1
|
Saeed U, Uppal R, Najmi MH, Fazal I, Khan AA, Piracha ZZ, Uppal MR, Ijaz HN, Ozsahin DU, Uzun B, Ozsahin I. Cutting-edge: bionanomaterial solutions in the battle against Severe Acute Respiratory Syndrome Coronavirus 2. BRAZ J BIOL 2025; 84:e279564. [PMID: 39879499 DOI: 10.1590/1519-6984.279564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/16/2024] [Indexed: 01/31/2025] Open
Abstract
Amidst the ongoing COVID-19 pandemic, the imperative of our time resides in crafting stratagems of utmost precision to confront the relentless SARS-CoV-2 and quell its inexorable proliferation. A paradigm-shifting weapon in this battle lies in the realm of nanoparticles, where the amalgamation of cutting-edge nanochemistry begets a cornucopia of inventive techniques and methodologies designed to thwart the advances of this pernicious pathogen. Nanochemistry, an artful fusion of chemistry and nanoscience, provides a fertile landscape for researchers to craft innovative shields against infection. Within this intricate tapestry, nanoparticles emerge as champions, offering multifaceted solutions encompassing detection, treatment, prevention, and the precise targeting of SARS-CoV-2 incursions. Noteworthy among these innovations, the Silver (Ag) Respi-strips command our attention. These strips stand as exemplars of ingenuity, illuminating the path to swift and precise test detection. Moreover, the integration of Ag-based textile materials into the arsenal against viral propagation opens a promising avenue to curtail the virus's insidious reach. The indomitable force of iron nanoparticles, duly sanctioned by the esteemed FDA, shines as a beacon of hope in the treatment of infection. Their interaction with the glycoprotein spikes of the virus unleashes an inhibitory action of profound consequence. Meanwhile, the domain of diagnostics has been revolutionized by the advent of Magnetic Nanoparticles (MNPs). Their role in automating nucleic acid extraction and purification has proven indispensable, particularly in the diagnostic milieu of SARS-CoV-2. These MNPs wield a magnetic allure, streamlining diagnostic processes with unmatched precision. In this realm of nano-wonders, Gold nanoparticles rise as formidable sentinels, poised at the intersection of versatility and innovation. Their functionalization via a kaleidoscope of functional groups or in concert with antiviral drug combinations augments their prowess. These microscopic champions effectively hinder viral ingress into host cells and orchestrate the controlled release of antiviral agents, casting a profound influence on the course of viral infections. The pandemic landscape has borne witness to the ascendancy of nanotechnology, unveiling an arsenal of nanoparticle-based strategies that promise to defy, detect, treat, and ultimately vanquish SARS-CoV-2. The future beckons, and within the infinitesimal realm of nanoparticles, we find the promise of a brighter, healthier tomorrow.
Collapse
Affiliation(s)
- U Saeed
- Near East University, Operational Research Center in Healthcare, Mersin, Turkey
- Foundation University Islamabad - FUI, Foundation University School of Health Sciences - FUSH, Clinical and Biomedical Research Center - CBRC, Islamabad, Pakistan
| | - R Uppal
- Islamabad Diagnostic Center - IDC, Islamabad, Pakistan
| | - M H Najmi
- Foundation University Islamabad - FUI, Foundation University School of Health Sciences - FUSH, Clinical and Biomedical Research Center - CBRC, Islamabad, Pakistan
| | - I Fazal
- Foundation University Islamabad - FUI, Foundation University School of Health Sciences - FUSH, Clinical and Biomedical Research Center - CBRC, Islamabad, Pakistan
| | - A A Khan
- Islamabad Diagnostic Center - IDC, Islamabad, Pakistan
| | - Z Z Piracha
- Al-Mizan Islamic International Medical College Trust (IIMCT) Complex, Riphah International University, Faculty of Rehabilitation and Allied Health Sciences, Rawalpindi, Pakistan
- International Center of Medical Sciences Research - ICMSR, Austin, TX, United States of America
- International Center of Medical Sciences Research - ICMSR, Essex, United Kingdom
- International Center of Medical Sciences Research - ICMSR, Islamabad, Pakistan
| | - M R Uppal
- Islamabad Diagnostic Center - IDC, Islamabad, Pakistan
| | - H N Ijaz
- Shaikh Khalifa Bin Zayed Al Nahyan Medical and Dental College, Lahore, Pakistan
| | - D U Ozsahin
- Near East University, Operational Research Center in Healthcare, Mersin, Turkey
- University of Sharjah, College of Health Sciences, Medical Diagnostic Imaging Department, Sharjah, United Arab Emirates
- University of Sharjah, Research Institute for Medical and Health Sciences, Sharjah, United Arab Emirates
| | - B Uzun
- Near East University, Operational Research Center in Healthcare, Mersin, Turkey
| | - I Ozsahin
- Near East University, Operational Research Center in Healthcare, Mersin, Turkey
| |
Collapse
|
2
|
Udoh E, Okonkwo O, Omoregie G, Ura-Akubo V, Anosike N, Folorunsho J, Orakwelu E, Bimba J, Hatzold K, Corbett EL, Nightingale E, Dunkley Y. Service quality in decentralized community-based Covid-19 antigen rapid diagnostic testing programmes in the Federal Capital Territory, Nigeria. PLoS One 2024; 19:e0310294. [PMID: 39656700 DOI: 10.1371/journal.pone.0310294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/26/2024] [Indexed: 12/17/2024] Open
Abstract
INTRODUCTION Decentralized COVID-19 testing with antigen rapid diagnostic tests (Ag-RDT) is recommended by the Nigerian Centre for Disease Control for community-level services. These services have been provided in Primary Healthcare Centers, Community Pharmacies, and licensed "Patent Medicine Stores" that serve the least affluent communities. To support quality assurance, we applied an adapted version of SPI-RT (Stepwise Process for Improving the Quality of HIV Rapid and Recency Testing) to sites providing COVID-19-RDTs in Federal Capital Territory of Nigeria. METHODS Between September 2022 and February 2023 community healthcare facilities (48 Community Pharmacies, 21 Patent Medicine Stores, 79 Primary Health Centers) were evaluated using Stepwise Process for Improving the Quality of SARS-CoV-2 Antigen Rapid Diagnostic Testing (SPI-RT) Checklist, tailored to the local implementation context. Evaluated domains included service quality, documents and records, personnel training and certification, safety, physical infrastructure, pre-testing phase, testing phase, and post-testing phase. Each facility received an overall score, expressed as a percentage indicating their performance level. RESULTS 41/79 (52%) of Primary Health Centers scored at least 90% for service quality, as did 19/48 (40%) of pharmacies, with only 1/21 (4.8%) Patent Medicine Store. Apart from personnel training and certification, Primary Health Centers scored highest across most domains of service quality, followed by Community Pharmacies. The lowest median score in any domain was in the Patent Medicine Stores on testing and safety at 60% for both post-testing phase and safety. CONCLUSION Primary Healthcare Centers and Community Pharmacies can provide quality decentralized testing for COVID-19. Patent Medicine Stores may need additional support including monitoring and quality improvement initiatives to ensure the provision of high-quality decentralized COVID-19 rapid testing services.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - John Bimba
- Zankli Research Centre, Bingham University, Nasarawa, Nigeria
| | - Karin Hatzold
- Population Services International, Washington, DC, United States of America
| | | | - Emily Nightingale
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Yasmin Dunkley
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
3
|
Aboagye FT, Annison L, Hackman HK, Acquah ME, Ashong Y, Owusu-Frimpong I, Egyam BC, Annison S, Osei-Adjei G, Antwi-Baffour S. Comparative evaluation of RT-PCR and antigen-based rapid diagnostic tests (Ag-RDTs) for SARS-CoV-2 detection: performance, variant specificity, and clinical implications. Microbiol Spectr 2024; 12:e0007324. [PMID: 38683014 PMCID: PMC11237673 DOI: 10.1128/spectrum.00073-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/25/2024] [Indexed: 05/01/2024] Open
Abstract
The COVID-19 pandemic has highlighted the critical need for accurate and efficient diagnostic tools for detecting severe acute respiratory coronavirus 2 (SARS-CoV-2) infections. This study presents a comparison of two diagnostic tests: RT-PCR and antigen detection rapid diagnostic tests (Ag-RDTs). This study focused on their performance, variant specificity, and their clinical implications. A simultaneous testing of 268 samples was carried out for SARS-CoV-2 using RT-PCR and Ag-RDTs [flourescence immunoassay (FIA) and lateral flow immunoassay (LFIA)]. Viral load was quantified, and variant identification was performed using a PCR-based assay. The prevalence was found to be 30.2% using reverse transcription PCR (RT-PCR), 26.5% using FIA, and 25% using LFIA. When comparing the FIA and LFIA, the overall diagnostic performance was found to be 80.25% vs 76.54%, 96.79% vs 97.33%, 91.55% vs 90.51%, and 91.88% vs 92.56% for sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV), respectively. Both Ag-RDTs showed a strong agreement with RT-PCR (κ = 0.78-0.80). The overall accuracies of the FIA and LFIA were 92.41% and 92.13%, respectively. The FIA showed higher sensitivity (73.68%) and PPV (92.08%) than the LFIA (65.79% and 90.56%, respectively) in asymptomatic patients. At low Ct values (<25), both Ag-RDTs had 100% sensitivity, but the sensitivity reduced to 31.82% for FIA and 27.27% for LFIA at Ct values > 30. The diagnostic sensitivity of FIA compared to LFIA for detecting the Alpha variant was 78.85% vs. 69.23% and 72.22% vs. 83.33% for the Delta variant. Both Ag-RDTs had 100% sensitivity for detecting Omicron. Both Ag-RDTs performed well in patients with high viral loads and Omicron variant infections compared to those infected with Alpha and Delta variants. This study confirms the comparable performance of RT-PCR and Ag-RDTs, specifically FIA and LFIA, for SARS-CoV-2 detection. The FIA showed higher sensitivity and PPV in asymptomatic cases, while both Ag-RDTs exhibited strong agreement with RT-PCR results. Notably, Ag-RDTs, particularly FIA, proved effective in detecting the Omicron variant and cases with high viral loads, highlighting their potential clinical utility in managing the COVID-19 pandemic.IMPORTANCEThis study is of utmost importance in providing effective responses to manage the COVID-19 pandemic. It rigorously compares the diagnostic accuracy, variant specificity, and practical considerations of reverse transcription PCR (RT-PCR) and antigen detection rapid diagnostic tests (Ag-RDTs) for severe acute respiratory coronavirus 2 (SARS-CoV-2), answering critical questions. The results of this study will help healthcare professionals choose the appropriate testing methods, allocate resources effectively, and enhance public health strategies. Given the evolution of the virus, understanding the performance of these diagnostic tools is crucial to adapting to emerging variants. Additionally, the study provides insights into logistical challenges and accessibility issues, which will contribute to refining testing workflows, particularly in resource-limited settings. Ultimately, the study's impact extends to global healthcare, providing valuable information for policymakers, clinicians, and public health officials as they work together for mitigating the impact of the pandemic.
Collapse
Affiliation(s)
- Frank T. Aboagye
- Department of Medical Laboratory Technology, Faculty of Applied Sciences, Accra Technical University, Accra, Ghana
- Biomedical and Public Health Research Unit, Council for Scientific and Industrial Research – Water Research Institute, Accra, Ghana
| | - Lawrence Annison
- Department of Medical Laboratory Technology, Faculty of Applied Sciences, Accra Technical University, Accra, Ghana
| | - Henry Kwadwo Hackman
- Department of Medical Laboratory Technology, Faculty of Applied Sciences, Accra Technical University, Accra, Ghana
| | - Maame E. Acquah
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Yvonne Ashong
- Department of Parasitology, Noguchi Memorial Institute of Medical Research, College of Medical Sciences, University of Ghana, Accra, Ghana
| | - Isaac Owusu-Frimpong
- Biomedical and Public Health Research Unit, Council for Scientific and Industrial Research – Water Research Institute, Accra, Ghana
| | - Bill C. Egyam
- Department of Molecular Biology, MDS Lancet Laboratories Ghana Limited, Accra, Ghana
| | - Sharon Annison
- Department of Epidemiology and Disease Control, School of Public Health, University of Ghana, Accra, Ghana
| | - George Osei-Adjei
- Department of Medical Laboratory Technology, Faculty of Applied Sciences, Accra Technical University, Accra, Ghana
| | - Samuel Antwi-Baffour
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
4
|
Xiao Y, Dong H, Wu C, Zhang K, Jiang X, Chen J, Wang H, Xu S, Zhang F, Gu L. Nanobody in a Double "Y"-Shaped Assembly: A Promising Candidate for Lateral Flow Immunoassays. Anal Chem 2024; 96:7130-7137. [PMID: 38679866 DOI: 10.1021/acs.analchem.4c00509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Derived from camelid heavy-chain antibodies, nanobodies (Nbs) are the smallest natural antibodies and are an ideal tool in biological studies because of their simple structure, high yield, and low cost. Nbs possess significant potential for developing highly specific and user-friendly diagnostic assays. Despite offering considerable advantages in detection applications, knowledge is limited regarding the exclusive use of Nbs in lateral flow immunoassay (LFIA) detection. Herein, we present a novel double "Y" architecture, achieved by using the SpyTag/SpyCatcher and Im7/CL7 systems. The double "Y" assemblies exhibited a significantly higher affinity for their epitopes, as particularly evident in the reduced dissociation rate. An LFIA employing double "Y" assemblies was effectively used to detect the severe acute respiratory syndrome coronavirus-2 N protein, with a detection limit of at least 500 pg/mL. This study helps broaden the array of tools available for the development of Nb-based diagnostic techniques.
Collapse
Affiliation(s)
- Yumeng Xiao
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P. R. China
| | - Hongjie Dong
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, 11 Taibaizhong Road, Jining 272033, P. R. China
| | - Cancan Wu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P. R. China
| | - Kundi Zhang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P. R. China
| | - Xiaoqiong Jiang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P. R. China
| | - Junyu Chen
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P. R. China
| | - Hongwei Wang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P. R. China
| | - Sujuan Xu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P. R. China
| | - Fengyu Zhang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P. R. China
| | - Lichuan Gu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P. R. China
| |
Collapse
|
5
|
Haun BK, To A, Williams CA, Ball A, Fong K, Wong TAS, Shobayo B, Teahton J, Ching L, Kamara V, Tekah DM, Humphrey P, Berestecky J, Nerurkar VR, Lehrer AT. A Serological Multiplexed Immunoassay (MIA) Detects Antibody Reactivity to SARS-CoV-2 and Other Viral Pathogens in Liberia and Is Configurable as a Multiplexed Inhibition Test (MINT). IMMUNO 2024; 4:108-124. [PMID: 39391865 PMCID: PMC11465787 DOI: 10.3390/immuno4010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
The SARS-CoV-2 pandemic ignited global efforts to rapidly develop testing, therapeutics, and vaccines. However, the rewards of these efforts were slow to reach many low- to middle-income countries (LMIC) across the African continent and globally. Therefore, two bead-based multiplexed serological assays were developed to determine SARS-CoV-2 exposure across four counties in Liberia. This study was conducted during the summer of 2021 on 189 samples collected throughout Grand Bassa, Bong, Margibi, and Montserrado counties. Our multiplexed immunoassay (MIA) detected elevated exposure to SARS-CoV-2 and multiple variant antigens. Additionally, we detected evidence of exposure to Dengue virus serotype 2, Chikungunya virus, and the seasonal coronavirus NL63. Our multiplexed inhibition test (MINT) was developed from the MIA to observe antibody-mediated inhibition of SARS-CoV-2 spike protein binding to its cognate cellular receptor ACE-2. We detected inhibitory antibodies in the tested Liberian samples, which were collectively consistent with a convalescent serological profile. These complementary assays serve to supplement existing serological testing needs and may enhance the technical capacity of scientifically underrepresented regions globally.
Collapse
Affiliation(s)
- Brien K. Haun
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Albert To
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Caitlin A. Williams
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Aquena Ball
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Karalyn Fong
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Teri Ann S. Wong
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Bode Shobayo
- National Public Health Institute of Liberia, Monrovia 1000, Liberia
| | - Julius Teahton
- National Public Health Institute of Liberia, Monrovia 1000, Liberia
| | - Lauren Ching
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Varney Kamara
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
- Department of Biological Sciences, Medical Science, TJR Faulkner College of Science and Technology, University of Liberia, Fendall 1000, Liberia
| | - Davidetta M. Tekah
- Department of Biological Sciences, Medical Science, TJR Faulkner College of Science and Technology, University of Liberia, Fendall 1000, Liberia
| | - Peter Humphrey
- Department of Biological Sciences, Medical Science, TJR Faulkner College of Science and Technology, University of Liberia, Fendall 1000, Liberia
| | - John Berestecky
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
- Department of Biological Sciences, Medical Science, TJR Faulkner College of Science and Technology, University of Liberia, Fendall 1000, Liberia
- Math Science Department, Kapiolani Community College, University of Hawaii, Honolulu, HI 96816, USA
| | - Vivek R. Nerurkar
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Axel T. Lehrer
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| |
Collapse
|
6
|
de Araujo WR, Lukas H, Torres MDT, Gao W, de la Fuente-Nunez C. Low-Cost Biosensor Technologies for Rapid Detection of COVID-19 and Future Pandemics. ACS NANO 2024; 18:1757-1777. [PMID: 38189684 PMCID: PMC11537281 DOI: 10.1021/acsnano.3c01629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Many systems have been designed for the detection of SARS-CoV-2, which is the virus that causes COVID-19. SARS-CoV-2 is readily transmitted, resulting in the rapid spread of disease in human populations. Frequent testing at the point of care (POC) is a key aspect for controlling outbreaks caused by SARS-CoV-2 and other emerging pathogens, as the early identification of infected individuals can then be followed by appropriate measures of isolation or treatment, maximizing the chances of recovery and preventing infectious spread. Diagnostic tools used for high-frequency testing should be inexpensive, provide a rapid diagnostic response without sophisticated equipment, and be amenable to manufacturing on a large scale. The application of these devices should enable large-scale data collection, help control viral transmission, and prevent disease propagation. Here we review functional nanomaterial-based optical and electrochemical biosensors for accessible POC testing for COVID-19. These biosensors incorporate nanomaterials coupled with paper-based analytical devices and other inexpensive substrates, traditional lateral flow technology (antigen and antibody immunoassays), and innovative biosensing methods. We critically discuss the advantages and disadvantages of nanobiosensor-based approaches compared to widely used technologies such as PCR, ELISA, and LAMP. Moreover, we delineate the main technological, (bio)chemical, translational, and regulatory challenges associated with developing functional and reliable biosensors, which have prevented their translation into the clinic. Finally, we highlight how nanobiosensors, given their unique advantages over existing diagnostic tests, may help in future pandemics.
