1
|
Xiao J, Wang L, Zhang B, Hou A. Cell death in acute lung injury: caspase-regulated apoptosis, pyroptosis, necroptosis, and PANoptosis. Front Pharmacol 2025; 16:1559659. [PMID: 40191423 PMCID: PMC11968751 DOI: 10.3389/fphar.2025.1559659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
There has been abundant research on the variety of programmed cell death pathways. Apoptosis, pyroptosis, and necroptosis under the action of the caspase family are essential for the innate immune response. Caspases are classified into inflammatory caspase-1/4/5/11, apoptotic caspase-3/6/7, and caspase-2/8/9/10. Although necroptosis is not caspase-dependent to transmit cell death signals, it can cross-link with pyroptosis and apoptosis signals under the regulation of caspase-8. An increasing number of studies have reiterated the involvement of the caspase family in acute lung injuries caused by bacterial and viral infections, blood transfusion, and ventilation, which is influenced by noxious stimuli that activate or inhibit caspase engagement pathways, leading to subsequent lung injury. This article reviews the role of caspases implicated in diverse programmed cell death mechanisms in acute lung injury and the status of research on relevant inhibitors against essential target proteins of the described cell death mechanisms. The findings of this review may help in delineating novel therapeutic targets for acute lung injury.
Collapse
Affiliation(s)
| | | | | | - Ana Hou
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Liu Z, Ou Y, He X, Yuan T, Li M, Long Y, Li Y, Tan Y. Guardians of the Lung: The Multifaceted Roles of Macrophages in Cancer and Infectious Disease. DNA Cell Biol 2025. [PMID: 40106386 DOI: 10.1089/dna.2024.0211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
The lung as an organ that is fully exposed to the external environment for extended periods, comes into contact with numerous inhaled microorganisms. Lung macrophages are crucial for maintaining lung immunity and operate primarily through signaling pathways such as toll-like receptor 4 and nuclear factor-κB pathways. These macrophages constitute a diverse population with significant plasticity, exhibiting different phenotypes and functions on the basis of their origin, tissue residence, and environmental factors. During lung homeostasis, they are involved in the clearance of inhaled particles, cellular remnants, and even participate in metabolic processes. In disease states, lung macrophages transition from the inflammatory M1 phenotype to the anti-inflammatory M2 phenotype. These distinct phenotypes have varying transcriptional profiles and serve different functions, from combating pathogens to repairing inflammation-induced damage. However, macrophages can also exacerbate lung injury during prolonged inflammation or exposure to antigens. In this review, we delve into the diverse roles of pulmonary macrophages the realms in homeostasis, pneumonia, tuberculosis, and lung tumors.
Collapse
Affiliation(s)
- Zhi Liu
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
- Graduate Collaborative Training Base of Zhuzhou Central Hospital, Hengyang Medical School, University of South China, Zhuzhou, China
| | - Yangjing Ou
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Xiaojin He
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Ting Yuan
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Miao Li
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Yunzhu Long
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Yukun Li
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Yingzheng Tan
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| |
Collapse
|
3
|
Kotlyarov S, Oskin D. The Role of Inflammation in the Pathogenesis of Comorbidity of Chronic Obstructive Pulmonary Disease and Pulmonary Tuberculosis. Int J Mol Sci 2025; 26:2378. [PMID: 40141021 PMCID: PMC11942565 DOI: 10.3390/ijms26062378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/23/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
The comorbid course of chronic obstructive pulmonary disease (COPD) and pulmonary tuberculosis is an important medical and social problem. Both diseases, although having different etiologies, have many overlapping relationships that mutually influence their course and prognosis. The aim of the current review is to discuss the role of different immune mechanisms underlying inflammation in COPD and pulmonary tuberculosis. These mechanisms are known to involve both the innate and adaptive immune system, including various cellular and intercellular interactions. There is growing evidence that immune mechanisms involved in the pathogenesis of both COPD and tuberculosis may jointly contribute to the tuberculosis-associated obstructive pulmonary disease (TOPD) phenotype. Several studies have reported prior tuberculosis as a risk factor for COPD. Therefore, the study of the mechanisms that link COPD and tuberculosis is of considerable clinical interest.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Dmitry Oskin
