EI, Voutetakis K, Kosmidou V, Tsikalakis S, Roditis S, Pateas K, Kim R, Pagel K, Wolf S, Warsow G, Dimitrakopoulou-Strauss A, Zografos GN, Pintzas A, Betge J, Papadodima O, Wiemann S. Molecular and functional profiling unravels targetable vulnerabilities in colorectal cancer. Mol Oncol 2025. [PMID: 39876058 DOI: 10.1002/1878-0261.13814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/11/2024] [Accepted: 01/20/2025] [Indexed: 01/30/2025] Open
Abstract
Colorectal cancer (CRC) patients with microsatellite-stable (MSS) tumors are mostly treated with chemotherapy. Clinical benefits of targeted therapies depend on mutational states and tumor location. Many tumors carry mutations in KRAS proto-oncogene, GTPase (KRAS) or B-Raf proto-oncogene, serine/threonine kinase (BRAF), rendering them more resistant to therapies. We performed whole-exome sequencing and RNA-Sequencing of 28 tumors of the Athens Comprehensive Cancer Center CRC cohort, and molecularly characterized CRC patients based on their microsatellite instability (MSI) status, single-nucleotide variations (SNVs)/copy number alterations (CNAs), and pathway/transcription factor activities at the individual patient level. Variants were classified using a computational score for integrative cancer variant annotation and prioritization. Complementing this with public multi-omics datasets, we identified activation of transforming growth factor beta (TGFβ) signaling to be more strongly activated in MSS patients, whereas Janus kinase (JAK)-signal transducer and activator of transcription (STAT) and mitogen-activated protein kinase (MAPK) molecular cascades were activated specifically in MSI tumors. We unraveled mechanisms consistently perturbed in the transcriptional and mutational circuits and identified Runt-related transcription factors (RUNX transcription factors) as putative biomarkers in CRC, given their role in the regulation of pathways involved in tumor progression and immune evasion. Assessing the immunogenicity of CRC tumors in the context of RAS/RAF mutations and MSI/MSS status revealed a critical impact that KRAS mutations have on immunogenicity, particularly in the MSS patient subgroup, with implications for diagnosis and treatment.
Collapse
Affiliation(s)
| | | | - Vivian Kosmidou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Spyridon Tsikalakis
- Division of Molecular Genome Analysis, German Cancer Research Center, Heidelberg, Germany
| | - Spyridon Roditis
- 3rd Surgical Department G.Gennimatas Hospital, Athens, Greece
- Surgical Department, University Hospital of North Midlands, Stoke-on-Trent, UK
| | | | | | | | - Stephan Wolf
- High-Throughput Sequencing Core Facility, German Cancer Research Center, Heidelberg, Germany
| | - Gregor Warsow
- Omics IT and Data Management Core Facility, German Cancer Research Center, Heidelberg, Germany
| | | | | | - Alexander Pintzas
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Johannes Betge
- Junior Clinical Cooperation Unit Translational Gastrointestinal Oncology and Preclinical Models, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany
- DKFZ-Hector Cancer Institute at University Medical Center Mannheim, Germany
| | - Olga Papadodima
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
11
|
Goddard KAB, Feuer EJ, Umar A, Castle PE. Accelerating progress to reduce the cancer burden through prevention and control in the United States. J Natl Cancer Inst 2025; 117:20-28. [PMID: 39222932 PMCID: PMC11717421 DOI: 10.1093/jnci/djae204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Improvements in cancer prevention and control are poised to be main contributors in reducing the burden of cancer in the United States. We quantify top opportunities to accelerate progress using projected life-years gained and deaths averted as measures. We project that over the next 25 years, realistic gains from tobacco control can contribute 0.4-17 million additional life-years gained per intervention and 8.4 million additional life-years gained from improving uptake of screening programs over the lifetime of 25 annual cohorts. Additional opportunities include addressing modifiable risk factors (excess weight, alcohol consumption), improving methods to prevent or treat oncogenic infections, and reducing cancer health disparities. Investment is needed in the pipeline of new preventive agents and technologies for early detection to continue progress. There is also a need for additional research to improve the access to and uptake of existing and emerging interventions for cancer prevention and control and to address health disparities. These gains are undeniably within our power to realize for the US population.
Collapse
Affiliation(s)
- Katrina A B Goddard
- Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eric J Feuer
- Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Asad Umar
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Philip E Castle
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
12
|
Liu J, Zhang X, Ren Q, Song C, Yu J, Cai Y, Chen D. Negative response to immunotherapy in dMMR or MSI-H gastric cancer with APC and PTEN mutations: a case report. Front Oncol 2024; 14:1484802. [PMID: 39669365 PMCID: PMC11634749 DOI: 10.3389/fonc.2024.1484802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024] Open
Abstract
Background Microsatellite instability-high (MSI-H) or deficient mismatch repair (dMMR) represents a distinct molecular phenotype observed in malignant tumors. These tumors typically exhibit high levels of programmed cell death 1 ligand 1 (PD-L1) expression and high tumor mutational burden (TMB), resulting in an enhanced response to immune checkpoint inhibitors (ICI) therapy. The emergence of ICI has transformed the therapeutic strategy of gastric cancer (GC). Immune checkpoint blockade significantly improves the survival of gastric cancer patients, especially those with MSI-H or dMMR. However, it's worth noting that not all patients with MSI-H respond favorably to this treatment. It has been reported that factors such as tumor heterogeneity, alterations in the tumor microenvironment, and aberrant activation of tumor-related signaling pathways have been linked with resistance to ICI therapy. Case presentation Here, we describe a case of dMMR and MSI-H GC with adenomatous polyposis coli (APC) and phosphatase and tensin homolog deleted on chromosome ten (PTEN) mutations that failed to respond to anti-PD-1 combined with anti-HER2 (human epidermal growth factor receptor-2) therapy and chemotherapy. We attempted to elucidate the underlying causes and mechanisms behind this lack of response, and to provide new insights into treatment options for these patients. Conclusions Mutations of key genes within tumor-related signaling pathways and the infiltration of CD8+T cells in the tumor microenvironment may influence the efficacy of immunotherapy for MSI-H solid tumors.
