1
|
White K, Eraclio G, McDonnell B, Lugli GA, Crowley T, Ventura M, Volonté F, Cambillau C, Dal Bello F, Mahony J, van Sinderen D. Lactococcal phage-host profiling through binding studies between cell wall polysaccharide types and Skunavirus receptor-binding proteins. Microb Genom 2025; 11. [PMID: 40294100 DOI: 10.1099/mgen.0.001395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025] Open
Abstract
Dairy fermentations using mesophilic starter cultures rely on the activity of specific lactic acid bacteria (LAB) such as Lactococcus lactis and Lactococcus cremoris for the acidification of milk. This biotechnological process can be affected by bacteriophage infection of LAB starter strains, which may result in delayed or even failed fermentations. Most studied lactococcal phages commence infection with the binding of a tail-associated receptor-binding protein (RBP) to a host cell surface-exposed cell wall polysaccharide (CWPS). In the present study, phage prevalence and diversity in whey samples originating from fermentations performed in various European countries employing undefined mesophilic starter cultures were investigated using phageome analysis. The range of Skunavirus RBP genotypes present in the phageomes and associated RBP-CWPS binding abilities were evaluated, resulting in the refinement and expansion of the Skunavirus RBP grouping system and the identification of several heretofore unknown Skunavirus RBP (sub)groups. These findings substantially expand our knowledge on lactococcal Skunavirus RBP diversity and their binding specificity towards CWPS receptor structures, thereby improving the predictability of fermentation outcomes and robustness of starter culture rotations and blends.
Collapse
Affiliation(s)
- Kelsey White
- School of Microbiology, University College Cork, Cork, T12 Y337, Ireland
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland
| | | | - Brian McDonnell
- School of Microbiology, University College Cork, Cork, T12 Y337, Ireland
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, 12 - I 43121 Parma, Italy
| | - Tadhg Crowley
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland
- Flow Cytometry Platform, APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, 12 - I 43121 Parma, Italy
| | | | - Christian Cambillau
- School of Microbiology, University College Cork, Cork, T12 Y337, Ireland
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies et Biotechnologie (IMM), Aix-Marseille Université - CNRS, UMR 7255, Marseille, France
| | | | - Jennifer Mahony
- School of Microbiology, University College Cork, Cork, T12 Y337, Ireland
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland
| | - Douwe van Sinderen
- School of Microbiology, University College Cork, Cork, T12 Y337, Ireland
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland
| |
Collapse
|
2
|
Mosterd C, Moineau S. Insight into crRNA Processing in Streptococcus mutans P42S and Application of SmutCas9 in Genome Editing. Int J Mol Sci 2025; 26:2005. [PMID: 40076628 PMCID: PMC11900481 DOI: 10.3390/ijms26052005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/21/2025] [Accepted: 02/22/2025] [Indexed: 03/14/2025] Open
Abstract
CRISPR-Cas is an adaptive immune system found in bacteria and archaea that provides resistance against invading nucleic acids. Elements of this natural system have been harnessed to develop several genome editing tools, including CRISPR-Cas9. This technology relies on the ability of the nuclease Cas9 to cut DNA at specific locations directed by a guide RNA. In addition, the nuclease activity of Cas9 requires the presence of a short nucleotide motif (5'-NGG-3' for Cas9 from Streptococcus pyogenes) called PAM, flanking the targeted region. As the reliance on this PAM is typically strict, diverse Cas9 variants recognising different PAM motifs have been studied to target a broader range of genomic sites. In this study, we assessed the potential of Cas9 from Streptococcus mutans strain P42S (SmutCas9) in gene editing. SmutCas9 recognises the rarely targeted 5'-NAA-3' and 5'-NGAA-3' PAMs. To test its efficacy, two genes of the virulent lactococcal phage p2 were edited, thereby demonstrating the potential of SmutCas9 for gene editing purposes, particularly in AT-rich genomes. Sequencing of total RNA also revealed the RNA components of this system, allowing further molecular characterisation of the type II-A CRISPR-Cas system of S. mutans.
Collapse
Affiliation(s)
- Cas Mosterd
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada
| | | |
Collapse
|
3
|
Marton HL, Sagona AP, Kilbride P, Gibson MI. Acidic polymers reversibly deactivate phages due to pH changes. RSC APPLIED POLYMERS 2024; 2:1082-1090. [PMID: 39184364 PMCID: PMC11342163 DOI: 10.1039/d4lp00202d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
Bacteriophages are promising as therapeutics and biotechnological tools, but they also present a problem for routine and commercial bacterial cultures, where contamination must be avoided. Poly(carboxylic acids) have been reported to inhibit phages' ability to infect their bacterial hosts and hence offer an exciting route to discover additives to prevent infection. Their mechanism and limitations have not been explored. Here, we report the role of pH in inactivating phages to determine if the polymers are unique or simply acidic. It is shown that lower pH (=3) triggered by either acidic polymers or similar changes in pH using HCl lead to inhibition. There is no inhibitory activity at higher pHs (in growth media). This was shown across a panel of phages and different molecular weights of commercial and controlled-radical polymerization-derived poly(acrylic acid)s. It is shown that poly(acrylic acid) leads to reversible deactivation of phage, but when the pH is adjusted using HCl alone the phage is irreversibly deactivated. Further experiments using metal binders ruled out ion depletion as the mode of action. These results show that polymeric phage inhibitors may work by unique mechanisms of action and that pH alone cannot explain the observed effects whilst also placing constraints on the practical utility of poly(acrylic acid).