Collapse
Affiliation(s)
- William Reis de Araujo
- Portable Chemical Sensors Lab, Department of Analytical Chemistry, Institute of Chemistry, State University of Campinas - UNICAMP, Campinas, SP 13083-970, Brazil
| | - Heather Lukas
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Marcelo D T Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
7
|
Lee JK. Development of Enzyme-Linked Immunosorbent and Immunochromatography Assays for Diagnosing Nosema ceranae Infection in Honey Bees. INSECTS 2024; 15:59. [PMID: 38249065 PMCID: PMC10816434 DOI: 10.3390/insects15010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
Nosema ceranae (N. ceranae) infection is prevalent globally, causing a decline in bee populations and significant economic losses to apiarists. Although several methods have been proposed for diagnosing Nosema infections, limitations in these methods have hindered their broad applications. Therefore, this current study aimed to develop a specialized method for diagnosing Nosema infections. To achieve this, a sandwich enzyme-linked immunosorbent assay (ELISA) and immunochromatography assay (ICG) were developed, and their effectiveness in screening and diagnosing Nosema infection was assessed. In sandwich ELISA, the combination of the monoclonal antibodies (mAb) 19B2 and biotinylated-19B2 exhibited stronger binding affinity to the antigen than did other combinations of mAbs that were tested. Furthermore, the antigen detection limit achieved with the sandwich ELISA surpassed that previously reported with Western blotting. The ICG was designed using the same antibody combination as that used in sandwich ELISA; however, the assay exhibited a lower diagnostic ability for Nosema infection than the ELISA. The diagnostic models developed in this study offer practical applications for conducting rapid nosemosis detection tests. These innovative techniques will help to improve the timely identification and management of nosemosis.
Collapse
Affiliation(s)
- Jae Kwon Lee
- Department of Biology Education, College of Education, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
8
|
Gupta R, Gupta P, Wang S, Melnykov A, Jiang Q, Seth A, Wang Z, Morrissey JJ, George I, Gandra S, Sinha P, Storch GA, Parikh BA, Genin GM, Singamaneni S. Ultrasensitive lateral-flow assays via plasmonically active antibody-conjugated fluorescent nanoparticles. Nat Biomed Eng 2023; 7:1556-1570. [PMID: 36732621 DOI: 10.1038/s41551-022-01001-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 12/20/2022] [Indexed: 02/04/2023]
Abstract
Lateral-flow assays (LFAs) are rapid and inexpensive, yet they are nearly 1,000-fold less sensitive than laboratory-based tests. Here we show that plasmonically active antibody-conjugated fluorescent gold nanorods can make conventional LFAs ultrasensitive. With sample-to-answer times within 20 min, plasmonically enhanced LFAs read out via a standard benchtop fluorescence scanner attained about 30-fold improvements in dynamic range and in detection limits over 4-h-long gold-standard enzyme-linked immunosorbent assays, and achieved 95% clinical sensitivity and 100% specificity for antibodies in plasma and for antigens in nasopharyngeal swabs from individuals with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Comparable improvements in the assay's performance can also be achieved via an inexpensive portable scanner, as we show for the detection of interleukin-6 in human serum samples and of the nucleocapsid protein of SARS-CoV-2 in nasopharyngeal samples. Plasmonically enhanced LFAs outperform standard laboratory tests in sensitivity, speed, dynamic range, ease of use and cost, and may provide advantages in point-of-care diagnostics.
Collapse
Affiliation(s)
- Rohit Gupta
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Prashant Gupta
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Sean Wang
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | | | | | - Anushree Seth
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Zheyu Wang
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Jeremiah J Morrissey
- Department of Anesthesiology, Division of Clinical and Translational Research, Washington University in St. Louis, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Ige George
- Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Sumanth Gandra
- Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Pratik Sinha
- Department of Anesthesiology, Division of Clinical and Translational Research, Washington University in St. Louis, St. Louis, MO, USA
| | - Gregory A Storch
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Bijal A Parikh
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Guy M Genin
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
- NSF Science and Technology Center for Engineering MechanoBiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA.
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
9
|
Lin C, Liu Z, Fang F, Zhao S, Li Y, Xu M, Peng Y, Chen H, Yuan F, Zhang W, Zhang X, Teng Z, Xiao R, Yang Y. Next-Generation Rapid and Ultrasensitive Lateral Flow Immunoassay for Detection of SARS-CoV-2 Variants. ACS Sens 2023; 8:3733-3743. [PMID: 37675933 DOI: 10.1021/acssensors.3c01019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic highlighted the need for rapid and accurate viral detection at the point-of-care testing (POCT). Compared with nucleic acid detection, lateral flow immunoassay (LFIA) is a rapid and flexible method for POCT detection. However, the sensitivity of LFIA limits its use for early identification of patients with COVID-19. Here, an innovative surface-enhanced Raman scattering (SERS)-LFIA platform based on two-dimensional black phosphorus decorated with Ag nanoparticles as important antigen-capturing and Raman-signal-amplification unit was developed for detection of SARS-CoV-2 variants within 5-20 min. The novel SERS-LFIA platform realized a limit of detection of 0.5 pg/mL and 100 copies/mL for N protein and SARS-CoV-2, demonstrating 1000 times more sensitivity than the commercial LFIA strips. It could reliably detect seven different SARS-CoV-2 variants with cycle threshold (Ct) < 38, with sensitivity and specificity of 97 and 100%, respectively, exhibiting the same sensitivity with q-PCR. Furthermore, the detection results for 48 SARS-CoV-2-positive nasopharyngeal swabs (Ct = 19.8-38.95) and 96 negative nasopharyngeal swabs proved the reliability of the strips in clinical application. The method also had good specificity in double-blind experiments involving several other coronaviruses, respiratory viruses, and respiratory medications. The results showed that the innovative SERS-LFIA platform is expected to be the next-generation antigen detection technology. The inexpensive amplification-free assay combines the advantages of rapid low-cost POCT and highly sensitive nucleic acid detection, and it is suitable for rapid detection of SARS-CoV-2 variants and other pathogens. Thus, it could replace existing antigens and nucleic acids to some extent.
Collapse
Affiliation(s)
- Chenglong Lin
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing 100049, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhenzhen Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No.20 Dongdajie, Fengtai District, Beijing 100101, People's Republic of China
| | - Fanghao Fang
- Shanghai Municipal Centre for Disease Control and Prevention, No. 1380, Zhongshan West Road, Shanghai 200336, People's Republic of China
| | - Shuai Zhao
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing 100049, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yanyan Li
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing 100049, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Meimei Xu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing 100049, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yusi Peng
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing 100049, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Hongyou Chen
- Shanghai Municipal Centre for Disease Control and Prevention, No. 1380, Zhongshan West Road, Shanghai 200336, People's Republic of China
| | - Fang Yuan
- Shanghai Municipal Centre for Disease Control and Prevention, No. 1380, Zhongshan West Road, Shanghai 200336, People's Republic of China
| | - Wanju Zhang
- Shanghai Municipal Centre for Disease Control and Prevention, No. 1380, Zhongshan West Road, Shanghai 200336, People's Republic of China
| | - Xi Zhang
- Shanghai Municipal Centre for Disease Control and Prevention, No. 1380, Zhongshan West Road, Shanghai 200336, People's Republic of China
| | - Zheng Teng
- Shanghai Municipal Centre for Disease Control and Prevention, No. 1380, Zhongshan West Road, Shanghai 200336, People's Republic of China
| | - Rui Xiao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No.20 Dongdajie, Fengtai District, Beijing 100101, People's Republic of China
| | - Yong Yang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
10
|
Tayyab M, Barrett D, van Riel G, Liu S, Reinius B, Scharfe C, Griffin P, Steinmetz LM, Javanmard M, Pelechano V. Digital assay for rapid electronic quantification of clinical pathogens using DNA nanoballs. SCIENCE ADVANCES 2023; 9:eadi4997. [PMID: 37672583 PMCID: PMC10482329 DOI: 10.1126/sciadv.adi4997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/04/2023] [Indexed: 09/08/2023]
Abstract
Fast and accurate detection of nucleic acids is key for pathogen identification. Methods for DNA detection generally rely on fluorescent or colorimetric readout. The development of label-free assays decreases costs and test complexity. We present a novel method combining a one-pot isothermal generation of DNA nanoballs with their detection by electrical impedance. We modified loop-mediated isothermal amplification by using compaction oligonucleotides that self-assemble the amplified target into nanoballs. Next, we use capillary-driven flow to passively pass these nanoballs through a microfluidic impedance cytometer, thus enabling a fully compact system with no moving parts. The movement of individual nanoballs is detected by a change in impedance providing a quantized readout. This approach is flexible for the detection of DNA/RNA of numerous targets (severe acute respiratory syndrome coronavirus 2, HIV, β-lactamase gene, etc.), and we anticipate that its integration into a standalone device would provide an inexpensive (<$5), sensitive (10 target copies), and rapid test (<1 hour).
Collapse
Affiliation(s)
- Muhammad Tayyab
- Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Donal Barrett
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Gijs van Riel
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Shujing Liu
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
- International Institute of Tea Industry Innovation for the Belt and Road, Nanjing Agricultural University, Nanjing 210095, China
| | - Björn Reinius
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
| | | | - Peter Griffin
- Stanford Genome Technology Center, Stanford, CA, USA
| | - Lars M. Steinmetz
- Stanford Genome Technology Center, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Mehdi Javanmard
- Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Vicent Pelechano
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
11
|
Duan A, Li J, Yang Z, He Y. The defense of Shangri-La: Protecting isolated communities by periodic infection screening in the worst future pandemic. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 113:105479. [PMID: 37437767 DOI: 10.1016/j.meegid.2023.105479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/20/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
In the worst future pandemic, effective vaccines and medicines could be unavailable for a long time. In such circumstances, it is necessary to evaluate whether a periodic screening can protect isolated communities and critical facilities and avoid a complete shutdown. In this study, we introduced an epidemiological model that included the essential parameters of infection transmission and screening. With varying parameters, we studied the dynamics of viral infection in the isolated communities. In the scenario with a periodic infection screening once per 3 days and a viral basic reproduction number 3.0, >85% of the infection waves have a duration <7 days and the infection size in each of the waves is generally <4 individuals when the efficiency of infection discovery is 0.9 in the screening. When the period of screening was elongated to once per 7 days, the cases of infection dramatically increased to 5 folds of that mentioned previously. Further, with a weak discovery efficiency of 0.7 and the aforementioned low screening frequency, the spread of infection would be out of control. Our study suggests that frequent periodic screening is capable of controlling a future epidemic in isolated communities without other measures.
Collapse
Affiliation(s)
- Anqi Duan
- Shanghai Fifth People's Hospital, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| | - Jian Li
- Shanghai Fifth People's Hospital, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Zhen Yang
- Center for Medical Research and Innovation of Pudong Hospital, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yungang He
- Shanghai Fifth People's Hospital, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
12
|
Rafique Q, Rehman A, Afghan MS, Ahmad HM, Zafar I, Fayyaz K, Ain Q, Rayan RA, Al-Aidarous KM, Rashid S, Mushtaq G, Sharma R. Reviewing methods of deep learning for diagnosing COVID-19, its variants and synergistic medicine combinations. Comput Biol Med 2023; 163:107191. [PMID: 37354819 PMCID: PMC10281043 DOI: 10.1016/j.compbiomed.2023.107191] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/28/2023] [Accepted: 06/19/2023] [Indexed: 06/26/2023]
Abstract
The COVID-19 pandemic has necessitated the development of reliable diagnostic methods for accurately detecting the novel coronavirus and its variants. Deep learning (DL) techniques have shown promising potential as screening tools for COVID-19 detection. In this study, we explore the realistic development of DL-driven COVID-19 detection methods and focus on the fully automatic framework using available resources, which can effectively investigate various coronavirus variants through modalities. We conducted an exploration and comparison of several diagnostic techniques that are widely used and globally validated for the detection of COVID-19. Furthermore, we explore review-based studies that provide detailed information on synergistic medicine combinations for the treatment of COVID-19. We recommend DL methods that effectively reduce time, cost, and complexity, providing valuable guidance for utilizing available synergistic combinations in clinical and research settings. This study also highlights the implication of innovative diagnostic technical and instrumental strategies, exploring public datasets, and investigating synergistic medicines using optimised DL rules. By summarizing these findings, we aim to assist future researchers in their endeavours by providing a comprehensive overview of the implication of DL techniques in COVID-19 detection and treatment. Integrating DL methods with various diagnostic approaches holds great promise in improving the accuracy and efficiency of COVID-19 diagnostics, thus contributing to effective control and management of the ongoing pandemic.
Collapse
Affiliation(s)
- Qandeel Rafique
- Department of Internal Medicine, Sahiwal Medical College, Sahiwal, 57040, Pakistan.
| | - Ali Rehman
- Department of General Medicine Govt. Eye and General Hospital Lahore, 54000, Pakistan.
| | - Muhammad Sher Afghan
- Department of Internal Medicine District Headquarter Hospital Faislaabad, 62300, Pakistan.
| | - Hafiz Muhamad Ahmad
- Department of Internal Medicine District Headquarter Hospital Bahawalnagar, 62300, Pakistan.
| | - Imran Zafar
- Department of Bioinformatics and Computational Biology, Virtual University Pakistan, 44000, Pakistan.
| | - Kompal Fayyaz
- Department of National Centre for Bioinformatics, Quaid-I-Azam University Islamabad, 45320, Pakistan.
| | - Quratul Ain
- Department of Chemistry, Government College Women University Faisalabad, 03822, Pakistan.
| | - Rehab A Rayan
- Department of Epidemiology, High Institute of Public Health, Alexandria University, 21526, Egypt.
| | - Khadija Mohammed Al-Aidarous
- Department of Computer Science, College of Science and Arts in Sharurah, Najran University, 51730, Saudi Arabia.
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia.
| | - Gohar Mushtaq
- Center for Scientific Research, Faculty of Medicine, Idlib University, Idlib, Syria.
| | - Rohit Sharma
- Department of Rasashastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
13
|
Yang YP, Jiesisibieke ZL, Tung TH. Association Between Rapid Antigen Detection Tests and Real-Time Reverse Transcription-Polymerase Chain Reaction Assay for SARS-CoV-2: A Systematic Review and Meta-Analyses. Int J Public Health 2023; 68:1605452. [PMID: 37588042 PMCID: PMC10425602 DOI: 10.3389/ijph.2023.1605452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 07/11/2023] [Indexed: 08/18/2023] Open
Abstract
Objectives: We aimed to assess the association between rapid antigen detection tests and real-time reverse transcription-polymerase chain reaction assay for severe acute respiratory syndrome coronavirus 2. Methods: We searched PubMed, Cochrane Library, EMBASE, and the Web of Science from their inception to 31 May 2023. A random-effects meta-analysis was used to estimate false positives in the RADTs group, relative to those in the RT-PCR group, and subgroup analyses were conducted based on the different Ct value cut-offs (<40 or ≥40). We performed this study in accordance with the guidelines outlined in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Results: Fifty-one studies were included and considered to be of moderate quality. We found a satisfactory overall false positive rate (0.01, 95% CI: 0.00-0.01) for the RADTs compared to RT-PCR. In the stratified analysis, we also found that the false positive rates of the RADTs did not increase when Ct values of RT-PCR (Ct < 40, 0.01, 95% CI: 0.00-0.01; Ct ≥ 40, 0.01, 95% CI: 0.00-0.01). Conclusion: In conclusion, the best available evidence supports an association between RADTs and RT-PCR. When Ct-values were analyzed using cut-off <40 or ≥40, this resulted in an estimated false positive rate of only 1%.
Collapse
Affiliation(s)
- Yu-Pei Yang
- Department of Hematology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Zhu Liduzi Jiesisibieke
- School of Public Health, The University of Hong Kong Li Ka Shing Faculty of Medicine, Pokfulam, Hong Kong, Hong Kong SAR, China
| | - Tao-Hsin Tung
- Evidence-Based Medicine Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| |
Collapse
|
14
|
Tajnur R, Rezwan R, Aziz A, Islam MS. An update on vaccine status and the role of nanomedicine against SARS-CoV-2: A narrative review. Health Sci Rep 2023; 6:e1377. [PMID: 37404449 PMCID: PMC10315735 DOI: 10.1002/hsr2.1377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 06/03/2023] [Accepted: 06/14/2023] [Indexed: 07/06/2023] Open
Abstract
Background and Aims Coronavirus disease 2019 (COVID-19), caused by the SARS-CoV-2 novel coronavirus, is a highly communicable disease that gave rise to the ongoing pandemic. Despite prompt action across many laboratories in many countries, effective management of this disease is still out of reach. The focus of this review is to describe various vaccination approaches and nanomedicine-based delivery systems against COVID-19. Methods The articles included in this study were searched and added from different electronic databases, including PubMed, Scopus, Cochrane, Embase, and preprint databases. Results Mass immunization with vaccines is currently at the forefront of COVID-19 infection control. Such vaccines are live attenuated vaccines, inactivated vaccines, nucleic acid-based vaccines, protein subunit vaccines, viral-vector vaccines, and virus-like particle platforms. However, many promising avenues are currently being explored in laboratory and clinical settings, including treatment options, prevention, diagnosis, and management of the disease. Soft nanoparticles like lipid nanoparticles (solid lipid nanoparticles (SLNPs), liposomes, nanostructured lipid carriers, nanoemulsions, and protein nanoparticles play an essential role in nanomedicine. Because of their unique and excellent properties, nanomedicines have potential applications in treating COVID-19 disease. Conclusions This review work provides an overview of the therapeutic aspects of COVID-19, including vaccination and the role of nanomedicines in the diagnosis, treatment, and prevention of COVID-19.
Collapse
Affiliation(s)
- Rabeya Tajnur
- Department of PharmacyASA University BangladeshDhakaBangladesh
| | - Refaya Rezwan
- Department of PharmacyState University of BangladeshDhakaBangladesh
- Department of Molecular and Translational ScienceMonash UniversityClaytonVictoriaAustralia
| | - Abdul Aziz
- Department of PharmacyState University of BangladeshDhakaBangladesh
| | - Mohammad Safiqul Islam
- Laboratory of Pharmacogenomics and Molecular Biology, Department of PharmacyNoakhali Science and Technology UniversityNoakhaliBangladesh
- Department of Pharmacy, Faculty of ScienceNoakhali Science and Technology UniversityNoakhaliBangladesh
| |
Collapse
|
15
|
Wang J, Xie Q, Song H, Chen X, Zhang X, Zhao X, Hao Y, Zhang Y, Li H, Li N, Fan K, Wang X. Utilizing nanozymes for combating COVID-19: advancements in diagnostics, treatments, and preventative measures. J Nanobiotechnology 2023; 21:200. [PMID: 37344839 PMCID: PMC10283317 DOI: 10.1186/s12951-023-01945-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/29/2023] [Indexed: 06/23/2023] Open
Abstract
The emergence of human severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses significant challenges to global public health. Despite the extensive efforts of researchers worldwide, there remains considerable opportunities for improvement in timely diagnosis, specific treatment, and effective vaccines for SARS-CoV-2. This is due, in part, to the large number of asymptomatic carriers, rapid virus mutations, inconsistent confinement policies, untimely diagnosis and limited clear treatment plans. The emerging of nanozymes offers a promising approach for combating SARS-CoV-2 due to their stable physicochemical properties and high surface areas, which enable easier and multiple nano-bio interactions in vivo. Nanozymes inspire the development of sensitive and economic nanosensors for rapid detection, facilitate the development of specific medicines with minimal side effects for targeted therapy, trigger defensive mechanisms in the form of vaccines, and eliminate SARS-CoV-2 in the environment for prevention. In this review, we briefly present the limitations of existing countermeasures against coronavirus disease 2019 (COVID-19). We then reviewed the applications of nanozyme-based platforms in the fields of diagnostics, therapeutics and the prevention in COVID-19. Finally, we propose opportunities and challenges for the further development of nanozyme-based platforms for COVID-19. We expect that our review will provide valuable insights into the new emerging and re-emerging infectious pandemic from the perspective of nanozymes.