Collapse
Affiliation(s)
- Jiang Liu
- *Correspondence: Jiang Liu, ; Dadong Chen,
| | | | | | | | | | | | - Dadong Chen
- Department of Oncology, The Affiliated Xinghua People’s Hospital, Medical School of Yangzhou University, Xinghua, Jiangsu, China
| |
Collapse
|
13
|
X Zhang G, Yang B. Retained PAX2 expression associated with DNA mismatch repair deficiency in endometrial endometrioid adenocarcinoma. Histopathology 2024; 85:794-803. [PMID: 39075663 DOI: 10.1111/his.15281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/31/2024]
Abstract
AIMS Loss of expression of tumour suppressor PAX2 and MMR deficiency (dMMR) has been frequently seen in endometrial endometrioid adenocarcinoma (EEC). However, the relationship between PAX2 expression and MMR status is unknown. METHODS AND RESULTS We studied the PAX2 expression and examined its association with MMR status at the protein and genetic levels in 180 cases of EEC. Overall, total loss of PAX2 expression was found in about 70%, while retained PAX2 expression was seen in 30% of EEC. Among 125 cases with loss of PAX2, 68.8% were found in EECs with pMMR, while 31.2% were seen in those with dMMR. Among 55 cases of EECs with retained PAX2 expression, 92.7% were EECs with dMMR and 7.3% were those with pMMR (P < 0.001). While dMMR cases with MLH1 hypermethylation show almost equal retained or loss of PAX2 expression (52% versus 48%), dMMR with genetic alterations had significantly more retained PAX2 expression than loss of PAX2 (92.3% versus 7.7%), regardless of somatic or germline mutations. Loss of PAX2 was observed in 97.3% of dMMR with MLH1 hypermethylation compared to 2.7% of dMMR with genetic alterations (P < 0.001). Aggressive features such as higher tumour grades (FIGO 2-3) and advanced clinical stage (T2-T4) were significantly more frequently seen in dMMR with retained PAX2 expression, compared those to pMMR with loss of PAX2 expression. CONCLUSION Our study demonstrates a close correlation between retained PAX2 expression and dMMR in EEC. The molecular mechanism and clinical significance linking these two pathways in EEC remains to be unravelled.
Collapse
Affiliation(s)
- Gloria X Zhang
- Pathology and Laboratory Medicine Institute, The Cleveland Clinic, Cleveland, OH, USA
| | - Bin Yang
- Pathology and Laboratory Medicine Institute, The Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
14
|
Amodio V, Vitiello PP, Bardelli A, Germano G. DNA repair-dependent immunogenic liabilities in colorectal cancer: opportunities from errors. Br J Cancer 2024; 131:1576-1590. [PMID: 39271762 PMCID: PMC11554791 DOI: 10.1038/s41416-024-02848-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) remains one of the major causes of cancer death worldwide. Chemotherapy continues to serve as the primary treatment modality, while immunotherapy is largely ineffective for the majority of CRC patients. Seminal discoveries have emphasized that modifying DNA damage response (DDR) mechanisms confers both cell-autonomous and immune-related vulnerabilities across various cancers. In CRC, approximately 15% of tumours exhibit alterations in the mismatch repair (MMR) machinery, resulting in a high number of neoantigens and the activation of the type I interferon response. These factors, in conjunction with immune checkpoint blockades, collectively stimulate anticancer immunity. Furthermore, although less frequently, somatic alterations in the homologous recombination (HR) pathway are observed in CRC; these defects lead to genome instability and telomere alterations, supporting the use of poly (ADP-ribose) polymerase (PARP) inhibitors in HR-deficient CRC patients. Additionally, other DDR inhibitors, such as Ataxia Telangiectasia and Rad3-related protein (ATR) inhibitors, have shown some efficacy both in preclinical models and in the clinical setting, irrespective of MMR proficiency. The aim of this review is to elucidate how preexisting or induced vulnerabilities in DNA repair pathways represent an opportunity to increase tumour sensitivity to immune-based therapies in CRC.
Collapse
Affiliation(s)
- V Amodio
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139, Milan, Italy
- Department of Oncology, Molecular Biotechnology Center, University of Torino, 10126, Turin, Italy
| | - P P Vitiello
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139, Milan, Italy
- Department of Oncology, Molecular Biotechnology Center, University of Torino, 10126, Turin, Italy
| | - A Bardelli
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139, Milan, Italy.
- Department of Oncology, Molecular Biotechnology Center, University of Torino, 10126, Turin, Italy.
| | - G Germano
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139, Milan, Italy.
