1
|
Kotlyarov S, Oskin D. The Role of Inflammation in the Pathogenesis of Comorbidity of Chronic Obstructive Pulmonary Disease and Pulmonary Tuberculosis. Int J Mol Sci 2025; 26:2378. [PMID: 40141021 PMCID: PMC11942565 DOI: 10.3390/ijms26062378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/23/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
The comorbid course of chronic obstructive pulmonary disease (COPD) and pulmonary tuberculosis is an important medical and social problem. Both diseases, although having different etiologies, have many overlapping relationships that mutually influence their course and prognosis. The aim of the current review is to discuss the role of different immune mechanisms underlying inflammation in COPD and pulmonary tuberculosis. These mechanisms are known to involve both the innate and adaptive immune system, including various cellular and intercellular interactions. There is growing evidence that immune mechanisms involved in the pathogenesis of both COPD and tuberculosis may jointly contribute to the tuberculosis-associated obstructive pulmonary disease (TOPD) phenotype. Several studies have reported prior tuberculosis as a risk factor for COPD. Therefore, the study of the mechanisms that link COPD and tuberculosis is of considerable clinical interest.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Dmitry Oskin
- Department of Infectious Diseases and Phthisiology, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
2
|
Han SC, Kang JI, Choi YK, Yang DAH, Kim KJ, Boo HJ, Yoon WJ, Kang HK, Yoo ES, Boo HJ. 3-Bromo-4,5-dihydroxybenzaldehyde Attenuates Allergic Contact Dermatitis by Generating CD4 +Foxp3 + T cells. In Vivo 2025; 39:201-209. [PMID: 39740923 PMCID: PMC11705120 DOI: 10.21873/invivo.13818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/30/2024] [Accepted: 10/14/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND/AIM Regulatory T cells (Tregs) play a crucial role in inflammatory responses by regulating the activity of various immune cells. M2 macrophages induced by IL-10 and TGF-β exhibit anti-inflammatory functions and induce Treg differentiation. Although the beneficial effects of 3-bromo-4,5-dihydroxybenzaldehyde (BDB) on various diseases have been widely reported, the mechanisms, through which it alleviates allergic contact dermatitis (ACD) via Tregs and macrophages, are not well understood. Therefore, this study aimed to explore whether BDB suppresses ACD and induces Treg generation. MATERIALS AND METHODS Mice were sensitized with 1% dinitrochlorobenzene (DNCB), followed by the application of 0.3% DNCB to their ears every 3 days for 31 days. BDB (100 mg/kg) was administered orally once daily throughout the 31 days. Cytokine and transcription factor expression were analyzed via real-time PCR and western blotting, while CD4+Foxp3+ T cell differentiation and T cell proliferation were evaluated using flow cytometry. RESULTS BDB exhibited therapeutic efficacy in mice with ACD. In this study, the administration of BDB promoted the upregulation of transforming growth factor beta (TGF-β)-dependent CD4+Foxp3+ T cells. BDB elicited T cell hypo-responsiveness and suppressed the expression of cytokines related to the Th1, Th2, and Th17 cell subsets. BDB-M2 macrophages directly mediated the differentiation of CD4+Foxp3+ T cells from CD4+ T cells and concurrently suppressed the proliferation of CD4+ T cells. CONCLUSION BDB augments M2 macrophage function and induction of Tregs confers effective protection against ACD in mice. Consequently, BDB may represent a promising therapeutic approach for the treatment of inflammatory skin diseases.
Collapse
Affiliation(s)
- Sang-Chul Han
- Department of Medicine, College of Medicine, Jeju National University, Jeju, Republic of Korea
| | - Jung-Il Kang
- Department of Medicine, College of Medicine, Jeju National University, Jeju, Republic of Korea
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, Republic of Korea
| | - Youn Kyung Choi
- Department of Medicine, College of Medicine, Jeju National University, Jeju, Republic of Korea
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, Republic of Korea
| | - DA Hee Yang
- Department of Medicine, College of Medicine, Jeju National University, Jeju, Republic of Korea
| | - Ki Ju Kim
- Yong-am-hae-su Center, Jeju Technopark, Jeju, Republic of Korea
| | - Ha Jeong Boo
- Yong-am-hae-su Center, Jeju Technopark, Jeju, Republic of Korea
| | - Weon-Jong Yoon
- Jeju Biodiversity Research Institute, Jeju Technopark, Jeju, Republic of Korea
| | - Hee-Kyoung Kang
- Department of Medicine, College of Medicine, Jeju National University, Jeju, Republic of Korea
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, Republic of Korea
| | - Eun-Sook Yoo
- Department of Medicine, College of Medicine, Jeju National University, Jeju, Republic of Korea
| | - Hye-Jin Boo
- Department of Medicine, College of Medicine, Jeju National University, Jeju, Republic of Korea;
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, Republic of Korea
| |
Collapse
|
3
|
Salminen A. GDF15/MIC-1: a stress-induced immunosuppressive factor which promotes the aging process. Biogerontology 2024; 26:19. [PMID: 39643709 PMCID: PMC11624233 DOI: 10.1007/s10522-024-10164-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
