1
|
Jin Q, Wang S, Yao Y, Jiang Q, Li K. The gut-eye axis: from brain neurodegenerative diseases to age-related macular degeneration. Neural Regen Res 2025; 20:2741-2757. [PMID: 39435619 PMCID: PMC11826455 DOI: 10.4103/nrr.nrr-d-24-00531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/25/2024] [Accepted: 09/21/2024] [Indexed: 10/23/2024] Open
Abstract
Age-related macular degeneration is a serious neurodegenerative disease of the retina that significantly impacts vision. Unfortunately, the specific pathogenesis remains unclear, and effective early treatment options are consequently lacking. The microbiome is defined as a large ecosystem of microorganisms living within and coexisting with a host. The intestinal microbiome undergoes dynamic changes owing to age, diet, genetics, and other factors. Such dysregulation of the intestinal flora can disrupt the microecological balance, resulting in immunological and metabolic dysfunction in the host, and affecting the development of many diseases. In recent decades, significant evidence has indicated that the intestinal flora also influences systems outside of the digestive tract, including the brain. Indeed, several studies have demonstrated the critical role of the gut-brain axis in the development of brain neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. Similarly, the role of the "gut-eye axis" has been confirmed to play a role in the pathogenesis of many ocular disorders. Moreover, age-related macular degeneration and many brain neurodegenerative diseases have been shown to share several risk factors and to exhibit comparable etiologies. As such, the intestinal flora may play an important role in age-related macular degeneration. Given the above context, the present review aims to clarify the gut-brain and gut-eye connections, assess the effect of intestinal flora and metabolites on age-related macular degeneration, and identify potential diagnostic markers and therapeutic strategies. Currently, direct research on the role of intestinal flora in age-related macular degeneration is still relatively limited, while studies focusing solely on intestinal flora are insufficient to fully elucidate its functional role in age-related macular degeneration. Organ-on-a-chip technology has shown promise in clarifying the gut-eye interactions, while integrating analysis of the intestinal flora with research on metabolites through metabolomics and other techniques is crucial for understanding their potential mechanisms.
Collapse
Affiliation(s)
- Qianzi Jin
- Department of Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Suyu Wang
- Department of Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yujia Yao
- Department of Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Qin Jiang
- Department of Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Keran Li
- Department of Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
2
|
Cai XX, Huang YH, Lin YCD, Huang HY, Chen YG, Zhang DP, Zhang T, Liu Y, Zuo HL, Huang HD. A comprehensive review of small molecules, targets, and pathways in ulcerative colitis treatment. Eur J Med Chem 2025; 291:117645. [PMID: 40279769 DOI: 10.1016/j.ejmech.2025.117645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/06/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025]
Abstract
Ulcerative colitis (UC), a chronic inflammatory bowel disease (IBD), poses significant clinical challenges because of its complex pathophysiology, long-term nature, and the limited efficacy of existing treatments. Small-molecule compounds, particularly those that are able to modulate inflammation-related signaling pathways and, in many cases, occur in nature, offer a promising alternative or supplement to conventional therapies. Studies on molecules for UC therapeutics reported in 1394 publications over the past 30 years were collected from the Web of Science (WOS) database. Only studies that verified therapeutic efficacy through animal experiments were included. Through an analysis of the molecular classes, structures, common targets, and pathways using network pharmacology, we identified 14 classes of compounds, 5 direct-target modules, and 3 crucial downstream pathways. Alkaloids, phenylpropanoids, flavonoids, and terpenes (and their derivatives) appeared most frequently and mainly targeted lipid metabolism, oxidative stress, immune regulation, signaling transduction, and cancer-related pathways. Notably, there has been an increasing trend of applying naturally sourced compounds in both preclinical and clinical trials, especially flavonoids, over the last five years. Although progress in UC research has been made, the majority of studies have focused on the overall therapeutic effects and biomarker alterations, with limited emphasis on the direct targets and underlying mechanisms. These findings highlight the need to explore novel small-molecule therapeutic strategies for UC, focusing on clearly defined targets and precise modes of action.
Collapse
Affiliation(s)
- Xiao-Xuan Cai
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China; Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China
| | - Yi-Han Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China; Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China
| | - Yang-Chi-Dung Lin
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China; Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China; Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China
| | - Hsi-Yuan Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China; Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China; Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China
| | - Yi-Gang Chen
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China; Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China
| | - Da-Peng Zhang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China
| | - Tao Zhang
- R&D center, Better Way (Shanghai) Cosmetics Co., Ltd., Shanghai, 201103, PR China
| | - Yue Liu
- R&D center, Better Way (Shanghai) Cosmetics Co., Ltd., Shanghai, 201103, PR China
| | - Hua-Li Zuo
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China; Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China.
| | - Hsien-Da Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China; Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China; Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China; Department of Endocrinology, Key Laboratory of Endocrinology of National Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, PR China.
| |
Collapse
|
3
|
Wang L, Quan W, Song J, Qin Y, Zeng H, Zhang J, Zhao X, Li J, Chen J. Association Between ω-3, ω-6 Polyunsaturated Fatty Acid and Sleep Disorders: From Cross-Sectional to Mendelian Randomization Studies. Food Sci Nutr 2025; 13:e70311. [PMID: 40433111 PMCID: PMC12108440 DOI: 10.1002/fsn3.70311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
Sleep disorders are a common health problem affecting a significant proportion of the adult population. Emerging evidence suggests that dietary factors, particularly polyunsaturated fatty acid (PUFA) intake, may play a role in modulating sleep quality. This study aims to investigate the association between omega-3 (ω-3) and omega-6 (ω-6) PUFA and sleep disorders using cross-sectional survey data and data from genome-wide association studies (GWAS). Using data from the National Health and Nutrition Examination Survey (NHANES, 2005-2018), we analyzed a cohort of 31,920 participants, with the primary independent variables being intake of ω-3 and ω-6 PUFAs. Multivariate regression was used to assess associations, and restricted cubic spline analysis was used to explore potential non-linear dose-response relationships. Two-sample Mendelian randomization (MR) analyses were performed to evaluate the causal effects of levels of multiple fatty acids on the risk of sleep disorders. For analysis on NHANES data, the participants with sleep disorders had significantly lower ω-3 PUFA intake (1.71 ± 1.11 g) compared to those without sleep disorders (1.78 ± 1.14 g, p < 0.001). Regression analysis revealed that higher ω-3 PUFA intake was associated with a reduced risk of sleep disorders, while the MR analyses showed that a higher ratio of ω-6 to total fatty acid levels was causally associated with a lower risk of sleep disorders (IVW OR = 0.930, 95% CI: 0.880-0.983, p = 0.011). Our findings suggest that increased ω-3 FA intake and increased ratio of ω-6 to total fatty acid level may be associated with a lower risk of sleep disorders, highlighting the potential benefits of dietary modification for sleep health. Future research should further explore these associations and consider intervention studies to establish causality and optimal dietary recommendations to prevent sleep disorders.
Collapse
Affiliation(s)
- Lin Wang
- Department of NeurologyChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Wei Quan
- Department of NeurologyChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Jia Song
- Department of NeurologyChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Yidan Qin
- Department of NeurologyChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Huibin Zeng
- Department of NeurologyChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Jian Zhang
- Department of NeurologyChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Xuan Zhao
- Department of NeurologyChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Jia Li
- Department of NeurologyChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Jiajun Chen
- Department of NeurologyChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
4
|
Lin P, Wang W, Zhou Y, Yang Y, Liu P. The association between the intake of polyunsaturated fatty acids and chronic constipation and diarrhea: NHANES 2005-2010. Lipids Health Dis 2025; 24:164. [PMID: 40329354 PMCID: PMC12054136 DOI: 10.1186/s12944-025-02570-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
BACKGROUND Polyunsaturated fatty acids (PUFAs) have shown notable protective effects in various diseases. This study aims to investigate the associations between PUFAs intake and both chronic constipation (CC) and chronic diarrhea (CD). METHODS Data from three survey cycles (2005-2006, 2007-2008, and 2009-2010) of the National Health and Nutrition Examination Survey (NHANES) were used for analysis. 24-hour dietary recall interviews were employed to evaluate PUFAs intake. The associations between PUFAs intake and both CC and CD were analyzed via multivariable weighted logistic regression (WLR). Furthermore, stratified analysis and restricted cubic splines analysis were carried out. RESULTS 7723 participants were included, among whom 545 (8.35%) were CC patients and 579 (7.50%) were CD patients. According to the results of multivariable MLR, a nonlinear association between PUFAs intake and CC was found (P for nonlinear < 0.05), where the increased daily intake was related to a declined prevalence of CC [OR = 0.976 (0.959, 0.993), P = 0.007] in the fully adjusted model. However, there was no significant evidence of an association between PUFAs intake and CD (P > 0.05). CONCLUSION PUFAs intake was negatively associated with CC and was not strongly associated with CD. It suggested that adjusting daily PUFAs intake may alleviate CC symptoms. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Ping Lin
- The Department of Gastroenterology, The First People's Hospital of Wu Hu, No. 1, Chizhu Mountain East Road, Jiujiang District, Wu Hu, 241000, An Hui, China
| | - Wei Wang
- The Department of Gastroenterology, The First People's Hospital of Wu Hu, No. 1, Chizhu Mountain East Road, Jiujiang District, Wu Hu, 241000, An Hui, China
| | - Yun Zhou
- The Department of Gastroenterology, The First People's Hospital of Wu Hu, No. 1, Chizhu Mountain East Road, Jiujiang District, Wu Hu, 241000, An Hui, China
| | - Yong Yang
- The Department of Gastroenterology, The First People's Hospital of Wu Hu, No. 1, Chizhu Mountain East Road, Jiujiang District, Wu Hu, 241000, An Hui, China
| | - Ping Liu
- The Department of Gastroenterology, The First People's Hospital of Wu Hu, No. 1, Chizhu Mountain East Road, Jiujiang District, Wu Hu, 241000, An Hui, China.
