1
|
Fang Y, Zhang Y, Shen X, Dou A, Xie H, Zhang Y, Xie K. Utilization of lactate trajectory models for predicting acute kidney injury and mortality in patients with hyperlactatemia: insights across three independent cohorts. Ren Fail 2025; 47:2474205. [PMID: 40074720 PMCID: PMC11905305 DOI: 10.1080/0886022x.2025.2474205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/08/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
This study aims to investigate the association between lactate trajectories and the risk of acute kidney injury (AKI) and hospital mortality in patients with hyperlactatemia. We conducted a multicenter retrospective study using data from three independent cohorts. By the lactate levels during the first 48 h of ICU admission, patients were classified into distinct lactate trajectories using group-based trajectory modeling (GBTM) method. The primary outcomes were AKI incidence and hospital mortality. Logistic regression analysis assessed the association between lactate trajectories and clinical outcomes, with adjusting potential confounders. Patients were divided into three trajectories: mild hyperlactatemia with rapid recovery (Traj-1), severe hyperlactatemia with gradual recovery (Traj-2), and severe hyperlactatemia with persistence (Traj-3). Traj-3 was an independent risk factor of both hospital mortality (all p < 0.001) and AKI development (all p < 0.001). Notably, Traj-2 was also associated with increased risk of mortality and AKI development (all p < 0.05) using Traj-1 as reference, except for the result in the Tianjin Medical University General Hospital (TMUGH) cohort for mortality in adjusted model (p = 0.123). Our finding was still robust in subgroup and sensitivity analysis. In the combination cohort, both Traj-2 and Traj-3 were considered as independent risk factor for hospital mortality and AKI development (all p < 0.001). When compared with the Traj-3, Traj-2 was only significantly associated with the decreased risk of hospital mortality (OR 0.17, 95% CI 0.14-0.20, p < 0.001), but no with the likelihood of AKI development (OR 0.90, 95% CI 0.77-1.05, p = 0.172). Lactate trajectories provide valuable information for predicting AKI and mortality in critically ill patients.
Collapse
Affiliation(s)
- Yipeng Fang
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Ying Zhang
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Xuejun Shen
- Department of Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Aizhen Dou
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Hui Xie
- Firth Clinical College, XinXiang Medical University, Xinxiang, Henan, China
| | - Yunfei Zhang
- Editorial Department of Journal, Tianjin Hospital, Tianjin, China
| | - Keliang Xie
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
2
|
Gou R, Yin FF, Han TT, Yin XJ, Zhong X, Zhang XH. Low level of lactate and trophoblast dysfunction mediated by SNAI1/PDK1 contributes to miscarriage. Placenta 2025; 165:33-41. [PMID: 40187272 DOI: 10.1016/j.placenta.2025.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/07/2025]
Abstract
INTRODUCTION Although the significance of metabolic remodelling in maintaining homeostasis at the maternal-foetal interface has been established, research on its implications in miscarriage remains limited. METHODS Immunofluorescence, qRT-PCR, and western blotting were used to detect the expression of SNAI1 in miscarriage and normal villi. The function of the zinc-finger transcription factor SNAI1 was evaluated in three-dimensional (3D) trophoblast spheroids. Lactate production assays and western blotting were performed to investigate the effect of SNAI1 on lactate production and pyruvate dehydrogenase kinase 1 (PDK1) expression. Immunofluorescence and western blotting were used to detect the effect of lactate on SNAI1 expression. Furthermore, the role of PDK1 in miscarriage was confirmed in clinical samples. RESULTS The expression of SNAI1 is significantly downregulated in the villi of patients with miscarriages. SNAI1 promotes proliferation, invasion, and inhibits apoptosis of HTR8/SVneo 3D spheroids. The glycolytic enzyme PDK1 has been identified as a downstream target of SNAI1 and plays a crucial role in regulating lactate production in trophoblasts. Lactate upregulates SNAI1 expression and promotes its nuclear localisation. Furthermore, the expression of PDK1 was downregulated in the villi of patients with miscarriage. DISCUSSION Trophoblast spheroids may serve as reliable models to investigate the placenta. The regulatory mechanisms mediated by SNAI1/PDK1 in miscarriage have been elucidated. We provide new clues regarding the mechanism of miscarriage from a metabolic perspective and present evidence supporting lactate as a potential diagnostic marker.
Collapse
Affiliation(s)
- Rui Gou
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, 100044, China
| | - Fu-Fen Yin
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, 100044, China
| | - Tian-Tian Han
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, 100044, China
| | - Xiu-Ju Yin
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, 100044, China
| | - Xue Zhong
- Department of Pharmacy, Peking University People's Hospital, Beijing, 100044, China
| | - Xiao-Hong Zhang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, 100044, China; Department of Pharmacy, Peking University People's Hospital, Beijing, 100044, China.
| |
Collapse
|
3
|
Min S, Zhang X, Liu Y, Wang W, Guan J, Chen Y, Sun M, Wang Z, Wang T. Personalized treatment decision-making using a machine learning-derived lactylation signature for breast cancer prognosis. Front Immunol 2025; 16:1540018. [PMID: 40406140 PMCID: PMC12095166 DOI: 10.3389/fimmu.2025.1540018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/15/2025] [Indexed: 05/26/2025] Open
Abstract
Background Breast cancer is a heterogeneous malignancy with complex molecular characteristics, making accurate prognostication and treatment stratification particularly challenging. Emerging evidence suggests that lactylation, a novel post-translational modification, plays a crucial role in tumor progression and immune modulation. Methods To address breast cancer heterogeneity, we developed a machine learning-derived lactylation signature (MLLS) using lactylation-related genes selected through random survival forest (RSF) and univariate Cox regression analyses. A total of 108 algorithmic combinations were applied across multiple datasets to construct and validate the model. Immune microenvironment characteristics were analyzed using multiple immune infiltration algorithms. Computational drug-repurposing analyses were conducted to identify potential therapeutic agents for high-risk patients. Results The MLLS effectively stratified patients into low- and high-risk groups with significantly different prognoses. The model demonstrated robust predictive power across multiple cohorts. Immune infiltration analysis revealed that the low-risk group exhibited higher levels of immune checkpoints (e.g., PD-1, PD-L1) and greater infiltration of B cells, CD4+ T cells, and CD8+ T cells, suggesting better responsiveness to immunotherapy. In contrast, the high-risk group showed immune suppression features associated with poor prognosis. Methotrexate was computationally predicted as a potential therapeutic candidate for high-risk patients, although experimental validation remains necessary. Conclusion The MLLS represents a promising prognostic biomarker and may support personalized treatment strategies in breast cancer, particularly for identifying candidates who may benefit from immunotherapy.
Collapse
Affiliation(s)
- Simin Min
- Clinical Research Center, Suzhou Hospital of Anhui Medical University, Suzhou, Anhui, China
| | - Xiaonan Zhang
- Department of Pathophysiology, Bengbu Medical University, Bengbu, Anhui, China
| | - Yuling Liu
- Clinical Research Center, Suzhou Hospital of Anhui Medical University, Suzhou, Anhui, China
| | - Weiqiang Wang
- Department of General Practice, Suzhou Hospital of Anhui Medical University, Suzhou, Anhui, China
| | - Jingwen Guan
- Department of Pathology, Suzhou Hospital of Anhui Medical University, Suzhou, Anhui, China
| | - Yuyan Chen
- Clinical Research Center, Suzhou Hospital of Anhui Medical University, Suzhou, Anhui, China
| | - Meng Sun
- Department of General Practice, Suzhou Hospital of Anhui Medical University, Suzhou, Anhui, China
| | - Ziheng Wang
- School of Clinical Medicine, Bengbu Medical University, Bengbu, Anhui, China
| | - Tao Wang
- Research Laboratory Center, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| |
Collapse
|
4
|
Chen C, Wang J, Zhu X, Zhang S, Yuan X, Hu J, Liu C, Liu L, Zhang Z, Li J. Lactylation as a metabolic epigenetic modification: Mechanistic insights and regulatory pathways from cells to organs and diseases. Metabolism 2025; 169:156289. [PMID: 40324589 DOI: 10.1016/j.metabol.2025.156289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/20/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
In recent years, lactylation, a novel post-translational modification, has demonstrated a unique role in bridging cellular metabolism and epigenetic regulation. This modification exerts a dual-edged effect in both cancer and non-cancer diseases by dynamically integrating the supply of metabolic substrates and the activity of modifying enzymes: on one hand, it promotes tissue homeostasis and repair through the activation of repair genes; on the other, it exacerbates pathological progression by driving malignant phenotypes. In the field of oncology, lactylation regulates key processes such as metabolic reprogramming, immune evasion, and therapeutic resistance, thereby shaping the heterogeneity of the tumor microenvironment. In non-cancerous diseases, including neurodegeneration and cardiovascular disorders, its aberrant activation can lead to mitochondrial dysfunction, fibrosis, and chronic inflammation. Existing studies have revealed a dynamic regulatory network formed by the cooperation of modifying and demodifying enzymes, and have identified mechanisms such as subcellular localization and RNA metabolism intervention that influence disease progression. Nevertheless, several challenges remain in the field. This article comprehensively summarizes the disease-specific regulatory mechanisms of lactylation, with the aim of providing a theoretical foundation for its targeted therapeutic application.