The GDF15 protein, a member of the TGF-β superfamily, is a stress-induced multifunctional protein with many of its functions associated with the regulation of the immune system. GDF15 signaling provides a defence against the excessive inflammation induced by diverse stresses and tissue injuries. Given that the aging process is associated with a low-grade inflammatory state, called inflammaging, it is not surprising that the expression of GDF15 gradually increases with aging. In fact, the GDF15 protein is a core factor secreted by senescent cells, a state called senescence-associated secretory phenotype (SASP). Many age-related stresses, e.g., mitochondrial and endoplasmic reticulum stresses as well as inflammatory, metabolic, and oxidative stresses, induce the expression of GDF15. Although GDF15 signaling is an effective anti-inflammatory modulator, there is robust evidence that it is a pro-aging factor promoting the aging process. GDF15 signaling is not only an anti-inflammatory modulator but it is also a potent immunosuppressive enhancer in chronic inflammatory states. The GDF15 protein can stimulate immune responses either non-specifically via receptors of the TGF-β superfamily or specifically through the GFRAL/HPA/glucocorticoid pathway. GDF15 signaling stimulates the immunosuppressive network activating the functions of MDSCs, Tregs, and M2 macrophages and triggering inhibitory immune checkpoint signaling in senescent cells. Immunosuppressive responses not only suppress chronic inflammatory processes but they evoke many detrimental effects in aged tissues, such as cellular senescence, fibrosis, and tissue atrophy/sarcopenia. It seems that the survival functions of GDF15 go awry in persistent inflammation thus promoting the aging process and age-related diseases.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
4
|
Zhang Y, Chen H, Cao J, Gao L, Jing Y. Maternal separation alters peripheral immune responses associated with IFN-γ and OT in mice. Peptides 2024; 182:171318. [PMID: 39486747 DOI: 10.1016/j.peptides.2024.171318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/03/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
The co-evolution of social behavior and the immune system plays a critical role in individuals' adaptation to their environment. However, also need for further research on the key molecules that co-regulate social behavior and immunity. This study focused on neonatal mice that were separated from their mothers for 4 hours per day between the 6th and 16th day after birth. The results showed that these mice had lower plasma levels of IFN-γ and oxytocin, but higher levels of plasma glucocorticoids (GC), then impacting their social abilities. Additionally, maternal separation led to decreased levels of BDNF, IGF2, and CREB mRNAs in the hippocampus, while levels in the prefrontal cortex (PFC) remained unaffected. Maternal separation also resulted in increased levels of oxytocin and CRH mRNA in the hypothalamus, as well as an increase in CD45+ lymphocyte subsets in the meninges and choroid plexus (CP), with CD8+ lymphocytes in meninges and CD4+ lymphocytes in CP showing an increase. In IFN-γ-/- mice, a decrease in social preference was observed alongside lower plasma oxytocin levels. Moreover, IFN-γ-/- mice exhibited reduced numbers of oxytocin neurons in the paraventricular nucleus of the paraventricular nucleus of hypothalamus (PVN), decreased BDNF levels in the PFC and hippocampus, and alterations in CD45+ lymphocytes in CP and meninges, with an increase in CD8+ lymphocytes in meninges and CD4+ lymphocytes in CP. These findings highlight the immunological impact of social stress on IFN-γ regulation, suggesting that the immunomodulatory molecule IFN-γ may influence social behavior by affecting synaptic efficiency in brain regions such as the hippocampus and PFC, which are linked to oxytocin in the PVN.
Collapse
Affiliation(s)
- Yishu Zhang
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, PR China
| | - HaiChao Chen
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, PR China
| | - JiaXin Cao
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, PR China
| | - LiPing Gao
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, PR China
| | - YuHong Jing
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu province, Lanzhou University, Lanzhou, Gansu, PR China.
| |
Collapse
|
5
|
Ferreri DM, Sutliffe JT, Lopez NV, Sutliffe CA, Smith R, Carreras-Gallo N, Dwaraka VB, Prestrud AA, Fuhrman JH. Slower Pace of Epigenetic Aging and Lower Inflammatory Indicators in Females Following a Nutrient-Dense, Plant-Rich Diet Than Those in Females Following the Standard American Diet. Curr Dev Nutr 2024; 8:104497. [PMID: 39668946 PMCID: PMC11635705 DOI: 10.1016/j.cdnut.2024.104497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/04/2024] [Accepted: 10/22/2024] [Indexed: 12/14/2024] Open
Abstract
Background Plant-based diets are associated with lower inflammatory biomarkers and reduced risk of age-related chronic diseases. Epigenetic biomarkers of aging are DNA methylation-based tools that estimate biological age and rate of aging, providing insights into age-related health risks. Healthy diet and lifestyle indicators correlate with slower epigenetic aging. Objectives Neither inflammatory biomarkers nor epigenetic aging has yet been studied in the nutrient-dense, plant-rich (Nutritarian) diet, a plant-based diet that emphasizes specific plant foods, such as cruciferous vegetables, beans and other legumes, onions and garlic, mushrooms, berries, nuts, and seeds. We aimed to compare inflammatory status and epigenetic age acceleration in females following a Nutritarian diet with those of females following a standard American diet (SAD). Methods We investigated dietary inflammatory potential, epigenetic age acceleration using first, second, and third-generation clocks, and additional health-related epigenetic biomarkers in this retrospective cohort study of 48 females who habitually (≥5 y) follow a Nutritarian diet and 49 females without obesity who habitually (≥5 y) follow a SAD. Participants completed a series of online questionnaires and provided a blood sample. Results Epigenetic age acceleration, indicated by the third-generation clock DunedinPACE, was significantly slower in the Nutritarian group than that in the SAD group (P = 4.26 × 10-6). The Nutritarian diet group showed lower dietary inflammatory potential, as indicated by Empirical Dietary Inflammatory Pattern and Dietary Inflammatory Index. We observed differences in methylation-predicted immune cell subsets (lower neutrophils and higher T regulatory cells) and a lower epigenetic biomarker proxy for C-reactive protein, both of which suggested a lower inflammatory status in the Nutritarian group. Epigenetic biomarker proxies for LDL cholesterol, body mass index (BMI), insulin-like growth factor binding protein 5, and blood glucose were also lower in the Nutritarian group. Conclusions Our findings suggest the Nutritarian diet could help reduce chronic inflammation and slow epigenetic aging.