- Department of Infectious Diseases and Phthisiology, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
4
|
Ranjbar KJ, Sarkoohi P, Shahbazi B, Babaei M, Ahmadi K. Bioinformatics analysis of the in silico engineered protein vaccine with and without Escherichia coli heat labile enterotoxin adjuvant on the model of Klebsiella pneumoniae. Sci Rep 2025; 15:7321. [PMID: 40025224 PMCID: PMC11873140 DOI: 10.1038/s41598-025-91602-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/21/2025] [Indexed: 03/04/2025] Open
Abstract
Klebsiella pneumoniae (K. pneumoniae) has been identified as a major cause of nosocomial infections with multidrug-resistant phenotypes. Vaccination is one of the most effective methods to prevent infectious diseases. We aim to design a vaccine candidate based on the epitope-rich domains of the OmpA, OMPK17, and fimb proteins of K. pneumoniae that could protect against this infection. A vaccine structure was constructed by selecting five epitope-rich domains from three proteins. We decided to add the heat-labile toxin (LT) of Escherichia coli as an adjuvant to the designed protein structure. The evaluation of the vaccine candidates' interaction with the immune system's receptors showed an appropriate interaction of the specially adjuvated protein with TLR2 and TLR4. The stability of the interactions was also studied by molecular dynamics (MD) for to 100 ns. All parameters showed that the structure of the candidate proteins alone and in complex with TLR2 and TLR4 are stable, especially the adjuvanted protein. Immune response simulations showed that both candidates induce acceptable protective immune responses. Overall, the LT-adjuvanted design protein may have the potential to induce more favorable protective immune responses. However, further in vitro and in vivo studies are required to obtain more definitive results.
Collapse
Affiliation(s)
- Kimia Jafari Ranjbar
- Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Parisa Sarkoohi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Behzad Shahbazi
- School of Pharmacy, Semnan University of Medical Sciences, Semnan, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Maryam Babaei
- Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Khadijeh Ahmadi
- Department of Medical Biotechnology, School of Paramedicine, Bushehr University of Medical Sciences, Bushehr, Iran.
| |
Collapse
|
5
|
Vithalkar MP, Pradhan S, Sandra KS, Bharath HB, Nayak Y. Modulating NLRP3 Inflammasomes in Idiopathic Pulmonary Fibrosis: A Comprehensive Review on Flavonoid-Based Interventions. Cell Biochem Biophys 2025:10.1007/s12013-025-01696-4. [PMID: 39966334 DOI: 10.1007/s12013-025-01696-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2025] [Indexed: 02/20/2025]
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a severe, rapidly advancing disease that drastically diminishes life expectancy. Without treatment, it can progress to lung cancer. The precise etiology of IPF remains unknown, but inflammation and damage to the alveolar epithelium are widely thought to be pivotal in its development. Research has indicated that activating the NLRP3 inflammasome is a crucial mechanism in IPF pathogenesis, as it triggers the release of pro-inflammatory cytokines such as IL-1β, IL-18, and TGF-β. These cytokines contribute to the myofibroblast differentiation and extracellular matrix (ECM) accumulation. Currently, treatment options for IPF are limited. Only two FDA-approved medications, pirfenidone and nintedanib, are available. While these drugs can decelerate disease progression, they come with a range of side effects and do not cure the disease. Additional treatment strategies primarily involve supportive care and therapy. Emerging research has highlighted that numerous flavonoids derived from traditional medicines can inhibit the critical regulators responsible for activating the NLRP3 inflammasome. These flavonoids show promise as potential therapeutic agents for managing IPF, offering a new avenue for treatment that targets the core inflammatory processes of this debilitating condition.