Collapse
Affiliation(s)
- Cong Chen
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Jie Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China.
| | - Xueying Zhu
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shan Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xiandun Yuan
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100096, China
| | - Jun Hu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Chao Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Lanchun Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Zhenpeng Zhang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China.
| | - Jun Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China.
| |
Collapse
|
5
|
Zhu Z, Zheng X, Zhao P, Chen C, Xu G, Ke X. Potential of lactylation as a therapeutic target in cancer treatment (Review). Mol Med Rep 2025; 31:91. [PMID: 39950331 PMCID: PMC11836599 DOI: 10.3892/mmr.2025.13456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/24/2025] [Indexed: 02/21/2025] Open
Abstract
Post‑translational modifications (PTMs) of proteins influence their functionality by altering the structure of precursor proteins. These modifications are closely linked to tumor progression through the regulation of processes such as cell proliferation, apoptosis, angiogenesis and invasion. Tumors produce large amounts of lactic acid through aerobic glycolysis. Lactic acid not only serves an important role in cell metabolism, but also serves an important role in cell communication. Lactylation, a PTM involving lactate and lysine residues as substrates, serves as an epigenetic regulator that modulates intracellular signaling, gene expression and protein function, thereby serving a crucial role in tumorigenesis and progression. The identification of lactylation provides a key breakthrough in elucidating the interaction between tumor metabolic reprogramming and epigenetic modification. The present review primarily summarizes the occurrence of lactylation, its effect on tumor progression, drug resistance, the tumor microenvironment and gut microbiota, and its potential as a therapeutic target for cancer. The aim of the present review was to provide novel strategies for potential cancer therapies.
Collapse
Affiliation(s)
- Zhengfeng Zhu
- Department of Clinical Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xinzhe Zheng
- Department of Clinical Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Pengfei Zhao
- Department of Clinical Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Cheng Chen
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Gang Xu
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xixian Ke
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
6
|
Zong Z, Ren J, Yang B, Zhang L, Zhou F. Emerging roles of lysine lactyltransferases and lactylation. Nat Cell Biol 2025; 27:563-574. [PMID: 40185947 DOI: 10.1038/s41556-025-01635-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 02/13/2025] [Indexed: 04/07/2025]
Abstract
Given its various roles in cellular functions, lactate is no longer considered a waste product of metabolism and lactate sensing is a pivotal step in the transduction of lactate signals. Lysine lactylation is a recently identified post-translational modification that serves as an intracellular mechanism of lactate sensing and transfer. Although acetyltransferases such as p300 exhibit general acyl transfer activity, no bona fide lactyltransferases have been identified. Recently, the protein synthesis machinery, alanyl-tRNA synthetase 1 (AARS1), AARS2 and their Escherichia coli orthologue AlaRS, have been shown to be able to sense lactate and mediate lactyl transfer and are thus considered pan-lactyltransferases. Here we highlight the mechanisms and functions of these lactyltransferases and discuss potential strategies that could be exploited for the treatment of human diseases.
Collapse
Affiliation(s)
- Zhi Zong
- The First Affiliated Hospital of Soochow University, Suzhou, China
- Institutes of Biology and Medical Science, Soochow University, Suzhou, China
| | - Jiang Ren
- MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Institute of Biomedical Innovation, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Bing Yang
- State Key Laboratory of Transvascular Implantation Devices of the Second Affiliated Hospital of the Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
| | - Long Zhang
- MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Institute of Biomedical Innovation, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China.
- State Key Laboratory of Transvascular Implantation Devices of the Second Affiliated Hospital of the Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, China.
| | - Fangfang Zhou
- The First Affiliated Hospital of Soochow University, Suzhou, China.
- Institutes of Biology and Medical Science, Soochow University, Suzhou, China.
| |
Collapse
|
7
|
Gu XY, Yang JL, Lai R, Zhou ZJ, Tang D, Hu L, Zhao LJ. Impact of lactate on immune cell function in the tumor microenvironment: mechanisms and therapeutic perspectives. Front Immunol 2025; 16:1563303. [PMID: 40207222 PMCID: PMC11979165 DOI: 10.3389/fimmu.2025.1563303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 03/10/2025] [Indexed: 04/11/2025] Open
Abstract
Lactate has emerged as a key regulator in the tumor microenvironment (TME), influencing both tumor progression and immune dynamics. As a byproduct of aerobic glycolysis, lactate satisfies the metabolic needs of proliferating tumor cells while reshaping the TME to facilitate immune evasion. Elevated lactate levels inhibit effector immune cells such as CD8+ T and natural killer cells, while supporting immunosuppressive cells, such as regulatory T cells and myeloid-derived suppressor cells, thus fostering an immunosuppressive environment. Lactate promotes epigenetic reprogramming, stabilizes hypoxia-inducible factor-1α, and activates nuclear factor kappa B, leading to further immunological dysfunction. In this review, we examined the role of lactate in metabolic reprogramming, immune suppression, and treatment resistance. We also discuss promising therapeutic strategies targeting lactate metabolism, including lactate dehydrogenase inhibitors, monocarboxylate transporter inhibitors, and TME neutralization methods, all of which can restore immune function and enhance immunotherapy outcomes. By highlighting recent advances, this review provides a theoretical foundation for integrating lactate-targeted therapies into clinical practice. We also highlight the potential synergy between these therapies and current immunotherapeutic strategies, providing new avenues for addressing TME-related challenges and improving outcomes for patients with cancer.
Collapse
Affiliation(s)
- Xuan-Yu Gu
- Department of General Surgery, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jia-Li Yang
- Department of General Surgery, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Rui Lai
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zheng-Jun Zhou
- Department of General Surgery, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Dan Tang
- Department of General Surgery, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Hepatobiliary and Pancreatic Surgery, Suzhou Medical College of Soochow University, Suzhou, China
| | - Long Hu
- Wisdom Lake Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Li-Jin Zhao
- Department of General Surgery, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
8
|
Du Q, Meng C, Zhang W, Huang L, Xue C. Establishing a Prognostic Model Correlates to Inflammatory Response Pathways for Prostate Cancer via Multiomic Analysis of Lactylation-Related Genes. Int J Genomics 2025; 2025:6681711. [PMID: 40161494 PMCID: PMC11952923 DOI: 10.1155/ijog/6681711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Prostate cancer (PCa) continues to pose substantial clinical challenges, with molecular heterogeneity significantly impacting therapeutic decision-making and disease trajectories. Emerging evidence implicates protein lactylation-a novel epigenetic regulatory mechanism-in oncogenic processes, though its prognostic relevance in PCa remains underexplored. Through integrative bioinformatics interrogation of lactylation-associated molecular signatures, we established prognostic correlations using multivariable feature selection methodologies. Initial screening via differential expression analysis (limma package) coupled with Cox proportional hazards modeling revealed 11 survival-favorable regulators and 16 hazard-associated elements significantly linked to biochemical recurrence. To enhance predictive precision, ensemble machine learning frameworks were implemented, culminating in a 10-gene lactylation signature demonstrating robust discriminative capacity (concordance index = 0.738) across both primary (TCGA-PRAD) and external validation cohorts (DKFZ). Multivariable regression confirmed the lactylation score's prognostic independence, exhibiting prominent associations with clinicopathological parameters including tumor staging and metastatic potential. The developed clinical-molecular nomogram achieved superior predictive accuracy (C - index > 0.7) through the synergistic integration of biological and clinical covariates. Tumor microenvironment deconvolution uncovered distinct immunological landscapes, with high-risk stratification correlating with enriched stromal infiltration and immunosuppressive phenotypes. Pathway enrichment analyses implicated chromatin remodeling processes and cytokine-mediated inflammatory cascades as potential mechanistic drivers of prognostic divergence. Therapeutic vulnerability profiling demonstrated differential response patterns: low-risk patients exhibited enhanced immune checkpoint inhibitor responsiveness, whereas high-risk subgroups showed selective chemosensitivity to docetaxel and mitoxantrone. Functional validation in PC-3 models revealed AK5 silencing induced proapoptotic effects, suppressed metastatic potential of migration and invasion, and modulated immune checkpoint regulation through CD276 coexpression. These multimodal findings position lactylation dynamics, particularly AK5-mediated pathways, as promising therapeutic targets and stratification biomarkers in PCa management.