Collapse
Affiliation(s)
- Huba L Marton
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK +44 247 652 4112
| | - Antonia P Sagona
- School of Life Sciences, University of Warwick Coventry CV4 7AL UK
| | | | - Matthew I Gibson
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK +44 247 652 4112
- Warwick Medical School, University of Warwick Coventry CV4 7AL UK
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
- Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
4
|
Grafakou A, Mosterd C, de Waal PP, van Rijswijck IMH, van Peij NNME, Mahony J, van Sinderen D. Functional and practical insights into three lactococcal antiphage systems. Appl Environ Microbiol 2024; 90:e0112024. [PMID: 39136492 PMCID: PMC11409693 DOI: 10.1128/aem.01120-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/21/2024] [Indexed: 09/19/2024] Open
Abstract
The persistent challenge of phages in dairy fermentations requires the development of starter cultures with enhanced phage resistance. Recently, three plasmid-encoded lactococcal antiphage systems, named Rhea, Aristaios, and Kamadhenu, were discovered. These systems were found to confer high levels of resistance against various Skunavirus members. In the present study, their effectiveness against phage infection was confirmed in milk-based medium, thus validating their potential to ensure reliable dairy fermentations. We furthermore demonstrated that Rhea and Kamadhenu do not directly hinder phage genome replication, transcription, or associated translation. Conversely, Aristaios was found to interfere with phage transcription. Two of the antiphage systems are encoded on pMRC01-like conjugative plasmids, and the Kamadhenu-encoding plasmid was successfully transferred by conjugation to three lactococcal strains, each of which acquired substantially enhanced phage resistance against Skunavirus members. Such advances in our knowledge of the lactococcal phage resistome and the possibility of mobilizing these protective functions to bolster phage protection in sensitive strains provide practical solutions to the ongoing phage problem in industrial food fermentations.IMPORTANCEIn the current study, we characterized and evaluated the mechanistic diversity of three recently described, plasmid-encoded lactococcal antiphage systems. These systems were found to confer high resistance against many members of the most prevalent and problematic lactococcal phage genus, rendering them of particular interest to the dairy industry, where persistent phage challenge requires the development of starter cultures with enhanced phage resistance characteristics. Our acquired knowledge highlights that enhanced understanding of lactococcal phage resistance systems and their encoding plasmids can provide rational and effective solutions to the enduring issue of phage infections in dairy fermentation facilities.
Collapse
Affiliation(s)
- Andriana Grafakou
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Cas Mosterd
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Paul P. de Waal
- dsm-firmenich, Taste, Texture & Health, Center for Food Innovation, Delft, the Netherlands
| | | | - Noël N. M. E. van Peij
- dsm-firmenich, Taste, Texture & Health, Center for Food Innovation, Delft, the Netherlands
| | - Jennifer Mahony
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Douwe van Sinderen
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
5
|
Grafakou A, Mosterd C, Beck MH, Kelleher P, McDonnell B, de Waal PP, van Rijswijck IMH, van Peij NNME, Cambillau C, Mahony J, van Sinderen D. Discovery of antiphage systems in the lactococcal plasmidome. Nucleic Acids Res 2024; 52:9760-9776. [PMID: 39119896 PMCID: PMC11381338 DOI: 10.1093/nar/gkae671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Until the late 2000s, lactococci substantially contributed to the discovery of various plasmid-borne phage defence systems, rendering these bacteria an excellent antiphage discovery resource. Recently, there has been a resurgence of interest in identifying novel antiphage systems in lactic acid bacteria owing to recent reports of so-called 'defence islands' in diverse bacterial genera. Here, 321 plasmid sequences from 53 lactococcal strains were scrutinized for the presence of antiphage systems. Systematic evaluation of 198 candidates facilitated the discovery of seven not previously described antiphage systems, as well as five systems, of which homologues had been described in other bacteria. All described systems confer resistance against the most prevalent lactococcal phages, and act post phage DNA injection, while all except one behave like abortive infection systems. Structure and domain predictions provided insights into their mechanism of action and allow grouping of several genetically distinct systems. Although rare within our plasmid collection, homologues of the seven novel systems appear to be widespread among bacteria. This study highlights plasmids as a rich repository of as yet undiscovered antiphage systems.