Collapse
Affiliation(s)
- Deana M Ferreri
- Nutritional Research Foundation, Flemington, NJ, United States
| | - Jay T Sutliffe
- Department of Health Sciences and the PRANDIAL Lab, Northern Arizona University, Flagstaff, AZ, United States
| | - Nanette V Lopez
- Department of Health Sciences and the PRANDIAL Lab, Northern Arizona University, Flagstaff, AZ, United States
| | - Chloe A Sutliffe
- Department of Health Sciences and the PRANDIAL Lab, Northern Arizona University, Flagstaff, AZ, United States
| | - Ryan Smith
- TruDiagnostic, Lexington, KY, United States
| | | | | | | | - Joel H Fuhrman
- Nutritional Research Foundation, Flemington, NJ, United States
| |
Collapse
|
6
|
Chen T, Ning S, Zhu J, Zhan X, Zhou C, Huang C, Wu S, Zhang B, Feng S, Chen J, Xue J, Yang Z, Liu C. Exploring T Cell and NK Cell Involvement in Ankylosing Spondylitis Through Single-Cell Sequencing. J Cell Mol Med 2024; 28:e70206. [PMID: 39680481 DOI: 10.1111/jcmm.70206] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/30/2024] [Accepted: 11/02/2024] [Indexed: 12/18/2024] Open
Abstract
To uncover the complex immune mechanisms driving inflammation in ankylosing spondylitis and lay the groundwork for identifying new therapeutic targets and innovative approaches, we conducted 10× single-cell sequencing on bone marrow cell samples collected from the vertebrae of three AS patients and three non-AS patients. Using single-cell sequencing data, we analysed the expression of differentially expressed genes (DEGs) by comparing AS patients with non-AS patients. Key genes among the related DEGs were identified through protein-protein interaction networks and hub gene screening and further validated using immunohistochemistry. We performed clustering and annotation of the single-cell sequencing data and externally validated the findings using the GSE232131 single-cell dataset. By integrating transcriptome data, we assessed the differential expression of immune cells in AS. Finally, we explored the interactions between immune cells in AS through cell communication analysis. The upregulated gene CD74 was identified as a hub gene in T cells in AS. Further research revealed the important relationship between T cells and NK cells in the fundamental processes of AS. Additionally, we found that the macrophage migration inhibitory factor signalling pathway is prominently expressed in the interactions among various cell types in AS.
Collapse
MESH Headings
- Spondylitis, Ankylosing/genetics
- Spondylitis, Ankylosing/immunology
- Spondylitis, Ankylosing/pathology
- Spondylitis, Ankylosing/metabolism
- Humans
- Single-Cell Analysis/methods
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Transcriptome/genetics
- Gene Expression Profiling
- Protein Interaction Maps/genetics
- Gene Regulatory Networks
- Male
- Adult
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Female
- Signal Transduction
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/metabolism
- Computational Biology/methods
- Gene Expression Regulation
- Cell Communication/genetics
Collapse
Affiliation(s)
- Tianyou Chen
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Shengyu Ning
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Jichong Zhu
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Xinli Zhan
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Chenxing Zhou
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Chengqian Huang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Shaofeng Wu
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Bin Zhang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Sitan Feng
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Jiarui Chen
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Jiang Xue
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Zhenwei Yang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Chong Liu
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| |
Collapse
|
7
|
Lobato TB, Santos ESDS, Iser-Bem PN, Falcão HDS, Gimenes GM, Pauferro JRB, Rodrigues GT, Correa IS, Pereira ACG, Passos MEP, Borges JCDO, Alves ACDA, Santos CSD, Araújo MJLD, Diniz VLS, Levada-Pires AC, Pithon-Curi TC, Masi LN, Curi R, Hirabara SM, Gorjão R. Omega-3 Fatty Acids Weaken Lymphocyte Inflammatory Features and Improve Glycemic Control in Nonobese Diabetic Goto-Kakizaki Rats. Nutrients 2024; 16:4106. [PMID: 39683500 DOI: 10.3390/nu16234106] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/30/2024] [Accepted: 11/03/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Goto-Kakizaki (GK) rats exhibit insulin resistance and type 2 diabetes mellitus (T2DM) without obesity. This study explored the effects of ω-3 fatty acid supplementation on T lymphocyte polarization in Wistar (WT) and GK rats. METHODS They were administered ω-3 fatty acid-rich fish oil (FO) containing eicosapentaenoic (540 mg/g) and docosahexaenoic acids (100 mg/g) by oral gavage at 2 g/kg, thrice a week for 8 weeks. The control groups (WT CT and GK CT) received the same volume of water. The following groups were investigated: GK CT, n = 14; GK ω-3, n = 15; Wistar CT, n = 15; and Wistar ω-3, n = 11. Glucose and insulin tolerance tests (GTT and ITT) were performed. Fasting plasma insulinemia and glycemia were measured. After euthanasia, the lymphocytes were extracted from the mesenteric lymph nodes. RESULTS The results showed that GK rats supplemented with FO had significantly improved glucose tolerance and insulin sensitivity (kITT). It also promoted greater polarization of lymphocytes toward T regulatory (Treg) features and a reduction in Th1 and Th17 profiles. Additionally, the GK ω-3 group exhibited lower cell proliferation, decreased pro-inflammatory cytokines, and increased IL-10 levels compared to the GK control. CONCLUSIONS In conclusion, FO supplementation benefited GK rats by improving glucose intolerance, suppressing insulin resistance, and modulating lymphocytes toward Treg polarization.