Collapse
Affiliation(s)
- Jia Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001 China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 China
| | - Qingpeng Xie
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001 China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 China
| | - Haoyue Song
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001 China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 China
| | - Xiaohang Chen
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001 China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 China
| | - Xiaoxuan Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001 China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 China
| | - Xiangyu Zhao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001 China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 China
| | - Yujia Hao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001 China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 China
| | - Yuan Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001 China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 China
| | - Huifei Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001 China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 China
| | - Na Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001 China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Xing Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001 China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 China
| |
Collapse
|
16
|
Dong T, Wang M, Liu J, Ma P, Pang S, Liu W, Liu A. Diagnostics and analysis of SARS-CoV-2: current status, recent advances, challenges and perspectives. Chem Sci 2023; 14:6149-6206. [PMID: 37325147 PMCID: PMC10266450 DOI: 10.1039/d2sc06665c] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/03/2023] [Indexed: 06/17/2023] Open
Abstract
The disastrous spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has induced severe public healthcare issues and weakened the global economy significantly. Although SARS-CoV-2 infection is not as fatal as the initial outbreak, many infected victims suffer from long COVID. Therefore, rapid and large-scale testing is critical in managing patients and alleviating its transmission. Herein, we review the recent advances in techniques to detect SARS-CoV-2. The sensing principles are detailed together with their application domains and analytical performances. In addition, the advantages and limits of each method are discussed and analyzed. Besides molecular diagnostics and antigen and antibody tests, we also review neutralizing antibodies and emerging SARS-CoV-2 variants. Further, the characteristics of the mutational locations in the different variants with epidemiological features are summarized. Finally, the challenges and possible strategies are prospected to develop new assays to meet different diagnostic needs. Thus, this comprehensive and systematic review of SARS-CoV-2 detection technologies may provide insightful guidance and direction for developing tools for the diagnosis and analysis of SARS-CoV-2 to support public healthcare and effective long-term pandemic management and control.
Collapse
Affiliation(s)
- Tao Dong
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
- School of Pharmacy, Medical College, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Mingyang Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Junchong Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Pengxin Ma
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Shuang Pang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Wanjian Liu
- Qingdao Hightop Biotech Co., Ltd 369 Hedong Road, Hi-tech Industrial Development Zone Qingdao 266112 China
| | - Aihua Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| |
Collapse
|
17
|
Sakai-Tagawa Y, Yamayoshi S, Halfmann PJ, Wilson N, Bobholz M, Vuyk WC, Wei W, Ries H, O'Connor DH, Friedrich TC, Sordillo EM, van Bakel H, Simon V, Kawaoka Y. Sensitivity of rapid antigen tests for Omicron subvariants of SARS-CoV-2. J Med Virol 2023; 95:e28788. [PMID: 37212288 DOI: 10.1002/jmv.28788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/22/2023] [Accepted: 05/02/2023] [Indexed: 05/23/2023]
Abstract
Diagnosis by rapid antigen tests (RATs) is useful for early initiation of antiviral treatment. Because RATs are easy to use, they can be adapted for self-testing. Several kinds of RATs approved for such use by the Japanese regulatory authority are available from drug stores and websites. Most RATs for COVID-19 are based on antibody detection of the SARS-CoV-2 N protein. Since Omicron and its subvariants have accumulated several amino acid substitutions in the N protein, such amino acid changes might affect the sensitivity of RATs. Here, we investigated the sensitivity of seven RATs available in Japan, six of which are approved for public use and one of which is approved for clinical use, for the detection of BA.5, BA.2.75, BF.7, XBB.1, and BQ.1.1, as well as the delta variant (B.1.627.2). All tested RATs detected the delta variant with a detection level between 7500 and 75 000 pfu per test, and all tested RATs showed similar sensitivity to the Omicron variant and its subvariants (BA.5, BA.2.75, BF.7, XBB.1, and BQ.1.1). Human saliva did not reduce the sensitivity of the RATs tested. Espline SARS-CoV-2 N showed the highest sensitivity followed by Inspecter KOWA SARS-CoV-2 and V Trust SARS-CoV-2 Ag. Since the RATs failed to detect low levels of infectious virus, individuals whose specimens contained less infectious virus than the detection limit would be considered negative. Therefore, it is important to note that RATs may miss individuals shedding low levels of infectious virus.
Collapse
Affiliation(s)
- Yuko Sakai-Tagawa
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Seiya Yamayoshi
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Peter J Halfmann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nancy Wilson
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Max Bobholz
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - William C Vuyk
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Wanting Wei
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Hunter Ries
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - David H O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, USA
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Thomas C Friedrich
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Emilia M Sordillo
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Viviana Simon
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yoshihiro Kawaoka
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Infection and Advanced Research Center, The University of Tokyo Pandemic Preparedness, Tokyo, Japan
| |
Collapse
|
18
|
Shrestha MR, Basnet A, Maharjan R, Chand AB, Karki L, Singh S, Ghimire S, Maharjan R. COVID-19 among Patients Visiting the Department of Emergency of a Tertiary Care Centre: A Descriptive Cross-sectional Study. JNMA J Nepal Med Assoc 2023; 61:460-464. [PMID: 37203906 PMCID: PMC10896442 DOI: 10.31729/jnma.8053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/28/2023] [Indexed: 05/20/2023] Open
Abstract
Introduction Because of the unbridled transmissibility of the SARS-CoV-2 worldwide, researchers and healthcare professionals have set a common goal for timely diagnosis and future prevention of the disease. The aim of this study was to find out the prevalence of COVID-19 among patients visiting the Department of Emergency of a tertiary care centre. Methods This descriptive cross-sectional study was conducted among the individuals suspected COVID-19 who had visited the Department of Emergency of a tertiary care centre between 11 January 2021 and 29 December 2021. Ethical approval was taken from Ethical Review Board (Reference number: 2768). Socio-demographic details, clinical symptoms, and two nasopharyngeal swab samples (one in viral transport medium to run RT-PCR and the other for Ag-RDT) were collected from each individual. Convenience sampling method was used. Point estimate and 95% Confidence Interval were calculated. Results Among the 232 patients, COVID-19 was detected in 108 (46.55%) (40.13-52.97, 95% CI) by Ag-RDT. A total of 44 (39.63%) of age groups 31-40 years were predominantly infected with SARS-CoV-2. The mean age was 32.13±10.80 years and was mostly males 73 (65.77%). Fever was present in 57 (51.35%) and dry cough was present in 50 (45.05%) COVID-19 patients. Conclusions The prevalence of COVID-19 among hospitalized individuals in this study was higher than in previous studies conducted in similar settings. Keywords COVID-19; Nepal; prevalence; SARS-CoV-2.
Collapse
Affiliation(s)
- Mahendra Raj Shrestha
- Department of Clinical Laboratory, Nepal Armed Police Force Hospital, Balambu, Kathmandu, Nepal
| | - Ajaya Basnet
- Department of Medical Microbiology, Shi-Gan International College of Science and Technology, Maharajganj, Kathmandu, Nepal
| | - Rajendra Maharjan
- Department of Clinical Laboratory, Nepal Armed Police Force Hospital, Balambu, Kathmandu, Nepal
| | - Arun Bahadur Chand
- Department of Clinical Laboratory, KIST Medical College and Teaching Hospital, Mahalaxmi, Lalitpur, Nepal
| | - Lochan Karki
- Department of Medicine, National Academy of Medical Sciences, Bir Hospital, Mahaboudha, Kathmandu, Nepal
| | - Subash Singh
- Department of Clinical Laboratory, Nepal Armed Police Force Hospital, Balambu, Kathmandu, Nepal
| | - Sagar Ghimire
- Department of Molecular Laboratory, Nepal Armed Police Force Hospital, Balambu, Kathmandu, Nepal
| | - Rupak Maharjan
- Department of Dermatology, Nepal Armed Police Force Hospital, Balambu, Kathmandu, Nepal
| |
Collapse
|
19
|
Fragkou PC, De Angelis G, Menchinelli G, Can F, Garcia F, Morfin-Sherpa F, Dimopoulou D, Dimopoulou K, Zelli S, de Salazar A, Reiter R, Janocha H, Grossi A, Omony J, Skevaki C. Update of ESCMID COVID-19 guidelines: diagnostic testing for SARS-CoV-2. Clin Microbiol Infect 2023:S1198-743X(23)00192-1. [PMID: 37088423 PMCID: PMC10122552 DOI: 10.1016/j.cmi.2023.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 04/25/2023]
Abstract
SCOPE Since the onset of coronavirus disease 2019 (COVID-19), several assays have been deployed for the diagnosis of SARS-CoV-2. The European Society of Clinical Microbiology and Infectious Diseases (ESCMID) published the first set of guidelines on SARS-CoV-2 in-vitro diagnosis in February 2022. Since the COVID-19 landscape is rapidly evolving, the relevant ESCMID guidelines panel releases an update of the previously published recommendations on diagnostic testing for SARS-CoV-2. This update aims to delineate the best diagnostic approach for SARS-CoV-2 in different populations based on current evidence. METHODS An ESCMID COVID-19 guidelines task force was established by the ESCMID Executive Committee. A small group was established, half appointed by the chair, and the remaining selected with an open call. The panel met virtually once a week. For all decisions, a simple majority vote was used. A list of clinical questions using the PICO (population, intervention, comparison, and outcome) format was developed at the beginning of the process. For each PICO, two panel members performed a literature search focusing on systematic reviews with a third panellist involved in case of inconsistent results. The panel reassessed the PICOs previously defined as priority in the first set of guidelines and decided to address 49 PICO questions, as 6 of them were discarded as outdated/non-clinically relevant. The "Grading of Recommendations Assessment, Development and Evaluation(GRADE)-adoption, adaptation, and de novo development of recommendations (ADOLOPMENT)" evidence-to-decision framework was utilized to produce the guidelines. QUESTIONS ADDRESSED BY THE GUIDELINE AND RECOMMENDATIONS After literature search, we updated 16 PICO questions; these PICOs address the use of antigen-based assays among symptomatic and asymptomatic patients with different ages, COVID-19 severity status or risk for severe COVID-19, time since onset of symptoms/contact with an infectious case, and finally, types of biomaterials used.
Collapse
Affiliation(s)
- Paraskevi C Fragkou
- First Department of Critical Care Medicine & Pulmonary Services, Evangelismos General Hospital, National and Kapodistrian University of Athens, Athens, Greece; European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Respiratory Viruses (ESGREV)
| | - Giulia De Angelis
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Respiratory Viruses (ESGREV); Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS - 00168, Rome, Italy
| | - Giulia Menchinelli
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Respiratory Viruses (ESGREV); Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS - 00168, Rome, Italy; Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Fusun Can
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Respiratory Viruses (ESGREV); Department of Medical Microbiology, Koc University School of Medicine, Istanbul, Turkey; Koc University IsBank Research Centre for Infectious Diseases (KUISCID), Istanbul, Turkey
| | - Federico Garcia
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Respiratory Viruses (ESGREV); Servicio de Microbiología Clínica. Hospital Universitario Clínico San Cecilio. Instituto de Investigación Biosanitaria, Ibs.GRANADA, Granada, Spain; Centro de Investigación Biomédicaen Red Enfermedades Infecciosas (CIBERINFEC), ISCIII, Madrid, Spain
| | - Florence Morfin-Sherpa
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Respiratory Viruses (ESGREV); Laboratory of Virology, Institut des Agents Infectieux, National Reference Centre for respiratory viruses, Hospices Civils de Lyon, Université Claude Bernard Lyon1, Lyon, France
| | - Dimitra Dimopoulou
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Respiratory Viruses (ESGREV); Second Department of Paediatrics, "P. and A. Kyriakou" Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Silvia Zelli
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS - 00168, Rome, Italy
| | - Adolfo de Salazar
- Servicio de Microbiología Clínica. Hospital Universitario Clínico San Cecilio. Instituto de Investigación Biosanitaria, Ibs.GRANADA, Granada, Spain; Centro de Investigación Biomédicaen Red Enfermedades Infecciosas (CIBERINFEC), ISCIII, Madrid, Spain
| | - Rieke Reiter
- Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Centre (UGMLC), Philipps University Marburg, German Centre for Lung Research (DZL), Marburg, Germany
| | - Hannah Janocha
- Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Centre (UGMLC), Philipps University Marburg, German Centre for Lung Research (DZL), Marburg, Germany
| | | | - Jimmy Omony
- Institute for Asthma and Allergy Prevention (IAP), Helmholtz Zentrum Munich, German Research Centre for Environmental Health (GmbH), Munich, Germany
| | - Chrysanthi Skevaki
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Respiratory Viruses (ESGREV); Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Centre (UGMLC), Philipps University Marburg, German Centre for Lung Research (DZL), Marburg, Germany.
| |
Collapse
|
20
|
Mannino RG, Nehl EJ, Farmer S, Peagler AF, Parsell MC, Claveria V, Ku D, Gottfried DS, Chen H, Lam WA, Brand O. The critical role of engineering in the rapid development of COVID-19 diagnostics: Lessons from the RADx Tech Test Verification Core. SCIENCE ADVANCES 2023; 9:eade4962. [PMID: 37027461 PMCID: PMC10081837 DOI: 10.1126/sciadv.ade4962] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
Engineering plays a critical role in the development of medical devices, and this has been magnified since 2020 as severe acute respiratory syndrome coronavirus 2 swept over the globe. In response to the coronavirus disease 2019, the National Institutes of Health launched the Rapid Acceleration of Diagnostics (RADx) initiative to help meet the testing needs of the United States and effectively manage the pandemic. As the Engineering and Human Factors team for the RADx Tech Test Verification Core, we directly assessed more than 30 technologies that ultimately contributed to an increase of the country's total testing capacity by 1.7 billion tests to date. In this review, we present central lessons learned from this "apples-to-apples" comparison of novel, rapidly developed diagnostic devices. Overall, the evaluation framework and lessons learned presented in this review may serve as a blueprint for engineers developing point-of-care diagnostics, leaving us better prepared to respond to the next global public health crisis rapidly and effectively.
Collapse
Affiliation(s)
- Robert G. Mannino
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Eric J. Nehl
- Behavioral, Social, and Health Education Sciences, Emory University, Atlanta, GA 30322, USA
| | - Sarah Farmer
- Center for Advanced Communications Policy, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Amanda Foster Peagler
- Center for Advanced Communications Policy, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Maren C. Parsell
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Viviana Claveria
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - David Ku
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - David S. Gottfried
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Hang Chen
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Wilbur A. Lam
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Oliver Brand
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
21
|
Chabi M, Vu B, Brosamer K, Smith M, Chavan D, Conrad JC, Willson RC, Kourentzi K. Smartphone-read phage lateral flow assay for point-of-care detection of infection. Analyst 2023; 148:839-848. [PMID: 36645184 PMCID: PMC10503656 DOI: 10.1039/d2an01499h] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The COVID-19 pandemic has highlighted the urgent need for sensitive, affordable, and widely accessible testing at the point of care. Here we demonstrate a new, universal LFA platform technology using M13 phage conjugated with antibodies and HRP enzymes that offers high analytical sensitivity and excellent performance in a complex clinical matrix. We also report its complete integration into a sensitive chemiluminescence-based smartphone-readable lateral flow assay for the detection of SARS-CoV-2 nucleoprotein. We screened 84 anti-nucleoprotein monoclonal antibody pairs in phage LFA and identified an antibody pair that gave an LoD of 25 pg mL-1 nucleoprotein in nasal swab extract using a FluorChem gel documentation system and 100 pg mL-1 when the test was imaged and analyzed by an in-house-developed smartphone reader. The smartphone-read LFA signals for positive clinical samples tested (N = 15, with known Ct) were statistically different (p < 0.001) from signals for negative clinical samples (N = 11). The phage LFA technology combined with smartphone chemiluminescence imaging can enable the timely development of ultrasensitive, affordable point-of-care testing platforms for SARS-CoV-2 and beyond.
Collapse
Affiliation(s)
- Maede Chabi
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, USA.
| | - Binh Vu
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, USA.
| | - Kristen Brosamer
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, USA.
| | - Maxwell Smith
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, USA.
| | - Dimple Chavan
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, USA
| | - Jacinta C Conrad
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, USA.
| | - Richard C Willson
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, USA.
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, USA.
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, USA
- Escuela de Medicina y Ciencias de Salud, Tecnológico de Monterrey, Monterrey, Nuevo León 64710, Mexico
| | - Katerina Kourentzi
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, USA.
| |
Collapse
|
22
|
Sharma S, Shrivastava S, Kausley SB, Rai B, Pandit AB. Coronavirus: a comparative analysis of detection technologies in the wake of emerging variants. Infection 2023; 51:1-19. [PMID: 35471631 PMCID: PMC9038995 DOI: 10.1007/s15010-022-01819-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/30/2022] [Indexed: 01/31/2023]
Abstract
An outbreak of the coronavirus disease caused by a novel pathogen created havoc and continues to affect the entire world. As the pandemic progressed, the scientific community was faced by the limitations of existing diagnostic methods. In this review, we have compared the existing diagnostic techniques such as reverse transcription polymerase chain reaction (RT-PCR), antigen and antibody detection, computed tomography scan, etc. and techniques in the research phase like microarray, artificial intelligence, and detection using novel materials; on the prospect of sample preparation, detection procedure (qualitative/quantitative), detection time, screening efficiency, cost-effectiveness, and ability to detect different variants. A detailed comparison of different techniques showed that RT-PCR is still the most widely used and accepted coronavirus detection method despite certain limitations (single gene targeting- in context to mutations). New methods with similar efficiency that could overcome the limitations of RT-PCR may increase the speed, simplicity, and affordability of diagnosis. In addition to existing devices, we have also discussed diagnostic devices in the research phase showing high potential for clinical use. Our approach would be of enormous benefit in selecting a diagnostic device under a given scenario, which would ultimately help in controlling the current pandemic caused by the coronavirus, which is still far from over with new variants emerging.