Collapse
Affiliation(s)
- Andriana Grafakou
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Cas Mosterd
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Matthias H Beck
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Philip Kelleher
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Brian McDonnell
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Paul P de Waal
- dsm-firmenich, Taste, Texture & Health, Center for Food Innovation, Delft 2613 AX, The Netherlands
| | - Irma M H van Rijswijck
- dsm-firmenich, Taste, Texture & Health, Center for Food Innovation, Delft 2613 AX, The Netherlands
| | - Noël N M E van Peij
- dsm-firmenich, Taste, Texture & Health, Center for Food Innovation, Delft 2613 AX, The Netherlands
| | - Christian Cambillau
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies et Biotechnologie (IMM), Aix-Marseille Université - CNRS, UMR 7255 Marseille, France
| | - Jennifer Mahony
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Douwe van Sinderen
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| |
Collapse
|
6
|
O’Connor PBF, Mahony J, Casey E, Baranov PV, van Sinderen D, Yordanova MM. Ribosome profiling reveals downregulation of UMP biosynthesis as the major early response to phage infection. Microbiol Spectr 2024; 12:e0398923. [PMID: 38451091 PMCID: PMC10986495 DOI: 10.1128/spectrum.03989-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/14/2024] [Indexed: 03/08/2024] Open
Abstract
Bacteria have evolved diverse defense mechanisms to counter bacteriophage attacks. Genetic programs activated upon infection characterize phage-host molecular interactions and ultimately determine the outcome of the infection. In this study, we applied ribosome profiling to monitor protein synthesis during the early stages of sk1 bacteriophage infection in Lactococcus cremoris. Our analysis revealed major changes in gene expression within 5 minutes of sk1 infection. Notably, we observed a specific and severe downregulation of several pyr operons which encode enzymes required for uridine monophosphate biosynthesis. Consistent with previous findings, this is likely an attempt of the host to starve the phage of nucleotides it requires for propagation. We also observed a gene expression response that we expect to benefit the phage. This included the upregulation of 40 ribosome proteins that likely increased the host's translational capacity, concurrent with a downregulation of genes that promote translational fidelity (lepA and raiA). In addition to the characterization of host-phage gene expression responses, the obtained ribosome profiling data enabled us to identify two putative recoding events as well as dozens of loci currently annotated as pseudogenes that are actively translated. Furthermore, our study elucidated alterations in the dynamics of the translation process, as indicated by time-dependent changes in the metagene profile, suggesting global shifts in translation rates upon infection. Additionally, we observed consistent modifications in the ribosome profiles of individual genes, which were apparent as early as 2 minutes post-infection. The study emphasizes our ability to capture rapid alterations of gene expression during phage infection through ribosome profiling. IMPORTANCE The ribosome profiling technology has provided invaluable insights for understanding cellular translation and eukaryotic viral infections. However, its potential for investigating host-phage interactions remains largely untapped. Here, we applied ribosome profiling to Lactococcus cremoris cultures infected with sk1, a major infectious agent in dairy fermentation processes. This revealed a profound downregulation of genes involved in pyrimidine nucleotide synthesis at an early stage of phage infection, suggesting an anti-phage program aimed at restricting nucleotide availability and, consequently, phage propagation. This is consistent with recent findings and contributes to our growing appreciation for the role of nucleotide limitation as an anti-viral strategy. In addition to capturing rapid alterations in gene expression levels, we identified translation occurring outside annotated regions, as well as signatures of non-standard translation mechanisms. The gene profiles revealed specific changes in ribosomal densities upon infection, reflecting alterations in the dynamics of the translation process.
Collapse
Affiliation(s)
- Patrick B. F. O’Connor
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
- EIRNA Bio, Bioinnovation Hub, Cork, Ireland
| | - Jennifer Mahony
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Eoghan Casey
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Pavel V. Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Douwe van Sinderen
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | |
Collapse
|
7
|
White K, Eraclio G, McDonnell B, Bottacini F, Lugli GA, Ventura M, Volontè F, Dal Bello F, Mahony J, van Sinderen D. A multifaceted investigation of lactococcal strain diversity in undefined mesophilic starter cultures. Appl Environ Microbiol 2024; 90:e0215223. [PMID: 38334291 PMCID: PMC10952461 DOI: 10.1128/aem.02152-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/20/2023] [Indexed: 02/10/2024] Open
Abstract
The dairy fermentation industry relies on the activity of lactic acid bacteria in robust starter cultures to accomplish milk acidification. Maintenance of the composition of these starter cultures, whether defined or undefined, is essential to ensure consistent and high-quality fermentation end products. To date, limited information exists regarding the microbial composition of undefined starter culture systems. Here, we describe a culture-based analysis combined with a metagenomics approach to evaluate the composition of two undefined mesophilic starter cultures. In addition, we describe a qPCR-based genotype detection assay, which is capable of discerning nine distinct lactococcal genotypes to characterize these undefined starter cultures, and which can be applied to monitor compositional changes in an undefined starter culture during a fermentation. IMPORTANCE This study reports on the development of a combined culture-based analysis and metagenomics approach to evaluate the composition of two undefined mesophilic starter cultures. In addition, a novel qPCR-based genotype detection assay, capable of discerning nine distinct lactococcal genotypes (based on lactococcal cell wall polysaccharide biosynthesis gene clusters), was used to monitor compositional changes in an undefined starter culture following phage attack. These analytical approaches facilitate a multifaceted assessment of starter culture compositional stability during milk fermentation, which has become an important QC aspect due to the increasing demand for consistent and high-quality dairy products.
Collapse
Affiliation(s)
- Kelsey White
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Brian McDonnell
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Francesca Bottacini
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | - Gabriele Andrea Lugli
- Department of Chemistry, Life Sciences, and Environmental Sustainability, Laboratory of Probiogenomics,University of Parma, Parma, Italy
| | - Marco Ventura
- Department of Chemistry, Life Sciences, and Environmental Sustainability, Laboratory of Probiogenomics,University of Parma, Parma, Italy
| | | | | | - Jennifer Mahony
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Douwe van Sinderen
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
8
|
Kamiński B, Paczesny J. Bacteriophage Challenges in Industrial Processes: A Historical Unveiling and Future Outlook. Pathogens 2024; 13:152. [PMID: 38392890 PMCID: PMC10893365 DOI: 10.3390/pathogens13020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Humans have used fermentation processes since the Neolithic period, mainly to produce beverages. The turning point occurred in the 1850s, when Louis Pasteur discovered that fermentation resulted from the metabolism of living microorganisms. This discovery led to the fast development of fermented food production. The importance of industrial processes based on fermentation significantly increased. Many branches of industry rely on the metabolisms of bacteria, for example, the dairy industry (cheese, milk, yogurts), pharmaceutical processes (insulin, vaccines, antibiotics), or the production of chemicals (acetone, butanol, acetic acid). These are the mass production processes involving a large financial outlay. That is why it is essential to minimize threats to production. One major threat affecting bacteria-based processes is bacteriophage infections, causing substantial economic losses. The first reported phage infections appeared in the 1930s, and companies still struggle to fight against phages. This review shows the cases of phage infections in industry and the most common methods used to prevent phage infections.