Collapse
Affiliation(s)
- Qinglong Du
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - CuiYu Meng
- The Department of EICU, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, Shandong, China
| | - Wenchao Zhang
- The Department of Urology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, Shandong, China
| | - Li Huang
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou, Guangdong, China
| | - Chunlei Xue
- The Department of Urology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, Shandong, China
| |
Collapse
|
9
|
He W, Chen R, Chen G, Zhang L, Qian Y, Zhou J, Peng J, Wong VKW, Jiang Y. Identification and Validation of Prognostic Genes Related to Histone Lactylation Modification in Glioblastoma: An Integrated Analysis of Transcriptome and Single-cell RNA Sequencing. J Cancer 2025; 16:2145-2166. [PMID: 40302809 PMCID: PMC12036088 DOI: 10.7150/jca.110646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/05/2025] [Indexed: 05/02/2025] Open
Abstract
Background: The impact of histone lactylation modification (HLM) on glioblastoma (GBM) progression is not well understood. This study aimed to identify HLM-associated prognostic genes in GBM and explore their mechanisms of action. Methods: The presence and role of lactylation in glioma clinical tissue samples and its correlation with GBM progression were analysed through immunohistochemical staining and Western blotting. Sequencing data for GBM were obtained from publicly available databases. An initial correlation analysis was performed between global HLM levels and GBM. Differentially expressed HLM-related genes (HLMRGs) in GBM were identified by intersecting differentially expressed genes (DEGs) from the TCGA-GBM dataset, key module genes derived from weighted gene coexpression network analysis (WGCNA), and previously reported HLMRGs. Prognostic genes were subsequently identified through univariate Cox regression and least absolute shrinkage and selection operator (LASSO) regression analyses, which formed the basis for constructing a risk prediction model. Associations between HLMRGs and GBM were further evaluated via single-cell RNA sequencing (scRNA-seq) datasets. Complementary analyses, including functional enrichment, immune infiltration, somatic mutation, and nomogram-based survival prediction, were conducted alongside in vitro experiments. Additionally, drug sensitivity and Chinese medicine prediction analyses were performed to identify potential therapeutic agents for GBM. Results: We detected a significant increase in global lactylation levels in GBM, which correlated with patient survival. We identified 227 differentially expressed HLMRGs from the intersection of 3,343 differentially expressed genes and 948 key module genes, indicating strong prognostic potential. Notably, genes such as SNCAIP, TMEM100, NLRP11, HOXC11, and HOXD10 were highly expressed in GBM. Functional analysis suggested that HLMRGs are involved primarily in pathways related to cytokine‒cytokine receptor interactions, cell cycle regulation, and cellular interactions, including microglial differentiation states. Further connections were established between HLMRGs and infiltrating immune cells, particularly type 1 T helper (Th1) cells, as well as mutations in genes such as PTEN. The potential therapeutic agents identified included ATRA and Can Sha. Conclusion: The HLM-related gene risk prediction model shows substantial promise for improving patient management in GBM, providing crucial insights for clinical prognostic evaluations and immunotherapeutic approaches in GBM.
Collapse
Affiliation(s)
- Wenfeng He
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery & State Key Laboratory of Quality Research in Chinese Medicine & Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ruihong Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Songshan Lake Innovation Center of Medicine & Engineering, Guangdong Medical University, Dongguan, China
| | - Guangliang Chen
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lihan Zhang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuhang Qian
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jie Zhou
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianhua Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Vincent Kam Wai Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery & State Key Laboratory of Quality Research in Chinese Medicine & Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yong Jiang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
10
|
Yang Z, Su W, Zhang Q, Niu L, Feng B, Zhang Y, Huang F, He J, Zhou Q, Zhou X, Ma L, Zhou J, Wang Y, Xiong W, Xiang J, Hu Z, Zhan Q, Yao B. Lactylation of HDAC1 Confers Resistance to Ferroptosis in Colorectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408845. [PMID: 39888307 PMCID: PMC11947995 DOI: 10.1002/advs.202408845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/07/2024] [Indexed: 02/01/2025]
Abstract
Colorectal cancer (CRC) is highly resistant to ferroptosis, which hinders the application of anti-ferroptosis therapy. Through drug screening, it is found that histone deacetylase inhibitor (HDACi) significantly sensitized CRC to ferroptosis. The combination of HDACi and ferroptosis inducers synergically suppresses CRC growth both in vivo and in vitro. Mechanically, HDACi reduces ferroptosis suppressor protein (FSP1) by promoting its mRNA degradation. Specifically, it is confirmed that HDACi specifically targets HDAC1 and promotes the H3K27ac modification of fat mass- and obesity-associated gene (FTO) and AlkB Homolog 5, RNA Demethylase (ALKBH5), which results in significant activation of FTO and ALKBH5. The activation of FTO and ALKBH5 reduces N6-methyladenosine (m6A) modification on FSP1 mRNA, leading to its degradation. Crucially, lactylation of HDAC1K412 is essential for ferroptosis regulation. Both Vorinostat (SAHA) and Trichostatin A (TSA) notably diminish HDAC1K412 lactylation in comparison to other HDAC1 inhibitors, exhibiting a consistent trend of increasing susceptibility to ferroptosis. In conclusion, the research reveals that HDACi decreases HDAC1K412 lactylation to sensitize CRC to ferroptosis and that the combination of HDACi and ferroptosis inducers can be a promising therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Zhou Yang
- Department of Head and Neck SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Wei Su
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Department of Medical OncologyFudan University Shanghai Cancer CenterShanghai200032China
| | - Qinglin Zhang
- Departments of GastroenterologyWuxi People's Hospital Affiliated to Nanjing Medical UniversityNanjing Medical UniversityNanjingJiangsu214043China
| | - Lili Niu
- Department of Integrative MedicineShanghai Pulmonary HospitalTongji University Medical School Cancer InstituteTongji University School of MedicineShanghai200433China
| | - Baijie Feng
- Department of Medical OncologyShanghai Pudong HospitalFudan University Pudong Medical CenterShanghai201399China
| | - Yu Zhang
- Department of Head and Neck SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Feng Huang
- Department of General Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine; National Experimental Teaching Center of Basic Medical Science, Department of Medical GeneticsSchool of Basic Medical SciencesNanjing Medical UniversityNanjing211166China
| | - Jiaxin He
- Department of General Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine; National Experimental Teaching Center of Basic Medical Science, Department of Medical GeneticsSchool of Basic Medical SciencesNanjing Medical UniversityNanjing211166China
| | - Qinyao Zhou
- Department of General Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine; National Experimental Teaching Center of Basic Medical Science, Department of Medical GeneticsSchool of Basic Medical SciencesNanjing Medical UniversityNanjing211166China
| | - Xin Zhou
- Department of General Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine; National Experimental Teaching Center of Basic Medical Science, Department of Medical GeneticsSchool of Basic Medical SciencesNanjing Medical UniversityNanjing211166China
| | - Longjun Ma
- Department of EpidemiologySchool of Public HealthNanjing Medical UniversityNanjing211166China
| | - Jingwan Zhou
- Department of General Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine; National Experimental Teaching Center of Basic Medical Science, Department of Medical GeneticsSchool of Basic Medical SciencesNanjing Medical UniversityNanjing211166China
| | - Yuanrong Wang
- Department of General Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine; National Experimental Teaching Center of Basic Medical Science, Department of Medical GeneticsSchool of Basic Medical SciencesNanjing Medical UniversityNanjing211166China
| | - Wenjing Xiong
- Department of General Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine; National Experimental Teaching Center of Basic Medical Science, Department of Medical GeneticsSchool of Basic Medical SciencesNanjing Medical UniversityNanjing211166China
| | - Jun Xiang
- Department of Head and Neck SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Zhilin Hu
- Department of ImmunologyKey Laboratory of Immune Microenvironment and DiseaseThe School of Basic Medicine; Department of laboratory medicine, the first affiliated hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjing211166China
| | - Qiang Zhan
- Departments of GastroenterologyWuxi People's Hospital Affiliated to Nanjing Medical UniversityNanjing Medical UniversityNanjingJiangsu214043China
| | - Bing Yao
- Department of General Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine; National Experimental Teaching Center of Basic Medical Science, Department of Medical GeneticsSchool of Basic Medical SciencesNanjing Medical UniversityNanjing211166China
- State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine; NHC Key Laboratory of Antibody Technique, Jiangsu Province Engineering Research Center of Antibody DrugNanjing Medical UniversityNanjing211166China
| |
Collapse
|
11
|
Sun M, Wang K, Lu F, Yu D, Liu S. Regulatory role and therapeutic prospect of lactate modification in cancer. Front Pharmacol 2025; 16:1508552. [PMID: 40034817 PMCID: PMC11872897 DOI: 10.3389/fphar.2025.1508552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/20/2025] [Indexed: 03/05/2025] Open
Abstract
Post-translational modifications (PTMs) of proteins refer to the process of adding chemical groups, sugars, or other molecules to specific residues of target proteins following their biosynthesis by ribosomes. PTMs play a crucial role in processes such as signal transduction, epigenetics, and disease development. Lactylation is a newly discovered PTM that, due to its close association with lactate-the end product of glycolytic metabolism-provides a new perspective on the connection between cellular metabolic reprogramming and epigenetic regulation. Studies have demonstrated that lactylation plays a significant role in tumor progression and is associated with poor clinical prognosis. Abnormal histone lactylation can influence gene expression in both tumor cells and immune cells, thereby regulating tumor progression and immunosuppression. Lactylation of non-histone proteins can also modulate processes such as tumor proliferation and drug resistance. This review summarizes the latest research progress in the field of lactylation, highlighting its roles and mechanisms in tumorigenesis, tumor development, the tumor microenvironment, and immunosuppression. It also explores the potential application value of lactylation in tumor-targeted therapy and combined immunotherapy.
