1
|
Ko S, Jang J, Yi SS, Kwon C. Early detection of canine hemangiosarcoma via cfDNA fragmentation and copy number alterations in liquid biopsies using machine learning. Front Vet Sci 2025; 11:1489402. [PMID: 39872607 PMCID: PMC11769935 DOI: 10.3389/fvets.2024.1489402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 12/26/2024] [Indexed: 01/30/2025] Open
Abstract
Hemangiosarcoma is a highly malignant tumor commonly affecting canines, originating from endothelial cells that line blood vessels, underscoring the importance of early detection. This canine cancer is analogous to human angiosarcoma, and the development of liquid biopsies leveraging cell-free DNA (cfDNA) represents a promising step forward in early cancer diagnosis. In this study, we utilized Whole Genome Sequencing (WGS) to analyze fragment sizes and copy number alterations (CNAs) in cfDNA from 21 hemangiosarcoma-affected and 36 healthy dogs, aiming to enhance early cancer detection accuracy through machine learning models. Our findings reveal that similar to trends in human oncology, hemangiosarcoma samples exhibited shorter DNA fragment sizes compared to healthy controls, with a notable leftward shift in the primary peak. Interestingly, canine hemangiosarcoma DNA fragment sizes demonstrated eight distinct periodic patterns diverging from those typically observed in human angiosarcoma. Additionally, we identified seven novel genomic gains and nine losses in the hemangiosarcoma samples. Applying machine learning to the cfDNA fragment size distribution, we achieved an impressive average Area Under the Curve (AUC) of 0.93 in 10-fold cross-validation, underscoring the potential of this approach for precise early-stage cancer classification. This study confirms distinctive cfDNA fragment size and CNA patterns in hemangiosarcoma-affected vs. healthy dogs and demonstrates the promise of these biomarkers in canine cancer screening, early detection, and monitoring via liquid biopsies. These findings establish a foundation for broader research on cfDNA analysis in various canine cancers, integrating methodologies from human oncology to enhance early detection and diagnostic precision in veterinary medicine.
Collapse
Affiliation(s)
| | | | - Sun Shin Yi
- Department of Biomedical Laboratory Science, Soonchunhyang University, Asan, Republic of Korea
- BK21 Four Project, Department of Medical Sciences, Soonchunhyang University, Asan, Republic of Korea
| | | |
Collapse
|
2
|
Adugna A, Muche Y, Melkamu A, Jemal M, Belew H, Amare GA. Current updates on the molecular and genetic signals as diagnostic and therapeutic targets for hepatitis B virus-associated hepatic malignancy. Heliyon 2024; 10:e34288. [PMID: 39100497 PMCID: PMC11295980 DOI: 10.1016/j.heliyon.2024.e34288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/28/2024] [Accepted: 07/07/2024] [Indexed: 08/06/2024] Open
Abstract
Liver cancer caused by the hepatitis B virus (HBV) is the third most common cancer-related cause of death worldwide. Early detection of HBV-caused hepatic tumors increases the likelihood of a successful cure. Molecular and genetic signals are becoming more and more recognized as possible indicators of HBV-associated hepatic malignancy and of how well a treatment is working. As a result, we have discussed the current literature on molecular and genetic sensors, including extracellular vesicle microRNAs (EV-miRNAs), long non-coding circulating RNAs (lncRNAs), extracellular vesicles (EVs), and cell free circulating DNA (cfDNA), for the diagnosis and forecasting of HBV-related hepatic cancer. Extracellular vesicle microRNAs such as miR-335-5p, miR-172-5p, miR-1285-5p, miR-497-5p, miR-636, miR-187-5p, miR-223-3p, miR-21, miR-324-3p, miR-210-3p, miR-718, miR-122, miR-522, miR-0308-3p, and miR-375 are essential for the posttranscriptional regulation of oncogenes in hepatic cells as well as the epigenetic modulation of many internal and external signaling pathways in HBV-induced hepatic carcinogenesis. LncRNAs like lnc01977, HULC (highly up-regulated in liver cancer), MALAT1 (metastasis-associated lung adenocarcinoma transcript 1), and HOTAIR (hox transcript antisense intergenic RNA) have been demonstrated to control hepatic-tumors cell growth, relocation, encroachment, and cell death resiliency. They are also becoming more and more involved in immune tracking, hepatic shifting, vasculature oversight, and genomic destabilization. EVs are critical mediators involved in multiple aspects of liver-tumors like angiogenesis, immunology, tumor formation, and the dissemination of malignant hepatocytes. Furthermore, cfDNA contributes to signals associated with tumors, including mutations and abnormal epigenetic changes during HBV-related hepatic tumorigenesis.
Collapse
Affiliation(s)
- Adane Adugna
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Yalew Muche
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Abateneh Melkamu
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Mohammed Jemal
- Department of Biomedical Sciences, School of Medicine, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Habtamu Belew
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Gashaw Azanaw Amare
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
3
|
Yang J, Lin N, Niu M, Yin B. Circulating tumor DNA mutation analysis: advances in its application for early diagnosis of hepatocellular carcinoma and therapeutic efficacy monitoring. Aging (Albany NY) 2024; 16:11460-11474. [PMID: 39033781 PMCID: PMC11315387 DOI: 10.18632/aging.205980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/21/2024] [Indexed: 07/23/2024]
Abstract
In recent years, the detection and analysis of circulating tumor DNA (ctDNA) have emerged as a new focus in the field of cancer research, particularly in the early diagnosis of hepatocellular carcinoma (HCC) and monitoring of therapeutic efficacy. ctDNA, which refers to cell-free DNA fragments released into the bloodstream from tumor cells upon cell death or shedding, carries tumor-specific genetic and epigenetic alterations, thereby providing a non-invasive approach for cancer diagnosis and prognosis. The concentration of ctDNA in the blood is higher compared to that in healthy individuals or other liquid biopsies from early-stage cancers, which is closely associated with the early diagnosis and comprehensive sequencing studies of HCC. Recent studies have indicated that sequential ctDNA analysis in patients receiving primary or adjuvant therapy for HCC can detect treatment resistance and recurrence before visible morphological changes in the tumor, making it a valuable basis for rapid adjustment of treatment strategies. However, this technology is continuously being optimized and improved. Challenges such as enhancing the accuracy of ctDNA sequencing tests, reducing the burden of high-throughput sequencing on a large number of samples, and controlling variables in the assessment of the relationship between ctDNA concentration and tumor burden, need to be addressed. Overall, despite the existing challenges, the examination and analysis of ctDNA have opened up new avenues for early diagnosis and therapeutic efficacy monitoring in hepatocellular carcinoma, expanding the horizons of this field.
Collapse
Affiliation(s)
- Jing Yang
- Department of Clinical laboratory, Fourth People’s Hospital of Jinan, Jinan 250031, China
| | - Na Lin
- Department of Clinical laboratory, Fourth People’s Hospital of Jinan, Jinan 250031, China
| | - Miaomiao Niu
- Department of Clinical laboratory, Fourth People’s Hospital of Jinan, Jinan 250031, China
| | - Boshu Yin
- Department of Clinical laboratory, Fourth People’s Hospital of Jinan, Jinan 250031, China
| |
Collapse
|
4
|
Zhu Q, Xie J, Mei W, Zeng C. Methylated circulating tumor DNA in hepatocellular carcinoma: A comprehensive analysis of biomarker potential and clinical implications. Cancer Treat Rev 2024; 128:102763. [PMID: 38763055 DOI: 10.1016/j.ctrv.2024.102763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/30/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
The intricate epigenetic landscape of hepatocellular carcinoma (HCC) is profoundly influenced by alterations in DNA methylation patterns. Understanding these alterations is crucial for unraveling the molecular mechanisms underlying HCC pathogenesis. Methylated circulating tumor DNA (ctDNA) presents itself as an encouraging avenue for biomarker discovery and holds substantial clinical implications in HCC management. This review comprehensively outlines the studies concerning DNA methylation in HCC and underscores the significance of methylated ctDNA within this context. Moreover, a variety of cfDNA methylation-based methodologies, such as 5hmC profiling, bisulfite-based, restriction enzyme-dependent, and enrichment-based methods, provide in-depth insights into the molecular pathology of HCC. Additionally, the integration of methylated ctDNA analysis into clinical practice represents a significant advancement in personalized HCC management. By facilitating cancer screening, prognosis assessment, and treatment response prediction, the utilization of methylated ctDNA signifies a pivotal stride toward enhancing patient care and outcomes in HCC.