Collapse
Affiliation(s)
- Tiago Bertola Lobato
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, Brazil
| | | | - Patrícia Nancy Iser-Bem
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, Brazil
- National Commercial Learning Service (SENAC), São Paulo 01102-000, Brazil
| | - Henrique de Souza Falcão
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, Brazil
| | - Gabriela Mandú Gimenes
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, Brazil
| | | | - Glayce Tavares Rodrigues
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, Brazil
| | - Ilana Souza Correa
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, Brazil
| | - Ana Carolina Gomes Pereira
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, Brazil
| | | | | | | | - Camila Soares Dos Santos
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, Brazil
| | | | | | | | - Tânia Cristina Pithon-Curi
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, Brazil
| | - Laureane Nunes Masi
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, Brazil
- Department of Physiological Sciences, Multicenter Graduate Program in Physiological Sciences, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Rui Curi
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, Brazil
- Educantion Center, Butantan Institute, São Paulo 05585-000, Brazil
| | - Sandro Massao Hirabara
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, Brazil
| | - Renata Gorjão
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, Brazil
| |
Collapse
|
8
|
Singer M, Elsayed AM, Husseiny MI. Regulatory T-cells: The Face-off of the Immune Balance. FRONT BIOSCI-LANDMRK 2024; 29:377. [PMID: 39614434 DOI: 10.31083/j.fbl2911377] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/29/2024] [Accepted: 08/13/2024] [Indexed: 12/01/2024]
Abstract
Regulatory T-cells (Tregs) play a crucial role in maintaining immune homeostasis, ensuring a balanced immune response. Tregs primarily operate in an antigen-specific fashion, facilitated by their distinct distribution within discrete niches. Tregs have been studied extensively, from their point of origin in the thymus origin to their fate in the periphery or organs. Signals received from antigen-presenting cells (APCs) stimulate Tregs to dampen inflammation. Almost all tumors are characterized by a pathological abundance of immune suppression in their microenvironment. Conversely, the lack thereof proves detrimental to immunological disorders. Achieving a balanced expression of Tregs in relation to other immune compartments is important in establishing an effective and adaptable immune tolerance towards cancer cells and autoantigens. In the context of cancer, it is essential to decrease the frequency of Tregs to overcome tumor suppression. A lower survival rate is associated with the presence of excessive exhausted effector immune cells and an increased frequency of regulatory cells. However, when it comes to treating graft rejection and autoimmune diseases, the focus lies on immune tolerance and the transfer of Tregs. Here, we explore the complex mechanisms that Tregs use in human disease to balance effector immune cells.
Collapse
Affiliation(s)
- Mahmoud Singer
- School of Medicine, University of California Irvine, Irvine, CA 92617, USA
| | - Ahmed M Elsayed
- Division of Infectious Diseases, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Mohamed I Husseiny
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
9
|
Ouyang X, Liu Z. Regulatory T cells and macrophages in atherosclerosis: from mechanisms to clinical significance. Front Immunol 2024; 15:1435021. [PMID: 39582868 PMCID: PMC11581946 DOI: 10.3389/fimmu.2024.1435021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 10/16/2024] [Indexed: 11/26/2024] Open
Abstract
Atherosclerosis is a complex pathological process, which causes diseases that threaten the health of an increasing number of people. Studies have found that the original view of lipid accumulation is not comprehensive because the use of lipid-lowering drugs alone cannot effectively treat atherosclerosis. As the study of the pathogenesis of atherosclerosis develops in-depth, the impact of immune-inflammatory response on atherosclerosis has garnered a great deal of attention. Some new advances have been made in the role of regulatory T cells (Tregs) and macrophages with unique immunomodulatory functions in atherosclerosis. Herein, the role of Tregs, macrophages, the mechanisms of Tregs-regulated macrophages, and the effects of potential factors on Tregs and macrophages in atherosclerosis are overviewed. Targeting Tregs and macrophages may provide new research strategies for the treatment of atherosclerosis in the clinic.
Collapse
Affiliation(s)
- Xin Ouyang
- Clinical Medical College, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Zhongyong Liu
- Department of Cardiology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
10
|
Zhang Y, Fu L. Evaluating the causal effects between Grave's disease and diabetes mellitus: a bidirectional Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1420499. [PMID: 39568808 PMCID: PMC11576183 DOI: 10.3389/fendo.2024.1420499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 10/01/2024] [Indexed: 11/22/2024] Open
Abstract
Background Graves' disease (GD) is an autoimmune disease associated with an increased incidence of other autoimmune diseases. To investigate the causality between GD and Diabetes mellitus (DM), we designed bidirectional two-sample Mendelian randomization (MR) and multivariable MR (MVMR) studies. Methods Single-nucleotide polymorphisms (SNPs) associated with GD, thyroid peroxidase (TPO), thyroglobulin (Tg), thyroid-stimulating hormone (TSH), type 1 diabetes (T1D), and type 2 diabetes (T2D) were obtained from the IEU Open GWAS and FinnGen biobank databases. For the forward MR study, we used GD (sample size = 458,620) as the exposure and T1D (sample size = 520,580) and T2D (sample size = 211,766) as the outcomes. Next, high risk of T1D and T2D were used as exposure variables, and GD was used as the outcome variable for the reverse MR analysis. Finally, MVMR analysis was conducted to investigate the probable relationship between DM and indicators for thyroid function like TPO, Tg, and TSH. The inverse variance weighting (IVW) was used as the main method. Finally, the heterogeneity and sensitivity were assessed. Results There were 27, 88, and 55 SNPs associated with GD, T1D, and T2D, respectively. A significant causal connection between higher genetic liability of GD and the risk of T2D (OR [95% CI] = 1.059 [1.025-1.095], P = 5.53e-04) was found in the forward MR analysis. Comparatively, the significant causal relationship between higher genetic liability of GD and the risk of T1D was not demonstrated (OR [95% CI] = 0.998[0.927,1.074], P=0.949). However, reverse MR suggested that there was a genetic susceptibility to T1D that increased the likelihood of developing GD (OR [95% CI] = 1.173[1.117,1.231], P = 1.913e-10), while T2D did not (OR [95% CI] = 0.963 [0.870-1.066], P = 0.468). Furthermore, there was inadequate evidence to suggest that abnormal TSH, TPO, and Tg levels increase the risk of incident T1D or T2D in individuals with GD. MVMR revealed no causal relationship among Tg, TSH, TPO, T1D, or T2D. Conclusion There was no increased risk of T1D with an increase in genetic susceptibility to GD, although higher genetic susceptibility to T1D has been shown to be associated with increased risk of developing GD. A unidirectional causal relationship between the genetic liability for GD and increased risk of T2D was observed using MR analyses. MVMR analysis showed no statistically relevant causality between the genetic liability for TSH, TPO, or Tg and the risk of either T1D or T2D.