- Department of Medical Biotechnologies and Translational Medicine, University of Milano, 20133, Milan, Italy.
| |
Collapse
|
15
|
Hao LY, Lerrer S, Paiola M, Moore EK, Gartshteyn Y, Song R, Goeckeritz M, Black MJ, Bukhari S, Hu X, Mor A. Exclusion of PD-1 from the immune synapse: A novel strategy to modulate T cell function. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200839. [PMID: 39072290 PMCID: PMC11278290 DOI: 10.1016/j.omton.2024.200839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/20/2024] [Accepted: 06/14/2024] [Indexed: 07/30/2024]
Abstract
Targeting immune checkpoint receptors on T cells is a common cancer treatment strategy. Frequently, this is accomplished through antibodies targeting the ligand of inhibitory co-receptors. Blocking the immune checkpoint PD-1 binding to its ligands PD-L1 and PD-L2 prevents downstream signaling and enhances anti-tumor T cell responses. This approach improves cancer patients' outcomes. However, only one-third of the patients respond to these treatments. To better understand the mechanism of anti-PD-1 antibodies, we explored the location of PD-1 within the immune synapse. Surprisingly, we discovered that anti-PD-1 antibodies, besides blocking the interaction between PD-1 and its ligands, also removed PD-1 from the synapse. We demonstrated a correlation between removing PD-1 from the synapse by anti-PD-1 antibodies and the extent of T cell activation. Interestingly, a short version of the anti-PD-1 antibody, F(ab')2, failed to remove PD-1 from the synapse and activate T cells. Using the syngeneic tumor model, we showed a superior anti-tumor effect of the anti-PD-1 antibody over the shorter version of the same antibody. Our data indicate that anti-PD-1 antibodies activate T cells by removing PD-1 from the synapse, and changing the location of PD-1 or other immune receptors within the immune synapse could serve as an alternative, efficient approach to treat cancer.
Collapse
Affiliation(s)
- Luke Yi Hao
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Shalom Lerrer
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Matthieu Paiola
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Emily K. Moore
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Yevgeniya Gartshteyn
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA
- Division of Rheumatology, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Ruijiang Song
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Michael Goeckeritz
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06108 Halle, Germany
| | - Matilda J. Black
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA
- Department of Medicine, Faculty of Biology, University of Cambridge, CB2 1TN Cambridge, UK
| | - Shoiab Bukhari
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Xizi Hu
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Adam Mor
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA
- Division of Rheumatology, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
16
|
Giovannini S, Smirnov A, Concetti L, Scimeca M, Mauriello A, Bischof J, Rovella V, Melino G, Buonomo CO, Candi E, Bernassola F. A comprehensive molecular characterization of a claudin-low luminal B breast tumor. Biol Direct 2024; 19:66. [PMID: 39152485 PMCID: PMC11328405 DOI: 10.1186/s13062-024-00482-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/20/2024] [Indexed: 08/19/2024] Open
Abstract
Breast cancer is the most common cause of death from cancer in women. Here, we present the case of a 43-year-old woman, who received a diagnosis of claudin-low luminal B breast cancer. The lesion revealed to be a poorly differentiated high-grade infiltrating ductal carcinoma, which was strongly estrogen receptor (ER)/progesterone receptor (PR) positive and human epidermal growth factor receptor (HER2) negative. Her tumor underwent in-depth chromosomal, mutational and gene expression analyses. We found a pathogenic protein truncating mutation in the TP53 gene, which is predicted to disrupt its transcriptional activity. The patient also harbors germline mutations in some mismatch repair (MMR) genes, and her tumor displays the presence of immune infiltrates, high tumor mutational burden (TMB) status and the apolipoprotein B mRNA editing enzyme catalytic polypeptide 3 (APOBEC3) associated signatures, which, overall, are predictive for the use of immunotherapy. Here, we propose promising prognostic indicators as well as potential therapeutic strategies based on the molecular characterization of the tumor.
Collapse
Affiliation(s)
- Sara Giovannini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Artem Smirnov
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
- Istituto Dermopatico Immacolata (IDI-IRCCS), 00100, Rome, Italy
| | - Livia Concetti
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Julia Bischof
- Germany Biochemistry Laboratory, Indivumed GmbH, Falkenried, 88 Building D, 20251, Hamburg, Germany
| | - Valentina Rovella
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Claudio Oreste Buonomo
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
- Istituto Dermopatico Immacolata (IDI-IRCCS), 00100, Rome, Italy.
| | - Francesca Bernassola
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| |
Collapse
|
17
|
Pacholczak-Madej R, Bartoletti M, Musacchio L, Püsküllüoglu M, Blecharz P, Lorusso D. Immunotherapy in MMR-d/MSI-H recurrent/metastatic endometrial cancer. Expert Rev Anticancer Ther 2024; 24:717-729. [PMID: 38863432 DOI: 10.1080/14737140.2024.2367472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/10/2024] [Indexed: 06/13/2024]
Abstract
INTRODUCTION The advent of immunotherapy with immune checkpoint inhibitors (ICIs) has revolutionized the management of mismatch repair deficient (MMR-d)/microsatellite instability-high (MSI-H) endometrial cancer (EC). Initially investigated as monotherapy in phase I-II clinical trials for recurrent disease, immunotherapy demonstrated remarkable activity, yielding overall response rates (ORR) ranging from 27% to 58%. Based on these promising findings, phase III trials have explored the integration of immunotherapy into first-line treatment regimens for advanced/recurrent EC in combination with chemotherapy or other agents such as tyrosine kinase inhibitors (TKIs), resulting in improved ORR, progression-free survival, and overall survival compared to the standard chemotherapy regimen of paclitaxel and carboplatin. As a result, the incorporation of ICIs with standard platinum-based chemotherapy is becoming a new standard of care in MMR-d/MSI-H EC. AREAS COVERED This review synthesizes literature from PubMed, Embase databases, and recent congress abstracts on gynecological cancers. It covers MMR-d/MSI-H EC incidence, molecular diagnostics, clinical trial outcomes, predictive biomarkers for ICIs, patient profiles likely to benefit, resistance mechanisms, and the future of immunotherapy in this setting. EXPERT OPINION By offering a comprehensive overview, this review delineates the pivotal role of ICIs in the management of MMR-d/MSI-H EC.