Collapse
Affiliation(s)
- Qian Zhu
- Department of Gastroenterology, Shenzhen Longhua District Central Hospital, Shenzhen 518110, China
| | - Jiaqi Xie
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Wuxuan Mei
- Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Changchun Zeng
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen 518110, China.
| |
Collapse
|
5
|
Zhou C, Weng J, Liu S, Zhou Q, Hu Z, Yin Y, Lv P, Sun J, Li H, Yi Y, Shen Y, Ye Q, Shi Y, Dong Q, Liu C, Zhu X, Ren N. Whole-exome sequencing reveals the metastatic potential of hepatocellular carcinoma from the perspective of tumor and circulating tumor DNA. Hepatol Int 2023; 17:1461-1476. [PMID: 37217808 DOI: 10.1007/s12072-023-10540-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/15/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Relapse of hepatocellular carcinoma (HCC) due to vascular invasion is common, but the genomic mechanisms remain unclear, and molecular determinants of high-risk relapse cases are lacking. We aimed to reveal the evolutionary trajectory of microvascular invasion (MVI) and develop a predictive signature for relapse in HCC. METHODS Whole-exome sequencing was performed on tumor and peritumor tissues, portal vein tumor thrombus (PVTT), and circulating tumor DNA (ctDNA) to compare the genomic profiles between 5 HCC patients with MVI and 5 patients without MVI. We conducted an integrated analysis of exome and transcriptome to develop and validate a prognostic signature in two public cohorts and one cohort from Zhongshan Hospital, Fudan University. RESULTS Shared genomic landscapes and identical clonal origins among tumor, PVTT, and ctDNA were observed in MVI ( +) HCC, suggesting that genomic changes favoring metastasis occur at the primary tumor stage and are inherited in metastatic lesions and ctDNA. There was no clonal relatedness between the primary tumor and ctDNA in MVI ( - ) HCC. HCC had dynamic mutation alterations during MVI and exhibited genetic heterogeneity between primary and metastatic tumors, which can be comprehensively reflected by ctDNA. A relapse-related gene signature named RGSHCC was developed based on the significantly mutated genes associated with MVI and shown to be a robust classifier of HCC relapse. CONCLUSIONS We characterized the genomic alterations during HCC vascular invasion and revealed a previously undescribed evolution pattern of ctDNA in HCC. A novel multiomics-based signature was developed to identify high-risk relapse populations.
Collapse
Affiliation(s)
- Chenhao Zhou
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, 201199, People's Republic of China
| | - Jialei Weng
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, 201199, People's Republic of China
| | - Shaoqing Liu
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, 201199, People's Republic of China
| | - Qiang Zhou
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, 201199, People's Republic of China
| | - Zhiqiu Hu
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, 201199, People's Republic of China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201199, People's Republic of China
| | - Yirui Yin
- Department of Liver Surgery, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, 361015, People's Republic of China
| | - Peng Lv
- Department of Liver Surgery, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, 361015, People's Republic of China
| | - Jialei Sun
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Hui Li
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Yong Yi
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Yinghao Shen
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Qinghai Ye
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Yi Shi
- Biomedical Research Centre, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Qiongzhu Dong
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, 201199, People's Republic of China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201199, People's Republic of China
| | - Chunxiao Liu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiaoqiang Zhu
- State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, School of Medicine, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200001, People's Republic of China.
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, 999077, People's Republic of China.
| | - Ning Ren
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, 201199, People's Republic of China.
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201199, People's Republic of China.
| |
Collapse
|
6
|
Manzi J, Hoff CO, Ferreira R, Glehn-Ponsirenas R, Selvaggi G, Tekin A, O'Brien CB, Feun L, Vianna R, Abreu P. Cell-Free DNA as a Surveillance Tool for Hepatocellular Carcinoma Patients after Liver Transplant. Cancers (Basel) 2023; 15:3165. [PMID: 37370775 PMCID: PMC10296050 DOI: 10.3390/cancers15123165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/30/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
The liver is the world's sixth most common primary tumor site, responsible for approximately 5% of all cancers and over 8% of cancer-related deaths. Hepatocellular carcinoma (HCC) is the predominant type of liver cancer, accounting for approximately 75% of all primary liver tumors. A major therapeutic tool for this disease is liver transplantation. Two of the most significant issues in treating HCC are tumor recurrence and graft rejection. Currently, the detection and monitoring of HCC recurrence and graft rejection mainly consist of imaging methods, tissue biopsies, and alpha-fetoprotein (AFP) follow-up. However, they have limited accuracy and precision. One of the many possible components of cfDNA is circulating tumor DNA (ctDNA), which is cfDNA derived from tumor cells. Another important component in transplantation is donor-derived cfDNA (dd-cfDNA), derived from donor tissue. All the components of cfDNA can be analyzed in blood samples as liquid biopsies. These can play a role in determining prognosis, tumor recurrence, and graft rejection, assisting in an overall manner in clinical decision-making in the treatment of HCC.
Collapse
Affiliation(s)
- Joao Manzi
- School of Medicine, University of Sao Paulo, Sao Paulo 05508-900, Brazil
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| | - Camilla O Hoff
- School of Medicine, University of Sao Paulo, Sao Paulo 05508-900, Brazil
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| | - Raphaella Ferreira
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| | | | - Gennaro Selvaggi
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| | - Akin Tekin
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| | - Christopher B O'Brien
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| | - Lynn Feun
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| | - Rodrigo Vianna
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| | - Phillipe Abreu
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
7
|
Bai Y, Xu J, Li D, Zhang X, Chen D, Xie F, Huang L, Yu X, Zhao H, Zhang Y. HepaClear, a blood-based panel combining novel methylated CpG sites and protein markers, for the detection of early-stage hepatocellular carcinoma. Clin Epigenetics 2023; 15:99. [PMID: 37308980 DOI: 10.1186/s13148-023-01508-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/19/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Early screening and detection of hepatocellular carcinoma (HCC) can efficiently improve patient prognosis. We aimed to identify a series of hypermethylated DNA markers and develop a blood-based HCC diagnosis panel containing DNA methylation sites and protein markers with improved sensitivity for early-stage HCC detection. RESULTS Overall, 850K methylation arrays were performed using paired tissue DNA samples from 60 HCC patients. Ten candidate hypermethylated CpG sites were selected for further evaluation by quantitative methylation-specific PCR with 60 pairs of tissue samples. Six methylated CpG sites, along with α-fetoprotein (AFP) and des-gamma-carboxyprothrombin (DCP), were assayed in 150 plasma samples. Finally, an HCC diagnosis panel, named HepaClear, was developed in a cohort consisting of 296 plasma samples and validated in an independent cohort consisting of 198 plasma samples. The HepaClear panel, containing 3 hypermethylated CpG sites (cg14263942, cg12701184, and cg14570307) and 2 protein markers (AFP and DCP), yielded a sensitivity of 82.6% and a specificity of 96.2% in the training set and a sensitivity of 84.7% and a specificity of 92.0% in the validation set. The HepaClear panel had higher sensitivity (72.0%) for early-stage HCC than AFP (≥ 20 ng/mL, 48.0%) and DCP (≥ 40 mAU/mL, 62.0%) and detected 67.5% of AFP-negative HCC patients (AFP ≤ 20 ng/mL). CONCLUSIONS We developed a multimarker HCC detection panel (HepaClear) that shows high sensitivity for early-stage HCC. The HepaClear panel exhibits high potential for HCC screening and diagnosis from an at-risk population.
Collapse
Affiliation(s)
- Yi Bai
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Juan Xu
- Department of Infectious Diseases, Central Hospital of Shengli Oilfield, Dongying, China
| | - Deqiang Li
- Hangzhou New Horizon Health Technology Co., Ltd, Hangzhou, China
| | - Xiaoyu Zhang
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
| | - Dapeng Chen
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
| | - Fucun Xie
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Central Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Longmei Huang
- Hangzhou New Horizon Health Technology Co., Ltd, Hangzhou, China
| | - Xiaotian Yu
- Hangzhou New Horizon Health Technology Co., Ltd, Hangzhou, China
| | - Haitao Zhao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yamin Zhang
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China.
| |
Collapse
|
8
|
Goyal R. A Symbolic Regression Approach to Hepatocellular Carcinoma Diagnosis Using Hypermethylated CpG Islands in Circulating Cell-Free DNA. LECTURE NOTES IN COMPUTER SCIENCE 2023:282-288. [DOI: 10.1007/978-3-031-25191-7_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Dyakov LM, Krivtsova OM, Khesina PA, Kustova IF, Dyakova NA, Muge NS, Kudashkin NE, Patyutko YI, Lazarevich NL. Methods for the detection of tumor-specific single nucleotide somatic mutations in plasma cDNA samples. ADVANCES IN MOLECULAR ONCOLOGY 2022. [DOI: 10.17650/2313-805x-2022-9-3-24-37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Introduction. Liquid biopsy is considered as a minimally invasive method of molecular genetic analysis that can be used for early diagnosis, prognosis of disease development, monitoring of residual disease or treatment outcomes, and selection of optimal drug therapy schemes for a patient. Along with the development of tests based on the study of panels of oncologically significant genes or their regions, for various forms of genetically heterogeneous tumors a promising approach could be the use as an object of liquid biopsy of an individual spectrum of somatic mutations of a particular patient that can be detected on the basis of high-throughput sequencing of tumor tissue.Aim. To determine the applicability of different methods for detecting single-nucleotide somatic mutations detected in tumor tissue of a particular patient in cDNA preparations from blood plasma obtained before surgical removal of the tumor and to evaluate the possibility of quantifying the proportion of the alternative variant in the total pool of cDNA. Materials and methods. We used normal and tumor tissue, as well as blood plasma samples from patients with hepatocellular carcinoma, and various methods for detecting single-nucleotide somatic mutations: real-time polymerase chain reaction (PCR) with intercalating dye or with TaqMan probes, droplet digital PCR and high-throughput sequencing of target amplicons.Results. Using the example of a somatic mutation in the TLN1 gene detected in tumor tissue of a patient with hepatocellular carcinoma, methods were developed and tested, each of which allows specific detection of the mutant variant in small amounts (2 ng) of cDNA from the blood plasma of the same patient. The use of droplet PCR and target amplicon sequencing methods allowed us to quantify the proportion of the mutant variant in the total cDNA pool, which was 19.7 and 23.5 %, respectively.Conclusion. Among the methods investigated, droplet digital PCR and targeted amplicon sequencing allow not only reliable detection of mutant variants in small amounts of cDNA, but also adequate quantification, which is particularly important for the development of ways to monitor tumor growth during treatment. The close values of the proportion of mutant variants in cDNA detected by these methods indicate the accuracy of quantitative analysis and the possibility of their use for cross-validation of the results obtained.