Collapse
Affiliation(s)
- Megh Pravin Vithalkar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, Pin 576104, India
| | - Shreya Pradhan
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, Pin 576104, India
| | - K S Sandra
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, Pin 576104, India
| | - H B Bharath
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, Pin 576104, India
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, Pin 576104, India.
| |
Collapse
|
6
|
Kuriakose BB, Zwamel AH, Mutar AA, Uthirapathy S, Bishoyi AK, Naidu KS, Hjazi A, Nakash P, Arya R, Almalki SG. The critical role of NLRP3 in drug resistance of cancers: Focus on the molecular mechanisms and possible therapeutics. Semin Oncol 2025; 52:27-40. [PMID: 40037148 DOI: 10.1016/j.seminoncol.2025.152337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/08/2025] [Accepted: 02/12/2025] [Indexed: 03/06/2025]
Abstract
Nod-like receptor protein 3 (NLRP3) is a member of the leucine-rich repeat-containing protein (NLR) canonical inflammasome family. It regulates the pathophysiology of cancer by facilitating immune responses and apoptotic proteins. Furthermore, it has been observed that chemotherapy activates NLRP3 in human malignancies. The secretion of IL-1β and IL-22 to promote cancer spread may be triggered by NLRP3 activation. Furthermore, earlier studies have exhibited that NLRP3 may cause medication resistance when used in cancer treatments given that cell viability may be regulated by NLRP3 depletion. Additionally, clinical studies have demonstrated correlation between NLRP3 expression, lymphogenesis, and cancer metastasis. Various NLRP3 agonists may cause the EMT process, stimulate IL-1β and Wnt/β-catenin signaling, and alter miRNA function in drug-resistant cells. This review seeks to clarify the possibility involvement of NLRP3-related pathways in the control of cancer cells' resistance to widely used treatment approaches, such as chemotherapy. In the end, an improved perception of the corresponding mechanisms behind NLRP3's tumor-supporting activities will help NLRP3-based treatments advance in the future.
Collapse
Affiliation(s)
- Beena Briget Kuriakose
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King khalid University, Khamis Mushayt, Kingdom of Saudi Arabia
| | - Ahmed Hussein Zwamel
- Department of medical analysis, Medical laboratory technique college, the Islamic University, Najaf, Iraq; Department of medical analysis, Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Department of medical analysis, Medical laboratory technique college, the Islamic University of Babylon, Babylon, Iraq
| | - Ayad Abdulrazzaq Mutar
- Medical Laboratory Techniques department, College of Health and medical technology, Al-maarif University, Anbar, Iraq.
| | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Ashok Kumar Bishoyi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, Gujarat, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, India
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Princse Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Prashant Nakash
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, India
| | - Renu Arya
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, India
| | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| |
Collapse
|
7
|
Zuo J, Wu D, Zhang Y, Luo H, Jing G, Yuan M, Fang Q, Yang C, Wang X, Wu X, Song X. VCPIP1 negatively regulates NF-κB signaling pathways by deubiquitinating and stabilizing Erbin in MDP-stimulated macrophages. Int Immunopharmacol 2024; 143:113622. [PMID: 39550842 DOI: 10.1016/j.intimp.2024.113622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/05/2024] [Accepted: 11/10/2024] [Indexed: 11/19/2024]
Abstract
Macrophages are present in all tissues and body compartments under homeostatic physiological conditions. Importantly, they play a key role in pathological inflammatory processes when disturbed. They can quickly produce large amounts of inflammatory cytokines in response to danger signals. Macrophages can recognize muramyl dipeptide (MDP) through nucleotide-binding oligomerization domain (NOD)-like receptors, subsequently activating the NF-κB signaling pathway and producing proinflammatory cytokines. Erbin can bind to NOD2 and inhibit MDP-induced NF-κB activation, thus participating in the regulation of inflammatory response. Stabilizing or enhancing Erbin expression is essential for suppressing inflammatory responses. In this study, we used a deubiquitination enzyme plasmid library to screen for a key deubiquitinase, VCPIP1, which interacts with Erbin and influences its stability through deubiquitination modification. We investigated whether VCPIP1 affects inflammation using MDP-stimulated RAW 264.7 and BMDMs cells. The results showed that VCPIP1 deficiency reduced Erbin expression and increased NF-κB phosphorylation. Additionally, VCPIP1 deficiency promoted the release of inflammatory factors (IL-1β, IL-6, and TNF-α) in RAW 264.7 cells and BMDMs. This study further expands the role of deubiquitinases (DUBs) in inflammation, providing new insights for the prevention and treatment of sepsis, tumors, immune diseases, and other inflammatory reactions.