Collapse
Affiliation(s)
- Yuhan Zhang
- Emergency Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1 Minde Road, Nanchang, China
- General Surgery Center, Department of Thyroid Surgery, The 1st Hospital of Jilin University, Chang Chun, China
- Department of General Surgery, Panzhihua Central Hospital, Panzhihua, China
| | - Liuxiang Fu
- Emergency Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1 Minde Road, Nanchang, China
| |
Collapse
|
11
|
Feng Z, Li H, Chen N, Xu K, Zhang B. Deciphering the role of CCL4-CCR5 in coronary artery disease pathogenesis: insights from Mendelian randomization, bulk RNA sequencing, single-cell RNA, and clinical validation. Int J Med Sci 2024; 21:2683-2693. [PMID: 39512689 PMCID: PMC11539389 DOI: 10.7150/ijms.99518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/03/2024] [Indexed: 11/15/2024] Open
Abstract
Background: Alterations in circulating CCL4 levels have been implicated in coronary artery disease (CAD), but the causal relationship and underlying mechanisms remain unclear. Objective: This study aims to analyse the role of CCL4 and its receptor (CCR5) in CAD using Mendelian randomisation (MR) analysis, bulk RNA and single cell RNA sequencing (scRNA-seq). Methods: The MR analysis was used to determine the causal relationship between 91 circulating inflammatory proteins and CAD. Bulk RNA sequencing data was used to demonstrate the expression profile of CCL4/CCR5. The localisation of CCL4/CCR5 was determined using scRNA-seq data. Functional enrichment analyses were used to infer the potential role of CCL4 in CAD. Additional clinical samples were utilized to validate the results of MR. Results: We identified six circulating inflammatory proteins associated with CAD. Of these, CCL4 was identified as a key inflammatory cytokine associated with CAD risk for MR analysis.The bulk RNA sequencing data from the Gene Expression Omnibus (GEO) datasets showed that CCR4 receptor(CCR5) expression was significantly higher in human atherosclerotic plaques compared to controls. Notably, scRNA-seq analysis revealed CCL4 was highly expressed in T cells, monocytes and macrophages. Clinical specimens confirmed high levels of serum CCL4 expression in CAD patients by ELISA.Functional enrichment analysis revealed that CCL4 was primarily enriched in the cytokines and cytokine receptors, viral proteins with cytokines and cytokine receptors, and chemokine signaling pathways. Conclusion: Our study presented a genetic insight into the pathogenetic role of CCL4-CCR5 in CAD, which may provide new insights for further mechanistic and clinical investigations of inflammatory cytokine-mediated CAD.
Collapse
Affiliation(s)
- ZiAn Feng
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Hefei, 230001, China
| | - Hui Li
- Graduate School, Wannan Medical College, Anhui Wuhu, 241002, China
| | - Nan Chen
- Graduate School, Wannan Medical College, Anhui Wuhu, 241002, China
| | - Kai Xu
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Hefei, 230001, China
| | - BuChun Zhang
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Hefei, 230001, China
| |
Collapse
|
12
|
Moysidou E, Christodoulou M, Lioulios G, Stai S, Karamitsos T, Dimitroulas T, Fylaktou A, Stangou M. Lymphocytes Change Their Phenotype and Function in Systemic Lupus Erythematosus and Lupus Nephritis. Int J Mol Sci 2024; 25:10905. [PMID: 39456692 PMCID: PMC11508046 DOI: 10.3390/ijms252010905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease, characterized by considerable changes in peripheral lymphocyte structure and function, that plays a critical role in commencing and reviving the inflammatory and immune signaling pathways. In healthy individuals, B lymphocytes have a major role in guiding and directing defense mechanisms against pathogens. Certain changes in B lymphocyte phenotype, including alterations in surface and endosomal receptors, occur in the presence of SLE and lead to dysregulation of peripheral B lymphocyte subpopulations. Functional changes are characterized by loss of self-tolerance, intra- and extrafollicular activation, and increased cytokine and autoantibody production. T lymphocytes seem to have a supporting, rather than a leading, role in the disease pathogenesis. Substantial aberrations in peripheral T lymphocyte subsets are evident, and include a reduction of cytotoxic, regulatory, and advanced differentiated subtypes, together with an increase of activated and autoreactive forms and abnormalities in follicular T cells. Up-regulated subpopulations, such as central and effector memory T cells, produce pre-inflammatory cytokines, activate B lymphocytes, and stimulate cell signaling pathways. This review explores the pivotal roles of B and T lymphocytes in the pathogenesis of SLE and Lupus Nephritis, emphasizing the multifaceted mechanisms and interactions and their phenotypic and functional dysregulations.
Collapse
Affiliation(s)
- Eleni Moysidou
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Michalis Christodoulou
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Georgios Lioulios
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Stamatia Stai
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Theodoros Karamitsos
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Cardiology, AHEPA University Hospital, 54636 Thessaloniki, Greece
| | - Theodoros Dimitroulas
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 4th Department of Medicine, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Asimina Fylaktou
- Department of Immunology, National Histocompatibility Center, Hippokration General Hospital, 54642 Thessaloniki, Greece;
| | - Maria Stangou
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece
| |
Collapse
|
13
|
Shen W, Liang Y, Lv D, Xie N. Novel insights into the heterogeneity of FOXP3 + Treg cells in drug-induced allergic reactions through single-cell transcriptomics. Immunol Res 2024; 72:1071-1085. [PMID: 39073709 DOI: 10.1007/s12026-024-09509-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/16/2024] [Indexed: 07/30/2024]
Abstract
This study uncovers the novel heterogeneity of FOXP3 + regulatory T (Treg) cells and their pivotal role in modulating immune responses during drug-induced allergic reactions, employing cutting-edge single-cell transcriptomics. We established a mouse model for drug-induced allergic reactions and utilized single-cell RNA sequencing (scRNA-seq) to analyze the transcriptomic landscapes of FOXP3 + Treg cells isolated from affected tissues. The study involved both in vitro and in vivo approaches to evaluate the impact of FOXP3 expression levels on the immunoregulatory functions of Treg cells during allergic responses. Techniques included flow cytometry, cluster analysis, principal component analysis (PCA), CCK8 and CSFE assays for cell proliferation, LDH release assays for toxicity, ELISA for cytokine profiling, and CRISPR/Cas9 technology for gene editing. Our findings revealed significant transcriptomic heterogeneity among FOXP3 + Treg cells in the context of drug-induced allergic reactions, with distinct subpopulations exhibiting unique gene expression profiles. This heterogeneity suggests specialized roles in immune regulation. We observed a decrease in the proliferative capacity and cytokine secretion of FOXP3 + Treg cells following allergic stimulation, alongside an increase in reaction toxicity. Manipulating FOXP3 expression levels directly influenced these outcomes, where FOXP3 deletion exacerbated allergic responses, whereas its overexpression mitigated them. Notably, in vivo experiments demonstrated that FOXP3 overexpression significantly reduced the severity of allergic skin reactions in mice. Our study presents novel insights into the heterogeneity and crucial immunoregulatory role of FOXP3 + Treg cells during drug-induced allergic reactions. Overexpression of FOXP3 emerges as a potential therapeutic strategy to alleviate such allergic responses. These findings contribute significantly to our understanding of immune regulation and the development of targeted treatments for drug-induced allergies.