| |
Collapse
|
5
|
León-Vega II, Oregon R, Schnoor M, Vadillo E. From Ulcerative Colitis to Metastatic Colorectal Cancer: The Neutrophil Contribution. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:814-830. [PMID: 39889826 DOI: 10.1016/j.ajpath.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 02/03/2025]
Abstract
Ulcerative colitis (UC) is an inflammatory colon and rectum disease affecting approximately 5 million people worldwide. There is no cure for UC, and approximately 8% of patients with UC develop colorectal cancer (CRC) by gradual acquisition of mutations driving the formation of adenomas and their progression to adenocarcinomas and metastatic disease. CRC constitutes 10% of total cancer cases worldwide and 9% of cancer deaths. Both UC and CRC have an increasing incidence worldwide. Although the epithelium has been well studied in UC and CRC, the contribution of neutrophils is less clear. Neutrophils are rapidly recruited in excessive amounts from peripheral blood to the colon during UC, and their overactivation in the proinflammatory UC tissue environment contributes to tissue damage. In CRC, the role of neutrophils is controversial, but emerging evidence suggests that their role depends on the evolution and context of the disease. The role of neutrophils in the transition from UC to CRC is even less clear. However, recent studies propose neutrophils as therapeutic targets for better clinical management of both diseases. This review summarizes the current knowledge on the roles of neutrophils in UC and CRC.
Collapse
Affiliation(s)
- Iliana I León-Vega
- Department of Molecular Biomedicine, Cinvestav-National Polytechnic Institute, Mexico City, Mexico
| | - Reyna Oregon
- Oncology Research Unit, Oncology Hospital, National Medical Center, Mexican Institute of Social Security, Mexico City, Mexico
| | - Michael Schnoor
- Department of Molecular Biomedicine, Cinvestav-National Polytechnic Institute, Mexico City, Mexico.
| | - Eduardo Vadillo
- Oncology Research Unit, Oncology Hospital, National Medical Center, Mexican Institute of Social Security, Mexico City, Mexico.
| |
Collapse
|
6
|
Wang G, Wang Y, Sheng K, Wang Y. Effect of probiotic extracellular vesicles and their applications on health and disease. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3539-3549. [PMID: 39806860 DOI: 10.1002/jsfa.14123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/25/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025]
Abstract
Probiotics have been established to exert a positive impact on the treatment of various diseases. Indeed, these active microorganisms have garnered significant attention in recent years for their potential to prevent and treat illnesses. Their beneficial effects have been hypothesized to be linked to their released extracellular vesicles. These nanoscale structures, secreted during the growth and metabolism of probiotics, possess favorable biocompatibility and targeting properties, thereby promoting intercellular material transport and signaling. This article aimed to review the bioactive components and functions of these probiotics vesicles, highlighting their role in the treatment of various diseases and discussing their potential future applications. By exploring the mechanisms of probiotic extracellular vesicles in disease development, this review aimed to provide a theoretical reference for further research on their therapeutic potential. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guangzhao Wang
- School of Life Sciences, Anhui University, Hefei, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
| | - Yang Wang
- School of Life Sciences, Anhui University, Hefei, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
| | - Kangliang Sheng
- School of Life Sciences, Anhui University, Hefei, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
| |
Collapse
|
7
|
Kratschmer C, Curiel DT, Ciorba MA. Gut-directed therapeutics in inflammatory bowel disease. Curr Opin Gastroenterol 2025:00001574-990000000-00194. [PMID: 40305008 DOI: 10.1097/mog.0000000000001099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
PURPOSE OF REVIEW Tissue-directed therapies (TDTs) provide potential advantages, including improved tolerance, safety, and efficacy. This review provides a conceptual framework for understanding intestinal TDT and summarizes the current landscape of TDT in inflammatory bowel disease (IBD). RECENT FINDINGS Vedolizumab, a mAb targeting the gut homing α4β7 integrin, served as revolutionary proof-of-principle for the power of advanced TDT in IBD. The development of other monoclonal antibodies targeting cell adhesion molecules followed including abrilumab (α4β7), etrolizumab (β7), and ontamalimab (MAdCAM-1). MORF-057, an oral small molecule inhibitor of α4β7, is now in development for ulcerative colitis. Efforts have also been made toward gut specific JAK inhibitors. Microbiome-based therapies, including engineered probiotics, bacteriophages, and postbiotics, are gaining interest. There are also a number of innovative drug delivery methods, including engineered yeast, hydrogels, and nanoparticles, and viral-based gene therapy. SUMMARY Gut-targeted therapies range from novel variations on traditional drugs (i.e., mAbs and small molecules) to microbiome-based therapeutics and engineered delivery systems. They can be used alone or in combination with currently available therapies. Future directions should focus on the development of tried-and-true modalities (mAbs, small molecules) as well as the microbiome and more innovative delivery systems.
Collapse
Affiliation(s)
- Christina Kratschmer
- Inflammatory Bowel Diseases Center, Division of Gastroenterology, Department of Medicine
| | - David T Curiel
- Department of Radiation Oncology, Washington University in Saint Louis, Saint Louis, Missouri, USA
| | - Matthew A Ciorba
- Inflammatory Bowel Diseases Center, Division of Gastroenterology, Department of Medicine
| |
Collapse
|
8
|
Verna G, Caponigro V, Santis SD, Salviati E, Merciai F, Celio FDA, Campiglia P, Petroni K, Tonelli C, Scarano A, Santino A, Basilicata MG, Chieppa M, Cominelli F. A Diet Fortified with Anthocyanin-Rich Extract (RED) Reduces Ileal Inflammation in a Senescence-Prone Mice Model of Crohn's-Disease-like Ileitis. Antioxidants (Basel) 2025; 14:473. [PMID: 40298846 PMCID: PMC12024068 DOI: 10.3390/antiox14040473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/02/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025] Open
Abstract
SAMP mice develop progressive Crohn's disease (CD)-like ileitis without spontaneous colitis that worsens over time without chemical, genetic, or immunological manipulation. Even growing in an identical vivarium and fed with the same diet, SAMP mice reveal a distinct fecal microbiome, metabolome, and lipidome profile compared to AKR mice, their non-inflamed parental control strain. Differences are already present in 5-week-old mice, with a tendency to increase in 15-week-old mice. SAMP and AKR mice metabolome and lipidome profiles were substantially different, belonging to two clusters in line with the progression of intestinal disease. Similarly, the 16S analysis confirmed differences between 15-week-old AKR and SAMP mice. The protective role of dietary polyphenols has been documented in inflammatory bowel diseases (IBD); thus, we supplemented the chow diet with an anthocyanin-rich extract (RED) to evaluate disease reduction in SAMP mice and changes in fecal microbiota/metabolome. Our data reveal that 10-week supplementation with anthocyanin-rich extract ameliorated disease severity in SAMP mice despite limited fecal microbiota/metabolome differences.
Collapse
Affiliation(s)
- Giulio Verna
- Department of Medicine, Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (G.V.); (F.D.A.C.)
| | - Vicky Caponigro
- Department of Pharmacy, School of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (V.C.); (E.S.); (F.M.); (P.C.)
| | - Stefania De Santis
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA;
| | - Emanuela Salviati
- Department of Pharmacy, School of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (V.C.); (E.S.); (F.M.); (P.C.)
| | - Fabrizio Merciai
- Department of Pharmacy, School of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (V.C.); (E.S.); (F.M.); (P.C.)
| | - Fabiano De Almeida Celio
- Department of Medicine, Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (G.V.); (F.D.A.C.)
| | - Pietro Campiglia
- Department of Pharmacy, School of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (V.C.); (E.S.); (F.M.); (P.C.)
| | - Katia Petroni
- Department of Biosciences, University of Milan, 20133 Milan, Italy; (K.P.); (C.T.)
| | - Chiara Tonelli
- Department of Biosciences, University of Milan, 20133 Milan, Italy; (K.P.); (C.T.)
| | - Aurelia Scarano
- Institute of Sciences of Food Production C.N.R., Unit of Lecce, 73100 Lecce, Italy; (A.S.); (A.S.)
| | - Angelo Santino
- Institute of Sciences of Food Production C.N.R., Unit of Lecce, 73100 Lecce, Italy; (A.S.); (A.S.)
| | - Manuela Giovanna Basilicata
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Marcello Chieppa
- Department of Experimental Medicine (DIMeS), University of Salento, 73100 Lecce, Italy
| | - Fabio Cominelli
- Department of Medicine, Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (G.V.); (F.D.A.C.)
| |
Collapse
|
9
|
Cao B, Zhao X, Lu Z, Zhang H. Accelerated biological aging and risk of inflammatory bowel disease: A prospective study from 401,013 participants. J Nutr Health Aging 2025; 29:100505. [PMID: 39952016 DOI: 10.1016/j.jnha.2025.100505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/19/2025] [Accepted: 01/31/2025] [Indexed: 02/17/2025]
Abstract
OBJECTIVES Relationship between biological aging and inflammatory bowel disease (IBD) remains unclear. We aimed to explore the associations of biological age and genetic predisposition with IBD and the predictive ability. METHODS Biological age and genetic predisposition were measured by PhenoAge and the polygenic risk score (PRS), respectively. The hazard ratio (HR) and 95% confidence interval (CI) of PhenoAge and combined PRS for Crohn's disease (CD) and ulcerative colitis (UC) were evaluated by Cox proportional hazards models. Additive interactions were examined to evaluate the joint effect. C statistic was employed to assess the predictive ability. RESULTS During the follow-up period of 5,320,311 person-years of 401,013 participants, 2467 patients with UC and 1262 patients with CD were observed. PhenoAge showed a significant association with an increased risk of incident IBD. Each standard deviation of PhenoAge acceleration correlated with a 38% (95% CI: 34%-41%), 35% (95% CI: 30%-38%), and 46% (95% CI: 41%-51%) increased risk of IBD, UC, and CD, respectively. Joint effects and additive interactions were noted between PhenoAge and the PRS. Individuals with a high PRS and the highest PhenoAge acceleration had the highest risk for UC (HR: 9.16, 95% CI: 7.08-11.85) and CD (7.72, 6.05-9.86), respectively. Incorporating PhenoAge and the PRS could enhance the accuracy of predicting IBD, with a highest C statistic of 0.71 for UC and 0.72 for CD. CONCLUSION Accelerated biological aging is associated with an increased risk of IBD, particularly in individuals with high genetic predisposition. Identifying individuals with accelerated biological aging has significant implications for reducing IBD risk.