Collapse
Affiliation(s)
- Shagun Sharma
- Department of Zoology, University of Rajasthan, JLN Marg, Jaipur, 302004, India
| | - Surabhi Shrivastava
- Physical Sciences Research Area, TCS Research, Tata Research Development and Design Centre, Tata Consultancy Services Limited, Pune, 411013, India
| | - Shankar B Kausley
- Physical Sciences Research Area, TCS Research, Tata Research Development and Design Centre, Tata Consultancy Services Limited, Pune, 411013, India.
| | - Beena Rai
- Physical Sciences Research Area, TCS Research, Tata Research Development and Design Centre, Tata Consultancy Services Limited, Pune, 411013, India
| | - Aniruddha B Pandit
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| |
Collapse
|
23
|
He J, Zhu S, Zhou J, Jiang W, Yin L, Su L, Zhang X, Chen Q, Li X. Rapid detection of SARS-CoV-2: The gradual boom of lateral flow immunoassay. Front Bioeng Biotechnol 2023; 10:1090281. [PMID: 36704307 PMCID: PMC9871317 DOI: 10.3389/fbioe.2022.1090281] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is still in an epidemic situation, which poses a serious threat to the safety of people and property. Rapid diagnosis and isolation of infected individuals are one of the important methods to control virus transmission. Existing lateral flow immunoassay techniques have the advantages of rapid, sensitive, and easy operation, and some new options have emerged with the continuous development of nanotechnology. Such as lateral flow immunoassay test strips based on colorimetric-fluorescent dual-mode and gold nanoparticles, Surface Enhanced Raman Scattering, etc., these technologies have played an important role in the rapid diagnosis of COVID-19. In this paper, we summarize the current research progress of lateral flow immunoassay in the field of Severe Acute Respiratory Syndrome Coronavirus 2 infection diagnosis, analyze the performance of Severe Acute Respiratory Syndrome Coronavirus 2 lateral flow immunoassay products, review the advantages and limitations of different detection methods and markers, and then explore the competitive CRISPR-based nucleic acid chromatography detection method. This method combines the advantages of gene editing and lateral flow immunoassay and can achieve rapid and highly sensitive lateral flow immunoassay detection of target nucleic acids, which is expected to be the most representative method for community and clinical point-of-care testing. We hope that researchers will be inspired by this review and strive to solve the problems in the design of highly sensitive targets, the selection of detection methods, and the enhancement of CRISPR technology, to truly achieve rapid, sensitive, convenient, and specific detection of novel coronaviruses, thus promoting the development of novel coronavirus diagnosis and contributing our modest contribution to the world's fight against epidemics.
Collapse
|
24
|
Solin K, Beaumont M, Borghei M, Orelma H, Mertens P, Rojas OJ. Immobilized cellulose nanospheres enable rapid antigen detection in lateral flow immunoassays. CELLULOSE (LONDON, ENGLAND) 2023; 30:2353-2365. [PMID: 36624885 PMCID: PMC9813465 DOI: 10.1007/s10570-022-05038-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
UNLABELLED Rapid diagnostic systems are essential in controlling the spread of viral pathogens and efficient patient management. The available technologies for low-cost viral antigen testing have several limitations, including a lack of accuracy and sensitivity. Here, we introduce a platform based on cellulose II nanoparticles (oppositely charged NPan and NPcat) for effective control of surface protein interactions, leading to rapid and sensitive antigen tests. Passivation against non-specific adsorption and augmented immobilization of sensing antibodies is achieved by adjusting the electrostatic charge of the nanoparticles. The interactions affecting the performance of the system are investigated by microgravimetry and confocal imaging. As a proof-of-concept test, SARS-CoV-2 nucleocapsid sensing was carried out by using saliva-wicking by channels that were stencil-printed on paper. We conclude that inkjet-printed NPcat elicits strong optical signals, visible after a few minutes, opening the opportunity for cost-effective and rapid diagnostic. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10570-022-05038-y.
Collapse
Affiliation(s)
- Katariina Solin
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, 00076 Espoo, Finland
- VTT Technical Research Centre of Finland Ltd., Tietotie 4E, 02044 Espoo, Finland
| | - Marco Beaumont
- Department of Chemistry, Institute of Chemistry for Renewable Resources, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Maryam Borghei
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, 00076 Espoo, Finland
| | - Hannes Orelma
- VTT Technical Research Centre of Finland Ltd., Tietotie 4E, 02044 Espoo, Finland
| | - Pascal Mertens
- Coris BioConcept, Rue Jean Sonet 4A, 5032 Gembloux, Belgium
| | - Orlando J. Rojas
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, 00076 Espoo, Finland
- The Bioproducts Institute, Departments of Chemical and Biological Engineering, Chemistry and Wood Science, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z4 Canada
| |
Collapse
|
25
|
Preethi M, Roy L, Lahkar S, Borse V. Outlook of various diagnostics and nanodiagnostic techniques for COVID-19. BIOSENSORS & BIOELECTRONICS: X 2022; 12:100276. [PMID: 36345412 PMCID: PMC9632232 DOI: 10.1016/j.biosx.2022.100276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/15/2022] [Accepted: 10/26/2022] [Indexed: 05/06/2023]
Abstract
The sudden outbreak of the coronavirus disease 2019 (COVID-19) pandemic has brought to the fore the existing threat of disease-causing pathogens that affect public health all over the world. It has left the best healthcare systems struggling to contain the spread of disease and its consequences. Under challenging circumstances, several innovative technologies have emerged that facilitated quicker diagnosis and treatment. Nanodiagnostic devices are biosensing platforms developed using nanomaterials such as nanoparticles, nanotubes, nanowires, etc. These devices have the edge over conventional techniques such as reverse transcription-polymerase chain reaction (RT-PCR) because of their ease of use, quicker analysis, possible miniaturization, and scope for use in point-of-care (POC) treatment. This review discusses the techniques currently used for COVID-19 diagnosis, emphasizing nanotechnology-based diagnostic devices. The commercialized nanodiagnostic devices in various research and development stages are also reviewed. The advantages of nanodiagnostic devices over other techniques are discussed, along with their limitations. Additionally, the important implications of the utility of nanodiagnostic devices in COVID-19, their prospects for future development for use in clinical and POC settings, and personalized healthcare are also discussed.
Collapse
Affiliation(s)
- Mosam Preethi
- NanoBioSens Lab, Department of Medical Devices, National Institute of Pharmaceutical Education & Research (NIPER) Hyderabad, Hyderabad, 500037, Telangana, India
| | - Lavanika Roy
- NanoBioSens Lab, Department of Medical Devices, National Institute of Pharmaceutical Education & Research (NIPER) Hyderabad, Hyderabad, 500037, Telangana, India
| | - Sukanya Lahkar
- NanoBioSens Lab, Department of Medical Devices, National Institute of Pharmaceutical Education & Research (NIPER) Hyderabad, Hyderabad, 500037, Telangana, India
| | - Vivek Borse
- NanoBioSens Lab, Department of Medical Devices, National Institute of Pharmaceutical Education & Research (NIPER) Hyderabad, Hyderabad, 500037, Telangana, India
| |
Collapse
|
26
|
Valenzuela-Fernández A, Cabrera-Rodriguez R, Ciuffreda L, Perez-Yanes S, Estevez-Herrera J, González-Montelongo R, Alcoba-Florez J, Trujillo-González R, García-Martínez de Artola D, Gil-Campesino H, Díez-Gil O, Lorenzo-Salazar JM, Flores C, Garcia-Luis J. Nanomaterials to combat SARS-CoV-2: Strategies to prevent, diagnose and treat COVID-19. Front Bioeng Biotechnol 2022; 10:1052436. [PMID: 36507266 PMCID: PMC9732709 DOI: 10.3389/fbioe.2022.1052436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/09/2022] [Indexed: 11/26/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the associated coronavirus disease 2019 (COVID-19), which severely affect the respiratory system and several organs and tissues, and may lead to death, have shown how science can respond when challenged by a global emergency, offering as a response a myriad of rapid technological developments. Development of vaccines at lightning speed is one of them. SARS-CoV-2 outbreaks have stressed healthcare systems, questioning patients care by using standard non-adapted therapies and diagnostic tools. In this scenario, nanotechnology has offered new tools, techniques and opportunities for prevention, for rapid, accurate and sensitive diagnosis and treatment of COVID-19. In this review, we focus on the nanotechnological applications and nano-based materials (i.e., personal protective equipment) to combat SARS-CoV-2 transmission, infection, organ damage and for the development of new tools for virosurveillance, diagnose and immune protection by mRNA and other nano-based vaccines. All the nano-based developed tools have allowed a historical, unprecedented, real time epidemiological surveillance and diagnosis of SARS-CoV-2 infection, at community and international levels. The nano-based technology has help to predict and detect how this Sarbecovirus is mutating and the severity of the associated COVID-19 disease, thereby assisting the administration and public health services to make decisions and measures for preparedness against the emerging variants of SARS-CoV-2 and severe or lethal COVID-19.
Collapse
Affiliation(s)
- Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Romina Cabrera-Rodriguez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Laura Ciuffreda
- Research Unit, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Silvia Perez-Yanes
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Judith Estevez-Herrera
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | | | - Julia Alcoba-Florez
- Servicio de Microbiología, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Rodrigo Trujillo-González
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | | | - Helena Gil-Campesino
- Servicio de Microbiología, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Oscar Díez-Gil
- Servicio de Microbiología, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - José M. Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
| | - Carlos Flores
- Research Unit, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Faculty of Health Sciences, University of Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Jonay Garcia-Luis
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| |
Collapse
|
27
|
Ang GY, Chan KG, Yean CY, Yu CY. Lateral Flow Immunoassays for SARS-CoV-2. Diagnostics (Basel) 2022; 12:2854. [PMID: 36428918 PMCID: PMC9689684 DOI: 10.3390/diagnostics12112854] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/09/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
The continued circulation of SARS-CoV-2 virus in different parts of the world opens up the possibility for more virulent variants to evolve even as the coronavirus disease 2019 transitions from pandemic to endemic. Highly transmissible and virulent variants may seed new disruptive epidemic waves that can easily put the healthcare system under tremendous pressure. Despite various nucleic acid-based diagnostic tests that are now commercially available, the wide applications of these tests are largely hampered by specialized equipment requirements that may not be readily available, accessible and affordable in less developed countries or in low resource settings. Hence, the availability of lateral flow immunoassays (LFIs), which can serve as a diagnostic tool by detecting SARS-CoV-2 antigen or as a serological tool by measuring host immune response, is highly appealing. LFI is rapid, low cost, equipment-free, scalable for mass production and ideal for point-of-care settings. In this review, we first summarize the principle and assay format of these LFIs with emphasis on those that were granted emergency use authorization by the US Food and Drug Administration followed by discussion on the specimen type, marker selection and assay performance. We conclude with an overview of challenges and future perspective of LFI applications.
Collapse
Affiliation(s)
- Geik Yong Ang
- Faculty of Sports Science and Recreation, Universiti Teknologi MARA, Shah Alam 40450, Malaysia
| | - Kok Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
- International Genome Centre, Jiangsu University, Zhenjiang 212013, China
| | - Chan Yean Yean
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Malaysia
| | - Choo Yee Yu
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
28
|
Hong D, Jo EJ, Jung C, Kim MG. Absorption-Modulated SiO 2@Au Core-Satellite Nanoparticles for Highly Sensitive Detection of SARS-CoV-2 Nucleocapsid Protein in Lateral Flow Immunosensors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45189-45200. [PMID: 36191048 PMCID: PMC9578370 DOI: 10.1021/acsami.2c13303] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
The worldwide spread of coronavirus disease 2019 (COVID-19) highlights the need for rapid, simple, and accurate tests to detect various variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The antigen test, based on the lateral flow immunoassay (LFI), is a suitable "first line of defense" test that enables early identification and timely isolation of patients to minimize viral transmission among communities. However, it is generally less accurate than nucleic acid testing, and its sensitivity needs improvement. Here, a novel rapid detection method is designed to sensitively detect SARS-CoV-2 using isolated gold nanoparticle (AuNP)-assembled SiO2 core-satellite nanoparticles (SiO2@Au CSNPs). Well-grown AuNP satellites in the synthesis of SiO2@Au CSNPs significantly enhanced their light absorption, increased the detection sensitivity, and lowered the detection limit by 2 orders of magnitude relative to conventional gold colloids. The proposed system enabled highly sensitive detection of the SARS-CoV-2 nucleocapsid protein with a detection limit of 0.24 pg mL-1 within 20 min. This is the first study to develop a highly sensitive antigen test using the absorption-modulated SiO2@Au CSNPs. Our findings demonstrate the capacity of this platform to serve as an effective sensing strategy for managing pandemic conditions and preventing the spread of viral infections.
Collapse
Affiliation(s)
| | | | - Chaewon Jung
- Department of Chemistry, School of
Physics and Chemistry, Gwangju Institute
of Science & Technology (GIST), 123 Cheomdan-gwagiro, Gwangju 61005, Republic of Korea
| | - Min-Gon Kim
- Department of Chemistry, School of
Physics and Chemistry, Gwangju Institute
of Science & Technology (GIST), 123 Cheomdan-gwagiro, Gwangju 61005, Republic of Korea
| |
Collapse
|
29
|
Oueslati S, Manai Bouokazi M, Ramdhani I, Escaut L, Pham T, Ouzani S, Anguel N, Bulifon S, Vauloup-Fellous C, Coilly A, Legros L, Guichardon M, Fortineau N, Dortet L, Roque-Afonso AM, Naas T. Clinical Added Value of SARS-CoV-2 Antigen Detection in Blood Samples. Diagnostics (Basel) 2022; 12:2427. [PMID: 36292116 PMCID: PMC9600523 DOI: 10.3390/diagnostics12102427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/24/2022] Open
Abstract
This study evaluated the performances of immunoassays (LFIA and ELISA) designed for SARS-CoV-2 Antigen (Ag)-detection in nasopharyngeal (NP) and serum samples in comparison to RT-PCR. NP samples from patients with respiratory symptoms (183 RT-PCR-positive and 74 RT-PCR-negative samples) were collected from March to April and November to December 2020. Seroconversion and antigen dynamics were assessed by symptom onset and day of RT-PCR diagnosis. Serum samples from 87 COVID-19 patients were used to investigate the added value of Ag quantification, at diagnosis and during follow-up. The sensitivity of COVID-VIRO-LFIA on samples with Ct ≤ 33, considered as the contagious threshold, was 86% on NPs (CI 95%: 79-90.5) and 76% on serum samples (CI 95%: 59.4-88), with a specificity of 100%. Serum N-Ag was detected during active infection as early as day two from symptom onset, with a diagnostic sensitivity of 81.5%. Within one week of symptom onset, diagnostic sensitivity and specificity reached 90.9% (95% CI, 85.1%-94.6%) and 98.3% (95% CI, 91.1%-99.9%), respectively. Serum N-Ag concentration closely correlated with disease severity. Longitudinal analysis revealed the simultaneous increase of antibodies and decrease of N-Ag. Sensitivities of COVID-VIRO-LFIA and COV-QUANTO-ELISA tests on NP and serum samples were close to 80%. They are suitable COVID-19-laboratory diagnostic tests, particularly when blood samples are available, thus reducing the requirement for NP sampling, and subsequent PCR analysis. ELISA titers may help to identify patients at risk of poor outcomes.
Collapse
Affiliation(s)
- Saoussen Oueslati
- Bacteriology-Hygiene Unit, Hôpital Bicêtre, APHP Paris-Saclay, Team ReSIST, INSERM U1184, Université Paris-Saclay, LabEx LERMIT, 94270 Le Kremlin-Bicêtre, France
| | - Melek Manai Bouokazi
- Service de Virologie, Hôpital Paul-Brousse, APHP Paris-Saclay, and UMR 1193 Physiopathogénèse et Traitement des Maladies du Foie, 94800 Villejuif, France
| | - Ikrame Ramdhani
- Unité de Recherche Clinique, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Lélia Escaut
- Service de Maladie Infectieuse et Tropicale, 94270 Le Kremlin-Bicêtre, France
| | - Tài Pham
- Service de Médecine Intensive et Réanimation, Hôpital Bicêtre, APHP Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Souad Ouzani
- Bacteriology-Hygiene Unit, Hôpital Bicêtre, APHP Paris-Saclay, Team ReSIST, INSERM U1184, Université Paris-Saclay, LabEx LERMIT, 94270 Le Kremlin-Bicêtre, France
| | - Nadia Anguel
- Service de Médecine Intensive et Réanimation, Hôpital Bicêtre, APHP Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Sophie Bulifon
- Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, APHP Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Christelle Vauloup-Fellous
- Service de Virologie, Hôpital Paul-Brousse, APHP Paris-Saclay, and UMR 1193 Physiopathogénèse et Traitement des Maladies du Foie, 94800 Villejuif, France
| | - Audrey Coilly
- Centre Hépatobiliaire, Hôpital Paul-Brousse, APHP Paris-Saclay, 94800 Villejuif, France
| | - Laurence Legros
- Hématologie Clinique, Hôpital Paul-Brousse, APHP Paris-Saclay, 94800 Villejuif, France
| | - Magali Guichardon
- Gériatrie, Hôpital Paul-Brousse, APHP Paris-Saclay, 94800 Villejuif, France
| | - Nicolas Fortineau
- Bacteriology-Hygiene Unit, Hôpital Bicêtre, APHP Paris-Saclay, Team ReSIST, INSERM U1184, Université Paris-Saclay, LabEx LERMIT, 94270 Le Kremlin-Bicêtre, France
| | - Laurent Dortet
- Bacteriology-Hygiene Unit, Hôpital Bicêtre, APHP Paris-Saclay, Team ReSIST, INSERM U1184, Université Paris-Saclay, LabEx LERMIT, 94270 Le Kremlin-Bicêtre, France
| | - Anne-Marie Roque-Afonso
- Service de Virologie, Hôpital Paul-Brousse, APHP Paris-Saclay, and UMR 1193 Physiopathogénèse et Traitement des Maladies du Foie, 94800 Villejuif, France
| | - Thierry Naas
- Bacteriology-Hygiene Unit, Hôpital Bicêtre, APHP Paris-Saclay, Team ReSIST, INSERM U1184, Université Paris-Saclay, LabEx LERMIT, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
30
|
Li H, Meng K, Yu Q, Chen C, Chen J, Li J, Wang X, Wang Y, Li M, Chen C, Zhou K. Rapid detection method of Skeletonema pseudocostatum and preparation of test strip. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:70202-70208. [PMID: 35583761 DOI: 10.1007/s11356-022-20040-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/29/2022] [Indexed: 06/15/2023]
Abstract
In eutrophic waters, harmful algal blooms (HAB) are particularly prone to occur, which will affect the ecological environment and public health and safety. How to quickly detect and monitor marine microalgae is the key to preventing and managing HAB. Our innovative application of colloidal gold immunochromatography (GICG) technology to detect the dominant species in red tide, Skeletonema pseudocostatum, to monitor the outbreak of red tide. The experimental results show that the method and the prepared test strips are extremely sensitive and can specifically detect the presence of Skeletonema pseudocostatum. The approximate concentration of algae cells is judged by establishing a fitting relationship between the degree of color development and the concentration of algae cells. This test strip provides a quick and easy method for routine environmental monitoring, fishery water quality monitoring, and field testing of red tide monitoring. It effectively warns of the outbreak of red tides and also provides a new application direction for GICG technology.
