1
|
Graciliano NG, Goulart MOF, de Oliveira ACM. Impact of Maternal Exposure to SARS-CoV-2 on Immunological Components of Breast Milk. Int J Mol Sci 2025; 26:2600. [PMID: 40141241 PMCID: PMC11942142 DOI: 10.3390/ijms26062600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/07/2025] [Accepted: 03/09/2025] [Indexed: 03/28/2025] Open
Abstract
COVID-19, caused by SARS-CoV-2, has become a global public health threat. Although no replication-competent virus has been found in breast milk samples, breastfeeding practices during the pandemic were impacted. It is well known that breast milk is adapted to meet the needs of infants, providing the appropriate amounts of nutrients and various bioactive compounds that contribute to the maturation of the immune system and antioxidant protection, safeguarding infants against diseases. While its composition is variable, breast milk contains immune cells, antibodies, and cytokines, which have anti-inflammatory, pro-inflammatory, antiviral, and antibacterial properties that strengthen infant immunity. Since COVID-19 vaccines have not yet been approved for infants under six months of age, newborns rely on the passive transfer of antibodies via the placenta and breast milk to protect them against severe SARS-CoV-2 infection. Several studies that analyzed breast milk samples in the context of COVID-19 have demonstrated that a strong antibody response is induced following maternal infection with SARS-CoV-2. Therefore, this review aims to provide a comprehensive overview of the impact of maternal exposure to SARS-CoV-2 through natural infection and/or vaccination on the immunological composition of breast milk based on the studies conducted on this topic.
Collapse
Affiliation(s)
- Nayara Gomes Graciliano
- Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió 57072-900, Alagoas, Brazil
| | - Marília Oliveira Fonseca Goulart
- Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió 57072-900, Alagoas, Brazil
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió 57072-900, Alagoas, Brazil
| | - Alane Cabral Menezes de Oliveira
- Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió 57072-900, Alagoas, Brazil
- College of Nutrition, Federal University of Alagoas, Maceió 57072-900, Alagoas, Brazil
| |
Collapse
|
2
|
Shimizu J, Sasaki T, Ong GH, Koketsu R, Samune Y, Nakayama EE, Nagamoto T, Yamamoto Y, Miyazaki K, Shioda T. IFN-γ derived from activated human CD4 + T cells inhibits the replication of SARS-CoV-2 depending on cell-type and viral strain. Sci Rep 2024; 14:26660. [PMID: 39496837 PMCID: PMC11535250 DOI: 10.1038/s41598-024-77969-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/28/2024] [Indexed: 11/06/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and vaccination elicit both T cell and B cell immune responses in immunocompetent individuals. However, the mechanisms underlying the antiviral effects mediated by CD4+ T cells are not fully understood. In this study, we analyzed the culture supernatant (SN) from polyclonally stimulated human CD4+ T cells as a model for soluble mediators derived from SARS-CoV-2-stimulated CD4+ T cells. Interestingly, this SN inhibited SARS-CoV-2 propagation in a viral strain- and host cell type-dependent manner. The original wild-type showed the highest susceptibility, whereas the Delta variant exhibited resistance in the human monocyte cell line. In addition, antibody-dependent enhancement (ADE) of infection with the original strain was also abolished in the presence of the SN. The findings showed that the inhibitory effect on viral propagation by the SN was mostly attributed to interferon-γ (IFN-γ) that was present in the SN. These results highlight the potential role of IFN-γ as an anti-SARS-CoV-2 mediator derived from CD4+ T cells, and suggest that we need to understand the SARS-CoV-2 strain-dependent sensitivity to IFN-γ in controlling clinical outcomes. In addition, characterization of new SARS-CoV-2 variants in terms of IFN-γ-sensitivity will have important implications for selecting therapeutic strategies.
Collapse
Affiliation(s)
- Jun Shimizu
- MiCAN Technologies Inc., KKVP 1-36, Goryo-Ohara, Nishikyo-Ku, Kyoto, 615-8245, Japan
| | - Tadahiro Sasaki
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Guang Han Ong
- MiCAN Technologies Inc., KKVP 1-36, Goryo-Ohara, Nishikyo-Ku, Kyoto, 615-8245, Japan
| | - Ritsuko Koketsu
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Yoshihiro Samune
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Emi E Nakayama
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Tetsuharu Nagamoto
- HiLung Inc., Innovation Hub Kyoto, 46-29, Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8304, Japan
| | - Yuki Yamamoto
- HiLung Inc., Innovation Hub Kyoto, 46-29, Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8304, Japan
| | - Kazuo Miyazaki
- MiCAN Technologies Inc., KKVP 1-36, Goryo-Ohara, Nishikyo-Ku, Kyoto, 615-8245, Japan.