Collapse
Affiliation(s)
- Mengdi Sun
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Kejing Wang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fang Lu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Donghua Yu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shumin Liu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
12
|
Xu Y, Meng W, Dai Y, Xu L, Ding N, Zhang J, Zhuang X. Anaerobic metabolism promotes breast cancer survival via Histone-3 Lysine-18 lactylation mediating PPARD axis. Cell Death Discov 2025; 11:54. [PMID: 39922804 PMCID: PMC11807217 DOI: 10.1038/s41420-025-02334-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/18/2024] [Accepted: 01/28/2025] [Indexed: 02/10/2025] Open
Abstract
Histone lactylation plays a crucial role in cancer progression, but its impact on breast cancer (BC) tumorigenesis is still unclear. We utilized chromatin immunoprecipitation sequencing with H3K18la antibodies, transcriptomics of clinical BC samples, and proteomics and ATAC-seq analyses of in vivo tumors to identify the genes regulated by H3K18la and the transcription factor PPARD. qPCR and Western blot assays were used to detect expressions of molecules. We discovered that H3K18la levels were higher in BC tissues compared to adjacent non-cancerous tissues. H3K18la promoted the expression of PPARD, which in turn influenced the transcription of AKT, but not ILK. ATAC-seq analysis revealed that glycolysis in BC cells enhanced chromatin accessibility. Additionally, we confirmed that HDAC2 and HDAC3 act as "erasers" for H3 lysine lactylation. During the proteomics analysis, AKT-phosphorylation in the aerobic respiration inhibitor group exhibited an apparent disparity and activity. Our study demonstrated that changes in H3K18la in BC and its downstream transcription factor PPARD support cell survival under anaerobic glycolysis conditions. PPARD accelerated cancer proliferation by promoting the transcription and phosphorylation of AKT. This highlights the therapeutic potential of targeting the H3K18la/PPARD/AKT axis in breast cancer, providing new insights into epigenetic regulation and cancer metabolism (Trial registration: The study was approved by the Research Ethics Committee Shandong Provincial Third Hospital (KYLL-2023057; https://www.medicalresearch.org.cn/ )).
Collapse
Affiliation(s)
- Ying Xu
- Department of Thyroid and Breast Surgery, Shandong Provincial Third Hospital, Shandong University, Jinan, China.
| | - Weiwei Meng
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Shandong University, Jinan, China
| | - Yingqi Dai
- Department of Thyroid and Breast Surgery, Shandong Provincial Third Hospital, Shandong University, Jinan, China
| | - Lin Xu
- Translational Medicine Laboratory, Shandong Provincial Third Hospital, Shandong University, Jinan, China
| | - Ning Ding
- Department of Anesthesiology, Shandong Provincial Key Medical and Health Laboratory of Intensive Care Rehabilitation, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jinqing Zhang
- Department of Thyroid and Breast Surgery, Shandong Provincial Third Hospital, Shandong University, Jinan, China.
| | - Xuewei Zhuang
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Shandong University, Jinan, China.
| |
Collapse
|
13
|
Song H, Zhang M, Guo C, Guo X, Ma Y, Ma Y. Implication of protein post translational modifications in gastric cancer. Front Cell Dev Biol 2025; 13:1523958. [PMID: 39968176 PMCID: PMC11833226 DOI: 10.3389/fcell.2025.1523958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/10/2025] [Indexed: 02/20/2025] Open
Abstract
Gastric cancer (GC) is one of the most common and highly lethal malignant tumors worldwide, and its occurrence and development are regulated by multiple molecular mechanisms. Post-translational modifications (PTM) common forms include ubiquitylation, phosphorylation, acetylation and methylation. Emerging research has highlighted lactylation and glycosylation. The diverse realm of PTM and PTM crosstalk is linked to many critical signaling events involved in neoplastic transformation, carcinogenesis and metastasis. This review provides a comprehensive overview of the impact of PTM on the occurrence and progression of GC. Specifically, aberrant PTM have been shown to alter the proliferation, migration, and invasion capabilities of GC cells. Moreover, PTM are closely associated with resistance to chemotherapeutic agents in GC. Notably, this review also discusses the phenomenon of PTM crosstalk, highlighting the interactions among PTM and their roles in regulating signaling pathways and protein functions. Therefore, in-depth investigation into the mechanisms of PTM and the development of targeted therapeutic strategies hold promise for advancing early diagnosis, treatment, and prognostic evaluation of GC, offering novel insights and future research directions.
Collapse
Affiliation(s)
- Houji Song
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Mingze Zhang
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Chengwang Guo
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xi Guo
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yuqi Ma
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yuntao Ma
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
14
|
Al-Malsi K, Xie S, Cai Y, Mohammed N, Xie K, Lan T, Wu H. The role of lactylation in tumor growth and cancer progression. Front Oncol 2025; 15:1516785. [PMID: 39968078 PMCID: PMC11832377 DOI: 10.3389/fonc.2025.1516785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/16/2025] [Indexed: 02/20/2025] Open
Abstract
Background Lactate's perception of lactate has changed over the last 30 years from a straightforward metabolic byproduct to a complex chemical with important biological activities, such as signal transduction, gluconeogenesis, and mitochondrial respiration. In addition to its metabolic contributions, lactate has far-reaching repercussions. This review highlights the role of lactate in the course of cancer by highlighting lactylation as a unique epigenetic alteration. The purpose of this review is to clarify the functions of lactate in the biology of tumors, with a particular focus on the translational potential of lactylation pathways in cancer diagnosis and treatment approaches. Methods This review summarizes research on the relationship between lactate and cancer, with an emphasis on histone lactylation, its effect on gene expression, and its influence on the tumor microenvironment. By establishing a connection between metabolic byproducts and epigenetic gene regulation, we investigated how lactylation affects immune regulation, inflammation, and cellular repair. Findings Histone lactylation, or the addition of lactate to lysine residues on histone proteins, increases transcriptional activity and facilitates the expression of genes involved in homeostasis and repair. These findings have important implications for cancer treatment. Lactylation, for example, activates genes such as Arg1, which is a hallmark of the M2 macrophage phenotype implicated in immunosuppression and tumor growth. The ability of lactate to dynamically alter gene expression is further supported by its function as a histone deacetylase(HDAC)inhibitor and its impact on histone acetylation. Its wide-ranging involvement in cellular metabolism and epigenetic control has been demonstrated by the discovery of particular lactylation sites on histones in various cell types, including cancer cells.