Collapse
Affiliation(s)
- Baolong Cao
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, Nanjing 210008, China
| | - Xiaoke Zhao
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, Nanjing 210008, China
| | - Zhixi Lu
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Hongmei Zhang
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, Nanjing 210008, China.
| |
Collapse
|
10
|
Yan D, Hou Y, Lei X, Xiao H, Zeng Z, Xiong W, Fan C. The Impact of Polyunsaturated Fatty Acids in Cancer and Therapeutic Strategies. Curr Nutr Rep 2025; 14:46. [PMID: 40085324 DOI: 10.1007/s13668-025-00639-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
PURPOSE OF REVIEW Cancer is a disease influenced by both genetic and environmental factors, with dietary lipids being a significant contributing factor. This review summarizes the role of polyunsaturated fatty acids (PUFAs) in the mechanism of tumor occurrence and development, and elucidate the role of PUFAs in tumor treatment. RECENT FINDINGS PUFAs exert their impact on cancer through altering lipid composition in cell membranes, interacting with cell membrane lipid receptors, directly modulating gene expression in the cell nucleus, and participating in the metabolism of lipid mediators. Most omega-3 PUFAs are believed to inhibit cell proliferation, promote cancer cell death, suppress cancer metastasis, alter energy metabolism, inhibit tumor microenvironment inflammation, and regulate immune responses involving macrophages, T cells, NK cells, and others. However, certain omega-6 PUFAs exhibit weaker anti-tumor effects and may even promote tumor development, such as by fostering inflammatory tumor microenvironment and enhancing tumor cell proliferation. PUFAs play important roles in hallmarks of cancer including tumor cell proliferation, cell death, migration and invasion, energy metabolism remodeling, epigenetics, and immunity. These findings provide insights into the mechanisms of cancer development and offers options for dietary management of cancer.
Collapse
Affiliation(s)
- Dong Yan
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China
| | - Yingshan Hou
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China
| | - Xinyi Lei
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China
| | - Hao Xiao
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China
| | - Zhaoyang Zeng
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Chunmei Fan
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China.
- Department of Histology and Embryology, School of Basic Medicine Sciences, Central South University, Changsha, 410013, Hunan Province, China.
| |
Collapse
|
11
|
Guo J, Yu Y, Su J, Ren F, Chen J. Dietary Fatty Acids and Antinuclear Antibodies Among Adults with Arthritis in the United States: NHANES 1999-2004. Nutrients 2025; 17:934. [PMID: 40289945 PMCID: PMC11944380 DOI: 10.3390/nu17060934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/02/2025] [Accepted: 03/04/2025] [Indexed: 04/30/2025] Open
Abstract
Background: This study investigated the link between daily fatty acid intake and antinuclear antibody (ANA) levels, a marker of immune dysregulation and autoimmune diseases, in individuals with self-reported arthritis. Methods: From the US National Health and Nutrition Examination Survey (NHANES) 1999-2004, 829 participants who self-reported arthritis and had autoantibody measurements were selected. Dietary fatty acids were collected via two 24 h dietary recall interviews conducted by trained interviewers. ANA levels were collected by measuring IgG autoantibodies targeting cellular antigens. Results: In a multi-adjusted logistic model, the odds ratio (OR) of the highest tertile of omega-3 intake (with omega-3 intake > 1.60 g/day) for the probability of ANA positivity was 0.43 (95% CI: 0.19-0.96) compared to those in the lowest tertile (≤0.92 g/day). However, we did not observe statistically significant results for other fatty acids. Conclusions: Our findings highlight the potential of dietary omega-3 PUFAs to modulate immune function and lower the risk of ANA positivity in individuals with arthritis.
Collapse
Affiliation(s)
- Jie Guo
- Department of Nutrition and Health, Key Laboratory of Precision Nutrition and Food Quality, China Agricultural University, Beijing 100091, China; (J.G.)
| | - Yifei Yu
- Department of Nutrition and Health, Key Laboratory of Precision Nutrition and Food Quality, China Agricultural University, Beijing 100091, China; (J.G.)
| | - Jiaqi Su
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Fazheng Ren
- Department of Nutrition and Health, Key Laboratory of Precision Nutrition and Food Quality, China Agricultural University, Beijing 100091, China; (J.G.)
| | - Juan Chen
- Department of Nutrition and Health, Key Laboratory of Precision Nutrition and Food Quality, China Agricultural University, Beijing 100091, China; (J.G.)
| |
Collapse
|
12
|
Albuquerque-Souza E, Dalli J. Specialized pro-resolving lipid mediators in gut immunophysiology: from dietary precursors to inflammation resolution. Curr Opin Clin Nutr Metab Care 2025; 28:96-103. [PMID: 39819646 DOI: 10.1097/mco.0000000000001103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
PURPOSE OF REVIEW This review aims to examine recent research on the role of specialized pro-resolving mediators (SPMs) in the regulation of gut immunophysiology. RECENT FINDINGS Inflammatory bowel disease (IBD) is characterized by chronic inflammation in the gastrointestinal tract, driven by disruptions in the intestinal barrier and an imbalance between the host immune system and gut microbiota. Dietary polyunsaturated fatty acids (PUFAs), especially ω-3 and ω-6, are key regulators of immune responses and help maintain the integrity of the intestinal barrier. These PUFAs serve as precursors to SPMs, lipid mediators that play a critical role in resolving inflammation. SPMs actively reprogram immune cells, promoting the clearance of cellular debris, reducing cytokine production, and restoring tissue homeostasis without suppressing the immune response. Emerging evidence indicates that in the gut, SPMs strengthen intestinal barrier function, modulate immune responses in colitis and colon cancer, and influence gut microbiota composition. SUMMARY The recent evidence strongly supports the central role of SPMs in maintaining gut health and restoring organ function following inflammatory challenges. This evidence highlights the potential of therapeutic approaches that target these pathways for both the prevention and treatment of gut-related inflammatory conditions.
Collapse
Affiliation(s)
- Emmanuel Albuquerque-Souza
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square
| | - Jesmond Dalli
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, UK
| |
Collapse
|
13
|
Waitzberg DL, Calder PC. Lipid metabolism and therapy: another year of exciting advances. Curr Opin Clin Nutr Metab Care 2025; 28:51-53. [PMID: 39912388 DOI: 10.1097/mco.0000000000001106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Affiliation(s)
- Dan L Waitzberg
- Laboratory of Nutrition and Metabolic Surgery, Department of Gastroenterology, Faculty of Medicine, University of Sao Paulo, São Paulo, Brazil
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| |
Collapse
|
14
|
Haskey N, Letef C, Sousa JA, Yousuf M, Taylor LM, McKay DM, Ma C, Ghosh S, Gibson DL, Raman M. Exploring the connection between erythrocyte membrane fatty acid composition and oxidative stress in patients undergoing the Crohn's disease Therapeutic Diet Intervention (CD-TDI). Therap Adv Gastroenterol 2025; 18:17562848251314827. [PMID: 39963251 PMCID: PMC11831646 DOI: 10.1177/17562848251314827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 01/06/2025] [Indexed: 02/20/2025] Open
Abstract
Background Dietary fatty acids (FA) are crucial to the pathophysiology of inflammatory bowel disease (IBD), influencing systemic and gut inflammatory responses. Dietary FA intake influences the fatty acid profiles of vital cell membranes, which might be a source of inflammatory mediators. Despite their significance, research on dietary FA subtypes and their effects on inflammation and oxidative stress in IBD is limited. Objective We investigated the association between dietary FA intake, the erythrocyte membrane FA composition (EMFA), and inflammation and oxidative stress markers in patients with mild-moderate luminal Crohn's Disease (CD) participating in the CD Therapeutic Dietary Intervention (CD-TDI). Design A cross-sectional analysis was performed on 24 participants (13 CD-TDI, 11 habitual diet controls) from a 13-week randomized controlled trial assessing the efficacy of CD-TDI in inducing clinical and biomarker remission in CD. Methods EMFA was analyzed using direct-injection gas chromatography, and dietary FA intake was assessed using the ASA 24-h Dietary Assessment Tool®. Results The CD-TDI group showed a significant increase in dietary n-3 polyunsaturated fatty acids (PUFA) at Week 13 (p = 0.04) compared to no changes in the control group. Participants on the CD-TDI also demonstrated a significant reduction in total fat, saturated fat, and arachidonic acid (AA) (p < 0.01). EMFA analysis revealed lower percentages of AA (p = 0.03) in the CD-TDI group. Positive correlations were observed between C-reactive protein, fecal calprotectin, and dietary stearic acid (p < 0.05). Inverse correlations were found between malondialdehyde (MDA) and the Mediterranean Diet Score (r = -0.67) as well as MDA and the intake of whole fruit, legumes, and nuts/seeds (r > -0.50). Conclusion The CD-TDI significantly increased dietary n-3 PUFA intake, reduced pro-inflammatory n-6 PUFA (AA), and improved markers of oxidative stress, supporting its potential in CD management. The cell membrane fatty acid profile might be a therapeutic target in CD. Trial registration NCT04596566.