| | - Tatsuo Shioda
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamada-Oka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
3
|
Sánchez-García S, Castrillo A, Boscá L, Prieto P. Potential Beneficial Role of Nitric Oxide in SARS-CoV-2 Infection: Beyond Spike-Binding Inhibition. Antioxidants (Basel) 2024; 13:1301. [PMID: 39594443 PMCID: PMC11591382 DOI: 10.3390/antiox13111301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
SARS-CoV-2, the causative virus for the COVID-19 disease, uses its spike glycoprotein to bind to human ACE2 as a first step for viral entry into the cell. For this reason, great efforts have been made to find mechanisms that disrupt this interaction, avoiding the infection. Nitric oxide (NO) is a soluble endogenous gas with known antiviral and immunomodulatory properties. In this study, we aimed to test whether NO could inhibit the binding of the viral spike to ACE2 in human cells and its effects on ACE2 enzymatic activity. Our results show that ACE2 activity was decreased by the NO donors DETA-NONOate and GSNO and by the NO byproduct peroxynitrite. Furthermore, we found that DETA-NONOate could break the spike-ACE2 interaction using the spike from two different variants (Alpha and Gamma) and in two different human cell types. Moreover, the same result was obtained when using NO-producing murine macrophages, while no significant changes were observed in ACE2 expression or distribution within the cell. These results support that it is worth considering NO as a therapeutic agent for COVID-19, as previous reports have suggested.
Collapse
Affiliation(s)
- Sergio Sánchez-García
- Instituto de Investigaciones Biomédicas Sols-Morreale, CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain;
| | - Antonio Castrillo
- Instituto de Investigaciones Biomédicas Sols-Morreale, CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain;
- Unidad de Biomedicina (Unidad Asociada al CSIC), Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Sols-Morreale, CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Av. Monforte de Lemos 3-5, P-11, 28029 Madrid, Spain
| | - Patricia Prieto
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Av. Monforte de Lemos 3-5, P-11, 28029 Madrid, Spain
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, 28040 Madrid, Spain
| |
Collapse
|
4
|
Nelson CE, Foreman TW, Fukutani ER, Kauffman KD, Sakai S, Fleegle JD, Gomez F, Gould ST, Le Nouën C, Liu X, Burdette TL, Garza NL, Lafont BAP, Brooks K, Lindestam Arlehamn CS, Weiskopf D, Sette A, Hickman HD, Buchholz UJ, Johnson RF, Brenchley JM, Oberman JP, Quieroz ATL, Andrade BB, Via LE, Barber DL. IL-10 suppresses T cell expansion while promoting tissue-resident memory cell formation during SARS-CoV-2 infection in rhesus macaques. PLoS Pathog 2024; 20:e1012339. [PMID: 38950078 PMCID: PMC11244803 DOI: 10.1371/journal.ppat.1012339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/12/2024] [Accepted: 06/11/2024] [Indexed: 07/03/2024] Open
Abstract
The regulation of inflammatory responses and pulmonary disease during SARS-CoV-2 infection is incompletely understood. Here we examine the roles of the prototypic pro- and anti-inflammatory cytokines IFNγ and IL-10 using the rhesus macaque model of mild COVID-19. We find that IFNγ drives the development of 18fluorodeoxyglucose (FDG)-avid lesions in the lungs as measured by PET/CT imaging but is not required for suppression of viral replication. In contrast, IL-10 limits the duration of acute pulmonary lesions, serum markers of inflammation and the magnitude of virus-specific T cell expansion but does not impair viral clearance. We also show that IL-10 induces the subsequent differentiation of virus-specific effector T cells into CD69+CD103+ tissue resident memory cells (Trm) in the airways and maintains Trm cells in nasal mucosal surfaces, highlighting an unexpected role for IL-10 in promoting airway memory T cells during SARS-CoV-2 infection of macaques.