Collapse
Affiliation(s)
- Khulood Al-Malsi
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Sinan Xie
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yunshi Cai
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Nader Mohammed
- Emergency Department Research, Hamad Medical Corporation, Doha, Qatar
| | - Kunlin Xie
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Tian Lan
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Wu
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Fan M, Liu JS, Wei XL, Nie Y, Liu HL. Histone Lactylation-Driven Ubiquitin-Specific Protease 34 Promotes Cisplatin Resistance in Hepatocellular Carcinoma. Gastroenterology Res 2025; 18:23-30. [PMID: 40051889 PMCID: PMC11882226 DOI: 10.14740/gr1796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/24/2024] [Indexed: 03/09/2025] Open
Abstract
Background Ubiquitin-specific protease 34 (USP34) is a deubiquitinase that has been shown to play a critical role in the process of tumor drug-resistance. The objective of this study was to investigate the role of USP34 in cisplatin resistance in hepatocellular carcinoma (HCC). Methods Firstly, we analyzed the USP34 levels in cisplatin-sensitive and -resistant patients using The Cancer Genomic Atlas (TCGA) data from Gene Expression Profiling Interactive Analysis (GEPIA2). The cell viability and half-maximal inhibitory concentration (IC50) were measured by Cell Counting Kit-8 (CCK-8) assay. The cell apoptosis of HepG2 and HepG2/DDP cells was detected by annexin V-fluorescein isothiocyanate/propidium iodide (FITC/PI) double staining. The expression levels of USP34, multidrug resistance-associated protein 1 (MRP1), p-glycoprotein (p-gp), pan-lysine lactylation (Pan-Kla), histone H3 lysine 18 lactylation (H3K18la), lactate dehydrogenase A (LDHA) and lactate dehydrogenase B (LDHB) were measured by Western blot. HCC samples from the GEPIA2 database were used to determine the correlation between USP34 with LDHA and LDHB expression. Results USP34 was significantly upregulated in cisplatin-resistant HCC tissues and cells. Functional studies found that knockdown of USP34 inhibited HepG2 and HepG2/DDP cell proliferation and survival. Importantly, knockdown of USP34 enhanced cisplatin sensitivity in HepG2 and HepG2/DDP cells. Mechanistically, lactylation of histones promoted the expression level of USP34 in HepG2/DDP cells. Conclusion USP34 promotes the progression of HCC by regulating histone lactylation levels and cisplatin resistance in HCC.
Collapse
Affiliation(s)
- Ming Fan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Air Force Medical University, Xi’an 710032, Shaanxi, China
| | - Jian Shan Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Air Force Medical University, Xi’an 710032, Shaanxi, China
| | - Xi Le Wei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Air Force Medical University, Xi’an 710032, Shaanxi, China
| | - Ye Nie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Air Force Medical University, Xi’an 710032, Shaanxi, China
| | - Hai Liang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Air Force Medical University, Xi’an 710032, Shaanxi, China
| |
Collapse
|
16
|
Yu D, Zhong Q, Wang Y, Yin C, Bai M, Zhu J, Chen J, Li H, Hong W. Lactylation: The metabolic accomplice shaping cancer's response to radiotherapy and immunotherapy. Ageing Res Rev 2025; 104:102670. [PMID: 39864560 DOI: 10.1016/j.arr.2025.102670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/09/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
Protein lactylation, an emerging post-translational modification, is providing new insights into tumor biology and challenging our current understanding of cancer mechanisms. Our review illuminates the intricate roles of lactylation in carcinogenesis, tumor progression, and therapeutic responses, positioning it as a critical linchpin connecting metabolic reprogramming, epigenetic modulation, and treatment outcomes. We provide an in-depth analysis of lactylation's molecular mechanisms and its far-reaching impact on cell cycle regulation, immune evasion strategies, and therapeutic resistance within the complex tumor microenvironment. Notably, this review dissects the paradoxical nature of lactylation in cancer immunotherapy and radiotherapy. While heightened lactylation can foster immune suppression and radioresistance, strategically targeting lactylation cascades opens innovative avenues for amplifying the efficacy of current treatment paradigms. We critically evaluate lactylation's potential as a robust diagnostic and prognostic biomarker and explore frontier therapeutic approaches targeting lactylation. The synergistic integration of multi-omics data and artificial intelligence in lactylation research is catalyzing significant strides towards personalized cancer management. This review not only consolidates current knowledge but also charts a course for future investigations. Key research imperatives include deciphering tumor-specific lactylation signatures, optimizing synergistic strategies combining lactylation modulation with immune checkpoint inhibitors and radiotherapy, and comprehensively assessing the long-term physiological implications of lactylation intervention. As our understanding of lactylation's pivotal role in tumor biology continues to evolve, this burgeoning field promises to usher in transformative advancements in cancer diagnosis, treatment modalitie.
Collapse
Affiliation(s)
- Danqing Yu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Qingping Zhong
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yanlin Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310000, China
| | - Chang Yin
- Nursing Department, Shanghai Sixth People's Hospital, Shanghai 200233, China
| | - Minghua Bai
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Ji Zhu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Jinggang Chen
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Huaming Li
- Department of Gastroenterology, Hangzhou Third Peoples Hospital, Hangzhou 310000, China.
| | - Weifeng Hong
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| |
Collapse
|
17
|
Pan J, Chen S, Chen X, Song Y, Cheng H. Histone Modifications and DNA Methylation in Psoriasis: A Cellular Perspective. Clin Rev Allergy Immunol 2025; 68:6. [PMID: 39871086 DOI: 10.1007/s12016-024-09014-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2024] [Indexed: 01/29/2025]
Abstract
In recent years, epigenetic modifications have attracted significant attention due to their unique regulatory mechanisms and profound biological implications. Acting as a bridge between environmental stimuli and changes in gene activity, they reshape gene expression patterns, providing organisms with regulatory mechanisms to respond to environmental changes. A growing body of evidence indicates that epigenetic regulation plays a crucial role in the pathogenesis and progression of psoriasis. A deeper understanding of these epigenetic mechanisms not only helps unveil the molecular mechanisms underlying the initiation and progression of psoriasis but may also provide new insights into diagnostic and therapeutic strategies. Given the unique roles and significant contributions of various cell types involved in the process of psoriasis, a thorough analysis of specific epigenetic patterns in different cell types becomes a key entry point for elucidating the mechanisms of disease development. Although epigenetic modifications encompass multiple complex layers, this review will focus on histone modifications and DNA methylation, describing how they function in different cell types and subsequently impact the pathophysiological processes of psoriasis. Finally, we will summarize the current problems in research concerning histone modifications and DNA methylation in psoriasis and discuss the clinical application prospects and challenges of targeting epigenetic modifications as therapeutic strategies for psoriasis.
Collapse
Affiliation(s)
- Jing Pan
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Siji Chen
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xianzhen Chen
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yinjing Song
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Hao Cheng
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
18
|
Tian Q, Li J, Wu B, Pang Y, He W, Xiao Q, Wang J, Yi L, Tian N, Shi X, Xia L, Tian X, Chen M, Fan Y, Xu B, Tao Y, Song W, Du Y, Dong Z. APP lysine 612 lactylation ameliorates amyloid pathology and memory decline in Alzheimer's disease. J Clin Invest 2025; 135:e184656. [PMID: 39744941 PMCID: PMC11684803 DOI: 10.1172/jci184656] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/24/2024] [Indexed: 05/13/2025] Open
Abstract
Posttranslational modification (PTM) of the amyloid precursor protein (APP) plays a critical role in Alzheimer's disease (AD). Recent evidence reveals that lactylation modification, as a novel PTM, is implicated in the occurrence and development of AD. However, whether and how APP lactylation contributes to both the pathogenesis and cognitive function in AD remains unknown. Here, we observed a reduction in APP lactylation in AD patients and AD model mice and cells. Proteomic mass spectrometry analysis further identified lysine 612 (APP-K612la) as a crucial site for APP lactylation, influencing APP amyloidogenic processing. A lactyl-mimicking mutant (APPK612T) reduced amyloid-β peptide (Aβ) generation and slowed down cognitive deficits in vivo. Mechanistically, APPK612T appeared to facilitate APP trafficking and metabolism. However, lactylated APP entering the endosome inhibited its binding to BACE1, suppressing subsequent cleavage. Instead, it promoted protein interaction between APP and CD2-associated protein (CD2AP), thereby accelerating the endosomal-lysosomal degradation pathway of APP. In the APP23/PS45 double-transgenic mouse model of AD, APP-Kla was susceptible to L-lactate regulation, which reduced Aβ pathology and repaired spatial learning and memory deficits. Thus, these findings suggest that targeting APP lactylation may be a promising therapeutic strategy for AD in humans.