Collapse
Affiliation(s)
- Haoran Li
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Kun Meng
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Qiaojie Yu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Changping Chen
- School of Life Science, Xiamen University, Xiamen, 361102, Fujian, China
| | - Jingfeng Chen
- School of Life Science, Xiamen University, Xiamen, 361102, Fujian, China
| | - Jingli Li
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Xinyi Wang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yingzi Wang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Mingyang Li
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Chuang Chen
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Kefu Zhou
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China.
| |
Collapse
|
31
|
Blanchard AC, Desforges M, Labbé AC, Nguyen CT, Petit Y, Besner D, Zinszer K, Séguin O, Laghdir Z, Adams K, Benoit MÈ, Leduc G, Longtin J, Ragoussis J, Buckeridge DL, Quach C. Evaluation of Real-life Use of Point-of-care Rapid Antigen Testing for SARS-CoV-2 in Schools (EPOCRATES): a cohort study. CMAJ Open 2022; 10:E1027-E1033. [PMID: 36622324 PMCID: PMC9744263 DOI: 10.9778/cmajo.20210327] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND SARS-CoV-2 transmission has an impact on education. In this study, we assessed the performance of rapid antigen detection tests (RADTs) versus polymerase chain reaction (PCR) for the diagnosis of SARS-CoV-2 infection in school settings, and RADT use for monitoring exposed contacts. METHODS In this real-world, prospective observational cohort study, high-school students and staff were recruited from 2 high schools in Montréal, Canada, and followed from Jan. 25 to June 10, 2021. Twenty-five percent of asymptomatic participants were tested weekly by RADT (nasal) and PCR (gargle). Class contacts of cases were tested. Symptomatic participants were tested by RADT (nasal) and PCR (nasal and gargle). The number of cases and outbreaks were compared with those of other high schools in the same area. RESULTS Overall, 2099 students and 286 school staff members consented to participate. The overall specificity of RADTs varied from 99.8% to 100%, with a lower sensitivity, varying from 28.6% in asymptomatic to 83.3% in symptomatic participants. Secondary cases were identified in 10 of 35 classes. Returning students to school after a 7-day quarantine, with a negative PCR result on days 6-7 after exposure, did not lead to subsequent outbreaks. Of cases for whom the source was known, 37 of 51 (72.5%) were secondary to household transmission, 13 (25.5%) to intraschool transmission, and 1 to community contacts between students in the same school. INTERPRETATION Rapid antigen detection tests did not perform well compared with PCR in asymptomatic individuals. Reinforcing policies for symptom screening when entering schools and testing symptomatic individuals with RADTs on the spot may avoid subsequent substantial exposures in class. Preprint: medRxiv - doi.org/10.1101/2021.10.13.21264960.
Collapse
Affiliation(s)
- Ana C Blanchard
- Division of Infectious Diseases (Blanchard), Department of Paediatrics, CHU Sainte-Justine, Université de Montréal; Clinical Department of Laboratory Medicine (Desforges, Quach), CHU Sainte-Justine; Department of Microbiology, Infectious Diseases and Immunology (Desforges, Labbé, Quach), Université de Montréal; Division of Infectious Diseases (Labbé), Department of Medicine, Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Est-de-l'Île-de-Montréal; Direction régionale de santé publique (Nguyen, Séguin), CIUSSS du Centre-Sud-de-l'île-de-Montréal; Pensionnat du Saint-Nom-de-Marie (Petit); École secondaire Calixa-Lavallée (Besner); École de santé publique de l'Université de Montréal (Zinszer), Université de Montréal; CHU Sainte-Justine Research Center (Laghdir, Adams, Benoit, Leduc), Montréal, Que.; Clinical Department of Laboratory Medicine (Longtin), CHU de Québec, Québec, Que.; McGill Genome Centre (Ragoussis), and Department of Epidemiology, Biostatistics and Occupational Health (Buckeridge), McGill University, Montréal, Que
| | - Marc Desforges
- Division of Infectious Diseases (Blanchard), Department of Paediatrics, CHU Sainte-Justine, Université de Montréal; Clinical Department of Laboratory Medicine (Desforges, Quach), CHU Sainte-Justine; Department of Microbiology, Infectious Diseases and Immunology (Desforges, Labbé, Quach), Université de Montréal; Division of Infectious Diseases (Labbé), Department of Medicine, Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Est-de-l'Île-de-Montréal; Direction régionale de santé publique (Nguyen, Séguin), CIUSSS du Centre-Sud-de-l'île-de-Montréal; Pensionnat du Saint-Nom-de-Marie (Petit); École secondaire Calixa-Lavallée (Besner); École de santé publique de l'Université de Montréal (Zinszer), Université de Montréal; CHU Sainte-Justine Research Center (Laghdir, Adams, Benoit, Leduc), Montréal, Que.; Clinical Department of Laboratory Medicine (Longtin), CHU de Québec, Québec, Que.; McGill Genome Centre (Ragoussis), and Department of Epidemiology, Biostatistics and Occupational Health (Buckeridge), McGill University, Montréal, Que
| | - Annie-Claude Labbé
- Division of Infectious Diseases (Blanchard), Department of Paediatrics, CHU Sainte-Justine, Université de Montréal; Clinical Department of Laboratory Medicine (Desforges, Quach), CHU Sainte-Justine; Department of Microbiology, Infectious Diseases and Immunology (Desforges, Labbé, Quach), Université de Montréal; Division of Infectious Diseases (Labbé), Department of Medicine, Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Est-de-l'Île-de-Montréal; Direction régionale de santé publique (Nguyen, Séguin), CIUSSS du Centre-Sud-de-l'île-de-Montréal; Pensionnat du Saint-Nom-de-Marie (Petit); École secondaire Calixa-Lavallée (Besner); École de santé publique de l'Université de Montréal (Zinszer), Université de Montréal; CHU Sainte-Justine Research Center (Laghdir, Adams, Benoit, Leduc), Montréal, Que.; Clinical Department of Laboratory Medicine (Longtin), CHU de Québec, Québec, Que.; McGill Genome Centre (Ragoussis), and Department of Epidemiology, Biostatistics and Occupational Health (Buckeridge), McGill University, Montréal, Que
| | - Cat Tuong Nguyen
- Division of Infectious Diseases (Blanchard), Department of Paediatrics, CHU Sainte-Justine, Université de Montréal; Clinical Department of Laboratory Medicine (Desforges, Quach), CHU Sainte-Justine; Department of Microbiology, Infectious Diseases and Immunology (Desforges, Labbé, Quach), Université de Montréal; Division of Infectious Diseases (Labbé), Department of Medicine, Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Est-de-l'Île-de-Montréal; Direction régionale de santé publique (Nguyen, Séguin), CIUSSS du Centre-Sud-de-l'île-de-Montréal; Pensionnat du Saint-Nom-de-Marie (Petit); École secondaire Calixa-Lavallée (Besner); École de santé publique de l'Université de Montréal (Zinszer), Université de Montréal; CHU Sainte-Justine Research Center (Laghdir, Adams, Benoit, Leduc), Montréal, Que.; Clinical Department of Laboratory Medicine (Longtin), CHU de Québec, Québec, Que.; McGill Genome Centre (Ragoussis), and Department of Epidemiology, Biostatistics and Occupational Health (Buckeridge), McGill University, Montréal, Que
| | - Yves Petit
- Division of Infectious Diseases (Blanchard), Department of Paediatrics, CHU Sainte-Justine, Université de Montréal; Clinical Department of Laboratory Medicine (Desforges, Quach), CHU Sainte-Justine; Department of Microbiology, Infectious Diseases and Immunology (Desforges, Labbé, Quach), Université de Montréal; Division of Infectious Diseases (Labbé), Department of Medicine, Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Est-de-l'Île-de-Montréal; Direction régionale de santé publique (Nguyen, Séguin), CIUSSS du Centre-Sud-de-l'île-de-Montréal; Pensionnat du Saint-Nom-de-Marie (Petit); École secondaire Calixa-Lavallée (Besner); École de santé publique de l'Université de Montréal (Zinszer), Université de Montréal; CHU Sainte-Justine Research Center (Laghdir, Adams, Benoit, Leduc), Montréal, Que.; Clinical Department of Laboratory Medicine (Longtin), CHU de Québec, Québec, Que.; McGill Genome Centre (Ragoussis), and Department of Epidemiology, Biostatistics and Occupational Health (Buckeridge), McGill University, Montréal, Que
| | - Dominic Besner
- Division of Infectious Diseases (Blanchard), Department of Paediatrics, CHU Sainte-Justine, Université de Montréal; Clinical Department of Laboratory Medicine (Desforges, Quach), CHU Sainte-Justine; Department of Microbiology, Infectious Diseases and Immunology (Desforges, Labbé, Quach), Université de Montréal; Division of Infectious Diseases (Labbé), Department of Medicine, Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Est-de-l'Île-de-Montréal; Direction régionale de santé publique (Nguyen, Séguin), CIUSSS du Centre-Sud-de-l'île-de-Montréal; Pensionnat du Saint-Nom-de-Marie (Petit); École secondaire Calixa-Lavallée (Besner); École de santé publique de l'Université de Montréal (Zinszer), Université de Montréal; CHU Sainte-Justine Research Center (Laghdir, Adams, Benoit, Leduc), Montréal, Que.; Clinical Department of Laboratory Medicine (Longtin), CHU de Québec, Québec, Que.; McGill Genome Centre (Ragoussis), and Department of Epidemiology, Biostatistics and Occupational Health (Buckeridge), McGill University, Montréal, Que
| | - Kate Zinszer
- Division of Infectious Diseases (Blanchard), Department of Paediatrics, CHU Sainte-Justine, Université de Montréal; Clinical Department of Laboratory Medicine (Desforges, Quach), CHU Sainte-Justine; Department of Microbiology, Infectious Diseases and Immunology (Desforges, Labbé, Quach), Université de Montréal; Division of Infectious Diseases (Labbé), Department of Medicine, Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Est-de-l'Île-de-Montréal; Direction régionale de santé publique (Nguyen, Séguin), CIUSSS du Centre-Sud-de-l'île-de-Montréal; Pensionnat du Saint-Nom-de-Marie (Petit); École secondaire Calixa-Lavallée (Besner); École de santé publique de l'Université de Montréal (Zinszer), Université de Montréal; CHU Sainte-Justine Research Center (Laghdir, Adams, Benoit, Leduc), Montréal, Que.; Clinical Department of Laboratory Medicine (Longtin), CHU de Québec, Québec, Que.; McGill Genome Centre (Ragoussis), and Department of Epidemiology, Biostatistics and Occupational Health (Buckeridge), McGill University, Montréal, Que
| | - Olivier Séguin
- Division of Infectious Diseases (Blanchard), Department of Paediatrics, CHU Sainte-Justine, Université de Montréal; Clinical Department of Laboratory Medicine (Desforges, Quach), CHU Sainte-Justine; Department of Microbiology, Infectious Diseases and Immunology (Desforges, Labbé, Quach), Université de Montréal; Division of Infectious Diseases (Labbé), Department of Medicine, Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Est-de-l'Île-de-Montréal; Direction régionale de santé publique (Nguyen, Séguin), CIUSSS du Centre-Sud-de-l'île-de-Montréal; Pensionnat du Saint-Nom-de-Marie (Petit); École secondaire Calixa-Lavallée (Besner); École de santé publique de l'Université de Montréal (Zinszer), Université de Montréal; CHU Sainte-Justine Research Center (Laghdir, Adams, Benoit, Leduc), Montréal, Que.; Clinical Department of Laboratory Medicine (Longtin), CHU de Québec, Québec, Que.; McGill Genome Centre (Ragoussis), and Department of Epidemiology, Biostatistics and Occupational Health (Buckeridge), McGill University, Montréal, Que
| | - Zineb Laghdir
- Division of Infectious Diseases (Blanchard), Department of Paediatrics, CHU Sainte-Justine, Université de Montréal; Clinical Department of Laboratory Medicine (Desforges, Quach), CHU Sainte-Justine; Department of Microbiology, Infectious Diseases and Immunology (Desforges, Labbé, Quach), Université de Montréal; Division of Infectious Diseases (Labbé), Department of Medicine, Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Est-de-l'Île-de-Montréal; Direction régionale de santé publique (Nguyen, Séguin), CIUSSS du Centre-Sud-de-l'île-de-Montréal; Pensionnat du Saint-Nom-de-Marie (Petit); École secondaire Calixa-Lavallée (Besner); École de santé publique de l'Université de Montréal (Zinszer), Université de Montréal; CHU Sainte-Justine Research Center (Laghdir, Adams, Benoit, Leduc), Montréal, Que.; Clinical Department of Laboratory Medicine (Longtin), CHU de Québec, Québec, Que.; McGill Genome Centre (Ragoussis), and Department of Epidemiology, Biostatistics and Occupational Health (Buckeridge), McGill University, Montréal, Que
| | - Kelsey Adams
- Division of Infectious Diseases (Blanchard), Department of Paediatrics, CHU Sainte-Justine, Université de Montréal; Clinical Department of Laboratory Medicine (Desforges, Quach), CHU Sainte-Justine; Department of Microbiology, Infectious Diseases and Immunology (Desforges, Labbé, Quach), Université de Montréal; Division of Infectious Diseases (Labbé), Department of Medicine, Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Est-de-l'Île-de-Montréal; Direction régionale de santé publique (Nguyen, Séguin), CIUSSS du Centre-Sud-de-l'île-de-Montréal; Pensionnat du Saint-Nom-de-Marie (Petit); École secondaire Calixa-Lavallée (Besner); École de santé publique de l'Université de Montréal (Zinszer), Université de Montréal; CHU Sainte-Justine Research Center (Laghdir, Adams, Benoit, Leduc), Montréal, Que.; Clinical Department of Laboratory Medicine (Longtin), CHU de Québec, Québec, Que.; McGill Genome Centre (Ragoussis), and Department of Epidemiology, Biostatistics and Occupational Health (Buckeridge), McGill University, Montréal, Que
| | - Marie-Ève Benoit
- Division of Infectious Diseases (Blanchard), Department of Paediatrics, CHU Sainte-Justine, Université de Montréal; Clinical Department of Laboratory Medicine (Desforges, Quach), CHU Sainte-Justine; Department of Microbiology, Infectious Diseases and Immunology (Desforges, Labbé, Quach), Université de Montréal; Division of Infectious Diseases (Labbé), Department of Medicine, Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Est-de-l'Île-de-Montréal; Direction régionale de santé publique (Nguyen, Séguin), CIUSSS du Centre-Sud-de-l'île-de-Montréal; Pensionnat du Saint-Nom-de-Marie (Petit); École secondaire Calixa-Lavallée (Besner); École de santé publique de l'Université de Montréal (Zinszer), Université de Montréal; CHU Sainte-Justine Research Center (Laghdir, Adams, Benoit, Leduc), Montréal, Que.; Clinical Department of Laboratory Medicine (Longtin), CHU de Québec, Québec, Que.; McGill Genome Centre (Ragoussis), and Department of Epidemiology, Biostatistics and Occupational Health (Buckeridge), McGill University, Montréal, Que
| | - Geneviève Leduc
- Division of Infectious Diseases (Blanchard), Department of Paediatrics, CHU Sainte-Justine, Université de Montréal; Clinical Department of Laboratory Medicine (Desforges, Quach), CHU Sainte-Justine; Department of Microbiology, Infectious Diseases and Immunology (Desforges, Labbé, Quach), Université de Montréal; Division of Infectious Diseases (Labbé), Department of Medicine, Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Est-de-l'Île-de-Montréal; Direction régionale de santé publique (Nguyen, Séguin), CIUSSS du Centre-Sud-de-l'île-de-Montréal; Pensionnat du Saint-Nom-de-Marie (Petit); École secondaire Calixa-Lavallée (Besner); École de santé publique de l'Université de Montréal (Zinszer), Université de Montréal; CHU Sainte-Justine Research Center (Laghdir, Adams, Benoit, Leduc), Montréal, Que.; Clinical Department of Laboratory Medicine (Longtin), CHU de Québec, Québec, Que.; McGill Genome Centre (Ragoussis), and Department of Epidemiology, Biostatistics and Occupational Health (Buckeridge), McGill University, Montréal, Que
| | - Jean Longtin
- Division of Infectious Diseases (Blanchard), Department of Paediatrics, CHU Sainte-Justine, Université de Montréal; Clinical Department of Laboratory Medicine (Desforges, Quach), CHU Sainte-Justine; Department of Microbiology, Infectious Diseases and Immunology (Desforges, Labbé, Quach), Université de Montréal; Division of Infectious Diseases (Labbé), Department of Medicine, Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Est-de-l'Île-de-Montréal; Direction régionale de santé publique (Nguyen, Séguin), CIUSSS du Centre-Sud-de-l'île-de-Montréal; Pensionnat du Saint-Nom-de-Marie (Petit); École secondaire Calixa-Lavallée (Besner); École de santé publique de l'Université de Montréal (Zinszer), Université de Montréal; CHU Sainte-Justine Research Center (Laghdir, Adams, Benoit, Leduc), Montréal, Que.; Clinical Department of Laboratory Medicine (Longtin), CHU de Québec, Québec, Que.; McGill Genome Centre (Ragoussis), and Department of Epidemiology, Biostatistics and Occupational Health (Buckeridge), McGill University, Montréal, Que
| | - Jiannis Ragoussis
- Division of Infectious Diseases (Blanchard), Department of Paediatrics, CHU Sainte-Justine, Université de Montréal; Clinical Department of Laboratory Medicine (Desforges, Quach), CHU Sainte-Justine; Department of Microbiology, Infectious Diseases and Immunology (Desforges, Labbé, Quach), Université de Montréal; Division of Infectious Diseases (Labbé), Department of Medicine, Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Est-de-l'Île-de-Montréal; Direction régionale de santé publique (Nguyen, Séguin), CIUSSS du Centre-Sud-de-l'île-de-Montréal; Pensionnat du Saint-Nom-de-Marie (Petit); École secondaire Calixa-Lavallée (Besner); École de santé publique de l'Université de Montréal (Zinszer), Université de Montréal; CHU Sainte-Justine Research Center (Laghdir, Adams, Benoit, Leduc), Montréal, Que.; Clinical Department of Laboratory Medicine (Longtin), CHU de Québec, Québec, Que.; McGill Genome Centre (Ragoussis), and Department of Epidemiology, Biostatistics and Occupational Health (Buckeridge), McGill University, Montréal, Que
| | - David L Buckeridge
- Division of Infectious Diseases (Blanchard), Department of Paediatrics, CHU Sainte-Justine, Université de Montréal; Clinical Department of Laboratory Medicine (Desforges, Quach), CHU Sainte-Justine; Department of Microbiology, Infectious Diseases and Immunology (Desforges, Labbé, Quach), Université de Montréal; Division of Infectious Diseases (Labbé), Department of Medicine, Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Est-de-l'Île-de-Montréal; Direction régionale de santé publique (Nguyen, Séguin), CIUSSS du Centre-Sud-de-l'île-de-Montréal; Pensionnat du Saint-Nom-de-Marie (Petit); École secondaire Calixa-Lavallée (Besner); École de santé publique de l'Université de Montréal (Zinszer), Université de Montréal; CHU Sainte-Justine Research Center (Laghdir, Adams, Benoit, Leduc), Montréal, Que.; Clinical Department of Laboratory Medicine (Longtin), CHU de Québec, Québec, Que.; McGill Genome Centre (Ragoussis), and Department of Epidemiology, Biostatistics and Occupational Health (Buckeridge), McGill University, Montréal, Que
| | - Caroline Quach
- Division of Infectious Diseases (Blanchard), Department of Paediatrics, CHU Sainte-Justine, Université de Montréal; Clinical Department of Laboratory Medicine (Desforges, Quach), CHU Sainte-Justine; Department of Microbiology, Infectious Diseases and Immunology (Desforges, Labbé, Quach), Université de Montréal; Division of Infectious Diseases (Labbé), Department of Medicine, Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Est-de-l'Île-de-Montréal; Direction régionale de santé publique (Nguyen, Séguin), CIUSSS du Centre-Sud-de-l'île-de-Montréal; Pensionnat du Saint-Nom-de-Marie (Petit); École secondaire Calixa-Lavallée (Besner); École de santé publique de l'Université de Montréal (Zinszer), Université de Montréal; CHU Sainte-Justine Research Center (Laghdir, Adams, Benoit, Leduc), Montréal, Que.; Clinical Department of Laboratory Medicine (Longtin), CHU de Québec, Québec, Que.; McGill Genome Centre (Ragoussis), and Department of Epidemiology, Biostatistics and Occupational Health (Buckeridge), McGill University, Montréal, Que.