Collapse
Affiliation(s)
- L. M. Dyakov
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - O. M. Krivtsova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - P. A. Khesina
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; M.V. Lomonosov Moscow State University
| | - I. F. Kustova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - N. A. Dyakova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - N. S. Muge
- Russian Federal Research Institute of Fisheries and Oceanography; N.K. Koltzov Institute of Developmental Biology of the Russian Academy of Sciences
| | - N. E. Kudashkin
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - Yu. I. Patyutko
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - N. L. Lazarevich
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; M.V. Lomonosov Moscow State University
| |
Collapse
|
10
|
Immunotherapy-Based Treatments of Hepatocellular Carcinoma: AJR Expert Panel Narrative Review. AJR Am J Roentgenol 2022; 219:533-546. [PMID: 35506555 DOI: 10.2214/ajr.22.27633] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The advent of immunotherapy for patients with hepatocellular carcinoma (HCC) has changed the treatment landscape and conferred survival benefit for patients with advanced HCC who typically have a very poor prognosis. The most pronounced improvements in response, as documented by standardized response criteria based on CT or MRI, have been achieved when immunotherapy is combined with other systemic or locoregional therapies. Immune checkpoint inhibitor treatments result in unique patterns on CT and MRI that challenge the application of conventional response criteria such as RECIST, modified RECIST, and European Association for the Study of the Liver criteria. Thus, newer criteria have been developed to gauge therapy response or disease progression for patients on immunotherapy, including immune-related RECIST (iRECIST) and immune-modified RECIST (imRECIST), though these remain unvalidated. In this review, we describe the current landscape of immunotherapeutic agents used for HCC, summarize results of published studies, review pathobiological mechanisms that provide a rationale for the use of these agents, and report on the status of response assessment for immunotherapy, either alone or in combination with other treatment options. Finally, consensus statements are provided to inform radiologists on essential considerations in the era of a rapidly changing treatment paradigm for patients with HCC.
Collapse
|
11
|
Guan X, Lu Y, Zhu H, Yu S, Zhao W, Chi X, Xie C, Yin Z. The Crosstalk Between Cancer Cells and Neutrophils Enhances Hepatocellular Carcinoma Metastasis via Neutrophil Extracellular Traps-Associated Cathepsin G Component: A Potential Therapeutic Target. J Hepatocell Carcinoma 2021; 8:451-465. [PMID: 34046369 PMCID: PMC8144903 DOI: 10.2147/jhc.s303588] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
Background Emerging evidences have highlighted the roles of neutrophils, as the major host microenvironment component, in the development of hepatocellular carcinoma (HCC). Neutrophils extracellular traps (NETs) produced in the infection can strengthen the behavior of cancer metastasis. Here, we investigated the roles of NETs in HCC metastasis and further explore the underlying mechanism of how NETs interact with cancer. Methods The neutrophils were isolated from whole blood of HCC patients and used to evaluate the formation of NETs. NET markers were detected in tissue samples, plasma and cell climbing slice. Mouse models were used to evaluate the roles of NETs in HCC metastasis in vivo, and the corresponding mechanisms were explored using in vivo and in vitro assays. Results An increase in the release of NETs in patients with HCC, particularly those with portal vein tumor thrombosis (PVTT). The presence of NETs in HCC tumor tissues closely correlated with a poor prognosis. Functionally, the invasion ability of HCC cells was enhanced by co-culture with HCC neutrophils, through NETs formation, while the neutrophils from a healthy donor (HD) exhibited the inhibition of the invasion ability. Furthermore, we observed an enhanced ability of forming NETs in neutrophils from HCC patients in vitro, especially patients with PVTT or extra-hepatic metastasis. An in-vivo animal study demonstrated that neutrophils of HCC facilitated the metastatic behavior towards the lung. The further mechanistic investigation unveiled that HCC cells-derived cytokine IL-8 triggered NETs formation in an NADPH oxidase-dependent manner, and NETs-associated cathepsin G (cG) promoted HCC metastasis in vitro as well as vivo. Clinically, the expression of the cG protein in tumor tissues displayed a close correlation with the disease prognosis of HCC patients. Conclusion Our findings implicated that the induction of NETs by HCC cells is a critical metastasis-supporting cancer–host interaction and that NETs may serve as an immune-based potential therapeutic target against HCC progression.
Collapse
Affiliation(s)
- Xiangqian Guan
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian, People's Republic of China
| | - Yuyan Lu
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian, People's Republic of China
| | - Heping Zhu
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian, People's Republic of China
| | - Shuqi Yu
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian, People's Republic of China
| | - Wenxiu Zhao
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian, People's Republic of China
| | - Xiaoqin Chi
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian, People's Republic of China
| | - Chengrong Xie
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian, People's Republic of China
| | - Zhenyu Yin
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian, People's Republic of China
| |
Collapse
|
12
|
Pelizzaro F, Cardin R, Penzo B, Pinto E, Vitale A, Cillo U, Russo FP, Farinati F. Liquid Biopsy in Hepatocellular Carcinoma: Where Are We Now? Cancers (Basel) 2021; 13:2274. [PMID: 34068786 PMCID: PMC8126224 DOI: 10.3390/cancers13092274] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer related death worldwide. Diagnostic, prognostic, and predictive biomarkers are urgently needed in order to improve patient survival. Indeed, the most widely used biomarkers, such as alpha-fetoprotein (AFP), have limited accuracy as both diagnostic and prognostic tests. Liver biopsy provides an insight on the biology of the tumor, but it is an invasive procedure, not routinely used, and not representative of the whole neoplasia due to the demonstrated intra-tumoral heterogeneity. In recent years, liquid biopsy, defined as the molecular analysis of cancer by-products, released by the tumor in the bloodstream, emerged as an appealing source of new biomarkers. Several studies focused on evaluating extracellular vesicles, circulating tumor cells, cell-free DNA and non-coding RNA as novel reliable biomarkers. In this review, we aimed to provide a comprehensive overview on the most relevant available evidence on novel circulating biomarkers for early diagnosis, prognostic stratification, and therapeutic monitoring. Liquid biopsy seems to be a very promising instrument and, in the near future, some of these new non-invasive tools will probably change the clinical management of HCC patients.
Collapse
Affiliation(s)
- Filippo Pelizzaro
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (F.P.); (R.C.); (B.P.); (E.P.); (F.P.R.)
| | - Romilda Cardin
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (F.P.); (R.C.); (B.P.); (E.P.); (F.P.R.)
| | - Barbara Penzo
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (F.P.); (R.C.); (B.P.); (E.P.); (F.P.R.)
| | - Elisa Pinto
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (F.P.); (R.C.); (B.P.); (E.P.); (F.P.R.)
| | - Alessandro Vitale
- Hepatobiliary Surgery and Liver Transplantation Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (A.V.); (U.C.)
| | - Umberto Cillo
- Hepatobiliary Surgery and Liver Transplantation Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (A.V.); (U.C.)
| | - Francesco Paolo Russo
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (F.P.); (R.C.); (B.P.); (E.P.); (F.P.R.)
| | - Fabio Farinati
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (F.P.); (R.C.); (B.P.); (E.P.); (F.P.R.)
| |
Collapse
|
13
|
Reig M, Forner A, Ávila MA, Ayuso C, Mínguez B, Varela M, Bilbao I, Bilbao JI, Burrel M, Bustamante J, Ferrer J, Gómez MÁ, Llovet JM, De la Mata M, Matilla A, Pardo F, Pastrana MA, Rodríguez-Perálvarez M, Tabernero J, Urbano J, Vera R, Sangro B, Bruix J. Diagnosis and treatment of hepatocellular carcinoma. Update of the consensus document of the AEEH, AEC, SEOM, SERAM, SERVEI, and SETH. Med Clin (Barc) 2021; 156:463.e1-463.e30. [PMID: 33461840 DOI: 10.1016/j.medcli.2020.09.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver neoplasm and one of the most common causes of death in patients with cirrhosis of the liver. In parallel, with recognition of the clinical relevance of this cancer, major new developments have recently appeared in its diagnosis, prognostic assessment and in particular, in its treatment. Therefore, the Spanish Association for the Study of the Liver (AEEH) has driven the need to update the clinical practice guidelines, once again inviting all the societies involved in the diagnosis and treatment of this disease to participate in the drafting and approval of the document: Spanish Society for Liver Transplantation (SETH), Spanish Society of Diagnostic Radiology (SERAM), Spanish Society of Vascular and Interventional Radiology (SERVEI), Spanish Association of Surgeons (AEC) and Spanish Society of Medical Oncology (SEOM). The clinical practice guidelines published in 2016 and accepted as National Health System Clinical Practice Guidelines were taken as the reference documents, incorporating the most important recent advances. The scientific evidence and the strength of the recommendation is based on the GRADE system.