Collapse
Affiliation(s)
- Qiuyun Tian
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Junjie Li
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Wu
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Yayan Pang
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Wenting He
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Xiao
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Jiaojiao Wang
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Lilin Yi
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Na Tian
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Xiuyu Shi
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Lei Xia
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Mulan Chen
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Yepeng Fan
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Boqing Xu
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Yuhan Tao
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Weihong Song
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, British Columbia, Canada
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Zhejiang Clinical Research Center for Mental Disorders, School of Mental Health and The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yehong Du
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Zhifang Dong
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
19
|
He Y, Huang Y, Peng P, Yan Q, Ran L. Lactate and lactylation in gastrointestinal cancer: Current progress and perspectives (Review). Oncol Rep 2025; 53:6. [PMID: 39513579 PMCID: PMC11574708 DOI: 10.3892/or.2024.8839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
Gastrointestinal (GI) cancers, which have notable incidence and mortality, are impacted by metabolic reprogramming, especially the increased production and accumulation of lactate. Lactylation, a post‑translational modification driven by lactate, is a crucial regulator of gene expression and cellular function in GI cancer. The present review aimed to examine advancements in understanding lactate and lactylation in GI cancer. The mechanisms of lactate production, its influence on the tumor microenvironment and the clinical implications of lactate levels as potential biomarkers were explored. Furthermore, lactylation was investigated, including its biochemical foundation, primary targets and functional outcomes. The present review underscored potential therapeutic strategies targeting lactate metabolism and lactylation. Challenges and future directions emphasize the potential of lactate and lactylation as innovative therapeutic targets in GI cancer to improve clinical outcomes.
Collapse
Affiliation(s)
- Yufen He
- Department of Gastroenterology and Hepatology, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing Key Laboratory of Emergency Medicine, Chongqing 400014, P.R. China
| | - Yaxi Huang
- Department of Gastroenterology and Hepatology, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing Key Laboratory of Emergency Medicine, Chongqing 400014, P.R. China
| | - Peng Peng
- Department of Gastroenterology and Hepatology, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing Key Laboratory of Emergency Medicine, Chongqing 400014, P.R. China
| | - Qi Yan
- Department of Gastroenterology and Hepatology, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing Key Laboratory of Emergency Medicine, Chongqing 400014, P.R. China
| | - Lidan Ran
- Department of Intensive Care Unit, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing Key Laboratory of Emergency Medicine, Chongqing 400014, P.R. China
| |
Collapse
|
20
|
Bao C, Ma Q, Ying X, Wang F, Hou Y, Wang D, Zhu L, Huang J, He C. Histone lactylation in macrophage biology and disease: from plasticity regulation to therapeutic implications. EBioMedicine 2025; 111:105502. [PMID: 39662177 PMCID: PMC11697715 DOI: 10.1016/j.ebiom.2024.105502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/10/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024] Open
Abstract
Epigenetic modifications have been identified as critical molecular determinants influencing macrophage plasticity and heterogeneity. Among these, histone lactylation is a recently discovered epigenetic modification. Research examining the effects of histone lactylation on macrophage activation and polarization has grown substantially in recent years. Evidence increasingly suggests that lactate-mediated changes in histone lactylation levels within macrophages can modulate gene transcription, thereby contributing to the pathogenesis of various diseases. This review provides a comprehensive analysis of the role of histone lactylation in macrophage activation, exploring its discovery, effects, and association with macrophage diversity and phenotypic variability. Moreover, it highlights the impact of alterations in macrophage histone lactylation in diverse pathological contexts, such as inflammation, tumorigenesis, neurological disorders, and other complex conditions, and demonstrates the therapeutic potential of drugs targeting these epigenetic modifications. This mechanistic understanding provides insights into the underlying disease mechanisms and opens new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Chuncha Bao
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - Qing Ma
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xihong Ying
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Fengsheng Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China
| | - Yue Hou
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - Dun Wang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - Linsen Zhu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - Jiapeng Huang
- Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China.
| | - Chengqi He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, PR China.
| |
Collapse
|
21
|
Wang L, Dong Z, Zhang Y, Peng L. Emerging Roles of High-mobility Group Box-1 in Liver Disease. J Clin Transl Hepatol 2024; 12:1043-1056. [PMID: 39649031 PMCID: PMC11622203 DOI: 10.14218/jcth.2024.00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 12/10/2024] Open
Abstract
High-mobility group box-1 (HMGB1) is an architectural chromosomal protein with various roles depending on its cellular localization. Extracellular HMGB1 functions as a prototypical damage-associated molecular pattern that triggers inflammation and adaptive immune responses, mediated by specific cell surface receptors, including receptors for advanced glycation end products and toll-like receptors. Post-translational modifications of HMGB1 significantly impact various cellular processes that contribute to the pathogenesis of liver diseases. Recent studies have highlighted the close relationship between HMGB1 and the pathogenesis of acute liver injuries, including acetaminophen-induced liver injury, hepatic ischemia-reperfusion injury, and acute liver failure. In chronic liver diseases, HMGB1 plays a role in nonalcoholic fatty liver disease, alcohol-associated liver disease, liver fibrosis, and hepatocellular carcinoma. Targeting HMGB1 as a therapeutic approach, either by inhibiting its release or blocking its extracellular function, is a promising strategy for treating liver diseases. This review aimed to summarize the available evidence on HMGB1's role in liver disease, focusing on its multifaceted signaling pathways, impact on disease progression, and the translation of these findings into clinical interventions.
Collapse
Affiliation(s)
- Lu Wang
- Department of Diagnostics, Second School of Clinical Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Zhiwei Dong
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yeqiong Zhang
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liang Peng
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
22
|
Gao M, Wang M, Zhou S, Hou J, He W, Shu Y, Wang X. Machine learning-based prognostic model of lactylation-related genes for predicting prognosis and immune infiltration in patients with lung adenocarcinoma. Cancer Cell Int 2024; 24:400. [PMID: 39696439 DOI: 10.1186/s12935-024-03592-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Histone lactylation is a novel epigenetic modification that is involved in a variety of critical biological regulations. However, the role of lactylation-related genes in lung adenocarcinoma has yet to be investigated. METHODS RNA-seq data and clinical information of LUAD were downloaded from TCGA and GEO datasets. Unsupervised consistent cluster analysis was performed to identify differentially expressed genes (DEGs) between the two clusters, and risk prediction models were constructed by Cox regression analysis and LASSO analysis. Kaplan-Meier (KM) survival analysis, ROC curves and nomograms were used to validate the accuracy of the models. We also explored the differences in risk scores in terms of immune cell infiltration, immune cell function, TMB, TIDE, and anticancer drug sensitivity. In addition, single-cell clustering and trajectory analysis were performed to further understand the significance of lactylation-related genes. We further analyzed lactate content and glucose uptake in lung adenocarcinoma cells and tissues. Changes in LUAD cell function after knockdown of lactate dehydrogenase (LDHA) by CCK-8, colony formation and transwell assays. Finally, we analyzed the expression of KRT81 in LUAD tissues and cell lines using qRT-PCR, WB, and IHC. Changes in KRT81 function in LUAD cells were detected by CCK-8, colony formation, wound healing, transwell, and flow cytometry. A nude mouse xenograft model and a KrasLSL-G12D in situ lung adenocarcinoma mouse model were used to elucidate the role of KRT81 in LUAD. RESULTS After identifying 26 lactylation-associated DEGs, we constructed 10 lactylation-associated lung adenocarcinoma prognostic models with prognostic value for LUAD patients. A high score indicates a poor prognosis. There were significant differences between the high-risk and low-risk groups in the phenotypes of immune cell infiltration rate, immune cell function, gene mutation frequency, and anticancer drug sensitivity. TMB and TIDE scores were higher in high-risk score patients than in low-risk score patients. MS4A1 was predominantly expressed in B-cell clusters and was identified to play a key role in B-cell differentiation. We further found that lactate content was abnormally elevated in lung adenocarcinoma cells and cancer tissues, and glucose uptake by lung adenocarcinoma cells was significantly increased. Down-regulation of LDHA inhibits tumor cell proliferation, migration and invasion. Finally, we verified that the model gene KRT81 is highly expressed in LUAD tissues and cell lines. Knockdown of KRT81 inhibited cell proliferation, migration, and invasion, leading to cell cycle arrest in the G0/G1 phase and increased apoptosis. KRT81 may play a tumorigenic role in LUAD through the EMT and PI3K/AKT pathways. In vivo, KRT81 knockdown inhibited tumor growth. CONCLUSION We successfully constructed a new prognostic model for lactylation-related genes. Lactate content and glucose uptake are significantly higher in lung adenocarcinoma cells and cancer tissues. In addition, KRT81 was validated at cellular and animal levels as a possible new target for the treatment of LUAD, and this study provides a new perspective for the individualized treatment of LUAD.