| |
Collapse
|
32
|
Gamage SST, Pahattuge TN, Wijerathne H, Childers K, Vaidyanathan S, Athapattu US, Zhang L, Zhao Z, Hupert ML, Muller RM, Muller-Cohn J, Dickerson J, Dufek D, Geisbrecht BV, Pathak H, Pessetto Z, Gan GN, Choi J, Park S, Godwin AK, Witek MA, Soper SA. Microfluidic affinity selection of active SARS-CoV-2 virus particles. SCIENCE ADVANCES 2022; 8:eabn9665. [PMID: 36170362 PMCID: PMC9519043 DOI: 10.1126/sciadv.abn9665] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 08/10/2022] [Indexed: 06/07/2023]
Abstract
We report a microfluidic assay to select active severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral particles (VPs), which were defined as intact particles with an accessible angiotensin-converting enzyme 2 receptor binding domain (RBD) on the spike (S) protein, from clinical samples. Affinity selection of SARS-CoV-2 particles was carried out using injection molded microfluidic chips, which allow for high-scale production to accommodate large-scale screening. The microfluidic contained a surface-bound aptamer directed against the virus's S protein RBD to affinity select SARS-CoV-2 VPs. Following selection (~94% recovery), the VPs were released from the chip's surface using a blue light light-emitting diode (89% efficiency). Selected SARS-CoV-2 VP enumeration was carried out using reverse transcription quantitative polymerase chain reaction. The VP selection assay successfully identified healthy donors (clinical specificity = 100%) and 19 of 20 patients with coronavirus disease 2019 (COVID-19) (95% sensitivity). In 15 patients with COVID-19, the presence of active SARS-CoV-2 VPs was found. The chip can be reprogrammed for any VP or exosomes by simply changing the affinity agent.
Collapse
Affiliation(s)
- Sachindra S. T. Gamage
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
| | - Thilanga N. Pahattuge
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
| | - Harshani Wijerathne
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
| | - Katie Childers
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
- Bioengineering Program, The University of Kansas, Lawrence, KS 66045, USA
| | - Swarnagowri Vaidyanathan
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
- Bioengineering Program, The University of Kansas, Lawrence, KS 66045, USA
| | - Uditha S. Athapattu
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
| | - Lulu Zhang
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
- Bioengineering Program, The University of Kansas, Lawrence, KS 66045, USA
| | - Zheng Zhao
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
| | | | | | | | | | | | - Brian V. Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Harsh Pathak
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | - Gregory N. Gan
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Junseo Choi
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
- Department of Industrial and Mechanical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Sunggook Park
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
- Department of Industrial and Mechanical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Andrew K. Godwin
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
- University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Malgorzata A. Witek
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
| | - Steven A. Soper
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
- Bioengineering Program, The University of Kansas, Lawrence, KS 66045, USA
- University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Mechanical Engineering, The University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
33
|
Abstract
The coronavirus pandemic is a worldwide hazard that poses a threat to millions of individuals throughout the world. This pandemic is caused by the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), which was initially identified in Wuhan, China's Hubei provincial capital, and has since spread throughout the world. According to the World Health Organization's Weekly Epidemiological Update, there were more than 250 million documented cases of coronavirus infections globally, with five million fatalities. Early detection of coronavirus does not only reduce the spread of the virus, but it also increases the chance of curing the infection. Spectroscopic techniques have been widely used in the early detection and diagnosis of COVID-19 using Raman, Infrared, mass spectrometry and fluorescence spectroscopy. In this review, the reported spectroscopic methods for COVID-19 detection were discussed with emphasis on the practical aspects, limitations and applications.
Collapse
|
34
|
Malinverni S, Lazzaroni S, Nuňez M, Preseau T, Cotton F, Martiny D, Bouazza F, Collot V, Konopnicki D, Alard S, Bartiaux M. Diagnostic Accuracy of Procalcitonin upon Emergency Department Admission during SARS-CoV-2 Pandemic. Antibiotics (Basel) 2022; 11:1141. [PMID: 36139922 PMCID: PMC9495046 DOI: 10.3390/antibiotics11091141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION Procalcitonin is a marker for bacterial diseases and has been used to guide antibiotic prescription. Procalcitonin accuracy, measured at admission, in patients with community-acquired pneumonia (CAP), is unknown in the current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. OBJECTIVES To evaluate the diagnostic accuracy of procalcitonin to assess the need for antibiotic treatment in patients with CAP presenting to the emergency department during the SARS-CoV-2 pandemic. METHODS We performed a real-world diagnostic retrospective accuracy study of procalcitonin in patients admitted to the emergency department. Measures of diagnostic accuracy were calculated based on procalcitonin results compared to the reference standard of combined microbiological and radiological analysis. Sensitivity, specificity, positive and negative predictive values, and area under (AUC) the receiver-operating characteristic (ROC) curve were calculated in two analyses: first assessing procalcitonin ability to differentiate microbiologically proven bacteria from viral CAP and then clinically diagnosed bacterial CAP from viral CAP. RESULTS When using a procalcitonin threshold of 0.5 ng/mL to identify bacterial etiology within patients with CAP, we observed sensitivity and specificity of 50% and 64.1%, and 43% and 82.6%, respectively, in the two analyses. The positive and negative predictive values of a procalcitonin threshold of 0.5 ng/mL to identify patients for whom antibiotics should be advised were 46.4% and 79.7%, and 48.9% and 79% in the two analyses, respectively. The AUC for the two analyses was 0.60 (95% confidence interval [CI] 0.52-0.68) and 0.62 (95% CI, 0.55-0.69). CONCLUSIONS Procalcitonin measured upon admission during the SARS-CoV-2 pandemic should not guide antibiotic treatment in patients with CAP.
Collapse
Affiliation(s)
- Stefano Malinverni
- Emergency Department, Centre Hospitalier Universitaire Saint-Pierre, Université Libre de Bruxelles, Rue Haute 322, 1000 Brussels, Belgium
| | - Silvia Lazzaroni
- Emergency Department, Centre Hospitalier Universitaire Saint-Pierre, Université Libre de Bruxelles, Rue Haute 322, 1000 Brussels, Belgium
| | - Maïa Nuňez
- Centre Hospitalier Universitaire Brugmann, Place A.Van Gehuchten 4, Université Libre de Bruxelles, 1020 Brussels, Belgium
| | - Thierry Preseau
- Centre Hospitalier Universitaire Brugmann, Place A.Van Gehuchten 4, Université Libre de Bruxelles, 1020 Brussels, Belgium
| | - Frédéric Cotton
- Clinical Chemistry, Laboratoire Hospitalier Universitaire de Bruxelles-Universitair Laboratorium Brussel (LHUB-ULB), Université Libre de Bruxelles, Rue Haute 322, 1000 Brussels, Belgium
| | - Delphine Martiny
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles-Universitair Laboratorium Brussel (LHUB-ULB), Rue Haute 322, 1000 Brussels, Belgium
| | - Fatima Bouazza
- Emergency Department, Centre Hospitalier Universitaire Saint-Pierre, Université Libre de Bruxelles, Rue Haute 322, 1000 Brussels, Belgium
| | - Vincent Collot
- Emergency Department, Centre Hospitalier Universitaire Saint-Pierre, Université Libre de Bruxelles, Rue Haute 322, 1000 Brussels, Belgium
| | - Deborah Konopnicki
- Infectious Diseases Department, Centre Hospitalier Universitaire Saint-Pierre, Université Libre de Bruxelles, Rue Haute 322, 1000 Brussels, Belgium
| | - Stéphane Alard
- Department of Radiology, Centre Hospitalier Universitaire Saint-Pierre, Université Libre de Bruxelles, Rue Haute 322, 1000 Brussels, Belgium
| | - Magali Bartiaux
- Emergency Department, Centre Hospitalier Universitaire Saint-Pierre, Université Libre de Bruxelles, Rue Haute 322, 1000 Brussels, Belgium
| |
Collapse
|
35
|
Dinnes J, Sharma P, Berhane S, van Wyk SS, Nyaaba N, Domen J, Taylor M, Cunningham J, Davenport C, Dittrich S, Emperador D, Hooft L, Leeflang MM, McInnes MD, Spijker R, Verbakel JY, Takwoingi Y, Taylor-Phillips S, Van den Bruel A, Deeks JJ. Rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection. Cochrane Database Syst Rev 2022; 7:CD013705. [PMID: 35866452 PMCID: PMC9305720 DOI: 10.1002/14651858.cd013705.pub3] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Accurate rapid diagnostic tests for SARS-CoV-2 infection would be a useful tool to help manage the COVID-19 pandemic. Testing strategies that use rapid antigen tests to detect current infection have the potential to increase access to testing, speed detection of infection, and inform clinical and public health management decisions to reduce transmission. This is the second update of this review, which was first published in 2020. OBJECTIVES To assess the diagnostic accuracy of rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection. We consider accuracy separately in symptomatic and asymptomatic population groups. Sources of heterogeneity investigated included setting and indication for testing, assay format, sample site, viral load, age, timing of test, and study design. SEARCH METHODS We searched the COVID-19 Open Access Project living evidence database from the University of Bern (which includes daily updates from PubMed and Embase and preprints from medRxiv and bioRxiv) on 08 March 2021. We included independent evaluations from national reference laboratories, FIND and the Diagnostics Global Health website. We did not apply language restrictions. SELECTION CRITERIA We included studies of people with either suspected SARS-CoV-2 infection, known SARS-CoV-2 infection or known absence of infection, or those who were being screened for infection. We included test accuracy studies of any design that evaluated commercially produced, rapid antigen tests. We included evaluations of single applications of a test (one test result reported per person) and evaluations of serial testing (repeated antigen testing over time). Reference standards for presence or absence of infection were any laboratory-based molecular test (primarily reverse transcription polymerase chain reaction (RT-PCR)) or pre-pandemic respiratory sample. DATA COLLECTION AND ANALYSIS We used standard screening procedures with three people. Two people independently carried out quality assessment (using the QUADAS-2 tool) and extracted study results. Other study characteristics were extracted by one review author and checked by a second. We present sensitivity and specificity with 95% confidence intervals (CIs) for each test, and pooled data using the bivariate model. We investigated heterogeneity by including indicator variables in the random-effects logistic regression models. We tabulated results by test manufacturer and compliance with manufacturer instructions for use and according to symptom status. MAIN RESULTS We included 155 study cohorts (described in 166 study reports, with 24 as preprints). The main results relate to 152 evaluations of single test applications including 100,462 unique samples (16,822 with confirmed SARS-CoV-2). Studies were mainly conducted in Europe (101/152, 66%), and evaluated 49 different commercial antigen assays. Only 23 studies compared two or more brands of test. Risk of bias was high because of participant selection (40, 26%); interpretation of the index test (6, 4%); weaknesses in the reference standard for absence of infection (119, 78%); and participant flow and timing 41 (27%). Characteristics of participants (45, 30%) and index test delivery (47, 31%) differed from the way in which and in whom the test was intended to be used. Nearly all studies (91%) used a single RT-PCR result to define presence or absence of infection. The 152 studies of single test applications reported 228 evaluations of antigen tests. Estimates of sensitivity varied considerably between studies, with consistently high specificities. Average sensitivity was higher in symptomatic (73.0%, 95% CI 69.3% to 76.4%; 109 evaluations; 50,574 samples, 11,662 cases) compared to asymptomatic participants (54.7%, 95% CI 47.7% to 61.6%; 50 evaluations; 40,956 samples, 2641 cases). Average sensitivity was higher in the first week after symptom onset (80.9%, 95% CI 76.9% to 84.4%; 30 evaluations, 2408 cases) than in the second week of symptoms (53.8%, 95% CI 48.0% to 59.6%; 40 evaluations, 1119 cases). For those who were asymptomatic at the time of testing, sensitivity was higher when an epidemiological exposure to SARS-CoV-2 was suspected (64.3%, 95% CI 54.6% to 73.0%; 16 evaluations; 7677 samples, 703 cases) compared to where COVID-19 testing was reported to be widely available to anyone on presentation for testing (49.6%, 95% CI 42.1% to 57.1%; 26 evaluations; 31,904 samples, 1758 cases). Average specificity was similarly high for symptomatic (99.1%) or asymptomatic (99.7%) participants. We observed a steady decline in summary sensitivities as measures of sample viral load decreased. Sensitivity varied between brands. When tests were used according to manufacturer instructions, average sensitivities by brand ranged from 34.3% to 91.3% in symptomatic participants (20 assays with eligible data) and from 28.6% to 77.8% for asymptomatic participants (12 assays). For symptomatic participants, summary sensitivities for seven assays were 80% or more (meeting acceptable criteria set by the World Health Organization (WHO)). The WHO acceptable performance criterion of 97% specificity was met by 17 of 20 assays when tests were used according to manufacturer instructions, 12 of which demonstrated specificities above 99%. For asymptomatic participants the sensitivities of only two assays approached but did not meet WHO acceptable performance standards in one study each; specificities for asymptomatic participants were in a similar range to those observed for symptomatic people. At 5% prevalence using summary data in symptomatic people during the first week after symptom onset, the positive predictive value (PPV) of 89% means that 1 in 10 positive results will be a false positive, and around 1 in 5 cases will be missed. At 0.5% prevalence using summary data for asymptomatic people, where testing was widely available and where epidemiological exposure to COVID-19 was suspected, resulting PPVs would be 38% to 52%, meaning that between 2 in 5 and 1 in 2 positive results will be false positives, and between 1 in 2 and 1 in 3 cases will be missed. AUTHORS' CONCLUSIONS Antigen tests vary in sensitivity. In people with signs and symptoms of COVID-19, sensitivities are highest in the first week of illness when viral loads are higher. Assays that meet appropriate performance standards, such as those set by WHO, could replace laboratory-based RT-PCR when immediate decisions about patient care must be made, or where RT-PCR cannot be delivered in a timely manner. However, they are more suitable for use as triage to RT-PCR testing. The variable sensitivity of antigen tests means that people who test negative may still be infected. Many commercially available rapid antigen tests have not been evaluated in independent validation studies. Evidence for testing in asymptomatic cohorts has increased, however sensitivity is lower and there is a paucity of evidence for testing in different settings. Questions remain about the use of antigen test-based repeat testing strategies. Further research is needed to evaluate the effectiveness of screening programmes at reducing transmission of infection, whether mass screening or targeted approaches including schools, healthcare setting and traveller screening.
Collapse
Affiliation(s)
- Jacqueline Dinnes
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Pawana Sharma
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Sarah Berhane
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Susanna S van Wyk
- Centre for Evidence-based Health Care, Epidemiology and Biostatistics, Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Nicholas Nyaaba
- Infectious Disease Unit, 37 Military Hospital, Cantonments, Ghana
| | - Julie Domen
- Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Melissa Taylor
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Jane Cunningham
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | - Clare Davenport
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | | | | | - Lotty Hooft
- Cochrane Netherlands, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Mariska Mg Leeflang
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | | | - René Spijker
- Cochrane Netherlands, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Medical Library, Amsterdam UMC, University of Amsterdam, Amsterdam Public Health, Amsterdam, Netherlands
| | - Jan Y Verbakel
- Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Yemisi Takwoingi
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Sian Taylor-Phillips
- Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Ann Van den Bruel
- Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Jonathan J Deeks
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| |
Collapse
|
36
|
Sayed RH, Abousenna MS, Elsaady SA, Soliman R, Saad MA. Development of Lateral Flow Immunochromatographic Test for Rapid Detection of SARS-CoV-2 Virus Antigens in Clinical Specimens. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2477. [PMID: 35889701 PMCID: PMC9322925 DOI: 10.3390/nano12142477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/16/2022] [Accepted: 07/17/2022] [Indexed: 01/27/2023]
Abstract
In the presented study, we developed a nanogold lateral glow immunoassay-based technique (LFI-COVID-19 antigen test) for the detection of SARS-CoV-2 nucleocapsid proteins; the developed LFI-COVID-19 Ag test has been tested for limit of detection (LOD), cross-reactivity and interfering substances, and performance. It was found that the performance of the developed LFI-COVID-19 antigen test when it was evaluated by RT-qPCR indicated 95, 98, and 97% for sensitivity, specificity and accuracy, respectively. This complies with the WHO guidelines. It was concluded that the developed LFI-COVID-19 antigen test is a point of care and an alternative approach to current laboratory methods, especially RT-qPCR. It provides an easy, rapid (within 20 min), and on-site diagnostic tool for COVID-19 infection, and it is a cheap test if it is manufactured on a large scale for commercial use.
