1
|
Zhong YL, Xu CQ, Li J, Liang ZQ, Wang MM, Ma C, Jia CL, Cao YB, Chen J. Mitochondrial dynamics and metabolism in macrophages for cardiovascular disease: A review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156620. [PMID: 40068296 DOI: 10.1016/j.phymed.2025.156620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/18/2025] [Accepted: 03/05/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Mitochondria regulate macrophage function, affecting cardiovascular diseases like atherosclerosis and heart failure. Their dynamics interact with macrophage cell death mechanisms, including apoptosis and necroptosis. PURPOSE This review explores how mitochondrial dynamics and metabolism influence macrophage inflammation and cell death in CVDs, highlighting therapeutic targets for enhancing macrophage resilience and reducing CVD pathology, while examining molecular pathways and pharmacological agents involved. STUDY DESIGN This is a narrative review that integrates findings from various studies on mitochondrial dynamics and metabolism in macrophages, their interactions with the endoplasmic reticulum (ER) and Golgi apparatus, and their implications for CVDs. The review also considers the potential therapeutic effects of pharmacological agents on these pathways. METHODS The review utilizes a comprehensive literature search to identify relevant studies on mitochondrial dynamics and metabolism in macrophages, their role in CVDs, and the effects of pharmacological agents on these pathways. The selected studies are analyzed and synthesized to provide insights into the complex relationships between mitochondria, the ER, and Golgi apparatus, and their implications for macrophage function and fate. RESULTS The review reveals that mitochondrial metabolism intertwines with cellular architecture and function, particularly through its intricate interactions with the ER and Golgi apparatus. Mitochondrial-associated membranes (MAMs) facilitate Ca2+ transfer from the ER to mitochondria, maintaining mitochondrial homeostasis during ER stress. The Golgi apparatus transports proteins crucial for inflammatory signaling, contributing to immune responses. Inflammation-induced metabolic reprogramming in macrophages, characterized by a shift from oxidative phosphorylation to glycolysis, underscores the multifaceted role of mitochondrial metabolism in regulating immune cell polarization and inflammatory outcomes. Notably, mitochondrial dysfunction, marked by heightened reactive oxygen species generation, fuels inflammatory cascades and promotes cell death, exacerbating CVD pathology. However, pharmacological agents such as Metformin, Nitazoxanide, and Galanin emerge as potential therapeutic modulators of these pathways, offering avenues for mitigating CVD progression. CONCLUSION This review highlights mitochondrial dynamics and metabolism in macrophage inflammation and cell death in CVDs, suggesting therapeutic targets to improve macrophage resilience and reduce pathology, with new pharmacological agents offering treatment opportunities.
Collapse
Affiliation(s)
- Yi-Lang Zhong
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Chen-Qin Xu
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Ji Li
- Department of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Zhi-Qiang Liang
- Department of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Miao-Miao Wang
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Chao Ma
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Cheng-Lin Jia
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Yong-Bing Cao
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Jian Chen
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Anhui Province Rural Revitalization Collaborative Technical Service Center, Huangshan University, Huangshan 245041, China; Department of Public Health, International College, Krirk University, Bangkok, Thailand.