Collapse
Affiliation(s)
- Natasha Haskey
- Department of Biology, Irving K. Barber Faculty of Science, University of British Columbia-Okanagan, Kelowna, BC, Canada
| | - Clara Letef
- Department of Biology, Irving K. Barber Faculty of Science, University of British Columbia-Okanagan, Kelowna, BC, Canada
| | - James A. Sousa
- Gastrointestinal Research Group, Department of Physiology & Pharmacology, Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Munazza Yousuf
- Division of Gastroenterology & Hepatology, Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary AB, Canada
| | | | - Derek M. McKay
- Gastrointestinal Research Group, Department of Physiology & Pharmacology, Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Christopher Ma
- Division of Gastroenterology & Hepatology, Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Subrata Ghosh
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, National University of Ireland, Cork, Ireland
| | - Deanna L. Gibson
- Department of Biology, Irving K. Barber Faculty of Science, University of British Columbia-Okanagan, Kelowna, BC, Canada
| | - Maitreyi Raman
- Division of Gastroenterology & Hepatology, Department of Medicine, Cumming School of Medicine, University of Calgary, 6D33 TRW Building, 3280 Hospital Drive NW, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
15
|
Peng Y, Li H, Yang J, Yang X, Miao X, Fan X, Liu L, Li X. Temporal transcriptome profiling in the response to Salmonella enterica serovar enteritidis infection in chicken cecum. Poult Sci 2025; 104:104773. [PMID: 39813862 PMCID: PMC11782854 DOI: 10.1016/j.psj.2025.104773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/01/2025] [Accepted: 01/03/2025] [Indexed: 01/18/2025] Open
Abstract
Salmonella enterica serovar Enteritidis (S. Enteritidis) is a common zoonotic pathogen that not only causes gastroenteritis or death of livestock and poultry but also poses a serious threat to human health, causing severe economic losses to the poultry industry and society. Herein, RNA-sequencing (RNA-seq) was used to analyze the transcriptome variation of chicken cecum at four different time points (1, 3, 7, and 14 days) following S. Enteritidis infection. There were 529, 1477, 476, and 432 differentially expressed genes (DEGs) in the cecum at four different days post-infection (dpi), respectively. The DEGs were significantly enriched in various immune-related pathways on 3 dpi and 7 dpi, such as cytokine-cytokine-receptor interaction and Toll-like receptor signaling pathway. DEGs were significantly enriched in several metabolic pathways on 14 dpi. Gene ontology (GO) enrichment of DEGs showed that up-regulated genes were significantly enriched in immune-related terms on 3 and 7 dpi. On 14 dpi, up-regulated genes were mainly enriched in the signaling-related terms, while the down-regulated genes were primarily enriched in the metabolic-related terms. Based on weighted gene co-expression network analysis (WGCNA), the key modules related to energy, non-coding processes, immunity, and development-related functions were identified at 1, 3, 7, and 14 dpi, respectively, and 5, 8, 6, and 5 hub genes were screened out, respectively. This study demonstrated that the chicken cecal transcriptome regulation responding to S. Enteritidis infection is time-dependent. The regulation of S. Enteritidis infection in chickens is coordinated by multiple systems, mainly involving immunity, metabolism, and signal transduction. Both 3 and 7 dpi are key time points for immune response. As the infection progresses, metabolism-related pathways were increasingly identified. This change reflects the dynamic adjustment between immune response and metabolism in Jining Bairi chickens following S. Enteritidis infection. These results suggested that starting from 3 dpi, the chickens gradually transition from an immune response triggered by S. Enteritidis infection to a state where they adapt to the infection by modulating their metabolism.
Collapse
Affiliation(s)
- Yanan Peng
- Shandong Provincial Key Laboratory for Livestock Germplasm Innovation Utilization, College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018 China
| | - Huilong Li
- Shandong Provincial Key Laboratory for Livestock Germplasm Innovation Utilization, College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018 China
| | - Jingchao Yang
- Shandong Animal Husbandry General Station, Jinan 250010, China
| | - Xiaohua Yang
- Animal Husbandry and Veterinary Development Center of Zhangqiu District, Jinan 250200, China
| | - Xiuxiu Miao
- Shandong Provincial Key Laboratory for Livestock Germplasm Innovation Utilization, College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018 China
| | - Xinzhong Fan
- Shandong Provincial Key Laboratory for Livestock Germplasm Innovation Utilization, College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018 China
| | - Liying Liu
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018 China
| | - Xianyao Li
- Shandong Provincial Key Laboratory for Livestock Germplasm Innovation Utilization, College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018 China.
| |
Collapse
|
16
|
Zhang Y, Qi S, Shen W, Guo Y, Liang Y, Zhuo Q, Kong H, Zhang S, Zhao C. Metabolomic and transcriptomic analysis reveals metabolic-immune interactions in choroid neovascularization. Exp Eye Res 2025; 251:110227. [PMID: 39732424 DOI: 10.1016/j.exer.2024.110227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/27/2024] [Accepted: 12/17/2024] [Indexed: 12/30/2024]
Abstract
Choroid neovascularization (CNV) is a distinct type of age-related macular degeneration (AMD) with a poor prognosis and responsible for the majority of vision loss in the elderly population. The laser-induced CNV model is a well-established animal model frequently used to study CNV. In this study, we performed an integrated analysis of metabolomic and transcriptomic data from CNV samples, utilizing multiple approaches including single-sample gene set enrichment analysis (ssGSEA), correlation analysis, and weighted gene co-expression network analysis (WGCNA), alongside various bioinformatics platforms, to identify key metabolic and immune signatures and to investigate their interplay during angiogenesis. Dominant infiltration of macrophages and monocytes was detected and a positive correlation between dysregulated riboflavin metabolism and angiogenesis pathways was characterized. Hub genes such as ectonucleotide pyrophosphatase/phosphodiesterase 1 (Enpp1) and acid phosphatase 5, tartrate resistant (ACP5) emerged as potential central regulators of immune-metabolic crosstalk in CNV. The classification of the immune and metabolic landscape and their critical interactions in CNV models will enhance the understanding of the pathogenesis of neovascular AMD and other neovascular eye diseases, contributing to the development of multi-targeted therapeutic strategies with better efficacy.
Collapse
Affiliation(s)
- Yihan Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China; Key Laboratory of Myopia and Related Eye Diseases, NHC, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai, 200031, China
| | - Siyi Qi
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China; Key Laboratory of Myopia and Related Eye Diseases, NHC, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai, 200031, China
| | - Weiai Shen
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China; Key Laboratory of Myopia and Related Eye Diseases, NHC, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai, 200031, China
| | - Ying Guo
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China; Key Laboratory of Myopia and Related Eye Diseases, NHC, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai, 200031, China
| | - Yu Liang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China; Key Laboratory of Myopia and Related Eye Diseases, NHC, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai, 200031, China
| | - Qiao Zhuo
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China; Key Laboratory of Myopia and Related Eye Diseases, NHC, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai, 200031, China
| | - Hongyu Kong
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China; Key Laboratory of Myopia and Related Eye Diseases, NHC, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai, 200031, China
| | - Shujie Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China; Key Laboratory of Myopia and Related Eye Diseases, NHC, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai, 200031, China.
| | - Chen Zhao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China; Key Laboratory of Myopia and Related Eye Diseases, NHC, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai, 200031, China.
| |
Collapse
|
17
|
Marcari AB, Paiva AD, Simon CR, Dos Santos MESM. Leaky Gut Syndrome: An Interplay Between Nutrients and Dysbiosis. Curr Nutr Rep 2025; 14:25. [PMID: 39890659 DOI: 10.1007/s13668-025-00614-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2025] [Indexed: 02/03/2025]
Abstract
PURPOSE OF REVIEW The gut microbiota (GM) is directly related to health and disease. In this context, disturbances resulting from excessive stress, unbalanced diet, alcohol abuse, and antibiotic use, among other factors, can contribute to microbiota imbalance, with significant impacts on host health. This review provides a comprehensive examination of the literature on the influence of diet on dysbiosis and increased intestinal permeability over the past five years. RECENT FINDINGS Diet can be considered one of the main modulating factors of GM, impacting its composition and functionality. Excessive consumption of simple carbohydrates, saturated fats, and processed foods appears to be directly linked to dysbiosis, which can lead to intestinal hyperpermeability and leaky gut syndrome. On the other hand, diets primarily composed of food groups such as nuts, vegetables, fruits, fish, and poultry in moderate quantities, along with limited consumption of red and processed meats, are associated with a more diverse, healthier, and beneficial GM for the host. It is worth noticing that the use of prebiotics and probiotics, omega-3 supplementation, polyunsaturated fatty acids, and vitamins A, B, C, D, and E can positively modulate the intestinal microbiota by altering its metabolic activity, microbial composition, and improve intestinal barrier function. This review points to a new perspective regarding individualized dietary intervention and the need to integrate it into several aspects of cellular biology, biochemistry, and microbiology to prescribe more effective diets and thus contribute to patients' comprehensive health.