Collapse
Affiliation(s)
- Jing Zuo
- The Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Wuchang, 169 Donghu Road, Hubei Province, China
| | - Die Wu
- The Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Wuchang, 169 Donghu Road, Hubei Province, China
| | - Ying Zhang
- Department of Anesthesiology, Dong Feng Hospital of Hubei Medical University, Shiyan 442000, Zhangwan, 16 Daling Road, Hubei Province, China
| | - Huan Luo
- Department of Anesthesiology, Cancer Hospital of Chongqing University, Chongqing 400030, Shapingba, 181 Hanyu Road, Chongqing Municipality, China
| | - Guoqing Jing
- The Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Wuchang, 169 Donghu Road, Hubei Province, China
| | - Min Yuan
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Wuchang, 238 Liberation Road, Hubei Province, China
| | - Qing Fang
- The Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Wuchang, 169 Donghu Road, Hubei Province, China
| | - Cheng Yang
- The Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Wuchang, 169 Donghu Road, Hubei Province, China
| | - Xing Wang
- The Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Wuchang, 169 Donghu Road, Hubei Province, China
| | - Xiaojing Wu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Wuchang, 238 Liberation Road, Hubei Province, China.
| | - Xuemin Song
- The Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Wuchang, 169 Donghu Road, Hubei Province, China.
| |
Collapse
|
8
|
Dai Y, Edwards VL, Yu Q, Tettelin H, Stein DC, Song W. Neisseria gonorrhoeae induces local secretion of IL-10 at the human cervix to promote colonization. J Clin Invest 2024; 135:e183331. [PMID: 39585777 PMCID: PMC11735093 DOI: 10.1172/jci183331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/05/2024] [Indexed: 11/27/2024] Open
Abstract
Gonorrhea, caused by the human-restricted pathogen Neisseria gonorrhoeae, is a commonly reported sexually transmitted infection. Since most infections in women are asymptomatic, the true number of infections is likely much higher than reported. How gonococci (GC) colonize women's cervixes without triggering symptoms remains elusive. Using a human cervical tissue explant model, we found that GC inoculation increased the local secretion of both proinflammatory (IL-1β and TNF-α) and antiinflammatory (IL-10) cytokines during the first 24 hours of infection. Cytokine induction required GC expression of Opa isoforms that bind the host receptors carcinoembryonic antigen-related cell adhesion molecules (CEACAMs). GC inoculation induced NF-κB activation in both cervical epithelial and subepithelial cells. However, inhibition of NF-κB activation, which reduced GC-induced IL-1β and TNF-α, did not affect GC colonization. Neutralizing IL-10 or blocking IL-10 receptors by antibodies reduced GC colonization by increasing epithelial shedding and epithelial cell-cell junction disassembly. Inhibition of the CEACAM downstream signaling molecule SHP1/2, which reduced GC colonization and increased epithelial shedding, decreased GC-induced IL-10 secretion. These results show that GC induce local secretion of IL-10, a potent antiinflammatory cytokine, at the cervix by engaging the host CEACAMs to prevent GC-colonizing epithelial cells from shedding, providing a potential mechanism for GC asymptomatic colonization in women.