Collapse
Affiliation(s)
- Mingjun Gao
- Dalian Medical University, Dalian, 116000, China
- Yangzhou Clinical Medical College, Dalian Medical University, Yangzhou, 225001, China
| | - Mengmeng Wang
- Dalian Medical University, Dalian, 116000, China
- Yangzhou Clinical Medical College, Dalian Medical University, Yangzhou, 225001, China
| | - Siding Zhou
- Department of Emergency, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Jiaqi Hou
- Dalian Medical University, Dalian, 116000, China
- Yangzhou Clinical Medical College, Dalian Medical University, Yangzhou, 225001, China
| | - Wenbo He
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Yusheng Shu
- Yangzhou Clinical Medical College, Dalian Medical University, Yangzhou, 225001, China.
- Clinical Medical College, Yangzhou University, Yangzhou, China.
- Department of Thoracic Surgery, Northern Jiangsu People's Hospital, Northern Jiangsu People's Hospital Affliated to Yangzhou University, No. 98 Nantong West Road, Yangzhou, 225001, Jiangsu, China.
| | - Xiaolin Wang
- Yangzhou Clinical Medical College, Dalian Medical University, Yangzhou, 225001, China.
- Clinical Medical College, Yangzhou University, Yangzhou, China.
- Department of Thoracic Surgery, Northern Jiangsu People's Hospital, Northern Jiangsu People's Hospital Affliated to Yangzhou University, No. 98 Nantong West Road, Yangzhou, 225001, Jiangsu, China.
| |
Collapse
|
23
|
Guan J, Xie P, Dong D, Liu Q, Zhao Z, Guo Y, Zhang Y, Lee TY, Yao L, Chiang YC. DeepKlapred: A deep learning framework for identifying protein lysine lactylation sites via multi-view feature fusion. Int J Biol Macromol 2024; 283:137668. [PMID: 39566793 DOI: 10.1016/j.ijbiomac.2024.137668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
Lysine lactylation (Kla) is a post-translational modification (PTM) that holds significant importance in the regulation of various biological processes. While traditional experimental methods are highly accurate for identifying Kla sites, they are both time-consuming and labor-intensive. Recent machine learning advances have enabled computational models for Kla site prediction. In this study, we propose a novel framework that integrates sequence embedding with sequence descriptors to enhance the representation of protein sequence features. Our framework employs a BiGRU-Transformer architecture to capture both local and global dependencies within the sequence, while incorporating six sequence descriptors to extract biochemical properties and evolutionary patterns. Additionally, we apply a cross-attention fusion mechanism to combine sequence embeddings with descriptor-based features, enabling the model to capture complex interactions between different feature representations. Our model demonstrated excellent performance in predicting Kla sites, achieving an accuracy of 0.998 on the training set and 0.969 on the independent set. Additionally, through attention analysis and motif discovery, our model provided valuable insights into key sequence patterns and regions that are crucial for Kla modification. This work not only deepens the understanding of Kla's functional roles but also holds the potential to positively impact future research in protein modification prediction and functional annotation.
Collapse
Affiliation(s)
- Jiahui Guan
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Road, 518172 Shenzhen, China; School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Road, 518172 Shenzhen, China
| | - Peilin Xie
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Road, 518172 Shenzhen, China; School of Science and Engineering, The Chinese University of Hong Kong, 2001 Longxiang Road, 518172 Shenzhen, China
| | - Danhong Dong
- School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Road, 518172 Shenzhen, China
| | - Qianchen Liu
- School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Road, 518172 Shenzhen, China
| | - Zhihao Zhao
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Road, 518172 Shenzhen, China
| | - Yilin Guo
- School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Road, 518172 Shenzhen, China
| | - Yilun Zhang
- School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Road, 518172 Shenzhen, China
| | - Tzong-Yi Lee
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, 1001 Daxue Road, Hsinchu 300093, Taiwan; Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, 1001 Daxue Road, Hsinchu 300093, Taiwan.
| | - Lantian Yao
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Road, 518172 Shenzhen, China; School of Science and Engineering, The Chinese University of Hong Kong, 2001 Longxiang Road, 518172 Shenzhen, China.
| | - Ying-Chih Chiang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Road, 518172 Shenzhen, China; School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Road, 518172 Shenzhen, China; School of Science and Engineering, The Chinese University of Hong Kong, 2001 Longxiang Road, 518172 Shenzhen, China.
| |
Collapse
|
24
|
Mach F, Miteva K. Window of opportunity for developing effective medical intervention for calcific aortic valve disease. Eur Heart J 2024; 45:3886-3888. [PMID: 39132886 DOI: 10.1093/eurheartj/ehae426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/13/2024] Open
Affiliation(s)
- François Mach
- Division of Cardiology, Geneva University Hospital & Faculty of Medicine, Geneva, Switzerland
| | - Kapka Miteva
- Division of Cardiology, Foundation for Medical Research, Department of Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1211 Geneva, Switzerland
| |
Collapse
|
25
|
Yu H, Zhu T, Ma D, Cheng X, Wang S, Yao Y. The role of nonhistone lactylation in disease. Heliyon 2024; 10:e36296. [PMID: 39315193 PMCID: PMC11417196 DOI: 10.1016/j.heliyon.2024.e36296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/25/2024] Open
Abstract
In 2019, a novel post-translational modification termed lactylation was identified, which established a connection among lactate, transcriptional regulation and epigenetics. Lactate, which is traditionally viewed as a metabolic byproduct, is now recognized for its significant functional role, including modulating the tumor microenvironment, engaging in signaling and interfering in immune regulation. While research on lactylation (KLA) is advancing, the focus has primarily been on histone lactylation. This paper aims to explore the less-studied area of nonhistone lactylation, highlighting its involvement in certain diseases and physiological processes. Additionally, the clinical relevance and potential implications of nonhistone lactylation will be discussed.
Collapse
Affiliation(s)
- Hao Yu
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Tingting Zhu
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, School of Medicine, Southeast University, China
| | - Dongwen Ma
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, School of Medicine, Southeast University, China
| | - Xiaohan Cheng
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College, Nanjing Medical University, Nanjing, China
| | - Shengjia Wang
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, School of Medicine, Southeast University, China
| | - Yongzhong Yao
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, School of Medicine, Southeast University, China
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College, Nanjing Medical University, Nanjing, China
| |
Collapse
|
26
|
Stacpoole PW, Dirain CO. The pyruvate dehydrogenase complex at the epigenetic crossroads of acetylation and lactylation. Mol Genet Metab 2024; 143:108540. [PMID: 39067348 DOI: 10.1016/j.ymgme.2024.108540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/25/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
The pyruvate dehydrogenase complex (PDC) is remarkable for its size and structure as well as for its physiological and pathological importance. Its canonical location is in the mitochondrial matrix, where it primes the tricarboxylic acid (TCA) cycle by decarboxylating glycolytically-derived pyruvate to acetyl-CoA. Less well appreciated is its role in helping to shape the epigenetic landscape, from early development throughout mammalian life by its ability to "moonlight" in the nucleus, with major repercussions for human healthspan and lifespan. The PDC's influence on two crucial modifiers of the epigenome, acetylation and lactylation, is the focus of this brief review.
Collapse
Affiliation(s)
- Peter W Stacpoole
- University of Florida, College of Medicine Department of Medicine, Department of Biochemistry & Molecular Biology, Gainesville, FL, United States.
| | - Carolyn O Dirain
- University of Florida, College of Medicine Department of Medicine, Gainesville, FL, United States
| |
Collapse
|
27
|
Wang S, Guo S, Guo J, Du Q, Wu C, Wu Y, Zhang Y. Cell death pathways: molecular mechanisms and therapeutic targets for cancer. MedComm (Beijing) 2024; 5:e693. [PMID: 39239068 PMCID: PMC11374700 DOI: 10.1002/mco2.693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 09/07/2024] Open
Abstract
Cell death regulation is essential for tissue homeostasis and its dysregulation often underlies cancer development. Understanding the different pathways of cell death can provide novel therapeutic strategies for battling cancer. This review explores several key cell death mechanisms of apoptosis, necroptosis, autophagic cell death, ferroptosis, and pyroptosis. The research gap addressed involves a thorough analysis of how these cell death pathways can be precisely targeted for cancer therapy, considering tumor heterogeneity and adaptation. It delves into genetic and epigenetic factors and signaling cascades like the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathways, which are critical for the regulation of cell death. Additionally, the interaction of the microenvironment with tumor cells, and particularly the influence of hypoxia, nutrient deprivation, and immune cellular interactions, are explored. Emphasizing therapeutic strategies, this review highlights emerging modulators and inducers such as B cell lymphoma 2 (BCL2) homology domain 3 (BH3) mimetics, tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), chloroquine, and innovative approaches to induce ferroptosis and pyroptosis. This review provides insights into cancer therapy's future direction, focusing on multifaceted approaches to influence cell death pathways and circumvent drug resistance. This examination of evolving strategies underlines the considerable clinical potential and the continuous necessity for in-depth exploration within this scientific domain.