Collapse
Affiliation(s)
- Christine E. Nelson
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Taylor W. Foreman
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Eduardo R. Fukutani
- Laboratório de Pesquisa Clínica e Translacional, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Keith D. Kauffman
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Shunsuke Sakai
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Joel D. Fleegle
- Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Felipe Gomez
- Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - NIAID/DIR Tuberculosis Imaging Program
- Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sydnee T. Gould
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Cyril Le Nouën
- RNA Viruses Section, Laboratory of Infectious Disease, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Xueqiao Liu
- RNA Viruses Section, Laboratory of Infectious Disease, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tracey L. Burdette
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nicole L. Garza
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Bernard A. P. Lafont
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kelsie Brooks
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Cecilia S. Lindestam Arlehamn
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, United States of America
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, United States of America
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, United States of America
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, California, United States of America
| | - Heather D. Hickman
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ursula J. Buchholz
- RNA Viruses Section, Laboratory of Infectious Disease, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Reed F. Johnson
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jason M. Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - James P. Oberman
- Holy Cross Germantown Hospital, Affiliate of National Breathe Free Sinus and ENT Center, Frederick Breathe Free Sinus and ENT Center, Frederick, Maryland, United States of America
| | - Artur T. L. Quieroz
- Laboratório de Pesquisa Clínica e Translacional, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Bruno B. Andrade
- Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Laura E. Via
- Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
- Institute of Infectious Disease & Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Daniel L. Barber
- T lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
5
|
Williams BD, Ferede D, Abdelaal HFM, Berube BJ, Podell BK, Larsen SE, Baldwin SL, Coler RN. Protective interplay: Mycobacterium tuberculosis diminishes SARS-CoV-2 severity through innate immune priming. Front Immunol 2024; 15:1424374. [PMID: 38966641 PMCID: PMC11222399 DOI: 10.3389/fimmu.2024.1424374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/06/2024] [Indexed: 07/06/2024] Open
Abstract
At the beginning of the COVID-19 pandemic those with underlying chronic lung conditions, including tuberculosis (TB), were hypothesized to be at higher risk of severe COVID-19 disease. However, there is inconclusive clinical and preclinical data to confirm the specific risk SARS-CoV-2 poses for the millions of individuals infected with Mycobacterium tuberculosis (M.tb). We and others have found that compared to singly infected mice, mice co-infected with M.tb and SARS-CoV-2 leads to reduced SARS-CoV-2 severity compared to mice infected with SARS-CoV-2 alone. Consequently, there is a large interest in identifying the molecular mechanisms responsible for the reduced SARS-CoV-2 infection severity observed in M.tb and SARS-CoV-2 co-infection. To address this, we conducted a comprehensive characterization of a co-infection model and performed mechanistic in vitro modeling to dynamically assess how the innate immune response induced by M.tb restricts viral replication. Our study has successfully identified several cytokines that induce the upregulation of anti-viral genes in lung epithelial cells, thereby providing protection prior to challenge with SARS-CoV-2. In conclusion, our study offers a comprehensive understanding of the key pathways induced by an existing bacterial infection that effectively restricts SARS-CoV-2 activity and identifies candidate therapeutic targets for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Brittany D. Williams
- Department of Global Health, University of Washington, Seattle, WA, United States
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle Children’s, Seattle, WA, United States
| | - Debora Ferede
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle Children’s, Seattle, WA, United States
| | - Hazem F. M. Abdelaal
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle Children’s, Seattle, WA, United States
| | - Bryan J. Berube
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle Children’s, Seattle, WA, United States
- HDT Bio Corp, Seattle, WA, United States
| | - Brendan K. Podell
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Sasha E. Larsen
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle Children’s, Seattle, WA, United States
| | - Susan L. Baldwin
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle Children’s, Seattle, WA, United States
| | - Rhea N. Coler
- Department of Global Health, University of Washington, Seattle, WA, United States
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle Children’s, Seattle, WA, United States
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
6
|
Recchia Luciani G, Barilli A, Visigalli R, Sala R, Dall’Asta V, Rotoli BM. IRF1 Mediates Growth Arrest and the Induction of a Secretory Phenotype in Alveolar Epithelial Cells in Response to Inflammatory Cytokines IFNγ/TNFα. Int J Mol Sci 2024; 25:3463. [PMID: 38542436 PMCID: PMC10970306 DOI: 10.3390/ijms25063463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
In COVID-19, cytokine release syndrome can cause severe lung tissue damage leading to acute respiratory distress syndrome (ARDS). Here, we address the effects of IFNγ, TNFα, IL-1β and IL-6 on the growth arrest of alveolar A549 cells, focusing on the role of the IFN regulatory factor 1 (IRF1) transcription factor. The efficacy of JAK1/2 inhibitor baricitinib has also been tested. A549 WT and IRF1 KO cells were exposed to cytokines for up to 72 h. Cell proliferation and death were evaluated with the resazurin assay, analysis of cell cycle and cycle-regulator proteins, LDH release and Annexin-V positivity; the induction of senescence and senescence-associated secretory phenotype (SASP) was evaluated through β-galactosidase staining and the quantitation of secreted inflammatory mediators. While IL-1 and IL-6 proved ineffective, IFNγ plus TNFα caused a proliferative arrest in A549 WT cells with alterations in cell morphology, along with the acquisition of a secretory phenotype. These effects were STAT and IRF1-dependent since they were prevented by baricitinib and much less evident in IRF1 KO than in WT cells. In alveolar cells, STATs/IRF1 axis is required for cytokine-induced proliferative arrest and the induction of a secretory phenotype. Hence, baricitininb is a promising therapeutic strategy for the attenuation of senescence-associated inflammation.
Collapse
Affiliation(s)
| | | | | | | | - Valeria Dall’Asta
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy (R.S.); (B.M.R.)
| | | |
Collapse
|