Collapse
Affiliation(s)
- Yiwei Dai
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Vonetta L. Edwards
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Qian Yu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Hervé Tettelin
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Daniel C. Stein
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Wenxia Song
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
9
|
Snow TAC, Singer M, Arulkumaran N. Antibiotic-Induced Immunosuppression-A Focus on Cellular Immunity. Antibiotics (Basel) 2024; 13:1034. [PMID: 39596729 PMCID: PMC11591424 DOI: 10.3390/antibiotics13111034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Antibiotics are the fundamental treatment for bacterial infections. However, they are associated with numerous side effects. Their adverse effects on the immune system are increasingly recognised, with several mechanisms identified. In this review, we focus on their direct effects on cellular immunity. We review the effects of antibiotics on mitochondrial function and how they impair specific immune cell functions including chemotaxis, phagocytosis, cytokine production, antigen presentation, and lymphocyte proliferation. Findings are described in a multitude of in vivo and in vitro models. However, their impact on patient immunity and clinical outcomes requires further research. Awareness of the potential adverse effects of antibiotics may improve antimicrobial stewardship. The use of therapeutic drug monitoring may help to reduce dose-dependent effects, which warrants further research.
Collapse
Affiliation(s)
| | | | - Nishkantha Arulkumaran
- Bloomsbury Institute of Intensive Care Medicine, University College London, London WC1E 6DH, UK; (T.A.C.S.); (M.S.)
| |
Collapse
|
10
|
Cavallari N, Johnson A, Nagl C, Seiser S, Rechberger GN, Züllig T, Kufer TA, Elbe-Bürger A, Geiselhart S, Hoffmann-Sommergruber K. Nonspecific lipid-transfer proteins trigger TLR2 and NOD2 signaling and undergo ligand-dependent endocytosis in epithelial cells. J Allergy Clin Immunol 2024; 154:1289-1299. [PMID: 39084297 DOI: 10.1016/j.jaci.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/10/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Allergens can cross the epithelial barrier to enter the body but how this cellular passage affects protein structures and the downstream interactions with the immune system are still open questions. OBJECTIVE We sought to show the molecular details and the effects of 3 nonspecific lipid transfer proteins (nsLTPs; Mal d 3 [allergenic nsLTP1 from apple], Cor a 8 [allergenic nsLTP1 from hazelnut], and Pru p 3 [allergenic nsLTP1 from peach]) on epithelial cell uptake and transport. METHODS We used fluorescent imaging, flow cytometry, and proteomic and lipidomic screenings to identify the mechanism involved in nsLTP cellular uptake and signaling on selected epithelial and transgenic cell lines. RESULTS nsLTPs are transported across the epithelium without affecting cell membrane stability or viability, and allergen uptake was largely impaired by inhibition of clathrin-mediated endocytosis. Analysis of the lipidome associated with nsLTPs showed a wide variety of lipid ligands predicted to bind inside the allergen hydrophobic cavity. Importantly, the internalization of nsLTPs was contingent on these ligands in the protein complex. nsLTPs were found to initiate cellular signaling via Toll-like receptor 2 but not the cluster of differentiation 1 protein receptor, despite neither being essential for nsLTP endocytosis. We also provide evidence that the 3 allergens induced intracellular stress signaling through activation of the NOD2 pathway. CONCLUSIONS Our work consolidates the current model on nsLTP-epithelial cell interplay and adds molecular details about cell transport and signaling. In addition, we have developed a versatile toolbox to extend these investigations to other allergens and cell types.
Collapse
Affiliation(s)
- Nicola Cavallari
- Center for Pathophysiology, Infectiology and Immunology, Department of Pathophysiology and Allergy Research, Vienna, Austria
| | - Alexander Johnson
- Center for Anatomy & Cell Biology, Division of Anatomy, Medical University of Vienna, Vienna, Austria; Medical Imaging Cluster, Vienna, Austria
| | - Christoph Nagl
- Center for Pathophysiology, Infectiology and Immunology, Department of Pathophysiology and Allergy Research, Vienna, Austria
| | - Saskia Seiser
- Department of Dermatology, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Gerald N Rechberger
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, Austria
| | - Thomas Züllig
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, Austria
| | - Thomas A Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Adelheid Elbe-Bürger
- Department of Dermatology, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Sabine Geiselhart
- Center for Pathophysiology, Infectiology and Immunology, Department of Pathophysiology and Allergy Research, Vienna, Austria
| | - Karin Hoffmann-Sommergruber
- Center for Pathophysiology, Infectiology and Immunology, Department of Pathophysiology and Allergy Research, Vienna, Austria.