Collapse
Affiliation(s)
- Ana Beatriz Marcari
- Department of Biochemistry, Pharmacology and Physiology, Federal University of Triângulo Mineiro, Praça Manoel Terra, 330 - Abadia, Uberaba, MG, 38025-015, Brazil
| | - Aline Dias Paiva
- Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro, Praça Manoel Terra, 330 - Abadia, Uberaba, MG, 38025-015, Brazil
| | - Claudio Roberto Simon
- Department of Structural Biology, Federal University of Triângulo Mineiro, Praça Manoel Terra, 330 - Abadia, Uberaba, MG, 38025-015, Brazil
| | - Maria Emilia Soares Martins Dos Santos
- Department of Biochemistry, Pharmacology and Physiology, Federal University of Triângulo Mineiro, Praça Manoel Terra, 330 - Abadia, Uberaba, MG, 38025-015, Brazil.
| |
Collapse
|
18
|
Qin L, Lv W. Dietary content and eating behavior in ulcerative colitis: a narrative review and future perspective. Nutr J 2025; 24:12. [PMID: 39849464 PMCID: PMC11755847 DOI: 10.1186/s12937-025-01075-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/06/2025] [Indexed: 01/25/2025] Open
Abstract
Ulcerative colitis (UC) has experienced a steady increase in global incidence and prevalence recently. Current research into UC pathogenesis focuses on the complex interplay of genetic and environmental factors with the immune system and gut microbiome, leading to disruption of the intestinal barrier. Normally, the microbiome, intestinal epithelium, and immune system interact to maintain intestinal homeostasis. However, when this equilibrium is disturbed, a harmful cycle of dysbiosis, immune dysregulation, and inflammation emerges, resulting in intestinal barrier dysfunction and UC progression. Among various risk factors, diet significantly influences epithelial barrier integrity and architectural stability through both direct and indirect mechanisms, shaping the entire UC continuum from pre-clinical prevention to active phase treatment and remission maintenance. This review provides insights into the impact of dietary content and eating behaviors on UC, focusing on specific food, food groups, nutrients, and intermittent fasting, while providing a detailed explanation of why the gut microbiota may mediate the sustained effects of diet across all stages of UC. Additionally, it addresses the limitations of current studies, explores underexamined areas in UC dietary research and proposes potential directions for future research and expansion.
Collapse
Affiliation(s)
- Lingxi Qin
- Clinical College, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Wenliang Lv
- Clinical College, Hubei University of Chinese Medicine, Wuhan, Hubei, China.
| |
Collapse
|
19
|
Lin J, Sun W, Peng S, Hu Y, Zhang G, Song W, Jiang B, Liao Y, Pei C, Zhang J, Dai J, Wang X, Peng P, Bi X. Molecular characteristics of organic matters in PM 2.5 associated with upregulation of respiratory virus infection in vitro. JOURNAL OF HAZARDOUS MATERIALS 2025; 482:136583. [PMID: 39577291 DOI: 10.1016/j.jhazmat.2024.136583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/11/2024] [Accepted: 11/17/2024] [Indexed: 11/24/2024]
Abstract
The extent to which organic matters (OM) in PM2.5 affect virus infections and the key organic molecules involved in this process remain unclear. Herein, this study utilized ultra-high resolution mass spectrometry coupled with in vitro experiments to identify the organic molecules associated with respiratory virus infection for the first time. Water-soluble organic matters (WSOM) and water-insoluble organic matters (WIOM) were separated from PM2.5 samples collected at the urban area of Guangzhou, China. Their molecular compositions were analyzed using Fourier transform ion cyclotron resonance mass spectrometry. Subsequently, in vitro experiments were conducted to explore the impact of WSOM and WIOM exposure on the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pseudo-virus infection in A549 cells. Results revealed that WSOM and WIOM respectively promoted 1.7 to 2.1-fold and 1.9 to 3.5-fold upregulation of SARS-CoV-2 pseudo-virus infection in a concentration-dependent manner (at 25 to 100 μg mL-1) compared to the virus-only control group. Partial least squares model analysis indicated that the increased virus infection was likely related to phthalate ester and nitro-aromatic molecules in WSOM, as well as LipidC molecules with aliphatic and olefinic structures in WIOM. Interestingly, the molecules responsible for upregulating SARS-CoV-2 receptor angiotensin-converting enzyme 2 (ACE2) expression and virus infection differed. Thus, it was concluded that ACE2 upregulation alone may not fully elucidate the mechanisms underlying increased susceptibility to virus infection. The findings highlight the critical importance of aromatic and lipid molecules found in OM in relation to respiratory virus infection.
Collapse
Affiliation(s)
- Juying Lin
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Wei Sun
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510640, PR China
| | - Shuyi Peng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yaohao Hu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Guohua Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510640, PR China
| | - Wei Song
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510640, PR China
| | - Bin Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510640, PR China
| | - Yuhong Liao
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510640, PR China
| | - Chenglei Pei
- Guangzhou Sub-branch of Guangdong Ecological and Environmental Monitoring Center, Guangzhou 510006, China
| | - Jinpu Zhang
- Guangzhou Sub-branch of Guangdong Ecological and Environmental Monitoring Center, Guangzhou 510006, China
| | - Jianwei Dai
- Guangzhou Medical University-Guangzhou Institute of Biomedicine and Health (GMU-GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 510436, PR China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510640, PR China
| | - Ping'an Peng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510640, PR China
| | - Xinhui Bi
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510640, PR China.
| |
Collapse
|
20
|
Kunst C, Elger T, Loibl J, Huss M, Kandulski A, Krautbauer S, Müller M, Liebisch G, Tews HC, Buechler C. Fecal Nervonic Acid as a Biomarker for Diagnosing and Monitoring Inflammatory Bowel Disease. Biomedicines 2024; 12:2764. [PMID: 39767671 PMCID: PMC11673069 DOI: 10.3390/biomedicines12122764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Inflammatory bowel disease (IBD) is a chronic immune-mediated pathology associated with the dysregulation of lipid metabolism. The administration of nervonic acid, a very long-chain fatty acid, has been shown to improve colonic inflammation in a mouse model of colitis. Our study aimed to quantify fecal levels of nervonic acid, as well as the very long-chain fatty acids, lignoceric acid, and pentacosanoic acid, to identify associations with IBD activity. METHODS Stool samples were collected from 62 patients with IBD and 17 healthy controls. Nervonic acid, lignoceric acid, and pentacosanoic acid were quantified by gas chromatography coupled with mass spectrometry (GC-MS). Lipid levels, normalized to the dry weight of fecal homogenates, were used for calculations. RESULTS Patients with IBD exhibited elevated fecal nervonic acid levels compared to healthy controls, with no significant differences observed between ulcerative colitis and Crohn's disease. A fecal nervonic acid concentration of 0.49 µmol/g distinguished IBD patients from controls, achieving a sensitivity of 71% and a specificity of 82%. Fecal nervonic acid levels showed a positive correlation with both C-reactive protein and fecal calprotectin and increased proportionally with rising fecal calprotectin levels. IBD patients treated with corticosteroids or interleukin-12/23 antibodies had higher levels of fecal nervonic acid than those in other therapies, with no difference in serum C-reactive protein and calprotectin levels between these groups. CONCLUSIONS In summary, this analysis indicates that fecal nervonic acid may emerge as a novel specific biomarker for IBD diagnosis and disease monitoring.
Collapse
Affiliation(s)
- Claudia Kunst
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (C.K.); (T.E.); (J.L.); (M.H.); (A.K.); (M.M.); (H.C.T.)
| | - Tanja Elger
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (C.K.); (T.E.); (J.L.); (M.H.); (A.K.); (M.M.); (H.C.T.)
| | - Johanna Loibl
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (C.K.); (T.E.); (J.L.); (M.H.); (A.K.); (M.M.); (H.C.T.)
| | - Muriel Huss
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (C.K.); (T.E.); (J.L.); (M.H.); (A.K.); (M.M.); (H.C.T.)
| | - Arne Kandulski
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (C.K.); (T.E.); (J.L.); (M.H.); (A.K.); (M.M.); (H.C.T.)
| | - Sabrina Krautbauer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany; (S.K.); (G.L.)
| | - Martina Müller
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (C.K.); (T.E.); (J.L.); (M.H.); (A.K.); (M.M.); (H.C.T.)