Collapse
Affiliation(s)
- Rafik Hamed Sayed
- Central Laboratory for Evaluation of Veterinary Biologics, Agricultural Research Center, P.O. Box 131, Cairo 11381, Egypt;
| | - Mohamed Samy Abousenna
- Central Laboratory for Evaluation of Veterinary Biologics, Agricultural Research Center, P.O. Box 131, Cairo 11381, Egypt;
| | - Shaimaa Abdelall Elsaady
- Central Laboratory for Evaluation of Veterinary Biologics, Agricultural Research Center, P.O. Box 131, Cairo 11381, Egypt;
| | - Rafik Soliman
- Department of Microbiology, Faculty of Veterinary medicine, Cairo University, Giza 12211, Egypt;
| | - Mohamed Ahmed Saad
- Veterinary Serum and Vaccine Research Institute, Agricultural Research Center, P.O. Box 131, Cairo 11381, Egypt;
| |
Collapse
|
37
|
Macchia E, Kovács-Vajna ZM, Loconsole D, Sarcina L, Redolfi M, Chironna M, Torricelli F, Torsi L. A handheld intelligent single-molecule binary bioelectronic system for fast and reliable immunometric point-of-care testing. SCIENCE ADVANCES 2022; 8:eabo0881. [PMID: 35857467 PMCID: PMC9258948 DOI: 10.1126/sciadv.abo0881] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Molecular tests are highly reliable and sensitive but lack portability and are not simple to use; conversely, easy-to-use antigenic tests still lack high performance. BioScreen combines single-molecule sensitivity and outstanding reliability with ultraportability and simplicity of use. This digital platform is capable of artificial intelligence-based binary classification at the limit of identification of a single marker/virus in 0.1 ml. The diagnostic sensitivity, specificity, and accuracy reach 99.2% as validated through 240 assays, including a pilot clinical trial. The versatile immunometric system can detect the SARS-CoV-2 virus, spike S1, and immunoglobulin G antigen proteins in saliva, blood serum, and swab. BioScreen has a small footprint comprising a disposable cartridge and a handheld electronic reader connected to a smart device. The sample handling is minimal, and the assay time to result is 21 min. Reliable and sensitive self-testing with an ultraportable and easy-to-use diagnostic system operated directly by a patient holds the potential to revolutionize point-of-care testing and early diagnosis.
Collapse
Affiliation(s)
- Eleonora Macchia
- Dipartimento di Farmacia-Scienze del Farmaco, Universit. degli Studi di Bari “Aldo Moro,” 70125 Bari, Italy
- Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Zsolt M. Kovács-Vajna
- Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Brescia, 25123 Brescia, Italy
| | - Daniela Loconsole
- Dipartimento di Scienze Biomediche e Oncologia Umana, Università degli Studi di Bari “Aldo Moro,” 70125 Bari, Italy
| | - Lucia Sarcina
- Dipartimento di Chimica, Università degli Studi di Bari “Aldo Moro,” 70125 Bari, Italy
| | | | - Maria Chironna
- Dipartimento di Scienze Biomediche e Oncologia Umana, Università degli Studi di Bari “Aldo Moro,” 70125 Bari, Italy
| | - Fabrizio Torricelli
- Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Brescia, 25123 Brescia, Italy
- Corrresponding author. (F.T.); (L.T.)
| | - Luisa Torsi
- Dipartimento di Chimica, Università degli Studi di Bari “Aldo Moro,” 70125 Bari, Italy
- Corrresponding author. (F.T.); (L.T.)
| |
Collapse
|
38
|
Elfadel O, Zannane F, Abdallaoui M. Rapid antigenic test (TRA) versus RT-PCR: Experience of CHU IBN ROCHD Casablanca. Ann Med Surg (Lond) 2022; 79:103908. [PMID: 35692968 PMCID: PMC9167464 DOI: 10.1016/j.amsu.2022.103908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/28/2022] [Accepted: 06/02/2022] [Indexed: 11/24/2022] Open
Abstract
Ag-RDTs have a good specificity varying from 93.2 to 100% depending on the kits in comparison with RT-PCR. In our study, the specificity of the BIOSENSOR® test was 100% and the sensitivity was 47.17%. This drop of the specificity is explained by the decrease of the viral load with the progression of the infection.
Collapse
|
39
|
Zhang Y, Huang Z, Zhu J, Li C, Fang Z, Chen K, Zhang Y. An updated review of SARS-CoV-2 detection methods in the context of a novel coronavirus pandemic. Bioeng Transl Med 2022; 8:e10356. [PMID: 35942232 PMCID: PMC9349698 DOI: 10.1002/btm2.10356] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 01/21/2023] Open
Abstract
The World Health Organization has reported approximately 430 million confirmed cases of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), worldwide, including nearly 6 million deaths, since its initial appearance in China in 2019. While the number of diagnosed cases continues to increase, the need for technologies that can accurately and rapidly detect SARS-CoV-2 virus infection at early phases continues to grow, and the Federal Drug Administration (FDA) has licensed emergency use authorizations (EUAs) for virtually hundreds of diagnostic tests based on nucleic acid molecules and antigen-antibody serology assays. Among them, the quantitative real-time reverse transcription PCR (qRT-PCR) assay is considered the gold standard for early phase virus detection. Unfortunately, qRT-PCR still suffers from disadvantages such as the complex test process and the occurrence of false negatives; therefore, new nucleic acid detection devices and serological testing technologies are being developed. However, because of the emergence of strongly infectious mutants of the new coronavirus, such as Alpha (B.1.1.7), Delta (B.1.617.2), and Omicron (B.1.1.529), the need for the specific detection of mutant strains is also increasing. Therefore, this article reviews nucleic acid- and antigen-antibody-based serological assays, and compares the performance of some of the most recent FDA-approved and literature-reported assays and associated kits for the specific testing of new coronavirus variants.
Collapse
Affiliation(s)
- Yuxuan Zhang
- Shulan International Medical College, Zhejiang Shuren UniversityHangzhouChina
| | - Zhiwei Huang
- School of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhouChina
| | - Jiajie Zhu
- Shulan International Medical College, Zhejiang Shuren UniversityHangzhouChina
| | - Chaonan Li
- Shulan International Medical College, Zhejiang Shuren UniversityHangzhouChina
| | - Zhongbiao Fang
- Shulan International Medical College, Zhejiang Shuren UniversityHangzhouChina
| | - Keda Chen
- Shulan International Medical College, Zhejiang Shuren UniversityHangzhouChina
| | - Yanjun Zhang
- Zhejiang Provincial Center for Disease Control and PreventionHangzhouChina
| |
Collapse
|
40
|
Ultrasensitive Detection of COVID-19 Virus N Protein Based on p-Toluenesulfonyl Modified Fluorescent Microspheres Immunoassay. BIOSENSORS 2022; 12:bios12070437. [PMID: 35884241 PMCID: PMC9313240 DOI: 10.3390/bios12070437] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022]
Abstract
The pandemic of new coronary pneumonia caused by the COVID-19 virus continues to ravage the world. Large-scale population testing is the key to controlling infection and related mortality worldwide. Lateral flow immunochromatographic assay (LFIA) is fast, inexpensive, simple to operate, and easy to carry, very suitable for detection sites. This study developed a COVID-19 N protein detect strip based on p-toluenesulfonyl modified rare earth fluorescent microspheres. The p-toluenesulfonyl-activated nanomaterials provide reactive sulfonyl esters to covalently attach antibodies or other ligands containing primary amino or sulfhydryl groups to the nanomaterial surface. Antibodies are immobilized on these nanomaterials through the Fc region, which ensures optimal orientation of the antibody, thereby increasing the capture rate of the target analyte. The use of buffers with high ionic strength can promote hydrophobic binding; in addition, higher pH could promote the reactivity of the tosyl group. The detection limit of the prepared COVID-19 N protein strips can reach 0.01 ng/mL, so it has great application potential in large-scale population screening.
Collapse
|
41
|
Asghar R, Rasheed M, ul Hassan J, Rafique M, Khan M, Deng Y. Advancements in Testing Strategies for COVID-19. BIOSENSORS 2022; 12:410. [PMID: 35735558 PMCID: PMC9220779 DOI: 10.3390/bios12060410] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/15/2022]
Abstract
The SARS-CoV-2 coronavirus, also known as the disease-causing agent for COVID-19, is a virulent pathogen that may infect people and certain animals. The global spread of COVID-19 and its emerging variation necessitates the development of rapid, reliable, simple, and low-cost diagnostic tools. Many methodologies and devices have been developed for the highly sensitive, selective, cost-effective, and rapid diagnosis of COVID-19. This review organizes the diagnosis platforms into four groups: imaging, molecular-based detection, serological testing, and biosensors. Each platform's principle, advancement, utilization, and challenges for monitoring SARS-CoV-2 are discussed in detail. In addition, an overview of the impact of variants on detection, commercially available kits, and readout signal analysis has been presented. This review will expand our understanding of developing advanced diagnostic approaches to evolve into susceptible, precise, and reproducible technologies to combat any future outbreak.
Collapse
Affiliation(s)
- Rabia Asghar
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China;
| | - Madiha Rasheed
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China;
| | - Jalees ul Hassan
- Department of Wildlife and Ecology, Faculty of Fisheries and Wildlife, University of Veterinary and Animal Sciences-UVAS, Lahore 54000, Pakistan;
| | - Mohsin Rafique
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China;
| | - Mashooq Khan
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China;
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China;
| |
Collapse
|
42
|
Tapari A, Braliou GG, Papaefthimiou M, Mavriki H, Kontou PI, Nikolopoulos GK, Bagos PG. Performance of Antigen Detection Tests for SARS-CoV-2: A Systematic Review and Meta-Analysis. Diagnostics (Basel) 2022; 12:1388. [PMID: 35741198 PMCID: PMC9221910 DOI: 10.3390/diagnostics12061388] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) initiated global health care challenges such as the necessity for new diagnostic tests. Diagnosis by real-time PCR remains the gold-standard method, yet economical and technical issues prohibit its use in points of care (POC) or for repetitive tests in populations. A lot of effort has been exerted in developing, using, and validating antigen-based tests (ATs). Since individual studies focus on few methodological aspects of ATs, a comparison of different tests is needed. Herein, we perform a systematic review and meta-analysis of data from articles in PubMed, medRxiv and bioRxiv. The bivariate method for meta-analysis of diagnostic tests pooling sensitivities and specificities was used. Most of the AT types for SARS-CoV-2 were lateral flow immunoassays (LFIA), fluorescence immunoassays (FIA), and chemiluminescence enzyme immunoassays (CLEIA). We identified 235 articles containing data from 220,049 individuals. All ATs using nasopharyngeal samples show better performance than those with throat saliva (72% compared to 40%). Moreover, the rapid methods LFIA and FIA show about 10% lower sensitivity compared to the laboratory-based CLEIA method (72% compared to 82%). In addition, rapid ATs show higher sensitivity in symptomatic patients compared to asymptomatic patients, suggesting that viral load is a crucial parameter for ATs performed in POCs. Finally, all methods perform with very high specificity, reaching around 99%. LFIA tests, though with moderate sensitivity, appear as the most attractive method for use in POCs and for performing seroprevalence studies.
Collapse
Affiliation(s)
- Anastasia Tapari
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (A.T.); (G.G.B.); (M.P.); (H.M.); (P.I.K.)
| | - Georgia G. Braliou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (A.T.); (G.G.B.); (M.P.); (H.M.); (P.I.K.)
| | - Maria Papaefthimiou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (A.T.); (G.G.B.); (M.P.); (H.M.); (P.I.K.)
| | - Helen Mavriki
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (A.T.); (G.G.B.); (M.P.); (H.M.); (P.I.K.)
| | - Panagiota I. Kontou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (A.T.); (G.G.B.); (M.P.); (H.M.); (P.I.K.)
| | | | - Pantelis G. Bagos
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (A.T.); (G.G.B.); (M.P.); (H.M.); (P.I.K.)
| |
Collapse
|
43
|
Fragkou PC, De Angelis G, Menchinelli G, Can F, Garcia F, Morfin-Sherpa F, Dimopoulou D, Mack E, de Salazar A, Grossi A, Lytras T, Skevaki C. ESCMID COVID-19 guidelines: diagnostic testing for SARS-CoV-2. Clin Microbiol Infect 2022; 28:812-822. [PMID: 35218978 PMCID: PMC8863949 DOI: 10.1016/j.cmi.2022.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 02/07/2023]
Abstract
SCOPE The objective of these guidelines is to identify the most appropriate diagnostic test and/or diagnostic approach for SARS-CoV-2. The recommendations are intended to provide guidance to clinicians, clinical microbiologists, other health care personnel, and decision makers. METHODS An ESCMID COVID-19 guidelines task force was established by the ESCMID Executive Committee. A small group was established, half appointed by the chair and the remaining selected with an open call. Each panel met virtually once a week. For all decisions, a simple majority vote was used. A list of clinical questions using the PICO (population, intervention, comparison, outcome) format was developed at the beginning of the process. For each PICO, two panel members performed a literature search focusing on systematic reviews, with a third panellist involved in case of inconsistent results. Quality of evidence assessment was based on the GRADE-ADOLOPMENT (Grading of Recommendations Assessment, Development and Evaluation - adoption, adaptation, and de novo development of recommendations) approach. RECOMMENDATIONS A total of 43 PICO questions were selected that involve the following types of populations: (a) patients with signs and symptoms of COVID-19; (b) travellers, healthcare workers, and other individuals at risk for exposure to SARS-CoV-2; (c) asymptomatic individuals, and (d) close contacts of patients infected with SARS-CoV-2. The type of diagnostic test (commercial rapid nucleic acid amplification tests and rapid antigen detection), biomaterial, time since onset of symptoms/contact with an infectious case, age, disease severity, and risk of developing severe disease are also taken into consideration.
Collapse
Affiliation(s)
- Paraskevi C Fragkou
- First Department of Critical Care Medicine & Pulmonary Services, Evangelismos General Hospital, National and Kapodistrian University of Athens, Athens, Greece; European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Respiratory Viruses, Basel, Switzerland
| | - Giulia De Angelis
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy; Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giulia Menchinelli
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy; Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Fusun Can
- Department of Medical Microbiology, Koc University School of Medicine, Istanbul, Turkey; Koc University IsBank Research Center for Infectious Diseases (KUISCID), Istanbul, Turkey
| | - Federico Garcia
- Servicio de Microbiología Clínica, Hospital Universitario Clínico San Cecilio, Instituto de Investigación Biosanitaria, Granada, Spain; CIBER de Enfermedades Infecciosas, CIBERINFEC, ISCIII, Madrid, Spain
| | - Florence Morfin-Sherpa
- Laboratory of Virology, Institut des Agents Infectieux, National Reference Centre for Respiratory Viruses, Hospices Civils de Lyon, Université Claude Bernard Lyon1, Lyon, France
| | - Dimitra Dimopoulou
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Respiratory Viruses, Basel, Switzerland; Second Department of Paediatrics, P. and A. Kyriakou Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Elisabeth Mack
- Department of Hematology, Oncology and Immunology, University Hospital Giessen and Marburg Campus Marburg and Faculty of Medicine, Philipps University Marburg, Marburg, Germany
| | - Adolfo de Salazar
- Servicio de Microbiología Clínica, Hospital Universitario Clínico San Cecilio, Instituto de Investigación Biosanitaria, Granada, Spain; CIBER de Enfermedades Infecciosas, CIBERINFEC, ISCIII, Madrid, Spain
| | - Adriano Grossi
- Sezione di Igiene, Istituto di Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Theodore Lytras
- School of Medicine, European University Cyprus, Nicosia, Cyprus
| | - Chrysanthi Skevaki
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Respiratory Viruses, Basel, Switzerland; Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, German Center for Lung Research (DZL), Marburg, Germany.
| |
Collapse
|
44
|
Shim SR, Kim SJ, Hong M, Lee J, Kang MG, Han HW. Diagnostic Performance of Antigen Rapid Diagnostic Tests, Chest Computed Tomography, and Lung Point-of-Care-Ultrasonography for SARS-CoV-2 Compared with RT-PCR Testing: A Systematic Review and Network Meta-Analysis. Diagnostics (Basel) 2022; 12:1302. [PMID: 35741112 PMCID: PMC9222155 DOI: 10.3390/diagnostics12061302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/04/2022] [Accepted: 05/20/2022] [Indexed: 12/10/2022] Open
Abstract
(1) Background: The comparative performance of various diagnostic methods for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection remains unclear. This study aimed to investigate the comparison of the 3 index test performances of rapid antigen diagnostic tests (RDTs), chest computed tomography (CT), and lung point-of-care-ultrasonography (US) with reverse transcription-polymerase chain reaction (RT-PCR), the reference standard, to provide more evidence-based data on the appropriate use of these index tests. (2) Methods: We retrieved data from electronic literature searches of PubMed, Cochrane Library, and EMBASE from 1 January 2020, to 1 April 2021. Diagnostic performance was examined using bivariate random-effects diagnostic test accuracy (DTA) and Bayesian network meta-analysis (NMA) models. (3) Results: Of the 3992 studies identified in our search, 118 including 69,445 participants met our selection criteria. Among these, 69 RDT, 38 CT, and 15 US studies in the pairwise meta-analysis were included for DTA with NMA. CT and US had high sensitivity of 0.852 (95% credible interval (CrI), 0.791-0.914) and 0.879 (95% CrI, 0.784-0.973), respectively. RDT had high specificity, 0.978 (95% CrI, 0.960-0.996). In accuracy assessment, RDT and CT had a relatively higher than US. However, there was no significant difference in accuracy between the 3 index tests. (4) Conclusions: This meta-analysis suggests that, compared with the reference standard RT-PCR, the 3 index tests (RDTs, chest CT, and lung US) had similar and complementary performances for diagnosis of SARS-CoV-2 infection. To manage and control COVID-19 effectively, future large-scale prospective studies could be used to obtain an optimal timely diagnostic process that identifies the condition of the patient accurately.
