1
|
Chen YC, Yu HH, Hu YC, Yang YH, Lin YT, Wang LC, Chiang BL, Lee JH. Peripheral blood cells RNA-seq identifies differentially expressed gene network linked to lymphocyte subsets alterations and active lupus nephritis associated with declines in renal function. Heliyon 2024; 10:e32303. [PMID: 38912505 PMCID: PMC11190669 DOI: 10.1016/j.heliyon.2024.e32303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/25/2024] Open
Abstract
Background The aim of this study was to investigate whether quantitative changes in lymphocyte subsets and gene expression in peripheral blood (PB) cells are related to the clinical manifestations and pathogenesis of lupus nephritis (LN). Methods We enrolled 95 pediatric-onset SLE patients with renal involvement who presented with 450 clinical episodes suspicious for LN flare. Percentages of lymphocyte subsets at each episode were determined. We stratified 55 of 95 patients as high or low subset group according to the median percentage of each lymphocyte subset and the association with changes in the eGFR (ΔeGFR) were analyzed. Peripheral blood bulk RNA-seq to identify differentially expressed genes (DEGs) in 9 active LN vs. 9 inactive LN patients and the DEG-derived network was constructed by Ingenuity Pathway Analysis (IPA). Results The mean ΔeGFR of low NK-low memory CD4+ T-high naive CD4+ T group (31.01 mL/min/1.73 m2) was significantly greater than that of high NK-high memory CD4+ T-low naive CD4+ T group (11.83 mL/min/1.73 m2; P = 0.0175). Kaplan-Meier analysis showed that the median time for ΔeGFR decline to mean ΔeGFR is approximately 10 years for high NK-high memory CD4+ T-low naive CD4+ T group and approximately 5 years for low NK-low memory CD4+ T-high naive CD4+ T group (log-rank test P = 0.0294). Conclusions Our study highlighted important connections between DEG-derived network, lymphocyte subset composition, and disease status of LN and GN. A novel scoring system based on lymphocyte subset proportions effectively stratified patients into groups with differential risks for declining renal function.
Collapse
Affiliation(s)
- Yi-Chen Chen
- Fu Jen Catholic University Hospital, New Taipei City, Taiwan, China
| | - Hsin-Hui Yu
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan, China
| | - Ya-Chiao Hu
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan, China
| | - Yao-Hsu Yang
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan, China
| | - Yu-Tsan Lin
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan, China
| | - Li-Chieh Wang
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan, China
| | - Bor-Luen Chiang
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan, China
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan, China
| | - Jyh-Hong Lee
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan, China
| |
Collapse
|
2
|
Nozaki Y, Shiga T, Ashida C, Tomita D, Itami T, Kishimoto K, Kinoshita K, Matsumura I. U-KIM-1 as a predictor of treatment response in lupus nephritis. Lupus 2023; 32:54-62. [PMID: 36305170 DOI: 10.1177/09612033221135871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Biomarkers of disease activity in lupus nephritis (LN) are in demand. This is because they may be useful in patients who are unable to undergo invasive kidney biopsy, as predictors of renal function, and for early detection of LN recurrence. The focus is on the measurement of urinary chemokines and cytokines, especially in urinary biomarkers, which are non-invasive and simple. In our previous report, we reported that kidney injury molecule-1 (KIM-1) is expressed in injured tubules and that the number of tubular-KIM-expressing positive cells correlates with renal pathology findings and also with urinary (u)-KIM-1 levels. However, there have been no reports examining the effect of u-KIM-1 levels on response to therapy, correlation with renal pathology, and usefulness as a predictor of renal function. METHODS U-KIM-1 levels were measured by ELISA in 61 SLE patients. In 38 active LN who underwent renal biopsy, we also examined whether u-KIM-1 levels affected LN disease activity, renal histological findings, and predictors of renal function. RESULTS In SLE patients, proteinuria and u-KIM-1 levels were elevated in active LN compared to inactive LN. U-KIM-1 and proteinuria decreased with intensified treatment. U-KIM-1 levels also correlated with the percentage of glomerular crescent formation in renal pathology. In addition, patients with higher baseline u-KIM-1 levels had significantly higher eGFR and lower LN disease activity at 12 months after treatment intensification. CONCLUSIONS These data suggest that u-KIM-1 levels correlate with LN disease activity and renal histopathology findings and may be used as a predictor of treatment response.