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany; (S.K.); (G.L.)
| | - Hauke Christian Tews
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (C.K.); (T.E.); (J.L.); (M.H.); (A.K.); (M.M.); (H.C.T.)
| | - Christa Buechler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (C.K.); (T.E.); (J.L.); (M.H.); (A.K.); (M.M.); (H.C.T.)
| |
Collapse
|
21
|
Yan Q, Zhao Z, Liu D, Li J, Pan S, Duan J, Liu Z. Novel immune cross-talk between inflammatory bowel disease and IgA nephropathy. Ren Fail 2024; 46:2337288. [PMID: 38628140 PMCID: PMC11025414 DOI: 10.1080/0886022x.2024.2337288] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
The mechanisms underlying the complex correlation between immunoglobulin A nephropathy (IgAN) and inflammatory bowel disease (IBD) remain unclear. This study aimed to identify the optimal cross-talk genes, potential pathways, and mutual immune-infiltrating microenvironments between IBD and IgAN to elucidate the linkage between patients with IBD and IgAN. The IgAN and IBD datasets were obtained from the Gene Expression Omnibus (GEO). Three algorithms, CIBERSORTx, ssGSEA, and xCell, were used to evaluate the similarities in the infiltrating microenvironment between the two diseases. Weighted gene co-expression network analysis (WGCNA) was implemented in the IBD dataset to identify the major immune infiltration modules, and the Boruta algorithm, RFE algorithm, and LASSO regression were applied to filter the cross-talk genes. Next, multiple machine learning models were applied to confirm the optimal cross-talk genes. Finally, the relevant findings were validated using histology and immunohistochemistry analysis of IBD mice. Immune infiltration analysis showed no significant differences between IBD and IgAN samples in most immune cells. The three algorithms identified 10 diagnostic genes, MAPK3, NFKB1, FDX1, EPHX2, SYNPO, KDF1, METTL7A, RIDA, HSDL2, and RIPK2; FDX1 and NFKB1 were enhanced in the kidney of IBD mice. Kyoto Encyclopedia of Genes and Genomes analysis showed 15 mutual pathways between the two diseases, with lipid metabolism playing a vital role in the cross-talk. Our findings offer insights into the shared immune mechanisms of IgAN and IBD. These common pathways, diagnostic cross-talk genes, and cell-mediated abnormal immunity may inform further experimental studies.
Collapse
Affiliation(s)
- Qianqian Yan
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P. R. China
| | - Zihao Zhao
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P. R. China
| | - Dongwei Liu
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P. R. China
| | - Jia Li
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P. R. China
| | - Shaokang Pan
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P. R. China
| | - Jiayu Duan
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P. R. China
| | - Zhangsuo Liu
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P. R. China
| |
Collapse
|
22
|
Xiu-Feng L, Yu-Lei X, Xue-Mei Z. Response mechanism of Saccharomyces cerevisiae under benzoic acid stress in ethanol fermentation. Sci Rep 2024; 14:28757. [PMID: 39567639 PMCID: PMC11579315 DOI: 10.1038/s41598-024-80484-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/19/2024] [Indexed: 11/22/2024] Open
Abstract
Sugarcane molasses is an ideal economical raw material for ethanol production because of its wide availability, low cost and nutrient content. However, benzoic acid compounds with toxic effects on yeast cells are commonly found in sugarcane molasses. At present, the molecular mechanism of the toxic effects of benzoic acid on Saccharomyces cerevisiae has not been elucidated. Here, the toxic effect of exogenous benzoic acid on S. cerevisiae GJ2008 cells was studied, and the genes differentially expressed in S. cerevisiae GJ2008 after 1.2 g/L benzoic acid stress were identified via Illumina RNA-Seq technology. The results indicated that benzoic acid significantly inhibited yeast cell growth, prolonged their rapid growth period, and ultimately reduced their biomass. During ethanol fermentation using 250 g/L sucrose under 1.2 g/L benzoic acid stress, several adverse effects were observed, such as high residual sugar content, low ethanol concentration and low fermentation efficiency. In addition, the cell morphology was damaged, the cell membrane permeability increased, intracellular nucleic acid and protein leakage increased, and the malondialdehyde content significantly increased. Moreover, the cells protected themselves by significantly increasing the intracellular glycerol content. Fourier transform infrared spectroscopy proved that benzoic acid could reduce the degree of unsaturation and increase cell membrane permeability by changing the yeast cell wall and cell membrane composition, leading to cell damage and even death. Transcriptomic analysis revealed that under benzoic acid stress, the expression of genes associated with sucrose and starch metabolism, thiamine metabolism, the glycolysis pathway, fructose and mannose metabolism, galactose metabolism and ABC transporters was significantly downregulated. The expression of genes related to ribosomes, lipid metabolism, ribosome biosynthesis, nucleic acid metabolism, arginine and proline metabolism, RNA polymerase, metabolism related to cofactor synthesis, and biosynthesis of valine, leucine, and isoleucine was significantly upregulated. These results indicated that benzoic acid inhibited glycolysis and reduced sugar absorption and utilization and ATP energy supply in yeast cells. In response to stress, genes related to the ribosome bioanabolic pathway were upregulated to promote protein synthesis. On the other hand, the expression of ELO1, SUR4, FEN1 and ERG1 was upregulated, which led to extension of long-chain fatty acids and accumulation of ergosterol to maintain cell membrane structure. In conclusion, this paper provides important insights into the mechanism underlying the toxicity of benzoic acid to yeast cells and for realizing high-concentration ethanol production by sugarcane molasses fermentation.
Collapse
Affiliation(s)
- Long Xiu-Feng
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, People's Republic of China.
- Guangxi Key Laboratory of Sugar Resources, Guangxi University of Science and Technology, Liuzhou, 545006, People's Republic of China.
| | - Xu Yu-Lei
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, People's Republic of China
- Guangxi Key Laboratory of Sugar Resources, Guangxi University of Science and Technology, Liuzhou, 545006, People's Republic of China
| | - Zhao Xue-Mei
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, People's Republic of China
- Guangxi Key Laboratory of Sugar Resources, Guangxi University of Science and Technology, Liuzhou, 545006, People's Republic of China
| |
Collapse
|
23
|
Zhang Z, Wang P, Cui G, Li H. Higher HEI-2015 score is associated with reduced risk of fecal incontinence: insights from a large cross-sectional study. BMC Public Health 2024; 24:3221. [PMID: 39567930 PMCID: PMC11577588 DOI: 10.1186/s12889-024-20729-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024] Open
Abstract
OBJECTIVE Diet habit plays a vital role in fecal incontinence (FI) progression. However, it remains unknown whether dietary quality is related to FI. Our study sought to explore the relationship between healthy eating index-2015 (HEI-2015) score and FI among US adults. METHODS An analysis of data from the 2005-2010 National Health and Nutrition Examination Survey was conducted in our study. The Bowel Health Questionnaire defined FI as losing liquid, solid, or mucus stool at least monthly. The diet's quality was evaluated using HEI-2015 score. The odds ratios (ORs) and 95% confidence interval (95%CI) were calculated using multi-variable logistic regression models. RESULTS There were 11,452 participants, with 9.3% (1062/11452) who experienced FI. Compared with individuals with inadequate group (HEI score < 50), the adjusted OR values for HEI score and FI in average group (50 ≤ HEI score < 70) and optimal group (HEI score ≥ 70) were 0.89 (95%CI: 0.74-1.07, p = 0.214) and 0.69 (95%CI: 0.52-0.91, p = 0.011), respectively. Subsequent stratified analyses did not reveal any interactions. CONCLUSIONS High-quality diets are related with a lower risk of FI. Therefore, it is imperative to take into account the potential impact of diet on FI when devising strategies for the treatment and prevention.
Collapse
Affiliation(s)
- Zhuhui Zhang
- Department of Anorectal surgery, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, 5 Beixiange, Xicheng District, Beijing, China
| | - Pengfei Wang
- Department of Traditional Chinese Medicine, Fujian Provincial Hospital, 134 East Street, Fuzhou, China
| | - Guoce Cui
- Department of Traditional Chinese Medicine Surgery, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Haidian District, Beijing, China
| | - Huashan Li
- Department of Anorectal surgery, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, 5 Beixiange, Xicheng District, Beijing, China.
| |
Collapse
|
24
|
de Almada-Vilhena AO, dos Santos OVM, Machado MDA, Nagamachi CY, Pieczarka JC. Prospecting Pharmacologically Active Biocompounds from the Amazon Rainforest: In Vitro Approaches, Mechanisms of Action Based on Chemical Structure, and Perspectives on Human Therapeutic Use. Pharmaceuticals (Basel) 2024; 17:1449. [PMID: 39598361 PMCID: PMC11597570 DOI: 10.3390/ph17111449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
The Amazon rainforest is an important reservoir of biodiversity, offering vast potential for the discovery of new bioactive compounds from plants. In vitro studies allow for the investigation of biological processes and interventions in a controlled manner, making them fundamental for pharmacological and biotechnological research. These approaches are faster and less costly than in vivo studies, providing standardized conditions that enhance the reproducibility and precision of data. However, in vitro methods have limitations, including the inability to fully replicate the complexity of a living organism and the absence of a complete physiological context. Translating results to in vivo models is not always straightforward, due to differences in pharmacokinetics and biological interactions. In this context, the aim of this literature review is to assess the advantages and disadvantages of in vitro approaches in the search for new drugs from the Amazon, identifying the challenges and limitations associated with these methods and comparing them with in vivo testing. Thus, bioprospecting in the Amazon involves evaluating plant extracts through bioassays to investigate pharmacological, antimicrobial, and anticancer activities. Phenolic compounds and terpenes are frequently identified as the main bioactive agents, exhibiting antioxidant, anti-inflammatory, and antineoplastic activities. Chemical characterization, molecular modifications, and the development of delivery systems, such as nanoparticles, are highlighted to improve therapeutic efficacy. Therefore, the Amazon rainforest offers great potential for the discovery of new drugs; however, significant challenges, such as the standardization of extraction methods and the need for in vivo studies and clinical trials, must be overcome for these compounds to become viable medications.