Collapse
Affiliation(s)
- Wei Shen
- Gansu Institute for Drug Control, No.7 Yin'an Road, Anning District, Lanzhou, 730000, Gansu Province, China
| | - Yibo Liang
- Gansu Institute for Drug Control, No.7 Yin'an Road, Anning District, Lanzhou, 730000, Gansu Province, China
| | - Dong Lv
- Gansu Institute for Drug Control, No.7 Yin'an Road, Anning District, Lanzhou, 730000, Gansu Province, China
| | - Nan Xie
- Gansu Institute for Drug Control, No.7 Yin'an Road, Anning District, Lanzhou, 730000, Gansu Province, China.
| |
Collapse
|
14
|
Alghamdi KS, Kassar RH, Farrash WF, Obaid AA, Idris S, Siddig A, Shakoori AM, Alshehre SM, Minshawi F, Mujalli A. Key Disease-Related Genes and Immune Cell Infiltration Landscape in Inflammatory Bowel Disease: A Bioinformatics Investigation. Int J Mol Sci 2024; 25:9751. [PMID: 39273699 PMCID: PMC11396460 DOI: 10.3390/ijms25179751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/29/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024] Open
Abstract
Inflammatory Bowel Diseases (IBD), which encompass ulcerative colitis (UC) and Crohn's disease (CD), are characterized by chronic inflammation and tissue damage of the gastrointestinal tract. This study aimed to uncover novel disease-gene signatures, dysregulated pathways, and the immune cell infiltration landscape of inflamed tissues. Eight publicly available transcriptomic datasets, including inflamed and non-inflamed tissues from CD and UC patients were analyzed. Common differentially expressed genes (DEGs) were identified through meta-analysis, revealing 180 DEGs. DEGs were implicated in leukocyte transendothelial migration, PI3K-Akt, chemokine, NOD-like receptors, TNF signaling pathways, and pathways in cancer. Protein-protein interaction network and cluster analysis identified 14 central IBD players, which were validated using eight external datasets. Disease module construction using the NeDRex platform identified nine out of 14 disease-associated genes (CYBB, RAC2, GNAI2, ITGA4, CYBA, NCF4, CPT1A, NCF2, and PCK1). Immune infiltration profile assessment revealed a significantly higher degree of infiltration of neutrophils, activated dendritic cells, plasma cells, mast cells (resting/activated), B cells (memory/naïve), regulatory T cells, and M0 and M1 macrophages in inflamed IBD tissue. Collectively, this study identified the immune infiltration profile and nine disease-associated genes as potential modulators of IBD pathogenesis, offering insights into disease molecular mechanisms, and highlighting potential disease modulators and immune cell dynamics.
Collapse
Affiliation(s)
- Kawthar S Alghamdi
- Department of Biology, College of Science, University of Hafr Al Batin, Hafar Al-Batin 39511, Saudi Arabia
| | - Rahaf H Kassar
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Wesam F Farrash
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Ahmad A Obaid
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Shakir Idris
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Alaa Siddig
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - Afnan M Shakoori
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Sallwa M Alshehre
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Faisal Minshawi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Abdulrahman Mujalli
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| |
Collapse
|
15
|
Yu F, Xie Y, Yang J. Analysis of hyperlipidemia risk factors among pilots based on physical examination data: A study using a multilevel propensity score models. Exp Ther Med 2024; 28:341. [PMID: 39006453 PMCID: PMC11240281 DOI: 10.3892/etm.2024.12630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/23/2024] [Indexed: 07/16/2024] Open
Abstract
Pilot tends to have a high prevalence of dyslipidemia. The present study aimed to identify key factors of pilot hyperlipidemia through thorough analysis of physical examination data, and to provide pilot-targeted health guidance to manage hyperlipidemia risks. The physical examination data of 1,253 pilot inpatients from January 2019 to June 2022, were evaluated and divided into two groups based on whether or not the pilot had hyperlipidemia. A total of three multivariate analysis models including logistic model, multilevel model and boosting propensity score were applied to find the risk factors of pilot hyperlipidemia. In the group of pilots with hyperlipidemia, four risk factors, including thrombin time, carbohydrate antigen 199, lymphocyte count and rheumatoid factor, were significantly different from pilots without hyperlipidemia, which might be positively associated with the incidence of hyperlipidemia. In future studies regarding pilots, whether hyperlipidemia is connected to abnormalities in thrombin time, carbohydrate antigen 199 and rheumatoid factor should be further explored. Based on the findings of the present study, pilot health management should be more refined and personalized, and attention should be paid to the risk factors of hyperlipidemia including diet and lifestyle.