Collapse
Affiliation(s)
| | - Jan Paczesny
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland;
| |
Collapse
|
9
|
Seiler J, Millen A, Romero DA, Magill D, Simdon L. Novel P335-like Phage Resistance Arises from Deletion within Putative Autolysin yccB in Lactococcus lactis. Viruses 2023; 15:2193. [PMID: 38005870 PMCID: PMC10675428 DOI: 10.3390/v15112193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Lactococcus lactis and Lactococcus cremoris are broadly utilized as starter cultures for fermented dairy products and are inherently impacted by bacteriophage (phage) attacks in the industrial environment. Consequently, the generation of bacteriophage-insensitive mutants (BIMs) is a standard approach for addressing phage susceptibility in dairy starter strains. In this study, we characterized spontaneous BIMs of L. lactis DGCC12699 that gained resistance against homologous P335-like phages. Phage resistance was found to result from mutations in the YjdB domain of yccB, a putative autolysin gene. We further observed that alteration of a fused tail-associated lysin-receptor binding protein (Tal-RBP) in the phage restored infectivity on the yccB BIMs. Additional investigation found yccB homologs to be widespread in L. lactis and L. cremoris and that different yccB homologs are highly correlated with cell wall polysaccharide (CWPS) type/subtype. CWPS are known lactococcal phage receptors, and we found that truncation of a glycosyltransferase in the cwps operon also resulted in resistance to these P335-like phages. However, characterization of the CWPS mutant identified notable differences from the yccB mutants, suggesting the two resistance mechanisms are distinct. As phage resistance correlated with yccB mutation has not been previously described in L. lactis, this study offers insight into a novel gene involved in lactococcal phage sensitivity.
Collapse
Affiliation(s)
- Jenny Seiler
- IFF, Madison, WI 53716, USA; (A.M.); (D.A.R.); (L.S.)
| | - Anne Millen
- IFF, Madison, WI 53716, USA; (A.M.); (D.A.R.); (L.S.)
| | | | | | - Laura Simdon
- IFF, Madison, WI 53716, USA; (A.M.); (D.A.R.); (L.S.)
| |
Collapse
|
10
|
Spus M, Wardhana YR, Wolkers-Rooijackers JC, Abee T, Smid EJ. Lytic bacteriophages affect the population dynamics of multi-strain microbial communities. MICROBIOME RESEARCH REPORTS 2023; 2:33. [PMID: 38045922 PMCID: PMC10688827 DOI: 10.20517/mrr.2023.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/25/2023] [Accepted: 08/25/2023] [Indexed: 12/05/2023]
Abstract
Background: Lytic bacteriophages infect and lyse bacteria and, as a by-product, may affect diversity in microbial communities through selective predation on abundant bacterial strains. We used a complex dairy starter named Ur to investigate population dynamics of Lactococcus lactis, Lactococcus cremoris and Leuconostoc mesenteroides strains in terms of constant-diversity and periodic selection models. Methods: To mimic the starter Ur, we designed blends of 24 strains representing all eight previously identified genetic lineages in the starter culture. The blends were propagated by daily transfers in milk for over 500 generations in the presence or absence of a cocktail of lytic bacteriophages. The relative abundance of genetic lineages of L. lactis, L. cremoris and Lc. mesenteroides strains present in the complex blend, as well as phage presence, were monitored. Results: Control blends without phage predation showed decreased strain diversity, leading to a stable state due to the domination of the fittest strain(s) of a particular lineage according to periodic selection dynamics. However, in phage-challenged blends, predation caused a large shift in the microbial composition by killing the fittest and sensitive strains. Conclusion: It was demonstrated that phage-challenged blends maintained their diversity at the level of genetic lineages, thus providing experimental support for the constant-diversity dynamics model in a complex microbial community.