| |
Collapse
|
11
|
Sati S, Huang J, Kersh AE, Jones P, Ahart O, Murphy C, Prouty SM, Hedberg ML, Jain V, Gregory SG, Leung DH, Seykora JT, Rosenbach M, Leung TH. Recruitment of CXCR4+ type 1 innate lymphoid cells distinguishes sarcoidosis from other skin granulomatous diseases. J Clin Invest 2024; 134:e178711. [PMID: 39225100 PMCID: PMC11364400 DOI: 10.1172/jci178711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/25/2024] [Indexed: 09/04/2024] Open
Abstract
Sarcoidosis is a multiorgan granulomatous disease that lacks diagnostic biomarkers and targeted treatments. Using blood and skin from patients with sarcoid and non-sarcoid skin granulomas, we discovered that skin granulomas from different diseases exhibit unique immune cell recruitment and molecular signatures. Sarcoid skin granulomas were specifically enriched for type 1 innate lymphoid cells (ILC1s) and B cells and exhibited molecular programs associated with formation of mature tertiary lymphoid structures (TLSs), including increased CXCL12/CXCR4 signaling. Lung sarcoidosis granulomas also displayed similar immune cell recruitment. Thus, granuloma formation was not a generic molecular response. In addition to tissue-specific effects, patients with sarcoidosis exhibited an 8-fold increase in circulating ILC1s, which correlated with treatment status. Multiple immune cell types induced CXCL12/CXCR4 signaling in sarcoidosis, including Th1 T cells, macrophages, and ILCs. Mechanistically, CXCR4 inhibition reduced sarcoidosis-activated immune cell migration, and targeting CXCR4 or total ILCs attenuated granuloma formation in a noninfectious mouse model. Taken together, our results show that ILC1s are a tissue and circulating biomarker that distinguishes sarcoidosis from other skin granulomatous diseases. Repurposing existing CXCR4 inhibitors may offer a new targeted treatment for this devastating disease.
Collapse
Affiliation(s)
- Satish Sati
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jianhe Huang
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Anna E. Kersh
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Parker Jones
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Olivia Ahart
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Christina Murphy
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Stephen M. Prouty
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Matthew L. Hedberg
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Vaibhav Jain
- Duke Molecular Physiology Institute, Durham, North Carolina, USA
| | - Simon G. Gregory
- Duke Molecular Physiology Institute, Durham, North Carolina, USA
| | | | - John T. Seykora
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Misha Rosenbach
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Thomas H. Leung
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
- Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Negahdari B, Sarkoohi P, Ghasemi Nezhad F, Shahbazi B, Ahmadi K. Design of multi-epitope vaccine candidate based on OmpA, CarO and ZnuD proteins against multi-drug resistant Acinetobacter baumannii. Heliyon 2024; 10:e34690. [PMID: 39149030 PMCID: PMC11324976 DOI: 10.1016/j.heliyon.2024.e34690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
Acinetobacter baumannii has been identified as a major cause of nosocomial infections. Acinetobacter infections are often difficult to treat with multidrug resistant phenotypes. One of the most effective ways to combat infectious diseases is through vaccination. In this study, an attempt was made to select the most protective and potent immunostimulatory epitopes based on the epitope-rich domains of the ZnuD, OmpA and CarO proteins of Acinetobacter baumannii to design a vaccine that can protect against this infection. After predicting the epitope of B- and T-cells, seven antigenic regions of three proteins CarO, ZnuD and OmpA, were selected. These regions were bound by a GGGS linker. The binding affinity and molecular interactions of the vaccine with the immune receptors TLR2 and TLR4 were studied using molecular docking analysis. This vaccine design was subjected to in silico immune simulations using C-ImmSim. The designed vaccine was highly antigenic, non-allergenic and stable. TLR2 and TLR4 were selected to analyze the ability of the modeled chimeric protein to interact with immune system receptors. The results showed strong interaction between the designed protein vaccine with TLR2 (-18.8 kcal mol-1) and TLR4 (-15.1 kcal mol-1). To verify the stability of the interactions and the structure of the designed protein, molecular dynamics (MD) simulations were performed for 200 ns. Various analyses using MD showed that the protein structure is stable alone and in interaction with TLR2 and TLR4. The ability of the vaccine candidate protein to stimulate the immune system to produce the necessary cytokines and antibodies against Acinetobacter baumannii was also demonstrated by the ability of the protein designed using the C-ImmSim web server to induce an immune response. Therefore, the designed protein vaccine may be a suitable candidate for in vivo as well as in vitro studies against Acinetobacter baumannii infections.