Collapse
Affiliation(s)
- Renata Pacholczak-Madej
- Department of Gynaecological Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Krakow Branch, Krakow, Poland
- Department of Chemotherapy, The District Hospital, Sucha Beskidzka, Poland
- Department of Anatomy, Jagiellonian University, Krakow, Poland
| | - Michele Bartoletti
- Unit of Medical Oncology and Cancer Prevention, Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Lucia Musacchio
- Department of Women and Child Health, Division of Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Mirosława Püsküllüoglu
- Department of Clinical Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Krakow Branch, Krakow, Poland
| | - Paweł Blecharz
- Department of Gynaecological Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Krakow Branch, Krakow, Poland
| | - Domenica Lorusso
- Department of Gynaecological Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Krakow Branch, Krakow, Poland
- Gynecologic Oncology Unit, Humanitas San Pio X Milan and Humanitas University Rozzano, Milan, Italy
| |
Collapse
|
18
|
Li X, Che Y, Wang X, Zhu Y. A pan-cancer analysis of the core pre-mRNA 3' end processing factors, and their association with prognosis, tumor microenvironment, and potential targets. Sci Rep 2024; 14:17428. [PMID: 39075070 PMCID: PMC11286879 DOI: 10.1038/s41598-024-57402-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/18/2024] [Indexed: 07/31/2024] Open
Abstract
Alternative polyadenylation (APA) is a crucial mechanism for regulating gene expression during pre-mRNA 3' processing. Pre-mRNA 3' end processing factors is the main factor involved in this process. However, pre-mRNA 3' end processing factors in different cancer expression profiles and the relationship between pre-mRNA 3' end processing factors and tumor microenvironment and the prognosis of the same patient is still unclear. In this study, we conducted a comprehensive exploration of the core pre-mRNA 3' end processing factors across various cancer types by utilizing common cancer database, and revealing a robust correlation between the expression of these core factors and tumor characteristics. Leveraging advanced bioinformatics databases, we evaluated the expression levels and prognostic relevance of pre-mRNA 3' end processing factors across pan-cancer tissues. Our extensive pan-cancer analysis revealed unique expression patterns of pre-mRNA 3' end processing factors in both tumor and adjacent non-tumorous tissues. Notably, we found a significant correlation between the expression levels of pre-mRNA 3' end processing factors and patient prognosis. Furthermore, we identified strong associations between pre-mRNA 3' end processing factors expression and various factors, such as stromal, immune, RNA stemness, and DNA stemness scores across pan-cancer tissues. Our data also highlighted a link between the expression of pre-mRNA 3' end processing factors and sensitivity to specific drugs, including pyrazoloacndine, amonaflide, and chelerythrinede, among others. We found four key pre-mRNA 3' end processing factors that play a crucial role in mRNA preprocessing. Our study illuminates the potential promotion and inhibition role of pre-mRNA 3' end processing regulators in the progression of cancer, CPSF2, CPSF3, CSTF2, SYMPK offering valuable insights for future research investigations on these regulators as diagnostic markers and therapeutic targets across pan-cancer.
Collapse
Affiliation(s)
- Xiangyu Li
- College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yu Che
- College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaoyan Wang
- Chongqing Medical and Pharmaceutical College, Chongqing, 401331, China.
| | - Yong Zhu
- College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
19
|
Fick CN, Dunne EG, Sihag S, Molena D, Cytryn SL, Janjigian YY, Wu AJ, Worrell SG, Hofstetter WL, Jones DR, Gray KD. Immunotherapy for Resectable Locally Advanced Esophageal Carcinoma. Ann Thorac Surg 2024; 118:130-140. [PMID: 38408631 PMCID: PMC11194153 DOI: 10.1016/j.athoracsur.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND The current standard of care for locally advanced esophageal and gastroesophageal junction (GEJ) cancers includes neoadjuvant chemoradiotherapy or perioperative chemotherapy with surgical resection; however, disease-free survival in these patients remains poor. Immune checkpoint inhibitors (ICIs) are approved for adjuvant treatment of locally advanced esophageal and GEJ cancers, but their benefit in the perioperative and neoadjuvant settings remains under investigation. METHODS We used the PubMed online database to conduct a literature search to identify studies that investigated immunotherapy for locally advanced esophageal and GEJ carcinoma. A review of ClinicalTrials.gov yielded a list of ongoing trials. RESULTS Adjuvant nivolumab for residual disease after neoadjuvant chemoradiotherapy and surgery is the only approved immunotherapy regimen for locally advanced esophageal cancer. Early-phase trials investigating the addition of neoadjuvant or perioperative ICIs to standard-of-care multimodality approaches have observed pathologic complete response rates as high as 60%. Response rates are highest for ICIs plus chemoradiotherapy for esophageal squamous cell carcinoma and dual checkpoint inhibition in mismatch repair-deficient adenocarcinomas. Safety profiles are acceptable, with a pooled adverse event rate of 27%. Surgical morbidity and mortality with immunotherapy are similar to historical controls with no immunotherapy, and R0 resection rates are high. When reported, disease-free survival among patients treated with perioperative immunotherapy is promising. CONCLUSIONS Outside of clinical trials, immunotherapy for resectable esophageal carcinoma is limited to the adjuvant setting. Phase III trials investigating neoadjuvant and perioperative immunotherapy are now underway and will provide much-needed data on survival that may ultimately lead to practice-changing recommendations.