Collapse
Affiliation(s)
- Maciej Spus
- TI Food and Nutrition, Wageningen 6700 AA, the Netherlands
- Food Microbiology, Wageningen University, Wageningen 6700 AA, the Netherlands
| | | | - Judith C.M. Wolkers-Rooijackers
- TI Food and Nutrition, Wageningen 6700 AA, the Netherlands
- Food Microbiology, Wageningen University, Wageningen 6700 AA, the Netherlands
| | - Tjakko Abee
- Food Microbiology, Wageningen University, Wageningen 6700 AA, the Netherlands
| | - Eddy J. Smid
- TI Food and Nutrition, Wageningen 6700 AA, the Netherlands
- Food Microbiology, Wageningen University, Wageningen 6700 AA, the Netherlands
| |
Collapse
|
11
|
Millen AM, Magill D, Romero D, Simdon L. Evolved distal tail protein of skunaviruses facilitates adsorption to exopolysaccharide-encoding lactococci. MICROBIOME RESEARCH REPORTS 2023; 2:26. [PMID: 38045920 PMCID: PMC10688798 DOI: 10.20517/mrr.2023.29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/10/2023] [Accepted: 06/29/2023] [Indexed: 12/05/2023]
Abstract
Aim: Lactococcal skunaviruses are diverse and problematic in the industrial dairy environment. Host recognition involves the specific interaction of phage-encoded proteins with saccharidic host cell surface structures. Lactococcal plasmid pEPS6073 encodes genes required for the biosynthesis of a cell surface-associated exopolysaccharide (EPS), designated 6073-like. Here, the impact of this EPS on Skunavirus sensitivity was assessed. Methods: Conjugal transfer of pEPS6073 into two model strains followed by phage plaque assays and adsorption assays were performed to assess its effect on phage sensitivity. Phage distal tail proteins were analyzed bioinformatically using HHpred and modeling with AlphaFold. Construction of recombinant phages carrying evolved Dits was performed by supplying a plasmid-encoded template for homologous recombination. Results: pEPS6073 confers resistance against a subset of skunaviruses via adsorption inhibition. IFF collection skunaviruses that infect strains encoding the 6073-like eps gene cluster carry insertions in their distal tail protein-encoding (dit) genes that result in longer Dit proteins (so-called evolved Dits), which encode carbohydrate-binding domains. Three skunaviruses with classical Dits (no insertion) were unable to fully infect their hosts following the conjugal introduction of pEPS6073, showing reductions in both adsorption and efficiency of plaquing. Cloning the evolved Dit into these phages enabled full infectivity on their host strains, both wild type and transconjugant carrying pEPS6073, with recombinant phages adsorbing slightly better to the EPS+ host than wild type. Conclusion: The 6073-like EPS potentially occludes the phage receptor for skunaviruses that encode a classical Dit protein. Skunaviruses that infect strains encoding the 6073-like EPS harbor evolved Dits, which likely help promote phage adsorption rather than just allow the phage to circumvent the putative EPS barrier. This work furthers our knowledge of phage-host interactions in Lactococcus and proposes a role for insertions in the Dit proteins of a subset of skunaviruses.
Collapse
Affiliation(s)
| | - Damian Magill
- Health and Biosciences, IFF, Dangé-Saint-Romain 86220, France
| | | | - Laura Simdon
- Health and Biosciences, IFF, Madison, WI 53716, USA
| |
Collapse
|
12
|
Jolicoeur AP, Lemay ML, Beaubien E, Bélanger J, Bergeron C, Bourque-Leblanc F, Doré L, Dupuis MÈ, Fleury A, Garneau JE, Labrie SJ, Labrie S, Lacasse G, Lamontagne-Drolet M, Lessard-Hurtubise R, Martel B, Menasria R, Morin-Pelchat R, Pageau G, Samson JE, Rousseau GM, Tremblay DM, Duquenne M, Lamoureux M, Moineau S. Longitudinal Study of Lactococcus Phages in a Canadian Cheese Factory. Appl Environ Microbiol 2023; 89:e0042123. [PMID: 37074184 PMCID: PMC10231144 DOI: 10.1128/aem.00421-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/20/2023] Open
Abstract
The presence of virulent phages is closely monitored during cheese manufacturing, as these bacterial viruses can significantly slow down the milk fermentation process and lead to low-quality cheeses. From 2001 to 2020, whey samples from cheddar cheese production in a Canadian factory were monitored for the presence of virulent phages capable of infecting proprietary strains of Lactococcus cremoris and Lactococcus lactis used in starter cultures. Phages were successfully isolated from 932 whey samples using standard plaque assays and several industrial Lactococcus strains as hosts. A multiplex PCR assay assigned 97% of these phage isolates to the Skunavirus genus, 2% to the P335 group, and 1% to the Ceduovirus genus. DNA restriction profiles and a multilocus sequence typing (MLST) scheme distinguished at least 241 unique lactococcal phages from these isolates. While most phages were isolated only once, 93 of them (out of 241, 39%) were isolated multiple times. Phage GL7 was isolated 132 times from 2006 to 2020, demonstrating that phages can persist in a cheese factory for long periods of time. Phylogenetic analysis of MLST sequences showed that phages could be clustered based on their bacterial hosts rather than their year of isolation. Host range analysis showed that Skunavirus phages exhibited a very narrow host range, whereas some Ceduovirus and P335 phages had a broader host range. Overall, the host range information was useful in improving the starter culture rotation by identifying phage-unrelated strains and helped mitigating the risk of fermentation failure due to virulent phages. IMPORTANCE Although lactococcal phages have been observed in cheese production settings for almost a century, few longitudinal studies have been performed. This 20-year study describes the close monitoring of dairy lactococcal phages in a cheddar cheese factory. Routine monitoring was conducted by factory staff, and when whey samples were found to inhibit industrial starter cultures under laboratory conditions, they were sent to an academic research laboratory for phage isolation and characterization. This led to a collection of at least 241 unique lactococcal phages, which were characterized through PCR typing and MLST profiling. Phages of the Skunavirus genus were by far the most dominant. Most phages lysed a small subset of the Lactococcus strains. These findings guided the industrial partner in adapting the starter culture schedule by using phage-unrelated strains in starter cultures and removing some strains from the starter rotation. This phage control strategy could be adapted for other large-scale bacterial fermentation processes.