| |
Collapse
|
2
|
Zhang D, Li F, Sun C, Chen C, Qin H, Wu X, Jiang M, Zhou K, Yao C, Hu Y. Inhibition of PGAM5 hyperactivation reduces neuronal apoptosis in PC12 cells and experimental vascular dementia rats. Arch Gerontol Geriatr 2025; 131:105732. [PMID: 39754994 DOI: 10.1016/j.archger.2024.105732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/12/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025]
Abstract
PURPOSE The incidence of vascular dementia (VaD), as one of the main types of dementia in old age, has been increasing year by year, and exploring its pathogenesis and seeking practical and effective treatment methods are undoubtedly the key to solving this problem. Phosphoglycerate translocase 5 (PGAM5), as a crossroads of multiple signaling pathways, can lead to mitochondrial fission, which in turn triggers the onset and development of necroptosis, and thus PGAM5 may be a novel target for the prevention and treatment of vascular dementia. METHODS Animal model of vascular dementia was established by Two-vessel occlusion (2-VO) method, and cellular model of vascular dementia was established by oxygen glucose deprivation (OGD) method. Neuronal damage was detected in vivo and in vitro in different groups using different concentrations of the PGAM5-specific inhibitor LFHP-1c, and necroptosis and mitochondrial dynamics-related factors were determined. RESULTS In vivo experiments, 10 mg/kg-1 and 20 mg/kg-1 LFHP-1c improved cognitive deficits, reduced neuronal edema and vacuoles, increased the number of nissl bodies, and it could modulate the expression of Caspase family and Bcl-2 family related proteins and mRNAs and ameliorate neuronal damage. Simultaneously, in vitro experiments, 5 μM, 10 μM and 20 μM LFHP-1c increased the activity and migration number of model cells, reduced the number of apoptotic cells, ameliorated the excessive accumulation of intracellular reactive oxygen species, inhibited the over-activation of caspase-family and Bcl-2-family related proteins and mRNAs, and improved the mitochondrial dynamics of the fission and fusion states. Moreover, in vivo and in vitro experiments have shown that LFHP-1c can also upregulate the expression level of BDNF, inhibit the expression content of TNF-α and ROS, regulate the expression of proteins and mRNAs related to the RIPK1/RIPK3/MLKL pathway and mitochondrial dynamics, and reduce neuronal apoptosis. CONCLUSIONS Inhibition of PGAM5 expression level can reduce neuronal damage caused by chronic cerebral ischemia and hypoxia, which mainly prevents necroptosis by targeting the RIPK1/RIPK3/MLKL signaling pathway and regulates the downstream mitochondrial dynamics homeostasis system to prevent excessive mitochondrial fission, thus improving cognition and exerting cerebroprotective effects.
Collapse
Affiliation(s)
- Ding Zhang
- School of Doctoral Studies, Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China; Neurology Ward 1, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China
| | - Fangcun Li
- School of Doctoral Studies, Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China; Neurology Ward 1, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China
| | - Chunying Sun
- School of Doctoral Studies, Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China
| | - Canrong Chen
- School of Doctoral Studies, Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China
| | - Hongling Qin
- Neurology Ward 1, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China
| | - Xuzhou Wu
- School of Doctoral Studies, Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China
| | - Minghe Jiang
- School of Doctoral Studies, Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China
| | - Keqing Zhou
- School of Doctoral Studies, Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China
| | - Chun Yao
- School of Doctoral Studies, Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China.
| | - Yueqiang Hu
- Neurology Ward 1, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China.
| |
Collapse
|
3
|
Zheng Y, Wang Y, Li J, Zheng S, Zhang L, Li Q, Ling F, Nie Q, Feng Q, Wang J, Jin C. PGAM5 Modulates Macrophage Polarization, Aggravating Inflammation in COPD via the NF-κB Pathway. Int J Chron Obstruct Pulmon Dis 2025; 20:551-564. [PMID: 40078929 PMCID: PMC11897911 DOI: 10.2147/copd.s492627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/22/2025] [Indexed: 03/14/2025] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) has emerged as a very consequential issue threatening human life and health; therefore, research on its pathogenesis is urgently needed. A prior investigation discovered a significant elevation in the phosphoglycerate mutase 5 (PGAM5) expression in the lung tissue of COPD smoking patients. This rise in expression is closely associated with COPD severity. Nevertheless, the precise molecular processes by which PGAM5 influences the COPD initiation and advancement remain unknown. Materials and Methods A COPD model was created using murine alveolar macrophages (MH-S). Flow cytometry, enzyme-linked immunosorbent assay, Western blotting, and other methods were used to detect macrophage polarization, inflammatory factor secretion levels, and changes in PGAM5 and the nuclear factor-κB (NF-κB) pathway. Results PGAM5 stimulated macrophage M1 polarization and secretion of the proinflammatory factors interleukin-1β (IL-1β) and tumor necrosis factor-alpha (TNF-α). PGAM5 bound and activated apoptotic signaling-regulated kinase 1 (ASK1), further activating the NF-κB pathway. These implications were reversed when PGAM5 expression was silenced. Conclusion PGAM5 can cause an increase in p-ASK1T838, trigger the NF-κB pathway activation, and stimulate the M1 macrophage polarization and production of proinflammatory factors. This finding has significant implications for preventing and treating COPD.