Collapse
Affiliation(s)
- Cameron N Fick
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elizabeth G Dunne
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Smita Sihag
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Daniela Molena
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Samuel L Cytryn
- Gastrointestinal Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yelena Y Janjigian
- Gastrointestinal Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Abraham J Wu
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Stephanie G Worrell
- Section of Thoracic Surgery, Department of Surgery, University of Arizona, Tucson, Arizona
| | - Wayne L Hofstetter
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David R Jones
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Katherine D Gray
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
20
|
Furukawa K, Hatakeyama K, Terashima M, Urakami K, Koseki Y, Fujiya K, Tanizawa Y, Bando E, Yamaguchi K. Molecular features and prognostic factors of locally advanced microsatellite instability-high gastric cancer. Gastric Cancer 2024; 27:760-771. [PMID: 38744779 DOI: 10.1007/s10120-024-01506-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 05/03/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Microsatellite instability-high (MSI-H) tumors are distinct molecular subtypes in gastric cancer. However, a few studies have comprehensively reported the molecular features of MSI-H tumors and their prognostic factors in locally advanced gastric cancer. This study aimed to clarify the molecular features and prognostic factors of locally advanced MSI-H gastric cancer. METHODS This study included 499 patients with locally advanced gastric cancer who underwent radical gastrectomy. We evaluated the MSI status and compared with previously published whole-exome sequencing, panel sequencing, and gene expression profiling data. Clinicopathological characteristics and molecular profiles were compared between patients with MSI-H and microsatellite stable (MSS) gastric cancer. A subgroup analysis of survival was performed in patients with MSI-H gastric cancer. RESULTS MSI-H tumors were detected in 79 of 499 patients (15.8%). MSI-H tumors were associated with an increased tumor mutational burden, MLH1 downregulation, CD274 (PD-L1) upregulation, and enrichment of cell cycle pathways. Among patients with MSI-H gastric cancer, the disease-specific survival (DSS) tended to be better in the surgery plus tegafur, gimeracil, and oteracil potassium (S-1) adjuvant chemotherapy group than in the surgery alone group, especially for stage III patients. Furthermore, DSS was better in the T cell-inflamed gene expression signature-high group, and it tended to be worse in the non-solid type poorly differentiated adenocarcinoma group. CONCLUSIONS The molecular features and prognostic factors of locally advanced MSI-H gastric cancer were clarified. S-1 adjuvant chemotherapy appears to be beneficial, and the T cell-inflamed gene expression signature and histopathological type are prognostic factors in MSI-H tumors.
Collapse
Affiliation(s)
- Kenichiro Furukawa
- Division of Gastric Surgery, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Keiichi Hatakeyama
- Cancer Multiomics Division, Shizuoka Cancer Center Research Institute, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Masanori Terashima
- Division of Gastric Surgery, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan.
| | - Kenichi Urakami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Yusuke Koseki
- Division of Gastric Surgery, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Keiichi Fujiya
- Division of Gastric Surgery, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Yutaka Tanizawa
- Division of Gastric Surgery, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Etsuro Bando
- Division of Gastric Surgery, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Ken Yamaguchi
- Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
| |
Collapse
|
21
|
Maggadottir SM, Dueland S, Mensali N, Hamre H, Andresen PA, Myhre MR, Juul HV, Bigalke I, Lundby M, Hønnåshagen TK, Sæbøe-Larssen S, Josefsen D, Hagtvedt T, Wälchli S, Kvalheim G, Inderberg EM. Transient TCR-based T cell therapy in a patient with advanced treatment-resistant MSI-high colorectal cancer. Mol Ther 2024; 32:2021-2029. [PMID: 38582964 PMCID: PMC11184326 DOI: 10.1016/j.ymthe.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/07/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024] Open
Abstract
We previously demonstrated the antitumor effectiveness of transiently T cell receptor (TCR)-redirected T cells recognizing a frameshift mutation in transforming growth factor beta receptor 2. We here describe a clinical protocol using mRNA TCR-modified T cells to treat a patient with progressive, treatment-resistant metastatic microsatellite instability-high (MSI-H) colorectal cancer. Following 12 escalating doses of autologous T cells electroporated with in-vitro-transcribed Radium-1 TCR mRNA, we assessed T cell cytotoxicity, phenotype, and cytokine production. Tumor markers and growth on computed tomography scans were evaluated and immune cell tumor infiltrate at diagnosis assessed. At diagnosis, tumor-infiltrating CD8+ T cells had minimal expression of exhaustion markers, except for PD-1. Injected Radium-1 T cells were mainly naive and effector memory T cells with low expression of exhaustion markers, except for TIGIT. We confirmed cytotoxicity of transfected Radium-1 T cells against target cells and found key cytokines involved in tumor metastasis, growth, and angiogenesis to fluctuate during treatment. The treatment was well tolerated, and despite his advanced cancer, the patient obtained a stable disease with 6 months survival post-treatment. We conclude that treatment of metastatic MSI-H colorectal cancer with autologous T cells electroporated with Radium-1 TCR mRNA is feasible, safe, and well tolerated and that it warrants further investigation in a phase 1/2 study.
Collapse
Affiliation(s)
- Solrun Melkorka Maggadottir
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway; Landspitali University Hospital, Reykjavik, Iceland
| | - Svein Dueland
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Nadia Mensali
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Hanne Hamre
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
| | | | - Marit Renée Myhre
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Hedvig V Juul
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Iris Bigalke
- Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Marianne Lundby
- Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | | | - Stein Sæbøe-Larssen
- Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Dag Josefsen
- Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Trond Hagtvedt
- Department of Radiology, Oslo University Hospital, Oslo, Norway
| | - Sébastien Wälchli
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Gunnar Kvalheim
- Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Else Marit Inderberg
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
22
|
Daliri K, Hescheler J, Pfannkuche KP. Prime Editing and DNA Repair System: Balancing Efficiency with Safety. Cells 2024; 13:858. [PMID: 38786078 PMCID: PMC11120019 DOI: 10.3390/cells13100858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/24/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024] Open
Abstract
Prime editing (PE), a recent progression in CRISPR-based technologies, holds promise for precise genome editing without the risks associated with double-strand breaks. It can introduce a wide range of changes, including single-nucleotide variants, insertions, and small deletions. Despite these advancements, there is a need for further optimization to overcome certain limitations to increase efficiency. One such approach to enhance PE efficiency involves the inhibition of the DNA mismatch repair (MMR) system, specifically MLH1. The rationale behind this approach lies in the MMR system's role in correcting mismatched nucleotides during DNA replication. Inhibiting this repair pathway creates a window of opportunity for the PE machinery to incorporate the desired edits before permanent DNA repair actions. However, as the MMR system plays a crucial role in various cellular processes, it is important to consider the potential risks associated with manipulating this system. The new versions of PE with enhanced efficiency while blocking MLH1 are called PE4 and PE5. Here, we explore the potential risks associated with manipulating the MMR system. We pay special attention to the possible implications for human health, particularly the development of cancer.