Collapse
Affiliation(s)
- Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Sa Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Jing Guo
- College of Clinical Medicine Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Qinyun Du
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Cen Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Yeke Wu
- College of Clinical Medicine Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine Chengdu University of Traditional Chinese Medicine Chengdu China
| |
Collapse
|
28
|
Honer MA, Ferman BI, Gray ZH, Bondarenko EA, Whetstine JR. Epigenetic modulators provide a path to understanding disease and therapeutic opportunity. Genes Dev 2024; 38:473-503. [PMID: 38914477 PMCID: PMC11293403 DOI: 10.1101/gad.351444.123] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The discovery of epigenetic modulators (writers, erasers, readers, and remodelers) has shed light on previously underappreciated biological mechanisms that promote diseases. With these insights, novel biomarkers and innovative combination therapies can be used to address challenging and difficult to treat disease states. This review highlights key mechanisms that epigenetic writers, erasers, readers, and remodelers control, as well as their connection with disease states and recent advances in associated epigenetic therapies.
Collapse
Affiliation(s)
- Madison A Honer
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA
| | - Benjamin I Ferman
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA
| | - Zach H Gray
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA
| | - Elena A Bondarenko
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Johnathan R Whetstine
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA;
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| |
Collapse
|
29
|
ZHANG Q, CAO L, XU K. [Role and Mechanism of Lactylation in Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2024; 27:471-479. [PMID: 39026499 PMCID: PMC11258650 DOI: 10.3779/j.issn.1009-3419.2024.102.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Indexed: 07/20/2024]
Abstract
Post translational modifications (PTMs) can change the properties of a protein by covalent addition of functional groups to one or more amino acids, and influence almost all aspects of normal cell biology and pathogenesis. Lactylation is a novel identified PTM, and has been found in both histone and non-histone proteins. Since associated with the end product of glycolysis-- lactate, lactylation modification could provide a new perspective for understanding the relationship between metabolic reprogramming and epigenetic modifications. Accumulated evidences suggest that lactylation play important roles in tumor progression and links to poor prognosis in clinical studies. Histone lactylation can affect gene expression in tumor cells and immunological cells, further promoting tumor progression and immune suppression. Lactylation on non-histone proteins can also regulate tumor progression and drug resistance. In this review, we aimed to summarize the roles of lactylation in cancer progression, microenvironment interactions and immune suppression, try to identify new molecular targets for cancer therapy and provide a new direction for combined targeted therapy and immunotherapy.
.
Collapse
|
30
|
Koltai T, Fliegel L. Dichloroacetate for Cancer Treatment: Some Facts and Many Doubts. Pharmaceuticals (Basel) 2024; 17:744. [PMID: 38931411 PMCID: PMC11206832 DOI: 10.3390/ph17060744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Rarely has a chemical elicited as much controversy as dichloroacetate (DCA). DCA was initially considered a dangerous toxic industrial waste product, then a potential treatment for lactic acidosis. However, the main controversies started in 2008 when DCA was found to have anti-cancer effects on experimental animals. These publications showed contradictory results in vivo and in vitro such that a thorough consideration of this compound's in cancer is merited. Despite 50 years of experimentation, DCA's future in therapeutics is uncertain. Without adequate clinical trials and health authorities' approval, DCA has been introduced in off-label cancer treatments in alternative medicine clinics in Canada, Germany, and other European countries. The lack of well-planned clinical trials and its use by people without medical training has discouraged consideration by the scientific community. There are few thorough clinical studies of DCA, and many publications are individual case reports. Case reports of DCA's benefits against cancer have been increasing recently. Furthermore, it has been shown that DCA synergizes with conventional treatments and other repurposable drugs. Beyond the classic DCA target, pyruvate dehydrogenase kinase, new target molecules have also been recently discovered. These findings have renewed interest in DCA. This paper explores whether existing evidence justifies further research on DCA for cancer treatment and it explores the role DCA may play in it.
Collapse
Affiliation(s)
- Tomas Koltai
- Hospital del Centro Gallego de Buenos Aires, Buenos Aires 2199, Argentina
| | - Larry Fliegel
- Department of Biochemistry, University Alberta, Edmonton, AB T6G 2H7, Canada;
| |
Collapse
|
31
|
Zha J, Zhang J, Lu J, Zhang G, Hua M, Guo W, Yang J, Fan G. A review of lactate-lactylation in malignancy: its potential in immunotherapy. Front Immunol 2024; 15:1384948. [PMID: 38779665 PMCID: PMC11109376 DOI: 10.3389/fimmu.2024.1384948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/04/2024] [Indexed: 05/25/2024] Open
Abstract
Lactic acid was formerly regarded as a byproduct of metabolism. However, extensive investigations into the intricacies of cancer development have revealed its significant contributions to tumor growth, migration, and invasion. Post-translational modifications involving lactate have been widely observed in histone and non-histone proteins, and these modifications play a crucial role in regulating gene expression by covalently attaching lactoyl groups to lysine residues in proteins. This discovery has greatly enhanced our comprehension of lactic acid's involvement in disease pathogenesis. In this article, we provide a comprehensive review of the intricate relationship between lactate and tumor immunity, the occurrence of lactylation in malignant tumors, and the exploitation of targeted lactate-lactylation in tumor immunotherapy. Additionally, we discuss future research directions, aiming to offer novel insights that could inform the investigation, diagnosis, and treatment of related diseases.
Collapse
Affiliation(s)
- Jinhui Zha
- Department of Urology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of General Surgery, Shenzhen University General Hospital, Shenzhen, China
| | - Junan Zhang
- Department of Basic Medicine, Shenzhen University, Shenzhen, China
| | - Jingfen Lu
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guangcheng Zhang
- Department of Urology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of General Surgery, Shenzhen University General Hospital, Shenzhen, China
| | - Mengzhan Hua
- Department of Basic Medicine, Shenzhen University, Shenzhen, China
| | - Weiming Guo
- Department of Sports Medicine Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Jing Yang
- Endocrinology Department, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Gang Fan
- Department of Urology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
32
|
Wang J, Wang Z, Wang Q, Li X, Guo Y. Ubiquitous protein lactylation in health and diseases. Cell Mol Biol Lett 2024; 29:23. [PMID: 38317138 PMCID: PMC10845568 DOI: 10.1186/s11658-024-00541-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024] Open
Abstract
For decades, lactate has been considered a byproduct of glycolysis. The lactate shuttle hypothesis shifted the lactate paradigm, demonstrating that lactate not only plays important roles in cellular metabolism but also cellular communications, which can transcend compartment barriers and can occur within and among different cells, tissues and organs. Recently, the discovery that lactate can induce a novel post-translational modification, named lysine lactylation (Kla), brings forth a new avenue to study nonmetabolic functions for lactate, which has inspired a 'gold rush' of academic and commercial interest. Zhang et al. first showed that Kla is manifested in histones as epigenetic marks, and then mounting evidences demonstrated that Kla also occurs in diverse non-histone proteins. The widespread Kla faithfully orchestrates numerous biological processes, such as transcription, metabolism and inflammatory responses. Notably, dysregulation of Kla touches a myriad of pathological processes. In this review, we comprehensively reviewed and curated the existing literature to retrieve the new identified Kla sites on both histones and non-histone proteins and summarized recent major advances toward its regulatory mechanism. We also thoroughly investigated the function and underlying signaling pathway of Kla and comprehensively summarize how Kla regulates various biological processes in normal physiological states. In addition, we also further highlight the effects of Kla in the development of human diseases including inflammation response, tumorigenesis, cardiovascular and nervous system diseases and other complex diseases, which might potentially contribute to deeply understanding and interpreting the mechanism of its pathogenicity.
Collapse
Affiliation(s)
- Junyong Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Science Avenue 100, Zhengzhou, 450001, Henan, China
- Center for Basic Medical Research, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Ziyi Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Science Avenue 100, Zhengzhou, 450001, Henan, China
- Center for Basic Medical Research, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Qixu Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Science Avenue 100, Zhengzhou, 450001, Henan, China
- Center for Basic Medical Research, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xiao Li
- Department of Gastroenterology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450001, Henan, China
| | - Yaping Guo
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Science Avenue 100, Zhengzhou, 450001, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, 450001, Henan, China.
- Center for Basic Medical Research, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|