Collapse
Affiliation(s)
- María Reig
- Unidad de Oncología Hepática (Barcelona Clinic Liver Cancer), Servicio de Hepatología, Hospital Clínic, IDIBAPS, Universidad de Barcelona, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Barcelona, España; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, España
| | - Alejandro Forner
- Unidad de Oncología Hepática (Barcelona Clinic Liver Cancer), Servicio de Hepatología, Hospital Clínic, IDIBAPS, Universidad de Barcelona, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Barcelona, España; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, España
| | - Matías A Ávila
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, España; Programa de Hepatología, Centro de Investigación Médica Aplicada, Universidad de Navarra-IDISNA, Pamplona, España
| | - Carmen Ayuso
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, España; Servicio de Radiodiagnóstico, Hospital Clínic Barcelona, IDIBAPS, Universidad de Barcelona, Barcelona, España
| | - Beatriz Mínguez
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, España; Servicio de Hepatología, Hospital Universitario Vall d́Hebron, Grupo de Investigación en Enfermedades Hepáticas (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universidad Autónoma de Barcelona. Barcelona, España
| | - María Varela
- Sección de Hepatología, Servicio de Aparato Digestivo, Hospital Universitario Central de Asturias. Oviedo, España
| | - Itxarone Bilbao
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, España; Servicio de Cirugía Hepatobiliopancreática y Trasplantes Digestivos, Hospital Universitario Vall d'Hebron, Universidad Autónoma de Barcelona. Barcelona, España
| | - José Ignacio Bilbao
- Unidad de Radiología Vascular e Intervencionista, Departamento de Radiodiagnóstico, Clínica Universidad de Navarra, Pamplona, España
| | - Marta Burrel
- Servicio de Radiodiagnóstico, Hospital Clínic Barcelona, IDIBAPS, Universidad de Barcelona, Barcelona, España
| | - Javier Bustamante
- Servicio de Gastroenterología y Hepatología, Sección de Hepatología y Trasplante, Hospital Universitario de Cruces, Baracaldo, España
| | - Joana Ferrer
- Unidad de Oncología Hepática (Barcelona Clinic Liver Cancer), Servicio de Cirugía Hepatobiliopancreática, Hospital Clínic, IDIBAPS, Universidad de Barcelona, Barcelona, España
| | - Miguel Ángel Gómez
- Unidad de Cirugía Hepatobiliopancreática y Trasplantes, Hospital Universitario Virgen del Rocío, Sevilla, España
| | - Josep María Llovet
- Grupo de Investigación Traslacional en Oncología Hepática, Servicio de Hepatología, Hospital Clínic, IDIBAPS, Universidad de Barcelona, Barcelona, España
| | - Manuel De la Mata
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, España; Unidad Clínica de Aparato Digestivo, Hospital Universitario Reina Sofía, Córdoba, España
| | - Ana Matilla
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, España; Sección de Hepatología, Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón, Madrid, España
| | - Fernando Pardo
- Servicio de Cirugía Hepatobiliopancreática y Trasplante, Clínica Universidad de Navarra, Pamplona, España
| | - Miguel A Pastrana
- Servicio de Radiodiagnóstico, Hospital Universitario Puerta de Hierro, Universidad Autónoma de Madrid, Madrid, España
| | - Manuel Rodríguez-Perálvarez
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, España; Unidad Clínica de Aparato Digestivo, Hospital Universitario Reina Sofía, Córdoba, España
| | - Josep Tabernero
- Servicio de Oncología Médica, Hospital Universitario Vall d'Hebron, Universidad Autónoma de Barcelona, Barcelona, España
| | - José Urbano
- Unidad de Radiología Vascular e Intervencionista, Servicio de Radiodiagnóstico, Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Madrid, España
| | - Ruth Vera
- Servicio de Oncología Médica, Complejo hospitalario de Navarra, Navarrabiomed-IDISNA, Pamplona, España
| | - Bruno Sangro
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, España; Unidad de Hepatología y Área de Oncología HBP, Clínica Universidad de Navarra-IDISNA, Pamplona, España.
| | - Jordi Bruix
- Unidad de Oncología Hepática (Barcelona Clinic Liver Cancer), Servicio de Hepatología, Hospital Clínic, IDIBAPS, Universidad de Barcelona, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Barcelona, España; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, España.
| |
Collapse
|
14
|
Ramai D, Tai W, Rivera M, Facciorusso A, Tartaglia N, Pacilli M, Ambrosi A, Cotsoglou C, Sacco R. Natural Progression of Non-Alcoholic Steatohepatitis to Hepatocellular Carcinoma. Biomedicines 2021; 9:184. [PMID: 33673113 PMCID: PMC7918599 DOI: 10.3390/biomedicines9020184] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/01/2021] [Accepted: 02/09/2021] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a chronic and progressive form of non-alcoholic fatty liver disease (NAFLD). Its global incidence is increasing which makes NASH an epidemic and a public health threat. Due to repeated insults to the liver, patients are at risk for developing hepatocellular carcinoma (HCC). The progression of NASH to HCC was initially defined according to a two-hit model which involved the development of steatosis, followed by lipid peroxidation and inflammation. However, current research defines a "multi-hit" or "multi-parallel hit" model which synthesizes several contributing pathways involved in progressive fibrosis and oncogenesis. This perspective considers the effects of cellular, genetic, immunologic, metabolic, and endocrine pathways leading up to HCC which underscores the complexity of this condition. This article will provide an updated review of the pathogenic mechanisms leading from NASH to HCC as well as an exploration of the role of biomarkers and screening.
Collapse
Affiliation(s)
- Daryl Ramai
- Department of Internal Medicine, The Brooklyn Hospital Center, Brooklyn, NY 11201, USA; (D.R.); (W.T.); (M.R.)
| | - Waqqas Tai
- Department of Internal Medicine, The Brooklyn Hospital Center, Brooklyn, NY 11201, USA; (D.R.); (W.T.); (M.R.)
| | - Michelle Rivera
- Department of Internal Medicine, The Brooklyn Hospital Center, Brooklyn, NY 11201, USA; (D.R.); (W.T.); (M.R.)
| | - Antonio Facciorusso
- Section of Gastroenterology, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy;
| | - Nicola Tartaglia
- General Surgery Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (N.T.); (M.P.); (A.A.)
| | - Mario Pacilli
- General Surgery Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (N.T.); (M.P.); (A.A.)
| | - Antonio Ambrosi
- General Surgery Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (N.T.); (M.P.); (A.A.)
| | - Christian Cotsoglou
- General Surgey Unit, Department of Surgery, ASST-Vimercate, 20871 Vimercate, Italy;
| | - Rodolfo Sacco
- Section of Gastroenterology, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy;
| |
Collapse
|
15
|
Woeste MR, Geller AE, Martin RCG, Polk HC. Optimizing the Combination of Immunotherapy and Trans-Arterial Locoregional Therapy for Stages B and C Hepatocellular Cancer. Ann Surg Oncol 2021; 28:1499-1510. [PMID: 33393028 DOI: 10.1245/s10434-020-09414-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC), the most common primary hepatic malignancy worldwide, is the second leading cause of cancer-related death. Underlying liver dysfunction and advanced stage of disease require treatments to be optimally timed and implemented to minimize hepatic parenchymal damage while maximizing disease response and quality of life. Locoregional therapies (LRTs) such as trans-arterial chemo- and radio-embolization remain effective for intermediate liver-only and advanced HCC disease (i.e., Barcelona-Clinic liver cancer stages B and C) not amendable to primary resection or ablation. Additionally, these minimally invasive interventions have been shown to augment the immune system. This and the recent success of immune-oncologic treatments for HCC have generated interest in applying these therapies in combination with such locoregional interventions to improve patient outcomes and response rates. This report reviews the use of trans-arterial LRTs with immunotherapy for stages B and C HCC, potential biomarkers, and imaging methods for assessing the response and safety of such combinations.