Collapse
Affiliation(s)
- Alice P. Jolicoeur
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Québec, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Québec, Canada
| | - Marie-Laurence Lemay
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Québec, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Québec, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
| | - Elyse Beaubien
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Québec, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Québec, Canada
| | - Jessy Bélanger
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Québec, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Québec, Canada
| | - Claudia Bergeron
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Québec, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Québec, Canada
| | - Françoise Bourque-Leblanc
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Québec, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Québec, Canada
| | - Laurie Doré
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Québec, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Québec, Canada
| | - Marie-Ève Dupuis
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Québec, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Québec, Canada
| | - Audrey Fleury
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Québec, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Québec, Canada
| | - Josiane E. Garneau
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Québec, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Québec, Canada
| | - Simon J. Labrie
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Québec, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Québec, Canada
| | - Steve Labrie
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Québec, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Québec, Canada
| | - Geneviève Lacasse
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Québec, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Québec, Canada
| | - Marianne Lamontagne-Drolet
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Québec, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Québec, Canada
| | - Roxanne Lessard-Hurtubise
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Québec, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Québec, Canada
| | - Bruno Martel
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Québec, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Québec, Canada
| | - Rym Menasria
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Québec, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Québec, Canada
| | - Rachel Morin-Pelchat
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Québec, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Québec, Canada
| | - Gabrielle Pageau
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Québec, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Québec, Canada
| | - Julie E. Samson
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Québec, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Québec, Canada
| | - Geneviève M. Rousseau
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Québec, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Québec, Canada
| | - Denise M. Tremblay
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Québec, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Québec, Canada
- Félix d’Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec City, Québec, Canada
| | | | | | - Sylvain Moineau
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Québec, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Québec, Canada
- Félix d’Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
13
|
UV tolerance of Lactococcus lactis 936-type phages: Impact of wavelength, matrix, and pH. Int J Food Microbiol 2022; 378:109824. [DOI: 10.1016/j.ijfoodmicro.2022.109824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/17/2022] [Accepted: 06/26/2022] [Indexed: 11/22/2022]
|
14
|
Gut Microbial Stability is Associated with Greater Endurance Performance in Athletes Undertaking Dietary Periodization. mSystems 2022; 7:e0012922. [PMID: 35579384 PMCID: PMC9238380 DOI: 10.1128/msystems.00129-22] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dietary manipulation with high-protein or high-carbohydrate content are frequently employed during elite athletic training, aiming to enhance athletic performance. Such interventions are likely to impact upon gut microbial content. This study explored the impact of acute high-protein or high-carbohydrate diets on measured endurance performance and associated gut microbial community changes. In a cohort of well-matched, highly trained endurance runners, we measured performance outcomes, as well as gut bacterial, viral (FVP), and bacteriophage (IV) communities in a double-blind, repeated-measures design randomized control trial (RCT) to explore the impact of dietary intervention with either high-protein or high-carbohydrate content. High-dietary carbohydrate improved time-trial performance by +6.5% (P < 0.03) and was associated with expansion of Ruminococcus and Collinsella bacterial spp. Conversely, high dietary protein led to a reduction in performance by −23.3% (P = 0.001). This impact was accompanied by significantly reduced diversity (IV: P = 0.04) and altered composition (IV and FVP: P = 0.02) of the gut phageome as well as enrichment of both free and inducible Sk1virus and Leuconostoc bacterial populations. Greatest performance during dietary modification was observed in participants with less substantial shifts in community composition. Gut microbial stability during acute dietary periodization was associated with greater athletic performance in this highly trained, well-matched cohort. Athletes, and those supporting them, should be mindful of the potential consequences of dietary manipulation on gut flora and implications for performance, and periodize appropriately. IMPORTANCE Dietary periodization is employed to improve endurance exercise performance but may impact on gut microbial communities. Bacteriophage are implicated in bacterial cell homeostasis and have been identified as biomarkers of disequilibrium in the gut ecosystem possibly brought about through dietary periodization. We find high-carbohydrate and high-protein diets to have opposing impacts on endurance performance in highly trained athlete populations. Reduced performance is linked with disturbance of microbial stasis in the gut. We demonstrate bacteriophage communities are the most sensitive component of the gut microbiota to increased gut stress following dietary manipulation. Athletes undertaking dietary periodization should be aware of potential negative impacts of drastic changes to dietary composition on gut microbial stasis and, in turn, endurance performance.
Collapse
|
15
|
White K, Yu JH, Eraclio G, Dal Bello F, Nauta A, Mahony J, van Sinderen D. Bacteriophage-host interactions as a platform to establish the role of phages in modulating the microbial composition of fermented foods. MICROBIOME RESEARCH REPORTS 2022; 1:3. [PMID: 38089066 PMCID: PMC10714293 DOI: 10.20517/mrr.2021.04] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/23/2021] [Accepted: 12/31/2021] [Indexed: 02/19/2024]
Abstract
Food fermentation relies on the activity of robust starter cultures, which are commonly comprised of lactic acid bacteria such as Lactococcus and Streptococcus thermophilus. While bacteriophage infection represents a persistent threat that may cause slowed or failed fermentations, their beneficial role in fermentations is also being appreciated. In order to develop robust starter cultures, it is important to understand how phages interact with and modulate the compositional landscape of these complex microbial communities. Both culture-dependent and -independent methods have been instrumental in defining individual phage-host interactions of many lactic acid bacteria (LAB). This knowledge needs to be integrated and expanded to obtain a full understanding of the overall complexity of such interactions pertinent to fermented foods through a combination of culturomics, metagenomics, and phageomics. With such knowledge, it is believed that factory-specific detection and monitoring systems may be developed to ensure robust and reliable fermentation practices. In this review, we explore/discuss phage-host interactions of LAB, the role of both virulent and temperate phages on the microbial composition, and the current knowledge of phageomes of fermented foods.