Collapse
Affiliation(s)
- Karim Daliri
- Institute for Neurophysiology, Centre for Physiology and Pathophysiology, Medical Faculty and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany (K.P.P.)
- Marga and Walter Boll-Laboratory for Cardiac Tissue Engineering, University of Cologne, 50931 Cologne, Germany
| | - Jürgen Hescheler
- Institute for Neurophysiology, Centre for Physiology and Pathophysiology, Medical Faculty and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany (K.P.P.)
| | - Kurt Paul Pfannkuche
- Institute for Neurophysiology, Centre for Physiology and Pathophysiology, Medical Faculty and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany (K.P.P.)
- Marga and Walter Boll-Laboratory for Cardiac Tissue Engineering, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
23
|
Liu YL, Weigelt B. A tale of two pathways: Review of immune checkpoint inhibitors in DNA mismatch repair-deficient and microsatellite instability-high endometrial cancers. Cancer 2024; 130:1733-1746. [PMID: 38422006 PMCID: PMC11058027 DOI: 10.1002/cncr.35267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
The DNA mismatch repair (MMR) pathway is critical for correcting DNA mismatches generated during DNA replication. MMR-deficiency (MMR-D) leads to microsatellite instability (MSI) associated with an increased mutation rate, driving cancer development. This is particularly relevant in endometrial cancer (EC) as 25%-30% of tumors are of MMR-D/MSI-high (MSI-H) phenotype. Comprehensive assessment using immunohistochemistry (IHC) and sequencing-based techniques are necessary to fully evaluate ECs given the importance of molecular subtyping in staging and prognosis. This also influences treatment selection as clinical trials have demonstrated survival benefits for immune checkpoint inhibitors (ICIs) alone and in combination with chemotherapy for MMR-D/MSI-H EC patients in various treatment settings. As a portion of MMR-D/MSI-H ECs are driven by Lynch syndrome, an inherited cancer predisposition syndrome that is also associated with colorectal cancer, this molecular subtype also prompts germline assessment that can affect at-risk family members. Additionally, heterogeneity in the tumor immune microenvironment and tumor mutation burden (TMB) have been described by MMR mechanism, meaning MLH1 promoter hypermethylation versus germline/somatic MMR gene mutation, and this may affect response to ICI therapies. Variations by ancestry in prevalence and mechanism of MMR-D/MSI-H tumors have also been reported and may influence health disparities given observed differences in tumors of Black compared to White patients which may affect ICI eligibility. These observations highlight the need for additional prospective studies to evaluate the nuances regarding MMR-D heterogeneity as well as markers of resistance to inform future trials of combination therapies to further improve outcomes for patients with EC.
Collapse
Affiliation(s)
- Ying L Liu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Britta Weigelt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
24
|
Umekita S, Kiyozawa D, Kohashi K, Kawatoko S, Sasaki T, Ihara E, Oki E, Nakamura M, Ogawa Y, Oda Y. Clinicopathological significance of microsatellite instability and immune escape mechanism in patients with gastric solid-type poorly differentiated adenocarcinoma. Gastric Cancer 2024; 27:484-494. [PMID: 38441781 DOI: 10.1007/s10120-024-01474-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/23/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND In gastric solid-type poorly differentiated adenocarcinoma (PDA), the role of microsatellite instability and immune escape mechanism remains unclear. The current study aimed to elucidate the clinical significance of mismatch repair (MMR) status, genome profile, C-X-C motif chemokine receptor 2 (CXCR2) expression, and myeloid-derived suppressor cell (MDSC) infiltration in solid-type PDA. METHODS In total, 102 primary solid-type PDA cases were retrieved, and classified into 46 deficient-MMR (dMMR) and 56 proficient-MMR (pMMR) cases based on immunohistochemistry (IHC) and polymerase chain reaction-based molecular testing results. The mRNA expression profiles (NanoString nCounter Assay) of stage-matched dMMR (n = 6) and pMMR (n = 6) cases were examined. The CXCR2 expression and MDSC infiltration (CD11b- and CD33-positive cells) were investigated via IHC in all solid-type PDA cases. RESULTS mRNA analysis revealed several differentially expressed genes and differences in biological behavior between the dMMR (n = 46) and pMMR (n = 56) groups. In the multivariate analysis, the dMMR status was significantly associated with a longer disease-free survival (hazard ratio = 5.152, p = 0.002) and overall survival (OS) (hazard ratio = 5.050, p = 0.005). CXCR2-high expression was significantly correlated with a shorter OS in the dMMR group (p = 0.018). A high infiltration of CD11b- and CD33-positive cells was significantly correlated with a shorter OS in the pMMR group (p = 0.022, 0.016, respectively). CONCLUSIONS dMMR status can be a useful prognostic predictor, and CXCR2 and MDSCs can be novel therapeutic targets in patients with solid-type PDA.