Collapse
Affiliation(s)
- Matthew R Woeste
- Division of Surgical Oncology, Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA.,Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Anne E Geller
- Division of Surgical Oncology, Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA.,Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Robert C G Martin
- Division of Surgical Oncology, Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA.
| | - Hiram C Polk
- Division of Surgical Oncology, Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
16
|
Ma K, Liu J, Wang Y, Zhong Y, Wu Z, Fan R, Guo S. Relationship between plasma cell-free DNA (cfDNA) and prognosis of TACE for primary hepatocellular carcinoma. J Gastrointest Oncol 2020; 11:1350-1363. [PMID: 33457006 PMCID: PMC7807265 DOI: 10.21037/jgo-20-509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/08/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Our study aims to investigate changes in cell-free DNA (cfDNA) concentration and integrity in primary hepatocellular carcinoma (PHC) patients before and after transcatheter arterial chemoembolization (TACE) treatment and their influence on the evaluation of prognosis of the disease. METHODS A total of 84 PHC patients admitted to the Affiliated Hospital of Nanjing University of Chinese Medicine from December 2016 to December 2017 were included as the study group, while 55 healthy people served as the control group. Plasma cfDNA concentration and integrity were determined using qRT-PCR. The correlation between cfDNA concentration/integrity and clinical characteristics of PHC patients were analyzed. A ROC curve was used to investigate the sensitivity and specificity of cfDNA as detection indices. Univariate and multivariate analyses were used to analyze factors affecting recurrence in PHC patients and compare recurrence-free survival (RFS) of PHC patients with high cfDNA expression and low cfDNA expression. RESULTS Plasma cfDNA concentration and integrity were significantly higher in PHC patients before TACE treatment than in healthy people and significantly lower after treatment than before (P<0.05). The cfDNA concentration was significantly correlated with tumor size, lymph node metastasis, TNM stage, and BCLC stage, while cfDNA integrity was significantly correlated with tumor size, TNM stage, and BCLC stage (P<0.05). ROC results showed that the area under the curve (AUC) value of cfDNA concentration was the largest, with an optimal cut-off of 10.51 ng/mL. Multivariate regression analysis for COX showed that the TNM stage, cfDNA concentration, and AFP were independent risk factors that affected PHC patients' survival. CONCLUSIONS Plasma cfDNA concentration in PHC patients is more sensitive and specific than any other tumor marker. It is an independent risk factor for PHC patients treated with TACE. Therefore, it is hypothesized cfDNA is a potential biomarker for prognostic evaluation of PHC patients treated with TACE.
Collapse
Affiliation(s)
- Kun Ma
- Department of Interventional Radiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiayun Liu
- Department of Surgical Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Youjin Wang
- Department of Interventional Radiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yubin Zhong
- Department of General Surgery, Yixing People’s Hospital, Yixing, China
| | - Zhenfeng Wu
- Department of Surgical Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ruiying Fan
- Department of Medical Oncology, Taikang Xianlin Drum Tower Hospital, Nanjing, China
| | - Shanfeng Guo
- Department of Interventional Radiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
17
|
Singh G, Yoshida EM, Rathi S, Marquez V, Kim P, Erb SR, Salh BS. Biomarkers for hepatocellular cancer. World J Hepatol 2020; 12:558-573. [PMID: 33033565 PMCID: PMC7522562 DOI: 10.4254/wjh.v12.i9.558] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/06/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths worldwide. If diagnosed early, curative treatment options such as surgical resection, loco-regional therapies, and liver transplantation are available to patients, increasing their chances of survival and improving their quality of life. Unfortunately, most patients are diagnosed with late stage HCC where only palliative treatment is available. Therefore, biomarkers which could detect HCC early with a high degree of sensitivity and specificity, may play a crucial role in the diagnosis and management of the disease. This review will aim to provide an overview of the different biomarkers of HCC comprising those used in the diagnosis of HCC in at risk populations, as well as others with potential for prognosis, risk predisposition and prediction of response to therapeutic intervention.
Collapse
Affiliation(s)
- Gurjot Singh
- Department of Medicine, University of British Columbia, Vancouver V5Z 1M9, Canada
| | - Eric M Yoshida
- Division of Gastroenterology, Department of Medicine, University of British Columbia, Vancouver V5Z 1M9, Canada
| | - Sahaj Rathi
- Division of Gastroenterology, Department of Medicine, University of British Columbia, Vancouver V5Z 1M9, Canada
| | - Vladimir Marquez
- Division of Gastroenterology, Department of Medicine, University of British Columbia, Vancouver V5Z 1M9, Canada
| | - Peter Kim
- Division of Oncological Surgery, Department of Medicine, University of British Columbia, Vancouver V5Z 1M9, Canada
| | - Siegfried R Erb
- Division of Gastroenterology, Department of Medicine, University of British Columbia, Vancouver V5Z 1M9, Canada
| | - Baljinder S Salh
- Division of Gastroenterology, Department of Medicine, University of British Columbia, Vancouver V5Z 1M9, Canada
| |
Collapse
|
18
|
Zhou C, Weng J, Liu C, Zhou Q, Chen W, Hsu JL, Sun J, Atyah M, Xu Y, Shi Y, Shen Y, Dong Q, Hung MC, Ren N. High RPS3A expression correlates with low tumor immune cell infiltration and unfavorable prognosis in hepatocellular carcinoma patients. Am J Cancer Res 2020; 10:2768-2784. [PMID: 33042616 PMCID: PMC7539769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023] Open
Abstract
Despite the use of immune checkpoint blockade (ICB) therapy for hepatocellular carcinoma (HCC), developing more effective immunotherapy and predicting HCC's response to ICB therapy remain top priorities. Ribosomal protein S3A (RPS3A) is a multifunctional molecule, but its association with tumor immune cell infiltration and prognosis in HCC patients is unknown. Thus, we aimed to investigate the correlation of RPS3A with HCC immune cell infiltration and prognosis to explore novel therapeutic strategies and prognostic biomarkers for this disease. Here, we showed that RPS3A expression levels were higher in HCC cell lines and samples than in normal hepatocytes and adjacent tumor-free tissues, respectively, and patients with high RPS3A expression had worse overall and recurrence-free survival durations than did patients with low expression. Moreover, single-sample gene set enrichment analysis (ssGSEA) and immunohistochemistry demonstrated a strongly negative correlation between RPS3A expression and tumor immune cell infiltration. Meanwhile, RPS3A was revealed to be positively correlated with that of most examined immune checkpoint molecules. GSEA also suggested that high RPS3A expression promoted the biological processes related to tumorigenesis, metastasis, and immunosuppression. Finally, RPS3A-based nomograms were constructed and exhibited better predictive accuracy for HCC prognosis and more net clinical benefits when compared with traditional prognosis-prediction staging systems. In short, these findings suggest that high RPS3A expression correlates with low tumor immune cell infiltration and poor prognosis in HCC patients. Furthermore, RPS3A-based nomograms are robust HCC prognostic predictors. RPS3A therefore may serve as a therapeutic target in and predict the efficacy of ICB therapy for HCC.
Collapse
Affiliation(s)
- Chenhao Zhou
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan UniversityShanghai 200032, China
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Jialei Weng
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan UniversityShanghai 200032, China
| | - Chunxiao Liu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Qiang Zhou
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan UniversityShanghai 200032, China
| | - Wanyong Chen
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan UniversityShanghai 200032, China
- Institute of Fudan Minhang Academic Health System, Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital & AHS, Fudan UniversityShanghai 200032, China
| | - Jennifer L Hsu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Jialei Sun
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan UniversityShanghai 200032, China
| | - Manar Atyah
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan UniversityShanghai 200032, China
| | - Yang Xu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan UniversityShanghai 200032, China
| | - Yi Shi
- Biomedical Research Centre, Zhongshan Hospital, Fudan UniversityShanghai 200032, China
| | - Yinghao Shen
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan UniversityShanghai 200032, China
| | - Qiongzhu Dong
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
- Institute of Fudan Minhang Academic Health System, Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital & AHS, Fudan UniversityShanghai 200032, China
- Institutes of Biomedical Sciences, Fudan UniversityShanghai 200032, China
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
- Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical UniversityTaichung 40402, Taiwan
| | - Ning Ren
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan UniversityShanghai 200032, China
- Institute of Fudan Minhang Academic Health System, Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital & AHS, Fudan UniversityShanghai 200032, China
| |
Collapse
|
19
|
Benhammou JN, Lin J, Hussain SK, El-Kabany M. Emerging risk factors for nonalcoholic fatty liver disease associated hepatocellular carcinoma. HEPATOMA RESEARCH 2020; 6:35. [PMID: 32685690 PMCID: PMC7367098 DOI: 10.20517/2394-5079.2020.16] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Worldwide, nonalcoholic fatty liver disease (NAFLD) has reached epidemic proportions and in parallel, hepatocellular carcinoma (HCC) has become one of the fastest growing cancers. Epidemiological studies have not only shed light on the prevalence and incidence of the disease but have also unmasked important environmental risk factors, including the role of diabetes and dyslipidemia in disease pathogenesis. Genetic association studies have identified single nucleotide polymorphisms implicated in NAFLD-HCC, many of which are part of lipid metabolism pathways. Through these clinical studies and subsequently, translational and basic research, the role of statins as a chemoprotective agent has also emerged with ongoing clinical trials assessing their utility in HCC prevention and treatment. In this review, we summarize the recent epidemiological studies describing the burden of NAFLD-HCC in different patient populations and countries. We discuss the genetic and environmental risk factors for NAFLD-HCC and highlight the chemoprotective role of statins and aspirin. We also summarize what is known about NAFLD-HCC in the cirrhosis and non-cirrhosis populations and briefly address the role of surveillance in NAFLD-HCC patients.