Collapse
Affiliation(s)
- Batul Negahdari
- Student Research Committee, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Parisa Sarkoohi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Forozan Ghasemi Nezhad
- Student Research Committee, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Behzad Shahbazi
- School of Pharmacy, Semnan University of Medical Sciences, Semnan, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Khadijeh Ahmadi
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
13
|
de Matos Silva S, Echeverri CR, Mendes-Giannini MJS, Fusco-Almeida AM, Gonzalez A. Common virulence factors between Histoplasma and Paracoccidioides: Recognition of Hsp60 and Enolase by CR3 and plasmin receptors in host cells. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100246. [PMID: 39022313 PMCID: PMC11253281 DOI: 10.1016/j.crmicr.2024.100246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Over the last two decades, the incidence of Invasive Fungal Infections (IFIs) globally has risen, posing a considerable challenge despite available antifungal therapies. Addressing this, the World Health Organization (WHO) prioritized research on specific fungi, notably Histoplasma spp. and Paracoccidioides spp. These dimorphic fungi have a mycelial life cycle in soil and a yeast phase associated with tissues of mammalian hosts. Inhalation of conidia and mycelial fragments initiates the infection, crucially transforming into the yeast form within the host, influenced by factors like temperature, host immunity, and hormonal status. Survival and multiplication within alveolar macrophages are crucial for disease progression, where innate immune responses play a pivotal role in overcoming physical barriers. The transition to pathogenic yeast, triggered by increased temperature, involves yeast phase-specific gene expression, closely linked to infection establishment and pathogenicity. Cell adhesion mechanisms during host-pathogen interactions are intricately linked to fungal virulence, which is critical for tissue colonization and disease development. Yeast replication within macrophages leads to their rupture, aiding pathogen dissemination. Immune cells, especially macrophages, dendritic cells, and neutrophils, are key players during infection control, with macrophages crucial for defense, tissue integrity, and pathogen elimination. Recognition of common virulence molecules such as heat- shock protein-60 (Hsp60) and enolase by pattern recognition receptors (PRRs), mainly via the complement receptor 3 (CR3) and plasmin receptor pathways, respectively, could be pivotal in host-pathogen interactions for Histoplasma spp. and Paracoccidioides spp., influencing adhesion, phagocytosis, and inflammatory regulation. This review provides a comprehensive overview of the dynamic of these two IFIs between host and pathogen. Further research into these fungi's virulence factors promises insights into pathogenic mechanisms, potentially guiding the development of effective treatment strategies.