Collapse
Affiliation(s)
- Shinya Umekita
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Daisuke Kiyozawa
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Kenichi Kohashi
- Department of Pathology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Shinichiro Kawatoko
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Taisuke Sasaki
- Department of Medicine and Bioregulatory, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eikichi Ihara
- Department of Medicine and Bioregulatory, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eiji Oki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
25
|
Yan J, Yu X, Li Q, Miao M, Shao Y. Machine learning to establish three sphingolipid metabolism genes signature to characterize the immune landscape and prognosis of patients with gastric cancer. BMC Genomics 2024; 25:319. [PMID: 38549047 PMCID: PMC10976768 DOI: 10.1186/s12864-024-10243-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/19/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common malignant tumors worldwide. Nevertheless, GC still lacks effective diagnosed and monitoring method and treating targets. This study used multi omics data to explore novel biomarkers and immune therapy targets around sphingolipids metabolism genes (SMGs). METHOD LASSO regression analysis was performed to filter prognostic and differently expression SMGs among TCGA and GTEx data. Risk score model and Kaplan-Meier were built to validate the prognostic SMG signature and prognostic nomogram was further constructed. The biological functions of SMG signature were annotated via multi omics. The heterogeneity landscape of immune microenvironment in GC was explored. qRT-PCR was performed to validate the expression level of SMG signature. Competing endogenous RNA regulatory network was established to explore the molecular regulatory mechanisms. RESULT 3-SMGs prognostic signature (GLA, LAMC1, TRAF2) and related nomogram were constructed combing several clinical characterizes. The expression difference and diagnostic value were validated by PCR data. Multi omics data reveals 3-SMG signature affects cell cycle and death via several signaling pathways to regulate GC progression. Overexpression of 3-SMG signature influenced various immune cell infiltration in GC microenvironment. RBP-SMGs-miRNA-mRNAs/lncRNAs regulatory network was built to annotate regulatory system. CONCLUSION Upregulated 3-SMGs signature are excellent predictive diagnosed and prognostic biomarkers, providing a new perspective for future GC immunotherapy.
Collapse
Affiliation(s)
- Jianing Yan
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, 315020, Ningbo, China
| | - Xuan Yu
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, 315020, Ningbo, China
| | - Qier Li
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, 315020, Ningbo, China
| | - Min Miao
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, 315020, Ningbo, China.
| | - Yongfu Shao
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, 315020, Ningbo, China.
| |
Collapse
|
26
|
Feng Y, Guo K, Jin H, Jiang J, Wang M, Lin S. Efficacy and safety of neoadjuvant combination immunotherapy in surgically resectable malignant solid tumors: a systematic review and meta-analysis. Expert Rev Anticancer Ther 2024; 24:169-181. [PMID: 38436076 DOI: 10.1080/14737140.2024.2325404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/18/2024] [Indexed: 03/05/2024]
Abstract
OBJECTIVES Neoadjuvant immunotherapy has emerged as a prominent research focus recently. For potentially operable patients, neoadjuvant therapy serves as a primary method to reduce tumor load and facilitate surgical interventions. METHODS We retrieved articles from PubMed, Embase, Cochrane Library, American Society of Clinical Oncology, and European Society of Medical Oncology websites from inception to December 2023. Statistical analyses were performed using the R software. Primary outcomes assessed included major pathological response (MPR), pathological complete response (pCR), and treatment-related adverse events (trAEs). RESULTS 29 studies encompassing 1163 patients were included. The MPR rate of neoadjuvant combination immunotherapy was 38% (95% confidence interval [CI]: 25%-52%), and the pCR rate was 33% (95%CI: 25%-42%). These values were significantly higher than those obtained with single agent immunotherapy (p < 0.001). The pooled incidence of overall trAEs was 83% (95%CI: 73%-92%), and grade (G) 3-4 trAEs was 22% (95%CI: 15%-29%), both significantly higher than those observed with single agent immunotherapy (p < 0.05). CONCLUSION This study demonstrated the efficacy of neoadjuvant combination immunotherapy. Given that the majority of the included trials were phase II with small sample sizes, further multicenter phase III randomized controlled trials should be conducted to validate the findings of the review.
Collapse
Affiliation(s)
- Yuqian Feng
- Hangzhou School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Kaibo Guo
- Department of Oncology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huimin Jin
- Department of Oncology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jing Jiang
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Menglei Wang
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shengyou Lin
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| |
Collapse
|
27
|
Qiu Y, Lu G, Li N, Hu Y, Tan H, Jiang C. Exosome-mediated communication between gastric cancer cells and macrophages: implications for tumor microenvironment. Front Immunol 2024; 15:1327281. [PMID: 38455041 PMCID: PMC10917936 DOI: 10.3389/fimmu.2024.1327281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/25/2024] [Indexed: 03/09/2024] Open
Abstract
Gastric cancer (GC) is a malignant neoplasm originating from the epithelial cells of the gastric mucosa. The pathogenesis of GC is intricately linked to the tumor microenvironment within which the cancer cells reside. Tumor-associated macrophages (TAMs) primarily differentiate from peripheral blood monocytes and can be broadly categorized into M1 and M2 subtypes. M2-type TAMs have been shown to promote tumor growth, tissue remodeling, and angiogenesis. Furthermore, they can actively suppress acquired immunity, leading to a poorer prognosis and reduced tolerance to chemotherapy. Exosomes, which contain a myriad of biologically active molecules including lipids, proteins, mRNA, and noncoding RNAs, have emerged as key mediators of communication between tumor cells and TAMs. The exchange of these molecules via exosomes can markedly influence the tumor microenvironment and consequently impact tumor progression. Recent studies have elucidated a correlation between TAMs and various clinicopathological parameters of GC, such as tumor size, differentiation, infiltration depth, lymph node metastasis, and TNM staging, highlighting the pivotal role of TAMs in GC development and metastasis. In this review, we aim to comprehensively examine the bidirectional communication between GC cells and TAMs, the implications of alterations in the tumor microenvironment on immune escape, invasion, and metastasis in GC, targeted therapeutic approaches for GC, and the efficacy of potential GC drug resistance strategies.