Collapse
Affiliation(s)
- Kelsey White
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
- Authors contributed equally
| | - Jun-Hyeok Yu
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
- Authors contributed equally
| | | | | | - Arjen Nauta
- FrieslandCampina, Amersfoort 3800 BN, The Netherlands
| | - Jennifer Mahony
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Douwe van Sinderen
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| |
Collapse
|
16
|
Michel C, Samtlebe M, Wagner N, Neve H, Franz CM, Hinrichs J, Atamer Z. Orthogonal processing strategies to create “phage-free” whey – Membrane filtration followed by thermal or ultraviolet C treatment for the reduction of Lactococcus lactis bacteriophages. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Romero DA, Magill D, Millen A, Horvath P, Fremaux C. Dairy lactococcal and streptococcal phage-host interactions: an industrial perspective in an evolving phage landscape. FEMS Microbiol Rev 2021; 44:909-932. [PMID: 33016324 DOI: 10.1093/femsre/fuaa048] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022] Open
Abstract
Almost a century has elapsed since the discovery of bacteriophages (phages), and 85 years have passed since the emergence of evidence that phages can infect starter cultures, thereby impacting dairy fermentations. Soon afterward, research efforts were undertaken to investigate phage interactions regarding starter strains. Investigations into phage biology and morphology and phage-host relationships have been aimed at mitigating the negative impact phages have on the fermented dairy industry. From the viewpoint of a supplier of dairy starter cultures, this review examines the composition of an industrial phage collection, providing insight into the development of starter strains and cultures and the evolution of phages in the industry. Research advances in the diversity of phages and structural bases for phage-host recognition and an overview of the perpetual arms race between phage virulence and host defense are presented, with a perspective toward the development of improved phage-resistant starter culture systems.
Collapse
Affiliation(s)
- Dennis A Romero
- DuPont Nutrition and Biosciences, 3329 Agriculture Dr., Madison, WI 53716, USA
| | - Damian Magill
- DuPont Nutrition and Biosciences, CS 10010, Dangé-Saint-Romain 86220, France
| | - Anne Millen
- DuPont Nutrition and Biosciences, 3329 Agriculture Dr., Madison, WI 53716, USA
| | - Philippe Horvath
- DuPont Nutrition and Biosciences, CS 10010, Dangé-Saint-Romain 86220, France
| | - Christophe Fremaux
- DuPont Nutrition and Biosciences, CS 10010, Dangé-Saint-Romain 86220, France
| |
Collapse
|
18
|
Putra RD, Lyrawati D. Interactions between Bacteriophages and Eukaryotic Cells. SCIENTIFICA 2020; 2020:3589316. [PMID: 32582449 PMCID: PMC7301238 DOI: 10.1155/2020/3589316] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/02/2020] [Accepted: 05/18/2020] [Indexed: 05/30/2023]
Abstract
As the name implies, bacteriophage is a bacterium-specific virus. It infects and kills the bacterial host. Bacteriophages have gained attention as alternative antimicrobial entities in the science community in the western world since the alarming rise of antibiotic resistance among microbes. Although generally considered as prokaryote-specific viruses, recent studies indicate that bacteriophages can interact with eukaryotic organisms, including humans. In the current review, these interactions are divided into two categories, i.e., indirect and direct interactions, with the involvement of bacteriophages, bacteria, and eukaryotes. We discuss bacteriophage-related diseases, transcytosis of bacteriophages, bacteriophage interactions with cancer cells, collaboration of bacteriophages and eukaryotes against bacterial infections, and horizontal gene transfer between bacteriophages and eukaryotes. Such interactions are crucial for understanding and developing bacteriophages as the therapeutic agents and pharmaceutical delivery systems. With the advancement and combination of in silico, in vitro, and in vivo approaches and clinical trials, bacteriophages definitely serve as useful repertoire for biologic target-based drug development to manage many complex diseases in the future.
Collapse
Affiliation(s)
| | - Diana Lyrawati
- Department of Pharmacy, Faculty of Medicine, Brawijaya University, Malang 65145, Indonesia
| |
Collapse
|
19
|
Fusieger A, Martins MCF, de Freitas R, Nero LA, de Carvalho AF. Technological properties of Lactococcus lactis subsp. lactis bv. diacetylactis obtained from dairy and non-dairy niches. Braz J Microbiol 2019; 51:313-321. [PMID: 31734902 DOI: 10.1007/s42770-019-00182-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/25/2019] [Indexed: 12/29/2022] Open
Abstract
Lactococcus lactis subsp. lactis bv. diacetylactis strains are often used as starter cultures by the dairy industry due to their production of acetoin and diacetyl, important substances that add buttery flavor notes in dairy products. Twenty-three L. lactis subsp. lactis isolates were obtained from dairy products (milk and cheese) and dairy farms (silage), identified at a biovar level, fingerprinted by rep-PCR and characterized for some technological features. Fifteen isolates presented molecular and phenotypical (diacetyl and citrate) characteristics coherent with L. lactis subsp. lactis bv. diacetylactis and rep-PCR allowed the identification of 12 distinct profiles (minimum similarity of 90%). Based on technological features, only two isolates were not able to coagulate skim milk and 10 were able to produce proteases. All isolates were able to acidify skim milk: two isolates, in special, presented high acidifying ability due to their ability in reducing more than two pH units after 24 h. All isolates were also able to grow at different NaCl concentrations (0 to 10%, w/v), and isolates obtained from peanut and grass silages presented the highest NaCl tolerance (10%, w/v). These results indicate that the L. lactis subsp. lactis bv. diacetylactis isolates presented interesting technological features for potential application in fermented foods production. Despite presenting promising technological features, the isolates must be assessed according to their safety before being considered as starter cultures.