Collapse
Affiliation(s)
- Samanta de Matos Silva
- Laboratory of Mycology, Department of Clinical Analysis, School of Pharmaceutical Science, Paulista State University (UNESP), Araraquara, Brazil
- Nucleous of Proteomics, Department of Clinical Analysis, School of Pharmaceutical Science, Paulista State University (UNESP), Araraquara, Brazil
- Basic and Applied Microbiology Group (MICROBA), School of Microbiology, Universidad de Antioquia (UdeA), Medellín, Colombia
| | - Carolina Rodriguez Echeverri
- Laboratory of Mycology, Department of Clinical Analysis, School of Pharmaceutical Science, Paulista State University (UNESP), Araraquara, Brazil
- Nucleous of Proteomics, Department of Clinical Analysis, School of Pharmaceutical Science, Paulista State University (UNESP), Araraquara, Brazil
- Basic and Applied Microbiology Group (MICROBA), School of Microbiology, Universidad de Antioquia (UdeA), Medellín, Colombia
| | - Maria José Soares Mendes-Giannini
- Laboratory of Mycology, Department of Clinical Analysis, School of Pharmaceutical Science, Paulista State University (UNESP), Araraquara, Brazil
- Nucleous of Proteomics, Department of Clinical Analysis, School of Pharmaceutical Science, Paulista State University (UNESP), Araraquara, Brazil
| | - Ana Marisa Fusco-Almeida
- Laboratory of Mycology, Department of Clinical Analysis, School of Pharmaceutical Science, Paulista State University (UNESP), Araraquara, Brazil
- Nucleous of Proteomics, Department of Clinical Analysis, School of Pharmaceutical Science, Paulista State University (UNESP), Araraquara, Brazil
| | - Angel Gonzalez
- Basic and Applied Microbiology Group (MICROBA), School of Microbiology, Universidad de Antioquia (UdeA), Medellín, Colombia
| |
Collapse
|
14
|
Santacroce L, Topi S, Charitos IA, Lovero R, Luperto P, Palmirotta R, Jirillo E. Current Views about the Inflammatory Damage Triggered by Bacterial Superantigens and Experimental Attempts to Neutralize Superantigen-Mediated Toxic Effects with Natural and Biological Products. PATHOPHYSIOLOGY 2024; 31:18-31. [PMID: 38251046 PMCID: PMC10801599 DOI: 10.3390/pathophysiology31010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 01/23/2024] Open
Abstract
Superantigens, i.e., staphylococcal enterotoxins and toxic shock syndrome toxin-1, interact with T cells in a different manner in comparison to conventional antigens. In fact, they activate a larger contingent of T lymphocytes, binding outside the peptide-binding groove of the major histocompatibility complex class II. Involvement of many T cells by superantigens leads to a massive release of pro-inflammatory cytokines, such as interleukin (IL)-1, IL-2, IL-6, tumor necrosis factor-alpha and interferon-gamma. Such a storm of mediators has been shown to account for tissue damage, multiorgan failure and shock. Besides conventional drugs and biotherapeutics, experiments with natural and biological products have been undertaken to attenuate the toxic effects exerted by superantigens. In this review, emphasis will be placed on polyphenols, probiotics, beta-glucans and antimicrobial peptides. In fact, these substances share a common functional denominator, since they skew the immune response toward an anti-inflammatory profile, thus mitigating the cytokine wave evoked by superantigens. However, clinical applications of these products are still scarce, and more trials are needed to validate their usefulness in humans.
Collapse
Affiliation(s)
- Luigi Santacroce
- Section of Microbiology and Virology, Interdisciplinary Department of Medicine, School of Medicine, University of Bari ‘Aldo Moro’, 70124 Bari, Italy;
| | - Skender Topi
- Department of Clinical Disciplines, University ‘Alexander Xhuvani’ of Elbasan, 3001 Elbasan, Albania
| | - Ioannis Alexandros Charitos
- Division of Pneumology and Respiratory Rehabilitation, Maugeri Clinical Scientific Research Institutes (IRCCS) of Pavia—Scientific Institute of Bari, 70124 Bari, Italy
| | - Roberto Lovero
- Clinical Pathology Unit, AOU Policlinico Consorziale di Bari-Ospedale Giovanni XXIII, 70124 Bari, Italy
| | | | - Raffaele Palmirotta
- Section of Microbiology and Virology, Interdisciplinary Department of Medicine, School of Medicine, University of Bari ‘Aldo Moro’, 70124 Bari, Italy;
| | - Emilio Jirillo
- Section of Microbiology and Virology, Interdisciplinary Department of Medicine, School of Medicine, University of Bari ‘Aldo Moro’, 70124 Bari, Italy;
| |
Collapse
|