Collapse
Affiliation(s)
- Yue Qiu
- Medical Oncology Department of Gastrointestinal Cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Guimei Lu
- Department of Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Na Li
- Medical Oncology Department of Gastrointestinal Cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Yanyan Hu
- Medical Oncology Department of Gastrointestinal Cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Hao Tan
- Thoracic Esophageal Radiotherapy Department, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Chengyao Jiang
- Department of Gastric Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| |
Collapse
|
28
|
Mestrallet G. Predicting Immunotherapy Outcomes in Glioblastoma Patients through Machine Learning. Cancers (Basel) 2024; 16:408. [PMID: 38254897 PMCID: PMC10813889 DOI: 10.3390/cancers16020408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Glioblastoma is a highly aggressive cancer associated with a dismal prognosis, with a mere 5% of patients surviving beyond five years post diagnosis. Current therapeutic modalities encompass surgical intervention, radiotherapy, chemotherapy, and immune checkpoint inhibitors (ICBs). However, the efficacy of ICBs remains limited in glioblastoma patients, necessitating a proactive approach to anticipate treatment response and resistance. In this comprehensive study, we conducted a rigorous analysis involving two distinct glioblastoma patient cohorts subjected to PD-1 blockade treatments. Our investigation revealed that a significant portion (60%) of patients exhibit persistent disease progression despite ICB intervention. To elucidate the underpinnings of resistance, we characterized the immune profiles of glioblastoma patients with continued cancer progression following anti-PD1 therapy. These profiles revealed multifaceted defects, encompassing compromised macrophage, monocyte, and T follicular helper responses, impaired antigen presentation, aberrant regulatory T cell (Tregs) responses, and heightened expression of immunosuppressive molecules (TGFB, IL2RA, and CD276). Building upon these resistance profiles, we leveraged cutting-edge machine learning algorithms to develop predictive models and accompanying software. This innovative computational tool achieved remarkable success, accurately forecasting the progression status of 82.82% of the glioblastoma patients in our study following ICBs, based on their unique immune characteristics. In conclusion, our pioneering approach advocates for the personalization of immunotherapy in glioblastoma patients. By harnessing patient-specific attributes and computational predictions, we offer a promising avenue for the enhancement of clinical outcomes in the realm of immunotherapy. This paradigm shift towards tailored therapies underscores the potential to revolutionize the management of glioblastoma, opening new horizons for improved patient care.
Collapse
|
29
|
Hao LY, Lerrer S, Song R, Goeckeritz M, Hu X, Mor A. Exclusion of PD-1 from the immune synapse: a novel strategy to modulate T cell function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.16.566907. [PMID: 38014028 PMCID: PMC10680742 DOI: 10.1101/2023.11.16.566907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Targeting immune checkpoint receptors on T cells is a common cancer treatment strategy. Frequently, this is accomplished through antibodies targeting the ligand of inhibitory co-receptors. Blocking the immune checkpoint PD-1 binding to its ligands PD-L1 and PD-L2 prevents downstream signaling and enhances anti-tumor T cell responses. This approach improved cancer patients' outcome. However, only one-third of the patients respond to these treatments. To better understand the mechanism of anti-PD-1 antibodies, we explored the location of PD-1 within the immune synapse. Surprisingly, we discovered that anti-PD-1 antibodies, besides blocking the interaction between PD-1 and its ligands, also removed PD-1 from the synapse. We demonstrated a correlation between removing PD-1 from the synapse by anti-PD-1 antibodies and the extent of T cell activation. Interestingly, a short version of the anti-PD-1 antibody, F(ab') 2 , failed to remove PD-1 from the synapse and activate T cells. Using syngeneic tumor model, we showed a superior anti-tumor effect to anti-PD-1 antibody over the shorter version of the antibody. Our data indicates that anti-PD-1 antibodies activate T cells by removing PD-1 away from the synapse and changing the location of PD-1 or other immune receptors within immune synapse could serve as an alternative, efficient approach to treat cancer.
Collapse
|
30
|
Brooksbank K, Martin SA. DNA mismatch repair deficient cancer - Emerging biomarkers of resistance to immune checkpoint inhibition. Int J Biochem Cell Biol 2023; 164:106477. [PMID: 37862741 DOI: 10.1016/j.biocel.2023.106477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/05/2023] [Accepted: 10/08/2023] [Indexed: 10/22/2023]
Abstract
The DNA mismatch repair pathway is involved in the identification, excision, and repair of base-base mismatches and indel loops in the genome. Mismatch repair deficiency occurs in approximately 20% of all cancers and results in a type of DNA damage called microsatellite instability. In 2017, the immune checkpoint inhibitor, Pembrolizumab, an anti-PD-1 therapy, was approved for use in all unresectable or metastatic tumours that were mismatch repair deficient or had high microsatellite instability regardless of tissue origin. This landmark approval was the first time a drug had been approved in a site agnostic way, but accumulating data has revealed that up to 50% of mismatch repair deficient tumours are refractory to treatment and there is a huge amount of variability in the therapeutic benefit amongst responders. Several mechanisms of resistance to immune checkpoint blockade for mismatch repair deficient cancers have been identified but our understanding of what is driving resistance in a proportion of patients remains lacking. In this review article, we discuss the emerging mechanisms of resistance which may enable optimal stratification of patients for treatment with immune checkpoint inhibitors in the future.
Collapse
Affiliation(s)
- Kirsten Brooksbank
- Centre for Cancer Cell & Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Sarah A Martin
- Centre for Cancer Cell & Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|