Collapse
Affiliation(s)
- Feifei Yu
- Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai 200433, P.R. China
| | - Yi Xie
- Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai 200433, P.R. China
| | - Jishun Yang
- Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai 200433, P.R. China
| |
Collapse
|
16
|
Wang F, Huang G, Luo Y, Xiong K, Liu Y, Wang Y. Causal association of circulating immune cells and lymphoma: A Mendelian randomization study. Open Med (Wars) 2024; 19:20240984. [PMID: 39015296 PMCID: PMC11249620 DOI: 10.1515/med-2024-0984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/27/2024] [Accepted: 05/29/2024] [Indexed: 07/18/2024] Open
Abstract
Background Malignant lymphoma (ML) is a group of malignant tumors originating from the lymphatic hematopoietic system. Previous studies have found a correlation between circulating immune cells and ML. Nonetheless, the precise influence of circulating immune cells on ML remains uncertain. Methods Based on publicly available genetic data, we explored causal associations between 731 immune cell signatures and ML risk. A total of four types of immune signatures, median fluorescence intensities, relative cell, absolute cell, and morphological parameters were included. Primary analysis was performed using inverse variance weighting (IVW) to assess the causal relationship between circulating immune cells and the risk of ML. Sensitivity analysis was conducted using Cochran's Q test, the Mendelian randomization Egger regression intercept test, and leave-one-out analysis. Results ML had a statistically significant effect on immunophenotypes. Twenty-three immunophenotypes were identified to be significantly associated with Hodgkin lymphoma risk through the IVW approach, and the odds ratio values of CD64 on CD14- CD16+ monocyte [2.31, 95% confidence interval (CI) = 1.41-3.79, P1 = 0.001], IgD+ CD24+ B-cell %lymphocyte (2.06, 95% CI = 1.13-3.79, P1 = 0.018), B-cell %lymphocyte (1.94, 95% CI = 1.08-3.50, P1 = 0.027), CD24+ CD27+ B-cell %lymphocyte (1.68, 95% CI = 1.03-2.74, P1 = 0.039), and CD14+ CD16- monocyte %monocyte (1.60, 95% CI = 1.15-2.24, P1 = 0.006) ranked in the top five. Eleven immunophenotypes were identified to be significantly associated with non-Hodgkin lymphoma risk, CD86 on granulocyte (2.35, 95% CI = 1.18-4.69, P1 = 0.015), CD28-CD8+ T-cell absolute count (1.76, 95% CI = 1.03-2.99, P1 = 0.036), CCR2 on myeloid dendritic cell (CD24+ CD27+ B cell, 95% CI = 1.02-1.66, P1 = 0.034), CD3 on effector memory CD8+ T cell (1.29, 95% CI = 1.02-1.64, P1 = 0.012), and natural killer T %lymphocyte (1.28, 95% CI = 1.01-1.62, P1 = 0.046) were ranked in the top five. Conclusion This study presents compelling evidence indicating the correlation between circulating immune cells and lymphoma, thus providing guidance for future clinical research.
Collapse
Affiliation(s)
- Feixiang Wang
- Medical Oncology Department, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangdong, Guangzhou, 510095, China
| | - Guoxin Huang
- Department of Evidence-Based Medicine Center, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, Hubei, 441000, China
| | - Yuqing Luo
- Medical Oncology Department, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangdong, Guangzhou, 510095, China
| | - Kaixin Xiong
- Medical Oncology Department, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangdong, Guangzhou, 510095, China
| | - Ying Liu
- Department of Evidence-Based Medicine Center, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, No. 15, Jiefang Road, Xiangyang, Hubei, 441000, China
| | - Yao Wang
- Medical Oncology Department, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, No. 78, Hengzhigang, Yuexiu District, Guangdong, Guangzhou, 510095, China
| |
Collapse
|
17
|
Khalilollah S, Kalantari Soltanieh S, Obaid Saleh R, Ali Alzahrani A, Ghaleb Maabreh H, Mazin Al-Hamdani M, Dehghani-Ghorbi M, Shafiei Khonachaei M, Akhavan-Sigari R. LncRNAs involvement in pathogenesis of immune-related disease via regulation of T regulatory cells, an updated review. Cytokine 2024; 179:156585. [PMID: 38579428 DOI: 10.1016/j.cyto.2024.156585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 03/03/2024] [Accepted: 03/20/2024] [Indexed: 04/07/2024]
Abstract
The pathophysiology of several illnesses, including cancer and autoimmune diseasesdepends on human regulatory T cells (Tregs), and abnormalities in these cells may function as triggers for these conditions. Cancer and autoimmune, and gynecological diseases are associated with the differentiation of the proinflammatory T cell subset TH17 and its balance with the production of Treg. Recently, long non-coding RNAs (lncRNAs) have become important regulatory molecules in a wide range of illnesses. During epigenetic regulation, they can control the expression of important genes at several levels by affecting transcription, post-transcriptional actions, translation, and protein modification. They might connect with different molecules, such as proteins, DNA and RNA, and their structural composition is intricate. Because lncRNAs regulatebiological processes, including cell division, death, and growth, they are linked to severaldiseases. A notable instance of this is the lncRNA NEAT1, which has been the subject of several investigations to ascertain its function in immune cell development. In the context of immune cell development, several additional lncRNAs have been connected to Treg cell differentiation. In this work, we summarize current findings about the diverse functions of lncRNAs in Treg cell differentiation and control of the Th17/Treg homeostasis in autoimmune disorders, cancers, as well as several gynecological diseases where Tregs are key players.
Collapse
Affiliation(s)
- Shayan Khalilollah
- Department of Neurosurgery, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | | | - Raed Obaid Saleh
- Department of Pathological Analysis, College of Applied Science, University of Fallujah, Al-Anbar, Iraq.
| | | | - Hatem Ghaleb Maabreh
- Department of Dermatovenerology, Foreign Languages, RUDN University (Peoples' Friendship University of Russia named after Patrice Lumumba), Moscow, Russia.
| | | | - Mahmoud Dehghani-Ghorbi
- Hematology-Oncology Department, Imam Hossein Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center, Tuebingen, Germany; Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Poland.
| |
Collapse
|
18
|
Zouali M. Engineered immune cells as therapeutics for autoimmune diseases. Trends Biotechnol 2024; 42:842-858. [PMID: 38368169 DOI: 10.1016/j.tibtech.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/19/2024]
Abstract
Current treatment options for autoimmune disease (AID) are essentially immunosuppressive, inhibiting the inflammatory cascade, without curing the disease. Therapeutic monoclonal antibodies (mAbs) that target B cells showed efficacy, emphasizing the importance of B lymphocytes in autoimmune pathogenesis. Treatments that eliminate more potently B cells would open a new therapeutic era for AID. Immune cells can now be bioengineered to express constructs that enable them to specifically eradicate pathogenic B lymphocytes. Engineered immune cells (EICs) have shown therapeutic promise in both experimental models and in clinical trials in AID. Next-generation platforms are under development to optimize their specificity and improve safety. The profound and durable B cell depletion achieved reinforces the view that this biotherapeutic option holds promise for treating AID.