Collapse
Affiliation(s)
- Jihane N. Benhammou
- Pfleger Liver Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jonathan Lin
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Shehnaz K. Hussain
- Department of Epidemiology, Fielding School of Public Health, University of California, CA 90095, USA
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mohamed El-Kabany
- Pfleger Liver Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
20
|
Feng S, Ding Z, Wang J, Qian Z, Li S, Zhang C, Xin H, Liu S, Ding G, Hu M, Meng Y, Li N. Investigation of Plasma cell-free cancer genome chromosomal instability as a tool for targeted minimally invasive biomarkers for primary liver cancer diagnoses. Cancer Med 2020; 9:5075-5085. [PMID: 32458568 PMCID: PMC7367647 DOI: 10.1002/cam4.3142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/16/2020] [Accepted: 04/24/2020] [Indexed: 01/15/2023] Open
Abstract
Purpose To characterize plasma cell‐free cancer genome chromosomal instabilities (CIN) in patients with liver cancer and to evaluate the potential of CIN as minimally invasive biomarkers for primary liver cancer (PLC) diagnoses. Experimental Design We collected 196 plasma samples from 172 individuals in two cohorts, a discovery cohort of surgery ineligible PLC patients and a validation cohort of hepatectomy patients with pathological disease confirmations. All samples were subjected to HiSeq X10 sequencing followed by a customized bioinformatics workflow Ultrasensitive Chromosome Aneuploidy Detection (UCAD). Results In the discovery cohort, 29 significant copy number changes were identified in plasma from surgery‐ineligible PLC. Twenty‐two (95.7%) surgery‐ineligible liver cancers were identified as harboring copy number changes in at least 1 of 29 segments. Meanwhile 40/41 (97.6%) noncancers harbored no changes. In the validation cohort, 54 (69.4%) surgery‐eligible liver cancers were identified with positive screening, all of which were subsequently confirmed as cancer by pathological examination. Moreover, 26/27 = 96.3% noncancers were identified with negative screening. UCAD‐positive screening was significantly associated with microvascular invasion (OR > 10, 95% CI:[2.53,]), tumor stages B and C (OR = 8.59, 95% CI [1.07, 400]), and tumor size ≥ 3 cm (OR = 5.68, 95% CI [1.43, 28.1]). Furthermore, we collected 29 followed‐up plasma samples from 19 postsurgery patients. Nine (31.0%) postsurgery samples from 6 (31.5%) patients were identified with positive screening. Among them, 3 patients (50.0%) with positive screening were then confirmed as having disease recurrences. Conclusions In addition to AFP, plasma cell‐free DNA sequencing is a useful tool for primary liver cancer diagnoses.
Collapse
Affiliation(s)
- Shuang Feng
- Department of Radiotherapy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Zhiwen Ding
- Department of Hepatic Surgery I(Ward I), Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Jin Wang
- Department of Hepatobiliary and Pancreatic Surgical Oncology, Chinese PLA General Hospital and Chinese PLA Medical School, Beijing, China
| | | | - Shanshan Li
- Department of Hepatic Surgery I(Ward I), Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Cunzhen Zhang
- Department of Hepatic Surgery I(Ward I), Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Haibei Xin
- Department of Hepatic Surgery I(Ward I), Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Shupeng Liu
- Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Guanghui Ding
- Department of Hepatic Surgery I(Ward I), Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Minggen Hu
- Department of Hepatobiliary and Pancreatic Surgical Oncology, Chinese PLA General Hospital and Chinese PLA Medical School, Beijing, China
| | - Yan Meng
- Department of Radiotherapy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Nan Li
- Department of Hepatic Surgery I(Ward I), Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| |
Collapse
|
21
|
Shabangu CS, Huang JF, Hsiao HH, Yu ML, Chuang WL, Wang SC. Liquid Biopsy for the Diagnosis of Viral Hepatitis, Fatty Liver Steatosis, and Alcoholic Liver Diseases. Int J Mol Sci 2020; 21:3732. [PMID: 32466319 PMCID: PMC7279404 DOI: 10.3390/ijms21103732] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023] Open
Abstract
During the progression from hepatitis to fibrosis, cirrhosis, and liver failure, the accumulation of stressed/damaged hepatocyte elements associated with liver inflammation is critical. The causes of hepatocyte injuries include viral hepatitis infections, alcoholic hepatitis, and non-alcoholic fatty liver disease. Hepatocyte-derived extracellular vesicles (Hep-EVs) released from stressed/damaged hepatocytes are partly responsible for liver disease progression and liver damage because they activate non-parenchymal cells and infiltrate inflammatory cells within the liver, which are in turn are an important source of EVs. This cell-to-cell signaling is prevalent during inflammation in many liver diseases. Accordingly, special emphasis should be placed on liquid biopsy methods for the long-term monitoring of chronic liver diseases. In the present review, we have highlighted various aspects of current liquid biopsy research into chronic liver diseases. We have also reviewed recent progress on liquid biopsies that focus on cell-free DNA (cfDNA), long non-coding RNA (lncRNA), and the proteins in EVs as potential diagnostic tools and novel therapeutic targets in patients with viral hepatitis, fatty liver steatosis, and alcoholic liver diseases.
Collapse
Affiliation(s)
- Ciniso Sylvester Shabangu
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (J.-F.H.); (M.-L.Y.)
| | - Jee-Fu Huang
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (J.-F.H.); (M.-L.Y.)
- Center for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hui-Hua Hsiao
- Center for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Ming-Lung Yu
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (J.-F.H.); (M.-L.Y.)
- Center for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Hepatitis Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Wan-Long Chuang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shu-Chi Wang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (J.-F.H.); (M.-L.Y.)
- Center for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| |
Collapse
|
22
|
Mocan T, Simão AL, Castro RE, Rodrigues CMP, Słomka A, Wang B, Strassburg C, Wöhler A, Willms AG, Kornek M. Liquid Biopsies in Hepatocellular Carcinoma: Are We Winning? J Clin Med 2020; 9:jcm9051541. [PMID: 32443747 PMCID: PMC7291267 DOI: 10.3390/jcm9051541] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/18/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) represents the sixth most common cancer worldwide and the third most common cause of cancer-related death. One of the major problems faced by researchers and clinicians in this area is the lack of reliable disease biomarkers, which would allow for an earlier diagnosis, follow-up or prediction of treatment response, among others. In this regard, the “HCC circulome”, defined as the pool of circulating molecules in the bloodstream derived from the primary tumor, represents an appealing target, the so called liquid biopsy. Such molecules encompass circulating tumor proteins, circulating tumor cells (CTCs), extracellular vesicles (EVs), tumor-educated platelets (TEPs), and circulating tumor nucleic acids, namely circulating tumor DNA (ctDNA) and circulating tumor RNA (ctRNA). In this article, we summarize recent findings highlighting the promising role of liquid biopsies as novel potential biomarkers in HCC, emphasizing on its clinical performance.
Collapse
Affiliation(s)
- Tudor Mocan
- Octavian Fodor Institute for Gastroenterology and Hepatology, Iuliu Haţieganu, University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania;
| | - André L. Simão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (A.L.S.); (R.E.C.); (C.M.P.R.)
| | - Rui E. Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (A.L.S.); (R.E.C.); (C.M.P.R.)
| | - Cecília M. P. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (A.L.S.); (R.E.C.); (C.M.P.R.)
| | - Artur Słomka
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum, 85-094 Bydgoszcz, Poland;
| | - Bingduo Wang
- Department of Internal Medicine I, University Hospital of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany; (B.W.); (C.S.)
| | - Christian Strassburg
- Department of Internal Medicine I, University Hospital of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany; (B.W.); (C.S.)
| | - Aliona Wöhler
- Department of General, Visceral and Thoracic Surgery, German Armed Forces Central Hospital Koblenz, 56072 Koblenz, Germany; (A.W.); (A.G.W.)
| | - Arnulf G. Willms
- Department of General, Visceral and Thoracic Surgery, German Armed Forces Central Hospital Koblenz, 56072 Koblenz, Germany; (A.W.); (A.G.W.)
| | - Miroslaw Kornek
- Department of Internal Medicine I, University Hospital of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany; (B.W.); (C.S.)
- Correspondence:
| |
Collapse
|
23
|
Trung NT, Hoan NX, Trung PQ, Binh MT, Van Tong H, Toan NL, Bang MH, Song LH. Clinical significance of combined circulating TERT promoter mutations and miR-122 expression for screening HBV-related hepatocellular carcinoma. Sci Rep 2020; 10:8181. [PMID: 32424223 PMCID: PMC7234991 DOI: 10.1038/s41598-020-65213-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/17/2020] [Indexed: 02/07/2023] Open
Abstract
Telomerase reverse-transcriptase (TERT) gene promoter mutations in circulating cell-free DNA (cfDNA) as well as the levels of circulating microRNA-122 (miR-122) have been reported as potential noninvasive biomarkers for several. This study evaluates the diagnostic performance of potent biomarker-based panels composing of serological AFP, miR-122 and circulating TERT promoter mutations for screening HBV-related HCC. TERT promoter mutations (C228T and C250T) and miR-122 expression were assessed in the plasma samples from 249 patients with HBV-related liver diseases by nested PCR and qRT-PCR assays, respectively. The diagnostic values of TERT promoter mutations, miR-122 expression and biomarker-based panels were assessed by computation of the area under the curve (AUC). Nested-PCR assays were optimized to detect C228T and C250T mutations in TERT promoter with detection limit of 1%. The common hotspot C228T was observed in 22 HCC cases. The triple combinatory panel (AFP@TERT@miR-122) acquired the best diagnostic value to distinguish HCC from CHB (AUC = 0.98), LC (AUC = 0.88) or non-HCC (LC + CHB, AUC = 0.94) compared to the performance of double combinations or single biomarkers, respectively. Notably, among patients with AFP levels≤20 ng/μl, the double combination panel (TERT@miR-122) retains satisfactory diagnostic performance in discriminating HCC from the others (HCC vs. CHB, AUC = 0.96; HCC vs. LC, AUC = 0.88, HCC vs. non-HCC, AUC = 0.94). The triple combination panel AFP@TERT@miR-122 shows a better diagnostic performance for screening HCC in HBV patients, regardless of AFP levels. The newly established panels can be a potential application in clinical practice in Vietnamese setting.