Collapse
Affiliation(s)
- Sung Ryul Shim
- Department of Health and Medical Informatics, Kyungnam University College of Health Sciences, Changwon 51767, Korea;
| | - Seong-Jang Kim
- Department of Nuclear Medicine, Pusan National University Yangsan Hospital, Yangsan 50615, Korea;
- Department of Nuclear Medicine, College of Medicine, Pusan National University, Yangsan 50615, Korea
- BioMedical Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50615, Korea
| | - Myunghee Hong
- Department of Biomedical Informatics, CHA University School of Medicine, CHA University, Seongnam 13488, Korea;
- Institute for Biomedical Informatics, School of Medicine, CHA University, Seongnam 13488, Korea
| | - Jonghoo Lee
- Department of Internal Medicine, Jeju National University Hospital, Jeju National University School of Medicine, Jeju 63241, Korea;
| | - Min-Gyu Kang
- Department of Internal Medicine, Chungbuk National University College of Medicine, Chungbuk National University Hospital, Cheongju 28644, Korea;
| | - Hyun Wook Han
- Department of Biomedical Informatics, CHA University School of Medicine, CHA University, Seongnam 13488, Korea;
- Institute for Biomedical Informatics, School of Medicine, CHA University, Seongnam 13488, Korea
- Institute of Basic Medical Sciences, School of Medicine, CHA University, Seongnam 13488, Korea
| |
Collapse
|
45
|
Riccò M, Ranzieri S, Peruzzi S, Valente M, Marchesi F, Bragazzi NL, Donelli D, Balzarini F, Ferraro P, Gianfredi V, Signorelli C. Antigen Detection Tests for SARS-CoV-2: a systematic review and meta-analysis on real world data. ACTA BIO-MEDICA : ATENEI PARMENSIS 2022; 93:e2022036. [PMID: 35546034 PMCID: PMC9171867 DOI: 10.23750/abm.v93i2.11031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 11/25/2022]
Abstract
Background and aim Rapid antigen detection (RAD) tests on nasopharyngeal specimens have been recently made available for SARS-CoV-2 infections, and early studies suggested their potential utilization as rapid screening and diagnostic testing. The present systematic review and meta-analysis was aimed to assess available evidence and to explore the reliability of antigenic tests in the management of the SARS-CoV-2 pandemic. MATERIALS AND METHODS We reported our meta-analysis according to the PRISMA statement. We searched Pubmed, Embase, and pre-print archive medRxiv.og for eligible studies published up to November 5th, 2020. Raw data included true/false positive and negative tests, and the total number of tests. Sensitivity and specificity data were calculated for every study, and then pooled in a random-effects model. Heterogeneity was assessed using the I2 measure. Reporting bias was assessed by means of funnel plots and regression analysis. RESULTS Based on 25 studies, we computed a pooled sensitivity of 72.8% (95%CI 62.4-81.3), a specificity of 99.4% (95%CI 99.0-99.7), with high heterogeneity and risk of reporting bias. More precisely, RAD tests exhibited higher sensitivity on samples with high viral load (i.e. <25 Cycle Threshold; 97.6%; 95%CI 94.1-99.0), compared to those with low viral load (≥25 Cycle Threshold; 43.6%; 95% 27.6-61.1). DISCUSSION As the majority of collected reports were either cohort or case-control studies, deprived of preventive power analysis and often oversampling positive tests, overall performances may have been overestimated. Therefore, the massive referral to antigenic tests in place of RT-qPCR is currently questionable, and also their deployment as mass screening test may lead to intolerable share of missing diagnoses. On the other hand, RAD tests may find a significant role in primary care and in front-line settings (e.g. Emergency Departments). (www.actabiomedica.it).
Collapse
Affiliation(s)
- Matteo Riccò
- Azienda USL-IRCCS di Reggio Emilia; V.le Amendola n.2 - 42122 RE; Servizio di Prevenzione e Sicurezza negli Ambienti di Lavoro (SPSAL)Dip. di Prevenzione.
| | - Silvia Ranzieri
- University of Parma, Department of Medicine and Surgery, School of Occupational Medicine, I-43123 Parma (PR), Italy.
| | - Simona Peruzzi
- AUSL-IRCCS di Reggio Emilia, Laboratorio Analisi Chimico Cliniche e Microbiologiche, Ospedale Civile di Guastalla, I-42016 Guastalla .
| | - Marina Valente
- University of Parma, Department of Medicine and Surgery, Unit of Clinical Surgery, I-43123 Parma (PR), Italy.
| | - Federico Marchesi
- University of Parma, Department of Medicine and Surgery, Unit of Clinical Surgery, I-43123 Parma (PR), Italy.
| | - Nicola Luigi Bragazzi
- Laboratory for Industrial and Applied Mathematics (LIAM), Department of Mathematics and Statistics, University of York, Toronto (ON), Canada.
| | - Davide Donelli
- AUSL-IRCCS di Reggio Emilia, Department of Primary Care, I-42122, Reggio Emilia RE, Italy.
| | - Federica Balzarini
- ATS Bergamo, Dipartimento P.A.A.P.S.S., Servizio Autorizzazione e Accreditamento, Via Galliccioli, 4, Bergamo.
| | - Pietro Ferraro
- ASL di Foggia, Occupational Health and Safety Service of Local Health Unit of Foggia, Piazza Pavoncelli 11, I-41121 Foggia.
| | - Vincenza Gianfredi
- University "Vita e Salute", San Raffaele Hospital; Via Olgettina n. 58, I-20132; Milan (MI), Italy.
| | - Carlo Signorelli
- University "Vita e Salute", San Raffaele Hospital; Via Olgettina n. 58, I-20132; Milan (MI), Italy.
| |
Collapse
|
46
|
Bwogi J, Lutalo T, Tushabe P, Bukenya H, Eliku JP, Ssewanyana I, Nabadda S, Nsereko C, Cotten M, Downing R, Lutwama J, Kaleebu P. Field evaluation of the performance of seven Antigen Rapid diagnostic tests for the diagnosis of SARs-CoV-2 virus infection in Uganda. PLoS One 2022; 17:e0265334. [PMID: 35536792 PMCID: PMC9089886 DOI: 10.1371/journal.pone.0265334] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 02/28/2022] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE The objective of this study was to evaluate the performance of seven antigen rapid diagnostic tests (Ag RDTs) in a clinical setting to identify those that could be recommended for use in the diagnosis of SARS-CoV-2 infection in Uganda. METHODS This was a cross-sectional prospective study. Nasopharyngeal swabs were collected consecutively from COVID-19 PCR positive and COVID-19 PCR negative participants at isolation centers and points of entry, and tested with the SARS-CoV-2 Ag RDTs. Test sensitivity and specificity were generated by comparing results against qRT-PCR results (Berlin Protocol) at a cycle threshold (Ct) cut-off of ≤39. Sensitivity was also calculated at Ct cut-offs ≤29 and ≤33. RESULTS None of the Ag RDTs had a sensitivity of ≥80% at Ct cut-off values ≤33 and ≤39. Two kits, Panbio™ COVID-19 Ag and VivaDiag™ SARS-CoV-2 Ag had a sensitivity of ≥80% at a Ct cut-off value of ≤29. Four kits: BIOCREDIT COVID -19 Ag, COVID-19 Ag Respi-Strip, MEDsan® SARS-CoV-2 Antigen Rapid Test and Panbio™ COVID-19 Ag Rapid Test had a specificity of ≥97%. CONCLUSIONS This evaluation identified one Ag RDT, Panbio™ COVID-19 Ag with a performance at high viral load (Ct value ≤29) reaching that recommended by WHO. This kit was recommended for screening of patients with COVID -19-like symptoms presenting at health facilities.
Collapse
Affiliation(s)
| | - Tom Lutalo
- Uganda Virus Research Institute, Entebbe, Uganda
| | | | | | | | | | | | | | - Matthew Cotten
- Medical Research Council/Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
| | | | | | - Pontiano Kaleebu
- Uganda Virus Research Institute, Entebbe, Uganda
- Medical Research Council/Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
| | | | | |
Collapse
|
47
|
Brümmer LE, Katzenschlager S, McGrath S, Schmitz S, Gaeddert M, Erdmann C, Bota M, Grilli M, Larmann J, Weigand MA, Pollock NR, Macé A, Erkosar B, Carmona S, Sacks JA, Ongarello S, Denkinger CM. Accuracy of rapid point-of-care antigen-based diagnostics for SARS-CoV-2: An updated systematic review and meta-analysis with meta-regression analyzing influencing factors. PLoS Med 2022; 19:e1004011. [PMID: 35617375 PMCID: PMC9187092 DOI: 10.1371/journal.pmed.1004011] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/10/2022] [Accepted: 05/04/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Comprehensive information about the accuracy of antigen rapid diagnostic tests (Ag-RDTs) for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is essential to guide public health decision makers in choosing the best tests and testing policies. In August 2021, we published a systematic review and meta-analysis about the accuracy of Ag-RDTs. We now update this work and analyze the factors influencing test sensitivity in further detail. METHODS AND FINDINGS We registered the review on PROSPERO (registration number: CRD42020225140). We systematically searched preprint and peer-reviewed databases for publications evaluating the accuracy of Ag-RDTs for SARS-CoV-2 until August 31, 2021. Descriptive analyses of all studies were performed, and when more than 4 studies were available, a random-effects meta-analysis was used to estimate pooled sensitivity and specificity with reverse transcription polymerase chain reaction (RT-PCR) testing as a reference. To evaluate factors influencing test sensitivity, we performed 3 different analyses using multivariable mixed-effects meta-regression models. We included 194 studies with 221,878 Ag-RDTs performed. Overall, the pooled estimates of Ag-RDT sensitivity and specificity were 72.0% (95% confidence interval [CI] 69.8 to 74.2) and 98.9% (95% CI 98.6 to 99.1). When manufacturer instructions were followed, sensitivity increased to 76.3% (95% CI 73.7 to 78.7). Sensitivity was markedly better on samples with lower RT-PCR cycle threshold (Ct) values (97.9% [95% CI 96.9 to 98.9] and 90.6% [95% CI 88.3 to 93.0] for Ct-values <20 and <25, compared to 54.4% [95% CI 47.3 to 61.5] and 18.7% [95% CI 13.9 to 23.4] for Ct-values ≥25 and ≥30) and was estimated to increase by 2.9 percentage points (95% CI 1.7 to 4.0) for every unit decrease in mean Ct-value when adjusting for testing procedure and patients' symptom status. Concordantly, we found the mean Ct-value to be lower for true positive (22.2 [95% CI 21.5 to 22.8]) compared to false negative (30.4 [95% CI 29.7 to 31.1]) results. Testing in the first week from symptom onset resulted in substantially higher sensitivity (81.9% [95% CI 77.7 to 85.5]) compared to testing after 1 week (51.8%, 95% CI 41.5 to 61.9). Similarly, sensitivity was higher in symptomatic (76.2% [95% CI 73.3 to 78.9]) compared to asymptomatic (56.8% [95% CI 50.9 to 62.4]) persons. However, both effects were mainly driven by the Ct-value of the sample. With regards to sample type, highest sensitivity was found for nasopharyngeal (NP) and combined NP/oropharyngeal samples (70.8% [95% CI 68.3 to 73.2]), as well as in anterior nasal/mid-turbinate samples (77.3% [95% CI 73.0 to 81.0]). Our analysis was limited by the included studies' heterogeneity in viral load assessment and sample origination. CONCLUSIONS Ag-RDTs detect most of the individuals infected with SARS-CoV-2, and almost all (>90%) when high viral loads are present. With viral load, as estimated by Ct-value, being the most influential factor on their sensitivity, they are especially useful to detect persons with high viral load who are most likely to transmit the virus. To further quantify the effects of other factors influencing test sensitivity, standardization of clinical accuracy studies and access to patient level Ct-values and duration of symptoms are needed.
Collapse
Affiliation(s)
- Lukas E. Brümmer
- Division of Infectious Disease and Tropical Medicine, Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Sean McGrath
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Stephani Schmitz
- Department of Developmental Biology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Mary Gaeddert
- Division of Infectious Disease and Tropical Medicine, Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Marc Bota
- Agaplesion Bethesda Hospital, Hamburg, Germany
| | - Maurizio Grilli
- Library, University Medical Center Mannheim, Mannheim, Germany
| | - Jan Larmann
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus A. Weigand
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Nira R. Pollock
- Department of Laboratory Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | | | | | | | | | | | - Claudia M. Denkinger
- Division of Infectious Disease and Tropical Medicine, Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
- German Center for Infection Research (DZIF), partner site Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
48
|
Arshadi M, Fardsanei F, Deihim B, Farshadzadeh Z, Nikkhahi F, Khalili F, Sotgiu G, Shahidi Bonjar AH, Centis R, Migliori GB, Nasiri MJ, Mirsaeidi M. Diagnostic Accuracy of Rapid Antigen Tests for COVID-19 Detection: A Systematic Review With Meta-analysis. Front Med (Lausanne) 2022; 9:870738. [PMID: 35463027 PMCID: PMC9021531 DOI: 10.3389/fmed.2022.870738] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/18/2022] [Indexed: 11/24/2022] Open
Abstract
Introduction Reverse transcription-polymerase chain reaction (RT-PCR) to detect SARS-CoV-2 is time-consuming and sometimes not feasible in developing nations. Rapid antigen test (RAT) could decrease the load of diagnosis. However, the efficacy of RAT is yet to be investigated comprehensively. Thus, the current systematic review and meta-analysis were conducted to evaluate the diagnostic accuracy of RAT against RT-PCR methods as the reference standard. Methods We searched the MEDLINE/Pubmed and Embase databases for the relevant records. The QUADAS-2 tool was used to assess the quality of the studies. Diagnostic accuracy measures [i.e., sensitivity, specificity, diagnostic odds ratio (DOR), positive likelihood ratios (PLR), negative likelihood ratios (NLR), and the area under the curve (AUC)] were pooled with a random-effects model. All statistical analyses were performed with Meta-DiSc (Version 1.4, Cochrane Colloquium, Barcelona, Spain). Results After reviewing retrieved records, we identified 60 studies that met the inclusion criteria. The pooled sensitivity and specificity of the rapid antigen tests against the reference test (the real-time PCR) were 69% (95% CI: 68–70) and 99% (95% CI: 99–99). The PLR, NLR, DOR and the AUC estimates were found to be 72 (95% CI: 44–119), 0.30 (95% CI: 0.26–0.36), 316 (95% CI: 167–590) and 97%, respectively. Conclusion The present study indicated that using RAT kits is primarily recommended for the early detection of patients suspected of having COVID-19, particularly in countries with limited resources and laboratory equipment. However, the negative RAT samples may need to be confirmed using molecular tests, mainly when the symptoms of COVID-19 are present.
Collapse
Affiliation(s)
- Maniya Arshadi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Fardsanei
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Behnaz Deihim
- Department of Bacteriology and Virology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Zahra Farshadzadeh
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farhad Nikkhahi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Farima Khalili
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Amir Hashem Shahidi Bonjar
- Clinician Scientist of Dental Materials and Restorative Dentistry, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rosella Centis
- Clinical Epidemiology and Medical Statistics Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Giovanni Battista Migliori
- Clinical Epidemiology and Medical Statistics Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Mohammad Javad Nasiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Mirsaeidi
- Division of Pulmonary and Critical Care, College of Medicine-Jacksonville, University of Florida, Gainesville, FL, United States
| |
Collapse
|
49
|
Kessler HH, Prüller F, Hardt M, Stelzl E, Föderl-Höbenreich E, Pailer S, Lueger A, Kreuzer P, Zatloukal K, Herrmann M. Identification of contagious SARS-CoV-2 infected individuals by Roche's Rapid Antigen Test. Clin Chem Lab Med 2022; 60:778-785. [PMID: 35258234 DOI: 10.1515/cclm-2021-1276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/15/2022] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Rapid antigen tests (RAT) can provide valuable information on the presence or absence SARS-CoV-2 within 15 min without the need of a laboratory. The analytical and diagnostic characteristics of available RATs has led to the question whether they can safely distinguish between infectious and non-infectious patients in an acute care setting. METHODS Three nasopharyngeal swabs for the analysis by RAT, reverse transcriptase real time polymerase chain reaction (RT-qPCR), and a cell culture based infection assay were collected from 67 patients that presented to the emergency department of the University Hospital of Graz (Austria). The first swab was used for on-site RAT testing in the emergency department using the Roche SARS-CoV-2 RAT. The second swab was sent to the central laboratory of the hospital for RT-qPCR with two independent methods (Cepheid Xpert® Xpress SARS-CoV-2 assay and Roche Cobas SARS-CoV-2 Test) and repeat RAT testing using the same commercial test. With the third swab a cell culture-based infection assay was performed. RESULTS The RATs performed from independent samples showed substantial agreement (Cohen's-kappa: 0.73, p<0.001). All patients with a positive RAT had positive RT-qPCR with cycle threshold (ct) values <25. Fifteen out of 55 RAT-negative samples were RT-qPCR positive with ct values between 25 and 40. The inoculation of cell cultures with RT-qPCR negative swabs and RT-qPCR positive swabs with ct values >25 did not induce cytopathic effects that were related to SARS-CoV-2. The infection assays from four RAT-negative patients showed cytopathic effects that were induced by other pathogens. CONCLUSIONS The SARS-CoV-2 RAT from Roche Diagnostics is a valuable tool for managing symptomatic patients. RAT-negative patients may be regarded as non-contagious.
Collapse
Affiliation(s)
- Harald H Kessler
- Molecular Diagnostics Laboratory, Diagnostic and Research Institute of Hygiene,Microbiology, and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Florian Prüller
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Melina Hardt
- Diagnostic- and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Evelyn Stelzl
- Molecular Diagnostics Laboratory, Diagnostic and Research Institute of Hygiene,Microbiology, and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Esther Föderl-Höbenreich
- Diagnostic- and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Sabine Pailer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Andreas Lueger
- Division of Emergency Medicine, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Philipp Kreuzer
- Division of Emergency Medicine, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Kurt Zatloukal
- Diagnostic- and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Markus Herrmann
- Molecular Diagnostics Laboratory, Diagnostic and Research Institute of Hygiene,Microbiology, and Environmental Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
50
|
Ardekani LS, Thulstrup PW. Gold Nanoparticle-Mediated Lateral Flow Assays for Detection of Host Antibodies and COVID-19 Proteins. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1456. [PMID: 35564165 PMCID: PMC9102158 DOI: 10.3390/nano12091456] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 01/15/2023]
Abstract
Coronaviruses, that are now well-known to the public, include a family of viruses that can cause severe acute respiratory syndrome (SARS) and other respiratory diseases, such as Middle East respiratory syndrome (MERS). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the seventh member of this coronavirus family, was detected in 2019 and can cause a number of respiratory symptoms, from dry cough and fever to fatal viral pneumonia. Various diagnostic assays ranging from real-time polymerase chain reaction (RT-PCR) to point-of-care medical diagnostic systems have been developed for detection of viral components or antibodies targeting the virus. Point-of-care assays allow rapid diagnostic assessment of infectious patients. Such assays are ideally simple, low-cost, portable tests with the possibility for on-site field detection that do not require skilled staff, sophisticated equipment, or sample pretreatment, as compared to RT-PCR. Since early 2021 when new SARS-CoV-2 variants of concern increased, rapid tests became more crucial in the disease management cycle. Among rapid tests, gold nanoparticle (GNP)-based lateral flow assays (LFAs) have high capacity for performing at the bedside, paving the way to easy access to diagnosis results. In this review, GNP-based LFAs used for either COVID-19 proteins or human response antibodies are summarized and recommendations for their improvement have been suggested.
Collapse
Affiliation(s)
- Leila Safaee Ardekani
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran P.O. Box 14115-111, Iran
| | - Peter Waaben Thulstrup
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| |
Collapse
|