Collapse
Affiliation(s)
- Yuji Nozaki
- Department of Hematology and Rheumatology, 326473Kindai University School of Medicine, Osaka-Sayama, Japan
| | - Toshihiko Shiga
- Department of Hematology and Rheumatology, 326473Kindai University School of Medicine, Osaka-Sayama, Japan
| | - Chisato Ashida
- Department of Hematology and Rheumatology, 326473Kindai University School of Medicine, Osaka-Sayama, Japan
| | - Daisuke Tomita
- Department of Hematology and Rheumatology, 326473Kindai University School of Medicine, Osaka-Sayama, Japan
| | - Tetsu Itami
- Department of Hematology and Rheumatology, 326473Kindai University School of Medicine, Osaka-Sayama, Japan
| | - Kazuya Kishimoto
- Department of Hematology and Rheumatology, 326473Kindai University School of Medicine, Osaka-Sayama, Japan
| | - Koji Kinoshita
- Department of Hematology and Rheumatology, 326473Kindai University School of Medicine, Osaka-Sayama, Japan
| | - Itaru Matsumura
- Department of Hematology and Rheumatology, 326473Kindai University School of Medicine, Osaka-Sayama, Japan
| |
Collapse
|
3
|
Elevated expression of receptors for EGF, PDGF, transferrin and folate within murine and human lupus nephritis kidneys. Clin Immunol 2023; 246:109188. [PMID: 36396012 DOI: 10.1016/j.clim.2022.109188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE) is a chronic autoimmune disease where the body's immune system targets cells and tissue in numerous organs, including the kidneys. Lupus nephritis (LN) is a highly heterogeneous disease, and diagnosis is difficult because clinical manifestations vary widely among patients. Comprehensive proteomic studies reported recently in LN have identified several urinary proteins which are also cell-surface receptors. If indeed these receptor proteins are also hyper-expressed within the kidneys, ligands to these receptors may be useful for drug targeting. METHODS scRNA sequence data analysis and immunohistochemistry were performed on LN kidneys for expression of four implicated receptors, EGFR, FOL2R2, PDGF-RB, and TFRC. RESULTS In reported scRNA sequencing studies from 21 LN patients and 3 healthy control renal biopsies or renal-infiltrating immune cells from 24 LN biopsies, EGFR, FOLR2, PDGF-Rb, and TFRC were all hyper expressed within LN kidneys in comparison to healthy kidneys, either within resident renal cells or infiltrating leukocytes. Immunohistochemistry staining of murine lupus renal biopsies from lupus mice revealed EGFR, FOLR2, TFRC and PDGF-RB were elevated in LN kidneys. Immunohistochemistry staining of human Class II, Class III, and Class IV kidney tissue sections revealed EGFR, TFRC, and PDGF-RB were significantly elevated in proliferative LN kidneys. CONCLUSION These findings underscore the potential of EGFR, TFRC, FOLR2, and PDGF-RB as promising receptors for potential drug-targeting in LN.
Collapse
|
4
|
Investigating the Mechanisms of Jieduquyuziyin Prescription Improves Lupus Nephritis and Fibrosis via FXR in MRL/lpr Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4301033. [PMID: 35855861 PMCID: PMC9288302 DOI: 10.1155/2022/4301033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/30/2022] [Accepted: 06/19/2022] [Indexed: 11/18/2022]
Abstract
Lupus nephritis (LN) is one of the most serious complications of systemic lupus erythematosus (SLE) and one of the leading causes of death. An alternative effective treatment to ameliorate and relieve LN and delay the process of renal tissue fibrosis is urgently needed in the clinical setting. Jieduquyuziyin prescription (JP) has been successfully used to treat SLE, but its potential mechanisms are not sufficiently understood. In this study, we treated MRL/lpr mice with JP for 8 weeks and treated human renal tubular epithelial cells (human kidney 2 (HK-2)) with drug-containing serum to observe the antagonistic effects of JP on inflammation and fibrosis, as well as to investigate the possible mechanisms. Results demonstrated that JP significantly reduced urinary protein and significantly improved pathological abnormalities. Metabolomics combined with ingenuity pathway analysis illustrated that the process of kidney injury in lupus mice may be closely related to farnesoid X receptor (FXR) pathway abnormalities. Microarray biomimetic analysis and LN patients indicated that FXR may play a protective role as an effective therapeutic target for LN and renal fibrosis. JP significantly increased the expression of FXR and inhibited the expression of its downstream targets, namely, nuclear transcription factor κB (NF-κB) and α-smooth muscle actin (α-SMA), in the kidney of MRL/lpr mice and HK-2 cells, as confirmed by in vitro and in vivo experiments. In conclusion, JP may mediate the activation of renal FXR expression and inhibit NF-κB and α-SMA expression to exert anti-inflammatory and antifibrotic effects for LN prevention and treatment.