Collapse
Affiliation(s)
- Yu Zheng
- Department of Respiratory Medicine, The second Affiliated Hospital, Hainan Medical University, Haikou, 570100, People’s Republic of China
- The Second School of Clinical Medicine, Hainan Medical University, Haikou, 570100, People’s Republic of China
| | - Yujie Wang
- Department of Respiratory Medicine, The second Affiliated Hospital, Hainan Medical University, Haikou, 570100, People’s Republic of China
| | - Jia Li
- The Second School of Clinical Medicine, Hainan Medical University, Haikou, 570100, People’s Republic of China
| | - Shaomao Zheng
- Department of Respiratory Medicine, The second Affiliated Hospital, Hainan Medical University, Haikou, 570100, People’s Republic of China
| | - Lipeng Zhang
- The Second School of Clinical Medicine, Hainan Medical University, Haikou, 570100, People’s Republic of China
| | - Qiaoyu Li
- The Second School of Clinical Medicine, Hainan Medical University, Haikou, 570100, People’s Republic of China
| | - Fayu Ling
- Department of Thoracic Surgery, The second Affiliated Hospital, Hainan Medical University, Haikou, 570100, People’s Republic of China
| | - Qiuli Nie
- The Second School of Clinical Medicine, Hainan Medical University, Haikou, 570100, People’s Republic of China
| | - Qiong Feng
- Department of Respiratory Medicine, The second Affiliated Hospital, Hainan Medical University, Haikou, 570100, People’s Republic of China
| | - Jing Wang
- Department of Respiratory Medicine, The second Affiliated Hospital, Hainan Medical University, Haikou, 570100, People’s Republic of China
- NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou, 571199, People’s Republic of China
| | - Chengji Jin
- Department of Respiratory Medicine, The second Affiliated Hospital, Hainan Medical University, Haikou, 570100, People’s Republic of China
| |
Collapse
|
4
|
Zhang Q, Wu J, Lan Y, Wang Y, Chen M, Wang J, Zhao X, Liu L, Zhao W, Zhao H. Targeting PGAM5 attenuates airway inflammation in asthma by inhibiting HMGB1 release in bronchial epithelium. Free Radic Biol Med 2025; 228:207-220. [PMID: 39756489 DOI: 10.1016/j.freeradbiomed.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Previous studies have demonstrated that high-mobility group box protein 1(HMGB1) was increased and released to the extracellular and participated in the pathogenesis of steroid-insensitive asthma induced by toluene diisocyanate (TDI). Mitochondrial dysfunction of bronchial epithelia is a critical feature in TDI asthma. However, whether mitochondrial dysfunction regulated HMGB1 release in asthma remains unknown. The aim of this study was to explore whether phosphoglycerate mutase family member 5 (PGAM5), a mitochondrial protein, can regulate HMGB1 release in TDI-induced asthma. The gene expression data series (GSE) 67472 from gene expression omnibus (GEO) database was analyzed to compare the levels of PGAM5 in airway epithelial cells from asthma patients and healthy individuals. Male C57BL/6J mice were sensitized and challenged with TDI and treated with the PGAM5 inhibitor LFHP-1c. In vitro, human bronchial epithelial cells(16HBE) were stimulated by TDI-human serum albumin (HSA) and pretreated with PGAM5 siRNA. In this study, we observed PGAM5 expression was notably increased in airway epithelial cells of asthma patients and TDI-induced asthma mice. In vivo, inhibition of PGAM5 significantly ameliorated airway inflammation, airway hyperresponsiveness (AHR) and mucus hypersecretion, coupled with the decrease of pulmonary HMGB1 expression and release in TDI-exposed mice. In vitro, inhibition of PGAM5 improved mitochondrial dysfunction, decreased the production of reactive oxygen species (ROS) in mitochondrial. Knockdown of PGAM5 reduced the release of cytochrome C (cyt c) and HMGB1 release in TDI-induced asthma. Mechanistically, PGAM5 in bronchial epithelial cells treated by TDI-HSA significantly increased the dephosphorylation of Bax at the S184 residue, promoted the translocation of Bax to mitochondria, and contributed to the activation of mitochondrial-dependent apoptosis in TDI-induced asthma. Based on these findings, we uncovered a novel regulatory mechanism by which high PGAM5 expression promotes airway inflammation by mediating HMGB1 release in TDI-induced asthma, identifying the therapeutic effects of targeting PGAM5 in steroid-insensitive asthma model.