Collapse
Affiliation(s)
- Ngo Tat Trung
- Centre for Genetic Consultation and Cancer Screening, 108 Military Central Hospital, Hanoi, Vietnam. .,Vietnamese-German Center of Excellence in Medical Research, Hanoi, Vietnam.
| | - Nghiem Xuan Hoan
- Vietnamese-German Center of Excellence in Medical Research, Hanoi, Vietnam.,Institute of Clinical Infectious Diseases, 108 Military Central Hospital, Hanoi, Vietnam
| | - Pham Quang Trung
- Centre for Genetic Consultation and Cancer Screening, 108 Military Central Hospital, Hanoi, Vietnam.,Vietnamese-German Center of Excellence in Medical Research, Hanoi, Vietnam
| | - Mai Thanh Binh
- Department of Gastroenterology, 108 Military Central Hospital, Hanoi, Vietnam
| | - Hoang Van Tong
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam.,Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
| | - Nguyen Linh Toan
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
| | - Mai Hong Bang
- Department of Gastroenterology, 108 Military Central Hospital, Hanoi, Vietnam
| | - Le Huu Song
- Vietnamese-German Center of Excellence in Medical Research, Hanoi, Vietnam. .,Institute of Clinical Infectious Diseases, 108 Military Central Hospital, Hanoi, Vietnam.
| |
Collapse
|
24
|
Zarrinpar A, Kim UB, Boominathan V. Phenotypic Response and Personalized Medicine in Liver Cancer and Transplantation: Approaches to Complex Systems. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ali Zarrinpar
- Department of Surgery, College of MedicineUniversity of Florida Gainesville FL 32610 USA
- Department of Biochemistry and Molecular Biology, College of MedicineUniversity of Florida Gainesville FL 32610 USA
- Department of Bioengineering, Herbert Wertheim College of EngineeringUniversity of Florida Gainesville FL 32610 USA
| | - Un Bi Kim
- Department of Surgery, College of MedicineUniversity of Florida Gainesville FL 32610 USA
| | - Vijay Boominathan
- Department of Surgery, College of MedicineUniversity of Florida Gainesville FL 32610 USA
| |
Collapse
|
25
|
Weng J, Atyah M, Zhou C, Ren N. Prospects and challenges of circulating tumor DNA in precision medicine of hepatocellular carcinoma. Clin Exp Med 2020; 20:329-337. [PMID: 32239299 DOI: 10.1007/s10238-020-00620-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/13/2020] [Indexed: 02/07/2023]
Abstract
The growing role of precision medicine in hepatocellular carcinoma (HCC) is expected to ameliorate the poor prognosis and high mortality of this highly malignant disease; however, it is faced with challenges such as the low frequency of tissue biopsy. Hence, attention is turning to the circulating tumor DNA (ctDNA), an important component of liquid biopsy. Obtaining molecular information about cancer from blood provides a good prospect in precision oncology including molecular diagnosis, molecular classification, targeted therapy, personalized decision making, and detection of drug-resistance mutations. However, inherent constraints of HCC and ctDNA (like background chronic liver diseases (CLD) and low concentration of ctDNA) along with some technical issues should be well handled and solved before the potential of ctDNA in precision medicine of HCC can be truly realized. In this review, we will focus on the prospects and challenges of ctDNA in HCC precision medicine.
Collapse
Affiliation(s)
- Jialei Weng
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Manar Atyah
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Chenhao Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Ning Ren
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China. .,Department of Surgery, Minhang Hospital, Fudan University, Shanghai, 201199, China.
| |
Collapse
|
26
|
Mouse Models for Immunotherapy in Hepatocellular Carcinoma. Cancers (Basel) 2019; 11:cancers11111800. [PMID: 31731753 PMCID: PMC6896030 DOI: 10.3390/cancers11111800] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 11/01/2019] [Indexed: 12/13/2022] Open
Abstract
Liver cancer is one of the dominant causes of cancer-related mortality, and the survival rate of liver cancer is among the lowest for all cancers. Immunotherapy for hepatocellular carcinoma (HCC) has yielded some encouraging results, but the percentage of patients responding to single-agent therapies remains low. Therefore, potential directions for improved immunotherapies include identifying new immune targets and checkpoints and customizing treatment procedures for individual patients. The development of combination therapies for HCC is also crucial and urgent and, thus, further studies are required. Mice have been utilized in immunotherapy research due to several advantages, for example, being low in cost, having high success rates for inducing tumor growth, and so on. Moreover, immune-competent mice are used in immunotherapy research to clarify the role that the immune system plays in cancer growth. In this review paper, the advantages and disadvantages of mouse models for immunotherapy, the equipment that are used for monitoring HCC, and the cell strains used for inducing HCC are reviewed.
Collapse
|
27
|
Rice A, Del Rio Hernandez A. The Mutational Landscape of Pancreatic and Liver Cancers, as Represented by Circulating Tumor DNA. Front Oncol 2019; 9:952. [PMID: 31608239 PMCID: PMC6769086 DOI: 10.3389/fonc.2019.00952] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 09/09/2019] [Indexed: 02/06/2023] Open
Abstract
The mutational landscapes of pancreatic and liver cancers share many common genetic alterations which drive cancer progression. However, these mutations do not occur in all cases of these diseases, and this tumoral heterogeneity impedes diagnosis, prognosis, and therapeutic development. One minimally invasive method for the evaluation of tumor mutations is the analysis of circulating tumor DNA (ctDNA), released through apoptosis, necrosis, and active secretion by tumor cells into various body fluids. By observing mutations in those genes which promote transformation by controlling the cell cycle and oncogenic signaling pathways, a representation of the mutational profile of the tumor is revealed. The analysis of ctDNA is a promising technique for investigating these two gastrointestinal cancers, as many studies have reported on the accuracy of ctDNA assessment for diagnosis and prognosis using a variety of techniques.
Collapse
Affiliation(s)
- Alistair Rice
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Faculty of Engineering, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Armando Del Rio Hernandez
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Faculty of Engineering, Imperial College London, South Kensington Campus, London, United Kingdom
| |
Collapse
|
28
|
Yin J, Suo Y, Zou Z, Sun J, Zhang S, Wang B, Xu Y, Darland D, Zhao JX, Mu Y. Integrated microfluidic systems with sample preparation and nucleic acid amplification. LAB ON A CHIP 2019; 19:2769-2785. [PMID: 31365009 PMCID: PMC8876602 DOI: 10.1039/c9lc00389d] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Rapid, efficient and accurate nucleic acid molecule detection is important in the screening of diseases and pathogens, yet remains a limiting factor at point of care (POC) treatment. Microfluidic systems are characterized by fast, integrated, miniaturized features which provide an effective platform for qualitative and quantitative detection of nucleic acid molecules. The nucleic acid detection process mainly includes sample preparation and target molecule amplification. Given the advancements in theoretical research and technological innovations to date, nucleic acid extraction and amplification integrated with microfluidic systems has advanced rapidly. The primary goal of this review is to outline current approaches used for nucleic acid detection in the context of microfluidic systems. The secondary goal is to identify new approaches that will help shape future trends at the intersection of nucleic acid detection and microfluidics, particularly with regard to increasing disease and pathogen detection for improved diagnosis and treatment.
Collapse
Affiliation(s)
- Juxin Yin
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310058, China.
| | - Yuanjie Suo
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310058, China.
| | - Zheyu Zou
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310058, China.
| | - Jingjing Sun
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310058, China.
| | - Shan Zhang
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310058, China.
| | - Beng Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009 China and Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029 China
| | - Yawei Xu
- College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, Jilin, 132000 China
| | - Diane Darland
- Department of Biology, University of North Dakota, USA.
| | | | - Ying Mu
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
29
|
Neureiter D, Stintzing S, Kiesslich T, Ocker M. Hepatocellular carcinoma: Therapeutic advances in signaling, epigenetic and immune targets. World J Gastroenterol 2019; 25:3136-3150. [PMID: 31333307 PMCID: PMC6626722 DOI: 10.3748/wjg.v25.i25.3136] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/02/2019] [Accepted: 05/18/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) remains a global medical burden with rising incidence due to chronic viral hepatitis and non-alcoholic fatty liver diseases. Treatment of advanced disease stages is still unsatisfying. Besides first and second generation tyrosine kinase inhibitors, immune checkpoint inhibitors have become central for the treatment of HCC. New modalities like epigenetic therapy using histone deacetylase inhibitors (HDACi) and cell therapy approaches with chimeric antigen receptor T cells (CAR-T cells) are currently under investigation in clinical trials. Development of such novel drugs is closely linked to the availability and improvement of novel preclinical and animal models and the identification of predictive biomarkers. The current status of treatment options for advanced HCC, emerging novel therapeutic approaches and different preclinical models for HCC drug discovery and development are reviewed here.