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW Mesangial cells are critical for the proper function of the glomerulus, playing roles in structural support and injury repair. However, they are also early responders to glomerular immune complex deposition and contribute to inflammation and fibrosis in lupus nephritis. This review highlights recent studies identifying signaling pathways and mediators in mesangial cell response to lupus-relevant stimuli. RECENT FINDINGS Anti-dsDNA antibodies, serum, or plasma from individuals with lupus nephritis, or specific pathologic factors activated multiple signaling pathways. These pathways largely included JAK/STAT/SOCS, PI3K/AKT, and MAPK and led to induction of proliferation and expression of multiple proinflammatory cytokines, growth factors, and profibrotic factors. NFκB activation was a common mediator of response. Mesangial cells proliferate and express a wide array of proinflammatory/profibrotic factors in response to a variety of lupus-relevant pathologic stimuli. While some of the responses are similar, the mechanisms involved appear to be diverse depending on the stimulus. Future studies are needed to fully elucidate these mechanisms with respect to the diverse milieu of stimuli.
Collapse
Affiliation(s)
- Tamara K Nowling
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, 96 Jonathan Lucas St. CSB 822 MSC 637, Charleston, SC, 29425-6370, USA.
| |
Collapse
|
6
|
Schmidtke L, Meineck M, Saurin S, Otten S, Gather F, Schrick K, Käfer R, Roth W, Kleinert H, Weinmann-Menke J, Pautz A. Knockout of the KH-Type Splicing Regulatory Protein Drives Glomerulonephritis in MRL-Fas lpr Mice. Cells 2021; 10:3167. [PMID: 34831390 PMCID: PMC8624031 DOI: 10.3390/cells10113167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/30/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
KH-type splicing regulatory protein (KSRP) is an RNA-binding protein that promotes mRNA decay and thereby negatively regulates cytokine expression at the post-transcriptional level. Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by dysregulated cytokine expression causing multiple organ manifestations; MRL-Faslpr mice are an established mouse model to study lupus disease pathogenesis. To investigate the impact of KSRP on lupus disease progression, we generated KSRP-deficient MRL-Faslpr mice (MRL-Faslpr/KSRP-/- mice). In line with the predicted role of KSRP as a negative regulator of cytokine expression, lupus nephritis was augmented in MRL-Faslpr/KSRP-/- mice. Increased infiltration of immune cells, especially of IFN-γ producing T cells and macrophages, driven by enhanced expression of T cell-attracting chemokines and adhesion molecules, seems to be responsible for worsened kidney morphology. Reduced expression of the anti-inflammatory interleukin-1 receptor antagonist may be another reason for severe inflammation. The increase of FoxP3+ T cells detected in the kidney seems unable to dampen the massive kidney inflammation. Interestingly, lymphadenopathy was reduced in MRL-Faslpr/KSRP-/- mice. Altogether, KSRP appears to have a complex role in immune regulation; however, it is clearly able to ameliorate lupus nephritis.
Collapse
Affiliation(s)
- Lisa Schmidtke
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (L.S.); (S.S.); (S.O.); (F.G.); (K.S.); (R.K.); (H.K.)
| | - Myriam Meineck
- First Medical Department, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany;
| | - Sabrina Saurin
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (L.S.); (S.S.); (S.O.); (F.G.); (K.S.); (R.K.); (H.K.)