Collapse
Affiliation(s)
| | | | | | | | - Julio C. Pieczarka
- Center for Advanced Biodiversity Studies, Cell Culture Laboratory, Institute of Biological Sciences, Federal University of Pará/Guamá Science and Technology Park, Avenida Perimetral da Ciência Km 01—Guamá, Belém 66075-750, PA, Brazil; (A.O.d.A.-V.); (O.V.M.d.S.); (M.d.A.M.); (C.Y.N.)
| |
Collapse
|
25
|
Wu Y, Zhang X, Liu X, Zhao Z, Tao S, Xu Q, Zhao J, Dai Z, Zhang G, Han D, Wang J. Galactooligosaccharides and Limosilactobacillus reuteri synergistically alleviate gut inflammation and barrier dysfunction by enriching Bacteroides acidifaciens for pentadecanoic acid biosynthesis. Nat Commun 2024; 15:9291. [PMID: 39468026 PMCID: PMC11519483 DOI: 10.1038/s41467-024-53144-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 10/01/2024] [Indexed: 10/30/2024] Open
Abstract
Ulcerative colitis (UC) is a debilitating inflammatory bowel disease characterized by intestinal inflammation, barrier dysfunction, and dysbiosis, with limited treatment options available. This study systematically investigates the therapeutic potential of a synbiotic composed of galactooligosaccharides (GOS) and Limosilactobacillus reuteri in a murine model of colitis, revealing that GOS and L. reuteri synergistically protect against intestinal inflammation and barrier dysfunction by promoting the synthesis of pentadecanoic acid, an odd-chain fatty acid, from Bacteroides acidifaciens. Notably, the synbiotic, B. acidifaciens, and pentadecanoic acid are each capable of suppressing intestinal inflammation and enhancing tight junction by inhibiting NF-κB activation. Furthermore, similar reduction in B. acidifaciens and pentadecanoic acid levels are also observed in the feces from both human UC patients and lipopolysaccharide-induced intestinal inflammation in pigs. Our findings elucidate the protective mechanism of the synbiotic and highlight its therapeutic potential, along with B. acidifaciens and pentadecanoic acid, for UC and other intestinal inflammatory disorders.
Collapse
Affiliation(s)
- Yujun Wu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiangyu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiaoyi Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhenguo Zhao
- Department of General Surgery, Jiangyin People's Hospital Affiliated to Nantong University, Jiangsu, 214400, China
| | - Shiyu Tao
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qian Xu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, 74078, USA
| | - Dandan Han
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
26
|
Hu T, Liu CH, Lei M, Zeng Q, Li L, Tang H, Zhang N. Metabolic regulation of the immune system in health and diseases: mechanisms and interventions. Signal Transduct Target Ther 2024; 9:268. [PMID: 39379377 PMCID: PMC11461632 DOI: 10.1038/s41392-024-01954-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/18/2024] [Accepted: 08/11/2024] [Indexed: 10/10/2024] Open
Abstract
Metabolism, including glycolysis, oxidative phosphorylation, fatty acid oxidation, and other metabolic pathways, impacts the phenotypes and functions of immune cells. The metabolic regulation of the immune system is important in the pathogenesis and progression of numerous diseases, such as cancers, autoimmune diseases and metabolic diseases. The concept of immunometabolism was introduced over a decade ago to elucidate the intricate interplay between metabolism and immunity. The definition of immunometabolism has expanded from chronic low-grade inflammation in metabolic diseases to metabolic reprogramming of immune cells in various diseases. With immunometabolism being proposed and developed, the metabolic regulation of the immune system can be gradually summarized and becomes more and more clearer. In the context of many diseases including cancer, autoimmune diseases, metabolic diseases, and many other disease, metabolic reprogramming occurs in immune cells inducing proinflammatory or anti-inflammatory effects. The phenotypic and functional changes of immune cells caused by metabolic regulation further affect and development of diseases. Based on experimental results, targeting cellular metabolism of immune cells becomes a promising therapy. In this review, we focus on immune cells to introduce their metabolic pathways and metabolic reprogramming, and summarize how these metabolic pathways affect immune effects in the context of diseases. We thoroughly explore targets and treatments based on immunometabolism in existing studies. The challenges of translating experimental results into clinical applications in the field of immunometabolism are also summarized. We believe that a better understanding of immune regulation in health and diseases will improve the management of most diseases.
Collapse
Affiliation(s)
- Tengyue Hu
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Chang-Hai Liu
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Min Lei
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Qingmin Zeng
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Li Li
- Division of Renal and endocrinology, Qin Huang Hospital, Xi'an, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China.
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Nannan Zhang
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China.
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
27
|
Susán HK, Orosz G, Zámbó V, Csala M, Kereszturi É. Severity Ranking of Missense and Frameshift Genetic Variants in SCD1 by In Silico and In Vitro Functional Analysis. Nutrients 2024; 16:3259. [PMID: 39408225 PMCID: PMC11478377 DOI: 10.3390/nu16193259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND A considerable proportion of the symptoms associated with excessive dietary intake can be attributed to systemic imbalances in lipid metabolism. The prominent toxicity of saturated fatty acids has been repeatedly demonstrated and sheds light on the protective role of stearoyl-CoA desaturase-1 (SCD1), the key enzyme for fatty acid desaturation. SCD1 protein expression is regulated at the levels of transcription, translation, and degradation. However, the modulating effect of the variability of the human genome must also be taken into account. Therefore, we aimed to ascertain whether natural missense or frameshift mutations in SCD1 (p.H125P, p.M224L, p.A333T, p.R253AfsTer7) could influence the expression, degradation, or function of the enzyme. METHODS In silico and in vitro experiments were conducted to comprehensively evaluate the consequences associated with each genetic variation, with the objective of using the results to propose a risk or severity ranking of SCD1 variants. RESULTS As anticipated, the p.R253AfsTer7 variant was identified as the most deleterious in structural, functional, and quantitative terms. The p.H125P variant also reduced the desaturation capacity of the enzyme in accordance with the predicted structural alterations and augmented degradation resulting from folding complications. This was aggravated by increased mRNA instability and accompanied by mild endoplasmic reticulum stress induction. The p.A333T protein exhibited an intermediate phenotype, whereas p.M224L showed no deleterious effects and even increased the amount of SCD1. CONCLUSIONS In conclusion, the large-scale identification of genetic variations needs to be supplemented with comprehensive functional characterization of these variations to facilitate adequate personalized prevention and treatment of lipid metabolism-related conditions.
Collapse
Affiliation(s)
| | | | | | | | - Éva Kereszturi
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary; (H.K.S.); (G.O.); (V.Z.); (M.C.)
| |
Collapse
|
28
|
Singh D, Mehghini P, Rodriguez-Palacios A, Di Martino L, Cominelli F, Basson AR. Anti-Inflammatory Effect of Dietary Pentadecanoic Fatty Acid Supplementation on Inflammatory Bowel Disease in SAMP1/YitFc Mice. Nutrients 2024; 16:3031. [PMID: 39275347 PMCID: PMC11397537 DOI: 10.3390/nu16173031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES Dietary fats have been linked to the increasing incidence of chronic diseases, including inflammatory bowel diseases (IBD), namely, Crohn's disease (CD). METHODS This study investigated the impact of pentadecanoic acid (C15:0), a type of an odd-numbered chain saturated fatty acid, for its potential anti-inflammatory properties in different mouse models of experimental IBD using the SAMP1/YitFc (SAMP) mouse line (14- or 24-week-old), including chronic ileitis and DSS-induced colitis. To quantitively assess the effect of C:15, we tested two dosages of C:15 in selected experiments in comparison to control mice. Intestinal inflammation and intestinal permeability were used as primary outcomes. RESULTS In ileitis, C:15 supplementation showed an anti-inflammatory effect in SAMP mice (e.g., a reduction in ileitis severity vs. control p < 0.0043), which was reproducible when mice were tested in the DSS model of colitis (e.g., reduced permeability vs. control p < 0.0006). Of relevance, even the short-term C:15 therapy prevented colitis in mice by maintaining body weight, decreasing inflammation, preserving gut integrity, and alleviating colitis signs. CONCLUSIONS Collectively, the findings from both ileitis and colitis in SAMP mice indicate that C:15 may have therapeutic effects in the treatment of IBD (colitis in the short term). This promising effect has major translational potential for the alleviation of IBD in humans.
Collapse
Affiliation(s)
- Drishtant Singh
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (P.M.); (A.R.-P.); (F.C.)
| | - Paola Mehghini
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (P.M.); (A.R.-P.); (F.C.)
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Alexander Rodriguez-Palacios
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (P.M.); (A.R.-P.); (F.C.)
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Mouse Models Core, Silvio O’Conte Cleveland Digestive Diseases Research Core Center, Cleveland, OH 44106, USA
- Germ-Free and Gut Microbiome Core, Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Luca Di Martino
- Case Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Fabio Cominelli
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (P.M.); (A.R.-P.); (F.C.)
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Mouse Models Core, Silvio O’Conte Cleveland Digestive Diseases Research Core Center, Cleveland, OH 44106, USA
- Germ-Free and Gut Microbiome Core, Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Abigail Raffner Basson
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (P.M.); (A.R.-P.); (F.C.)