Collapse
Affiliation(s)
- Moncef Zouali
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
| |
Collapse
|
19
|
Szukiewicz D. Reproductive Immunology and Pregnancy 2.0. Int J Mol Sci 2024; 25:5132. [PMID: 38791171 PMCID: PMC11121238 DOI: 10.3390/ijms25105132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
This Special Issue comprises original articles in the field of clinical studies whose major topics concern the genetic and immunological aspects of miscarriage and pre-eclampsia, the isolation of decidua macrophages and Hofbauer cells in the placenta for diagnostic purposes, and epigenetic mechanisms that trigger labor [...].
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
20
|
Aradi P, Kovács G, Kemecsei É, Molnár K, Sági SM, Horváth Z, Mehrara BJ, Kataru RP, Jakus Z. Lymphatic-Dependent Modulation of the Sensitization and Elicitation Phases of Contact Hypersensitivity. J Invest Dermatol 2024:S0022-202X(24)00261-6. [PMID: 38548256 DOI: 10.1016/j.jid.2024.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 02/17/2024] [Accepted: 03/01/2024] [Indexed: 05/26/2024]
Abstract
Allergic contact dermatitis is a common inflammatory skin disease comprising 2 phases. During sensitization, immune cells are activated by exposure to various allergens, whereas repeated antigen exposure induces local inflammation during elicitation. In this study, we utilized mouse models lacking lymphatics in different skin regions to characterize the role of lymphatics separately in the 2 phases, using contact hypersensitivity as a model of human allergic inflammatory skin diseases. Lymphatic-deficient mice exhibited no major difference to single antigen exposure compared to controls. However, mice lacking lymphatics in both phases displayed reduced inflammation after repeated antigen exposure. Similarly, diminished immune response was observed in mice lacking lymphatics only in sensitization, whereas the absence of lymphatics only in the elicitation phase resulted in a more pronounced inflammatory immune response. This exaggerated inflammation is driven by neutrophils impacting regulatory T cell number. Collectively, our results demonstrate that skin lymphatics play an important but distinct role in the 2 phases of contact hypersensitivity. During sensitization, lymphatics contribute to the development of the antigen-specific immunization, whereas in elicitation, they moderate the inflammatory response and leukocyte infiltration in a neutrophil-dependent manner. These findings underscore the need for novel therapeutic strategies targeting the lymphatics in the context of allergic skin diseases.
Collapse
Affiliation(s)
- Petra Aradi
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Gábor Kovács
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Éva Kemecsei
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Kornél Molnár
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Stella Márta Sági
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Zalán Horváth
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Babak J Mehrara
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Raghu P Kataru
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Zoltán Jakus
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary.
| |
Collapse
|
21
|
Grandjean T, Perumal N, Manicam C, Matthey B, Wu T, Thiem DGE, Stein S, Henrich D, Kämmerer PW, Al-Nawas B, Ritz U, Blatt S. Towards optimized tissue regeneration: a new 3D printable bioink of alginate/cellulose hydrogel loaded with thrombocyte concentrate. Front Bioeng Biotechnol 2024; 12:1363380. [PMID: 38595995 PMCID: PMC11002213 DOI: 10.3389/fbioe.2024.1363380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/06/2024] [Indexed: 04/11/2024] Open
Abstract
Introduction Autologous platelet concentrate (APC) are pro-angiogenic and can promote wound healing and tissue repair, also in combination with other biomaterials. However, challenging defect situations remain demanding. 3D bioprinting of an APC based bioink encapsulated in a hydrogel could overcome this limitation with enhanced physio-mechanical interface, growth factor retention/secretion and defect-personalized shape to ultimately enhance regeneration. Methods This study used extrusion-based bioprinting to create a novel bioink of alginate/cellulose hydrogel loaded with thrombocyte concentrate. Chemico-physical testing exhibited an amorphous structure characterized by high shape fidelity. Cytotoxicity assay and incubation of human osteogenic sarcoma cells (SaOs2) exposed excellent biocompatibility. enzyme-linked immunosorbent assay analysis confirmed pro-angiogenic growth factor release of the printed constructs, and co-incubation with HUVECS displayed proper cell viability and proliferation. Chorioallantoic membrane (CAM) assay explored the pro-angiogenic potential of the prints in vivo. Detailed proteome and secretome analysis revealed a substantial amount and homologous presence of pro-angiogenic proteins in the 3D construct. Results This study demonstrated a 3D bioprinting approach to fabricate a novel bioink of alginate/cellulose hydrogel loaded with thrombocyte concentrate with high shape fidelity, biocompatibility, and substantial pro-angiogenic properties. Conclusion This approach may be suitable for challenging physiological and anatomical defect situations when translated into clinical use.
Collapse
Affiliation(s)
- Till Grandjean
- Department of Orthopedics and Traumatology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Natarajan Perumal
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Caroline Manicam
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Björn Matthey
- Fraunhofer Institute for Ceramic Technologies and Systems (Fraunhofer IKTS), Dresden, Germany
| | - Tao Wu
- Fraunhofer Institute for Ceramic Technologies and Systems (Fraunhofer IKTS), Dresden, Germany
| | - Daniel G. E. Thiem
- Department of Oral and Maxillofacial Surgery, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stefan Stein
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Dirk Henrich
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Peer W. Kämmerer
- Department of Oral and Maxillofacial Surgery, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Bilal Al-Nawas
- Department of Oral and Maxillofacial Surgery, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Ulrike Ritz
- Department of Orthopedics and Traumatology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Platform for Biomaterial Research, BiomaTiCS Group, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sebastian Blatt
- Department of Oral and Maxillofacial Surgery, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Platform for Biomaterial Research, BiomaTiCS Group, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|