- First Medical Department, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany;
| | - Svenja Otten
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (L.S.); (S.S.); (S.O.); (F.G.); (K.S.); (R.K.); (H.K.)
| | - Fabian Gather
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (L.S.); (S.S.); (S.O.); (F.G.); (K.S.); (R.K.); (H.K.)
| | - Katharina Schrick
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (L.S.); (S.S.); (S.O.); (F.G.); (K.S.); (R.K.); (H.K.)
| | - Rudolf Käfer
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (L.S.); (S.S.); (S.O.); (F.G.); (K.S.); (R.K.); (H.K.)
| | - Wilfried Roth
- Institute of Pathology, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany;
| | - Hartmut Kleinert
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (L.S.); (S.S.); (S.O.); (F.G.); (K.S.); (R.K.); (H.K.)
| | - Julia Weinmann-Menke
- First Medical Department, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany;
| | - Andrea Pautz
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (L.S.); (S.S.); (S.O.); (F.G.); (K.S.); (R.K.); (H.K.)
| |
Collapse
|
7
|
Pires JR, Nogueira MRS, Nunes AJF, Degand DRF, Pessoa LC, Damante CA, Zangrando MSR, Greghi SLA, de Rezende MLR, Sant'Ana ACP. Deposition of Immune Complexes in Gingival Tissues in the Presence of Periodontitis and Systemic Lupus Erythematosus. Front Immunol 2021; 12:591236. [PMID: 33841392 PMCID: PMC8027066 DOI: 10.3389/fimmu.2021.591236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 02/19/2021] [Indexed: 11/21/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex chronic autoimmune disease characterized by tissue damage and widespread inflammation in response to environmental challenges. Deposition of immune complexes in kidneys glomeruli are associated with lupus nephritis, determining SLE diagnosis. Periodontitis is a chronic inflammatory disease characterized by clinical attachment and bone loss, caused by a microbial challenge - host response interaction. Deposition of immune complex at gingival tissues is a common finding in the course of the disease. Considering that, the primary aim of this study is to investigate the deposition of immune complexes at gingival tissues of SLE patients compared to systemically healthy ones, correlating it to periodontal and systemic parameters. Twenty-five women diagnosed with SLE (SLE+) and 25 age-matched systemically healthy (SLE-) women were included in the study. Detailed information on overall patient's health were obtained from file records. Participants were screened for probing depth (PD), clinical attachment loss (CAL), gingival recession (REC), full-mouth bleeding score (FMBS) and plaque scores (FMPS). Bone loss was determined at panoramic X-ray images as the distance from cementenamel junction to alveolar crest (CEJ-AC). Gingival biopsies were obtained from the first 15 patients submitted to surgical periodontal therapy of each group, and were analyzed by optical microscopy and direct immunofluorescence to investigate the deposition of antigen-antibody complexes. Eleven (44%) patients were diagnosed with active SLE (SLE-A) and 14 (56%) with inactive SLE (LES-I). Mean PD, CAL and FMBS were significantly lower in SLE+ than SLE-(p < 0.05; Mann Whitney). The chronic use of low doses of immunosuppressants was associated with lower prevalence of CAL >3 mm. Immunofluorescence staining of markers of lupus nephritis and/or proteinuria was significantly increased in SLE+ compared to SLE-, even in the presence of periodontitis. These findings suggest that immunomodulatory drugs in SLE improves periodontal parameters. The greater deposition of antigen-antibody complexes in the gingival tissues of patients diagnosed with SLE may be a marker of disease activity, possibly complementing their diagnosis.
Collapse
Affiliation(s)
- Julien Rodrigues Pires
- Discipline of Periodontics, Department of Prosthodontics and Periodontics, School of Dentistry at Bauru, University of São Paulo, Bauru, Brazil
| | | | | | | | | | - Carla Andreotti Damante
- Discipline of Periodontics, Department of Prosthodontics and Periodontics, School of Dentistry at Bauru, University of São Paulo, Bauru, Brazil
| | | | - Sebastião Luiz Aguiar Greghi
- Discipline of Periodontics, Department of Prosthodontics and Periodontics, School of Dentistry at Bauru, University of São Paulo, Bauru, Brazil
| | - Maria Lúcia Rubo de Rezende
- Discipline of Periodontics, Department of Prosthodontics and Periodontics, School of Dentistry at Bauru, University of São Paulo, Bauru, Brazil
| | - Adriana Campos Passanezi Sant'Ana
- Discipline of Periodontics, Department of Prosthodontics and Periodontics, School of Dentistry at Bauru, University of São Paulo, Bauru, Brazil
| |
Collapse
|