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
29
|
Gong F, Liu W, Pei L, Wang X, Zheng X, Yang S, Zhao S, Xu D, Li R, Yang Z, Mao E, Chen E, Chen Y. Dissecting the mediating role of inflammatory factors in the interaction between metabolites and sepsis: insights from bidirectional Mendelian randomization. Front Endocrinol (Lausanne) 2024; 15:1377755. [PMID: 39205680 PMCID: PMC11351091 DOI: 10.3389/fendo.2024.1377755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024] Open
Abstract
Sepsis, a life-threatening condition, involves complex interactions among metabolic alterations, inflammatory mediators, and host responses. This study utilized a bidirectional Mendelian randomization approach to investigate the causal relationships between 1400 metabolites and sepsis, and the mediating role of inflammatory factors. We identified 36 metabolites significantly associated with sepsis (p < 0.05), with AXIN1, FGF-19, FGF-23, IL-4, and OSM showing an inverse association, suggesting a protective role, while IL-2 exhibited a positive correlation, indicating a potential risk factor. Among these metabolites, Piperine and 9-Hydroxystearate demonstrated particularly interesting protective effects against sepsis. Piperine's protective effect was mediated through its interaction with AXIN1, contributing to a 16.296% reduction in sepsis risk. This suggests a potential pathway where Piperine influences sepsis outcomes by modulating AXIN1 levels. 9-Hydroxystearate also exhibited a protective role against sepsis, mediated through its positive association with FGF-19 and negative association with IL-2, contributing 9.436% and 12.565%, respectively, to its protective effect. Experimental validation confirmed significantly elevated IL-2 levels and reduced FGF-19, AXIN1, piperine, and 9-hydroxyoctadecanoic acid levels in sepsis patients compared to healthy controls. Piperine levels positively correlated with AXIN1, while 9-hydroxyoctadecanoic acid levels negatively correlated with IL-2 and positively correlated with FGF-19, supporting the Mendelian randomization findings. Our findings provide insights into the molecular mechanisms of sepsis, highlighting the unique roles and contributions of specific metabolites and their interactions with inflammatory mediators. This study enhances our understanding of sepsis pathophysiology and opens avenues for targeted therapeutic interventions and biomarker development for sepsis management. However, further research is essential to validate these pathways across diverse populations and fully explore the roles of these metabolites in sepsis.
Collapse
Affiliation(s)
- Fangchen Gong
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenbin Liu
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Pei
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofeng Wang
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangtao Zheng
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Song Yang
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shanzhi Zhao
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Xu
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ranran Li
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhitao Yang
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Enqiang Mao
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Erzhen Chen
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Chen
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
30
|
Li F, Wang Z, Tang T, Zhao Q, Wang Z, Han X, Xu Z, Chang Y, Li H, Hu S, Yu C, Chang S, Liu Y, Li Y. From serum metabolites to the gut: revealing metabolic clues to susceptibility to subtypes of Crohn's disease and ulcerative colitis. Front Endocrinol (Lausanne) 2024; 15:1375896. [PMID: 39175573 PMCID: PMC11338916 DOI: 10.3389/fendo.2024.1375896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Background and aims Inflammatory bowel disease (IBD) is a common chronic inflammatory bowel disease characterized by diarrhea and abdominal pain. Recently human metabolites have been found to help explain the underlying biological mechanisms of diseases of the intestinal system, so we aimed to assess the causal relationship between human blood metabolites and susceptibility to IBD subtypes. Methods We selected a genome-wide association study (GWAS) of 275 metabolites as the exposure factor, and the GWAS dataset of 10 IBD subtypes as the outcome, followed by univariate and multivariate analyses using a two-sample Mendelian randomization study (MR) to study the causal relationship between exposure and outcome, respectively. A series of sensitivity analyses were also performed to ensure the robustness of the results. Results A total of 107 metabolites were found to be causally associated on univariate analysis after correcting for false discovery rate (FDR), and a total of 9 metabolites were found to be significantly causally associated on subsequent multivariate and sensitivity analyses. In addition we found causal associations between 7 metabolite pathways and 6 IBD subtypes. Conclusion Our study confirms that blood metabolites and certain metabolic pathways are causally associated with the development of IBD subtypes and their parenteral manifestations. The exploration of the mechanisms of novel blood metabolites on IBD may provide new therapeutic ideas for IBD patients.
Collapse
Affiliation(s)
- Fan Li
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Zhaodi Wang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Tongyu Tang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Qi Zhao
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Zhi Wang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Xiaoping Han
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Zifeng Xu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Yu Chang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Hongyan Li
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Sileng Hu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Chanjiao Yu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Shiyu Chang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Yue Liu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Yuqin Li
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| |
Collapse
|
31
|
Ding X, Yan F, Wang W, Qin J, Luo L. Integration of transcriptomics and metabolomics identify biomarkers of aberrant lipid metabolism in ulcerative colitis. Int Immunopharmacol 2024; 131:111865. [PMID: 38489972 DOI: 10.1016/j.intimp.2024.111865] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND The incidence of ulcerative colitis (UC) continues to rise globally, but effective therapeutic targets are still lacking. In recent years, numerous studies have indicated that lipid therapies could offer a novel perspective for UC treatment. Given the absence of prior research utilizing high-throughput data to identify target genes associated with lipid metabolism, we conducted this work. METHODS The training set for this study was derived from four datasets within the Gene Expression Omnibus (GEO), encompassing a total of 357 UC patients. We employed four machine learning methods (LASSO, SVM, RF, and Boruta) to jointly identify core biomarkers in these patients, whose aberrant expression needed to be validated in independent datasets and in dextrose sulfate sodium salt (DSS)-induced UC mouse models. Regarding metabolomics, we detected abnormal oxidized lipids in the serum of UC mouse using liquid chromatography-tandem mass spectrometry (LC-MS/MS) in conjunction with orthogonal partial least squares-discriminant analysis (OPLS-DA). RESULTS Phospholipase A2 Group IIA (PLA2G2A) was first identified as a possible biomarker for UC, with AUC values of 0.810 and 1.000 in the two validation sets, while in animal models the gene showed similarly significant up-regulation in damaged intestinal mucosa. Further analysis of this gene showed that it was positively correlated with 17 immune cell types and histological severity. Additionally, we pioneered the development of a lipid metabolism score in UC research, which outperformed all individual genes in terms of disease diagnostic efficacy (AUC values of 0.980 and 1.000 for the two validation sets, respectively). Finally, the metabolomics study also identified 31 significantly abnormal oxidized lipids, including 12-HHT and DHA. CONCLUSIONS PLA2G2A is a key therapeutic target for UC, and oxidized lipids such as 12-HHT can serve as potential serologic indicators for diagnosis.
Collapse
Affiliation(s)
- Xuexuan Ding
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Fangfang Yan
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Wenjian Wang
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Jingtong Qin
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong, 524023, China.
| |
Collapse
|
32
|
Park S, Kovanda L, Sokale AO, Barri A, Liu Y. In vitro investigation of monoglycerides and zinc glycinate: anti-inflammatory and epithelial barrier function. J Anim Sci 2023; 101:skae372. [PMID: 39657118 DOI: 10.1093/jas/skae372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024] Open
Abstract
The objectives of this study were to investigate the in vitro immune-modulatory effects of monoglycerides and zinc glycinate with porcine alveolar macrophages (PAM) and their impact on epithelial barrier integrity using the intestinal porcine enterocyte cell line (IPEC-J2). Cell viability was assessed using a Vybrant MTT assay to determine the appropriate dose range of monoglyceride blend (C4, C8, and C10) and zinc glycinate. In experiment 1, IPEC-J2 cells (5 × 105 cells/mL) were seeded and treated with each compound (monoglycerides: 0, 25, 100, 250, 500, and 1,000 µg/mL; zinc glycinate: 0, 2, 5, 12.5, 25, and 50 µg/mL). Transepithelial electrical resistance (TEER) was measured by Ohm's law method at 0 h (before treatment) and at 24, 48, and 72 h posttreatment. In experiment 2, PAM were collected from 6 clinically healthy piglets (7 wk of age) and seeded at 106 cells/mL. After incubation, the cells were treated with each compound and/or lipopolysaccharide (LPS). The experimental design was a 2 × 6 factorial arrangement with 2 doses of LPS (0 or 1 μg/mL) and 6 doses of each compound (monoglycerides: 0, 50, 100, 250, 500, and 1,000 µg/mL; zinc glycinate: 0, 25, 50, 100, 250, and 500 µg/mL). Cell supernatants were collected to analyze the concentrations of tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) by enzyme-linked immunosorbent assay kits. Data were analyzed by ANOVA using PROC MIXED of SAS with a randomized complete block design. IPEC-J2 cells treated with 250 or 1,000 μg/mL of monoglycerides, or 5 μg/mL of zinc glycinate had increased (P < 0.05) TEER values at 48 or 72 h posttreatment, compared with control. The LPS challenge increased (P < 0.05) the production of TNF-α and IL-1β from PAM. In the non-challenge group, 50 or 100 μg/mL of monoglycerides stimulated (P < 0.05) TNF-α and IL-1β production from PAMs. Treatment with 25 or 100 μg/mL of zinc glycinate also enhanced (P < 0.05) TNF-α production from PAM. In LPS-treated PAM, 1,000 μg/mL of monoglycerides increased (P < 0.05) IL-1β production, while zinc glycinate suppressed (P < 0.0001) the secretion of TNF-α and IL-1β at the doses of 100, 250, and 500 μg/mL. In conclusion, the results of this in vitro study indicate that monoglycerides positively affect the barrier function of the epithelium, while zinc glycinate may have strong immune regulatory benefits. Future animal studies will be required to verify their impacts on animal gut health, systemic immunity, and growth performance.
Collapse
Affiliation(s)
- Sangwoo Park
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Lauren Kovanda
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | | | | | - Yanhong Liu
- Department of Animal Science, University of California, Davis, CA 95616, USA
| |
Collapse
|