Collapse
Affiliation(s)
- Qian Zhang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jie Wu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yisheng Lan
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yanhong Wang
- Department of Respiratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Meijia Chen
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Junrao Wang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xueying Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Laiyu Liu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wenqu Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Haijin Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
5
|
Tian Z, Wang X, Chen S, Guo Z, Di J, Xiang C. Mitochondria-Targeted Biomaterials-Regulating Macrophage Polarization Opens New Perspectives for Disease Treatment. Int J Nanomedicine 2025; 20:1509-1528. [PMID: 39925677 PMCID: PMC11806677 DOI: 10.2147/ijn.s505591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/18/2025] [Indexed: 02/11/2025] Open
Abstract
Macrophage immunotherapy is an emerging therapeutic approach designed for modulating the immune response to alleviate disease symptoms. The balance between pro-inflammatory and anti-inflammatory macrophages plays a pivotal role in the progression of inflammatory diseases. Mitochondria, often referred to as the "power plants" of the cell, are essential organelles responsible for critical functions such as energy metabolism, material synthesis, and signal transduction. The functional state of mitochondria is closely linked to macrophage polarization, prompting interest in therapeutic strategies that target mitochondria to regulate this process. To this end, biomaterials with excellent targeting capabilities and effective therapeutic properties have been developed to influence mitochondrial function and regulate macrophage polarization. However, a comprehensive summary of biomaterial-driven modulation of mitochondrial function to control macrophage phenotypes is still lacking. This review highlights the critical role of mitochondrial function in macrophage polarization and discusses therapeutic strategies mediated by biomaterials, including mitochondria-targeted biomaterials. Finally, the prospects and challenges of the use of these biomaterials in disease modulation have been explored, emphasizing their potential to be translated to the clinic. It is anticipated that this review will serve as a valuable resource for materials scientists and clinicians in the development of next-generation mitochondria-targeted biomaterials.
Collapse
Affiliation(s)
- Zui Tian
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Xudong Wang
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Shuai Chen
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Zijian Guo
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Jingkai Di
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Chuan Xiang
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| |
Collapse
|
6
|
Fedotova EI, Berezhnov AV, Popov DY, Shitikova EY, Vinokurov AY. The Role of mtDNA Mutations in Atherosclerosis: The Influence of Mitochondrial Dysfunction on Macrophage Polarization. Int J Mol Sci 2025; 26:1019. [PMID: 39940788 PMCID: PMC11817597 DOI: 10.3390/ijms26031019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/06/2025] [Accepted: 01/15/2025] [Indexed: 02/16/2025] Open
Abstract
Atherosclerosis is a complex inflammatory process associated with high-mortality cardiovascular diseases. Today, there is a growing body of evidence linking atherosclerosis to mutations of mitochondrial DNA (mtDNA). But the mechanism of this link is insufficiently studied. Atherosclerosis progression involves different cell types and macrophages are one of the most important. Due to their high plasticity, macrophages can demonstrate pro-inflammatory and pro-atherogenic (macrophage type M1) or anti-inflammatory and anti-atherogenic (macrophage type M2) effects. These two cell types, formed as a result of external stimuli, differ significantly in their metabolic profile, which suggests the central role of mitochondria in the implementation of the macrophage polarization route. According to this, we assume that mtDNA mutations causing mitochondrial disturbances can play the role of an internal trigger, leading to the formation of macrophage M1 or M2. This review provides a comparative analysis of the characteristics of mitochondrial function in different types of macrophages and their possible associations with mtDNA mutations linked with inflammation-based pathologies including atherosclerosis.