Collapse
Affiliation(s)
- Daniel Neureiter
- Institute of Pathology, Cancer Cluster Salzburg, Paracelsus Medical University/Salzburger Landeskliniken (SALK), Salzburg 5020, Austria
| | - Sebastian Stintzing
- Medical Department, Division of Oncology and Hematology, Campus Charité Mitte, Charité University Medicine Berlin, Berlin 10117, Germany
| | - Tobias Kiesslich
- Department of Internal Medicine I, Paracelsus Medical University/Salzburger Landeskliniken (SALK) and Institute of Physiology and Pathophysiology, Paracelsus Medical University, Salzburg 5020, Austria
| | - Matthias Ocker
- Translational Medicine Oncology, Bayer AG, Berlin 13353, Germany
- Charité University Medicine Berlin, Berlin 10117, Germany
| |
Collapse
|
30
|
Amado V, Rodríguez-Perálvarez M, Ferrín G, De la Mata M. Selecting patients with hepatocellular carcinoma for liver transplantation: incorporating tumor biology criteria. J Hepatocell Carcinoma 2018; 6:1-10. [PMID: 30613572 PMCID: PMC6306074 DOI: 10.2147/jhc.s174549] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Liver transplantation (LT) is the optimal therapeutic option for patients with liver cirrhosis and hepatocellular carcinoma (HCC). Due to universal donor shortage, only the patients with limited tumor burden (under the so-called Milan criteria) are considered as potential candidates for LT in most institutions. It is expected that in the near future, more liver grafts will be available for patients with HCC due to the implementation of new direct antivirals against hepatitis C, leaving a prone scenario to consider expanding Milan criteria. A moderate expansion of Milan criteria could be implemented without increasing the risk of tumor recurrence if patients with favorable biological behavior are carefully selected. Incorporating information regarding tumor biology in the decision-making algorithm would result in a more rational use of LT in patients with HCC. In the present review, surrogate markers of tumor biology are critically evaluated as potential tools to be combined with existing radiological criteria. In addition, the current state of liquid biopsy is discussed, as this cutting-edge technology may reshape the management of HCC in the upcoming years.
Collapse
Affiliation(s)
- Víctor Amado
- Department of Hepatology and Liver Transplantation, Reina Sofía University Hospital, IMIBIC, CIBERehd, Córdoba, Spain,
| | - Manuel Rodríguez-Perálvarez
- Department of Hepatology and Liver Transplantation, Reina Sofía University Hospital, IMIBIC, CIBERehd, Córdoba, Spain,
| | - Gustavo Ferrín
- Department of Hepatology and Liver Transplantation, Reina Sofía University Hospital, IMIBIC, CIBERehd, Córdoba, Spain,
| | - Manuel De la Mata
- Department of Hepatology and Liver Transplantation, Reina Sofía University Hospital, IMIBIC, CIBERehd, Córdoba, Spain,
| |
Collapse
|
31
|
Raghunath A, Sundarraj K, Arfuso F, Sethi G, Perumal E. Dysregulation of Nrf2 in Hepatocellular Carcinoma: Role in Cancer Progression and Chemoresistance. Cancers (Basel) 2018; 10:cancers10120481. [PMID: 30513925 PMCID: PMC6315366 DOI: 10.3390/cancers10120481] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/29/2018] [Accepted: 11/29/2018] [Indexed: 12/23/2022] Open
Abstract
The liver executes versatile functions and is the chief organ for metabolism of toxicants/xenobiotics. Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and the third foremost cause of cancer death worldwide. Oxidative stress is a key factor related with the development and progression of HCC. Nuclear factor erythroid 2 [NF-E2]-related factor 2 (Nrf2) is a cytosolic transcription factor, which regulates redox homeostasis by activating the expression of an array of antioxidant response element-dependent genes. Nrf2 displays conflicting roles in normal, healthy liver and HCC; in the former, Nrf2 offers beneficial effects, whereas in the latter it causes detrimental effects favouring the proliferation and survival of HCC. Sustained Nrf2 activation has been observed in HCC and facilitates its progression and aggressiveness. This review summarizes the role and mechanism(s) of action of Nrf2 dysregulation in HCC and therapeutic options that can be employed to modulate this transcription factor.
Collapse
Affiliation(s)
- Azhwar Raghunath
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, Tamilnadu, India.
| | - Kiruthika Sundarraj
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, Tamilnadu, India.
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6009, Australia.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, Tamilnadu, India.
| |
Collapse
|
32
|
Mann J, Reeves HL, Feldstein AE. Liquid biopsy for liver diseases. Gut 2018; 67:2204-2212. [PMID: 30177542 DOI: 10.1136/gutjnl-2017-315846] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 12/12/2022]
Abstract
With the growing number of novel therapeutic approaches for liver diseases, significant research efforts have been devoted to the development of liquid biopsy tools for precision medicine. This can be defined as non-invasive reliable biomarkers that can supplement and eventually replace the invasive liver biopsy for diagnosis, disease stratification and monitoring of response to therapeutic interventions. Similarly, detection of liver cancer at an earlier stage of the disease, potentially susceptible to curative resection, can be critical to improve patient survival. Circulating extracellular vesicles, nucleic acids (DNA and RNA) and tumour cells have emerged as attractive liquid biopsy candidates because they fulfil many of the key characteristics of an ideal biomarker. In this review, we summarise the currently available information regarding these promising and potential transformative tools, as well as the issues still needed to be addressed for adopting various liquid biopsy approaches into clinical practice. These studies may pave the way to the development of a new generation of reliable, mechanism-based disease biomarkers.
Collapse
Affiliation(s)
- Jelena Mann
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Helen L Reeves
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - Ariel E Feldstein
- Department of Pediatrics, University of California, San Diego, California, USA
| |
Collapse
|
33
|
Does Size Matter? Comparison of Extraction Yields for Different-Sized DNA Fragments by Seven Different Routine and Four New Circulating Cell-Free Extraction Methods. J Clin Microbiol 2018; 56:JCM.01061-18. [PMID: 30282788 DOI: 10.1128/jcm.01061-18] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/26/2018] [Indexed: 12/13/2022] Open
Abstract
An element essential for PCR detection of microbial agents in many sample types is the extraction step, designed to purify nucleic acids. Despite the importance of this step, yields have not been extensively compared across methods to determine whether the method used contributes to quantitative differences and the lack of commutability seen with existing clinical methods. This may in part explain why plasma and blood viral load assays have proven difficult to standardize. Also, studies have identified small DNA fragments of <200 bp in plasma (cell-free DNA [cfDNA]), which may include significant quantities of viral DNA. Our study evaluated extraction yields for 11 commercially available extraction methods, including 4 new methods designed to isolate cfDNA. Solutions of DNA fragments with sizes ranging from 50 to 1,500 bp were extracted, and then the eluates were tested by droplet digital PCR to determine the DNA fragment yield for each method. The results demonstrated a wide range of extraction yields across the variety of methods/instruments used, with the 50- and 100-bp fragment sizes showing especially inconsistent quantitative results and poor yields of less than 20%. Slightly higher, more consistent yields were seen with 2 of the 4 circulating cell-free extraction kits. These results demonstrate a significant need for further evaluation of nucleic acid yields across the variety of extraction platforms and highlight the poor extraction yields of small DNA fragments by existing methods. Further work is necessary to determine the impact of this inconsistency across instruments and the relevance of the low yields for smaller DNA fragments in clinical virology testing.
Collapse
|
34
|
Ocker M. Biomarkers for hepatocellular carcinoma: What’s new on the horizon? World J Gastroenterol 2018; 24:3974-3979. [PMID: 30254402 PMCID: PMC6148424 DOI: 10.3748/wjg.v24.i35.3974] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/29/2018] [Accepted: 08/01/2018] [Indexed: 02/06/2023] Open
Abstract
Treatment of advanced hepatocellular carcinoma remains unsatisfying and so far only prognostic biomarkers like α-fetoprotein have been established. No clear predictive biomarker is currently available for standard of care therapies, including targeted therapies like sorafenib. Novel therapeutic options like immune checkpoint inhibitors may pose new challenges to identification and validation of such markers. Currently, PD-L1 expression via immunohistochemistry and tumor mutational burden via next-generation sequencing are explored as predictive biomarkers for these novel treatments. Limited tissue availability due to lack of biopsies still restricts the use of tissue based approaches. Novel methods exploring circulating or cell free nucleic acids (DNA, RNA or miRNA-containing exosomes) could provide a new opportunity to establish predictive biomarkers. Epigenetic profiling and next-generation sequencing approaches from liquid biopsies are under development. Sample size, etiologic and geographical background need to be carefully addressed in such studies to achieve meaningful results that could be translated into clinical practice. Proteomics, metabolomics and molecular imaging are further emerging technologies.
Collapse
Affiliation(s)
- Matthias Ocker
- Department of Translational Medicine Oncology, Bayer AG, Berlin 13353, Germany
- Charité University Medicine Berlin, Berlin 10117, Germany
| |
Collapse
|