Collapse
Affiliation(s)
- Evgeniya I. Fedotova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino 142290, Russia; (E.I.F.); (A.V.B.)
- Cell Physiology and Pathology Laboratory, Orel State University, Orel 302026, Russia; (D.Y.P.); (E.Y.S.)
| | - Alexey V. Berezhnov
- Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino 142290, Russia; (E.I.F.); (A.V.B.)
- Cell Physiology and Pathology Laboratory, Orel State University, Orel 302026, Russia; (D.Y.P.); (E.Y.S.)
| | - Daniil Y. Popov
- Cell Physiology and Pathology Laboratory, Orel State University, Orel 302026, Russia; (D.Y.P.); (E.Y.S.)
| | - Elena Y. Shitikova
- Cell Physiology and Pathology Laboratory, Orel State University, Orel 302026, Russia; (D.Y.P.); (E.Y.S.)
| | - Andrey Y. Vinokurov
- Cell Physiology and Pathology Laboratory, Orel State University, Orel 302026, Russia; (D.Y.P.); (E.Y.S.)
| |
Collapse
|
7
|
Wang M, Min M, Duan H, Mai J, Liu X. The role of macrophage and adipocyte mitochondrial dysfunction in the pathogenesis of obesity. Front Immunol 2024; 15:1481312. [PMID: 39582861 PMCID: PMC11581950 DOI: 10.3389/fimmu.2024.1481312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024] Open
Abstract
Obesity has emerged as a prominent global public health concern, leading to the development of numerous metabolic disorders such as cardiovascular diseases, type-2 diabetes mellitus (T2DM), sleep apnea and several system diseases. It is widely recognized that obesity is characterized by a state of inflammation, with immune cells-particularly macrophages-playing a significant role in its pathogenesis through the production of inflammatory cytokines and activation of corresponding pathways. In addition to their immune functions, macrophages have also been implicated in lipogenesis. Additionally, the mitochondrial disorders existed in macrophages commonly, leading to decreased heat production. Meantime, adipocytes have mitochondrial dysfunction and damage which affect thermogenesis and insulin resistance. Therefore, enhancing our comprehension of the role of macrophages and mitochondrial dysfunction in both macrophages and adipose tissue will facilitate the identification of potential therapeutic targets for addressing this condition.
Collapse
Affiliation(s)
- Min Wang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Min Min
- Outpatient Department, The Air Force Hospital of Western Theater, PLA, Chengdu, Sichuan, China
| | - Haojie Duan
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Jia Mai
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Xiaojuan Liu
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Zou R, Shi W, Chen M, Zhang M, Wu D, Li H, Zhou H, Li Y, Lu W, Li C, Fan X. Phosphoglycerate mutase 1-mediated dephosphorylation and degradation of Dusp1 disrupt mitochondrial quality control and exacerbate endotoxemia-induced myocardial dysfunction. Theranostics 2024; 14:7488-7504. [PMID: 39659576 PMCID: PMC11626948 DOI: 10.7150/thno.102647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/10/2024] [Indexed: 12/12/2024] Open
Abstract
Rationale: Endotoxemia, caused by lipopolysaccharides, triggers systemic inflammation and myocardial injury by disrupting mitochondrial homeostasis. This study examines the roles of dual specificity phosphatase 1 (Dusp1) and phosphoglycerate mutase family member 1 (Pgam1) in this process. Methods: This study utilized cardiomyocyte-specific Dusp1 knockout (Dusp1Cko ) and transgenic (Dusp1Tg ) mice, alongside Pgam1 knockout (Pgam1Cko ) mice, subjected to LPS-induced endotoxemia. Echocardiography was performed to assess cardiac function. Mitochondrial integrity was evaluated using molecular techniques, including qPCR and Seahorse assays. Additionally, molecular docking studies and Western blot analyses were conducted to explore the interaction between Pgam1 and Dusp1. Results: Using single-cell sequencing and human sample databases, Dusp1 emerged as a novel biomarker for endotoxemia-induced myocardial dysfunction. Experiments with cardiomyocyte-specific Dusp1 knockout (Dusp1Cko ) and Dusp1 transgenic (Dusp1Tg ) mice showed that Dusp1 deficiency worsens, while overexpression improves, heart function during LPS-induced myocardial injury. This effect is mediated by regulating inflammation and cardiomyocyte viability. Molecular analyses revealed that LPS exposure leads to Dusp1 dephosphorylation at Ser364, increasing its degradation. Stabilizing Dusp1 phosphorylation enhances mitochondrial function through mitochondrial quality control (MQC), including dynamics, mitophagy, and biogenesis. Functional studies identified Pgam1 as an upstream phosphatase interacting with Dusp1. Pgam1 ablation reduced LPS-induced cardiomyocyte dysfunction and mitochondrial disorder. Conclusions: Pgam1-mediated dephosphorylation of Dusp1 disrupts mitochondrial quality control, leading to myocardial dysfunction in endotoxemia. Targeting the Pgam1-Dusp1 axis represents a promising therapeutic strategy for improving cardiac outcomes in patients with endotoxemia.
Collapse
Affiliation(s)
- Rongjun Zou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
- Guangdong Provincial Key Laboratory of TCM Emergency Research, Guangzhou 510120, Guangdong, China
| | - Wanting Shi
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Mingxian Chen
- Tongde Hospital of Zhejiang Province, No. 234, Gucui road, Hangzhou 310012, China
| | - Miao Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
| | - Dan Wu
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510800, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Haixia Li
- Xianning Medical College, Hubei University of Science & Technology, Xianning 437000, China
| | - Hao Zhou
- Xianning Medical College, Hubei University of Science & Technology, Xianning 437000, China
| | - Yukun Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Weihui Lu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
| | - Chao Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoping Fan
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
- Guangdong Provincial Key Laboratory of TCM Emergency Research, Guangzhou 510120, Guangdong, China
| |
Collapse
|
9
|
Lin L, Ren R, Xiong Q, Zheng C, Yang B, Wang H. Remodeling of T-cell mitochondrial metabolism to treat autoimmune diseases. Autoimmun Rev 2024; 23:103583. [PMID: 39084278 DOI: 10.1016/j.autrev.2024.103583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
T cells are key drivers of the pathogenesis of autoimmune diseases by producing cytokines, stimulating the generation of autoantibodies, and mediating tissue and cell damage. Distinct mitochondrial metabolic pathways govern the direction of T-cell differentiation and function and rely on specific nutrients and metabolic enzymes. Metabolic substrate uptake and mitochondrial metabolism form the foundational elements for T-cell activation, proliferation, differentiation, and effector function, contributing to the dynamic interplay between immunological signals and mitochondrial metabolism in coordinating adaptive immunity. Perturbations in substrate availability and enzyme activity may impair T-cell immunosuppressive function, fostering autoreactive responses and disrupting immune homeostasis, ultimately contributing to autoimmune disease pathogenesis. A growing body of studies has explored how metabolic processes regulate the function of diverse T-cell subsets in autoimmune diseases such as systemic lupus erythematosus (SLE), multiple sclerosis (MS), autoimmune hepatitis (AIH), inflammatory bowel disease (IBD), and psoriasis. This review describes the coordination of T-cell biology by mitochondrial metabolism, including the electron transport chain (ETC), oxidative phosphorylation, amino acid metabolism, fatty acid metabolism, and one‑carbon metabolism. This study elucidated the intricate crosstalk between mitochondrial metabolic programs, signal transduction pathways, and transcription factors. This review summarizes potential therapeutic targets for T-cell mitochondrial metabolism and signaling in autoimmune diseases, providing insights for future studies.
Collapse
Affiliation(s)
- Liyan Lin
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; Sichuan Clinical Research Center for Laboratory Medicine, Chengdu 610041, China; Laboratory Medicine Research Center of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ruyu Ren
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; Sichuan Clinical Research Center for Laboratory Medicine, Chengdu 610041, China; Laboratory Medicine Research Center of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiao Xiong
- Department of Infectious Disease, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chunfu Zheng
- Department of Microbiology, Immunology & Infection Diseases, University of Calgary, Calgary, Alberta, Canada.
| | - Bin Yang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; Sichuan Clinical Research Center for Laboratory Medicine, Chengdu 610041, China; Laboratory Medicine Research Center of West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Huiqing Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
10
|
Kumar V, Stewart Iv JH. Pattern-Recognition Receptors and Immunometabolic Reprogramming: What We Know and What to Explore. J Innate Immun 2024; 16:295-323. [PMID: 38740018 PMCID: PMC11250681 DOI: 10.1159/000539278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Evolutionarily, immune response is a complex mechanism that protects the host from internal and external threats. Pattern-recognition receptors (PRRs) recognize MAMPs, PAMPs, and DAMPs to initiate a protective pro-inflammatory immune response. PRRs are expressed on the cell membranes by TLR1, 2, 4, and 6 and in the cytosolic organelles by TLR3, 7, 8, and 9, NLRs, ALRs, and cGLRs. We know their downstream signaling pathways controlling immunoregulatory and pro-inflammatory immune response. However, the impact of PRRs on metabolic control of immune cells to control their pro- and anti-inflammatory activity has not been discussed extensively. SUMMARY Immune cell metabolism or immunometabolism critically determines immune cells' pro-inflammatory phenotype and function. The current article discusses immunometabolic reprogramming (IR) upon activation of different PRRs, such as TLRs, NLRs, cGLRs, and RLRs. The duration and type of PRR activated, species studied, and location of immune cells to specific organ are critical factors to determine the IR-induced immune response. KEY MESSAGE The work herein describes IR upon TLR, NLR, cGLR, and RLR activation. Understanding IR upon activating different PRRs is critical for designing better immune cell-specific immunotherapeutics and immunomodulators targeting inflammation and inflammatory diseases.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - John H Stewart Iv
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
11
|
Zhou X, Hong Y, Chen J, Yu Y, Wang S, Wei Y, Long C, Shen L, Wu S, Wei G. The necroptosis-mediated imbalance of mitochondrial dynamics is involved in DEHP-induced toxicity to immature testes via the PGAM5-DRP1 interaction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123585. [PMID: 38367692 DOI: 10.1016/j.envpol.2024.123585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/27/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a widely used plasticizer that has been shown to impair male reproduction, but the potential mechanism underlying testicular injury caused by DEHP remains unclear. In vivo, rats were gavaged consecutively from postnatal day (PND) 21 to PND 31 with 0, 250, or 500 mg/kg DEHP for 10 days, and impaired mitochondria and increased necroptosis were observed in immature testes. In vitro, the GC-1 and GC-2 cell lines were exposed to monoethylhexyl phthalate (MEHP) at 100, 200 and 400 μM for 24 h, and this exposure induced oxidative stress damage, necroptosis and mitochondrial injury. Necroptosis and mitochondrial fission were inhibited by the reactive oxygen species (ROS) inhibitor acetylcysteine, and the imbalanced mitochondrial dynamics were rescued by the RIPK1 inhibitor necrostatin-1. Colocalization and co-IP analyses confirmed an interaction between dynamin-related protein 1 (DRP1) and phosphoglycerate mutase 5 (PGAM5), indicating that PGAM5 dephosphorylates DRP1 at serine 637 to induce mitochondrial fragmentation and thereby induces germ cell damage. Drug prediction with Connectivity Map (cMap) identified sulforaphane as a therapeutic drug. In summary, our findings indicate that DEHP triggers necroptosis and mitochondrial injury via a ROS storm in immature testes and that the PGAM5-DRP1 interaction is involved in this process.
Collapse
Affiliation(s)
- Xiazhu Zhou
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Yifan Hong
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Jing Chen
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Yihang Yu
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China
| | - Siyuan Wang
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Yuexin Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Chunlan Long
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Lianju Shen
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Shengde Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China.
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| |
Collapse
|