Collapse
Affiliation(s)
- Andressa Fusieger
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | | | - Rosângela de Freitas
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Luís Augusto Nero
- Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
| | | |
Collapse
|
20
|
Ubiquitous Carbohydrate Binding Modules Decorate 936 Lactococcal Siphophage Virions. Viruses 2019; 11:v11070631. [PMID: 31324000 PMCID: PMC6669499 DOI: 10.3390/v11070631] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/01/2019] [Accepted: 07/04/2019] [Indexed: 01/29/2023] Open
Abstract
With the availability of an increasing number of 3D structures of bacteriophage components, combined with powerful in silico predictive tools, it has become possible to decipher the structural assembly and functionality of phage adhesion devices. In the current study, we examined 113 members of the 936 group of lactococcal siphophages, and identified a number of Carbohydrate Binding Modules (CBMs) in the neck passage structure and major tail protein, on top of evolved Dit proteins, as recently reported by us. The binding ability of such CBM-containing proteins was assessed through the construction of green fluorescent protein fusion proteins and subsequent binding assays. Two CBMs, one from the phage tail and another from the neck, demonstrated definite binding to their phage-specific host. Bioinformatic analysis of the structural proteins of 936 phages reveals that they incorporate binding modules which exhibit structural homology to those found in other lactococcal phage groups and beyond, indicating that phages utilize common structural “bricks” to enhance host binding capabilities. The omnipresence of CBMs in Siphophages supports their beneficial role in the infection process, as they can be combined in various ways to form appendages with different shapes and functionalities, ensuring their success in host detection in their respective ecological niches.
Collapse
|
21
|
|
22
|
Sommer J, Trautner C, Witte AK, Fister S, Schoder D, Rossmanith P, Mester PJ. Don't Shut the Stable Door after the Phage Has Bolted-The Importance of Bacteriophage Inactivation in Food Environments. Viruses 2019; 11:E468. [PMID: 31121941 PMCID: PMC6563225 DOI: 10.3390/v11050468] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/05/2019] [Accepted: 05/17/2019] [Indexed: 12/11/2022] Open
Abstract
In recent years, a new potential measure against foodborne pathogenic bacteria was rediscovered-bacteriophages. However, despite all their advantages, in connection to their widespread application in the food industry, negative consequences such as an uncontrolled phage spread as well as a development of phage resistant bacteria can occur. These problems are mostly a result of long-term persistence of phages in the food production environment. As this topic has been neglected so far, this article reviews the current knowledge regarding the effectiveness of disinfectant strategies for phage inactivation and removal. For this purpose, the main commercial phage products, as well as their application fields are first discussed in terms of applicable inactivation strategies and legal regulations. Secondly, an overview of the effectiveness of disinfectants for bacteriophage inactivation in general and commercial phages in particular is given. Finally, this review outlines a possible strategy for users of commercial phage products in order to improve the effectiveness of phage inactivation and removal after application.
Collapse
Affiliation(s)
- Julia Sommer
- Christian Doppler Laboratory for Monitoring of Microbial Contaminants, Department for Farm Animal and Public Health in Veterinary Medicine, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Christoph Trautner
- Christian Doppler Laboratory for Monitoring of Microbial Contaminants, Department for Farm Animal and Public Health in Veterinary Medicine, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Anna Kristina Witte
- Christian Doppler Laboratory for Monitoring of Microbial Contaminants, Department for Farm Animal and Public Health in Veterinary Medicine, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria.
- HTK Hygiene Technologie Kompetenzzentrum GmbH, Buger Str. 80, 96049 Bamberg, Germany.
| | - Susanne Fister
- Former member of Christian Doppler Laboratory for Monitoring of Microbial Contaminants, Institute of Milk Hygiene, Milk Technology and Food Science, Department for Farm Animal and Public Veterinary Health, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria.
| | - Dagmar Schoder
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, Department for Farm Animal and Public Health in Veterinary Medicine, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Peter Rossmanith
- Christian Doppler Laboratory for Monitoring of Microbial Contaminants, Department for Farm Animal and Public Health in Veterinary Medicine, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria.
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, Department for Farm Animal and Public Health in Veterinary Medicine, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Patrick-Julian Mester
- Christian Doppler Laboratory for Monitoring of Microbial Contaminants, Department for Farm Animal and Public Health in Veterinary Medicine, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria.
| |
Collapse
|
23
|
Frantzen CA, Holo H. Unprecedented Diversity of Lactococcal Group 936 Bacteriophages Revealed by Amplicon Sequencing of the Portal Protein Gene. Viruses 2019; 11:v11050443. [PMID: 31100780 PMCID: PMC6563314 DOI: 10.3390/v11050443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/11/2019] [Accepted: 05/14/2019] [Indexed: 11/17/2022] Open
Abstract
Lactococcus lactis is one of the most important bacteria in dairy fermentations, being used in the production of cheese and buttermilk. The processes are vulnerable to phage attacks, and undefined mixtures of lactococcal strains are often used to reduce the risk of bacteriophage caused fermentation failure. Other preventive measures include culture rotation to prevent phage build-up and phage monitoring. Phage diversity, rather than quantity, is the largest threat to fermentations using undefined mixed starter cultures. We have developed a method for culture independent diversity analysis of lytic bacteriophages of the 936 group, the phages most commonly found in dairies. Using, as a target, a highly variable region of the portal protein gene, we demonstrate an unprecedented diversity and the presence of new 936 phages in samples taken from cheese production. The method should be useful to the dairy industry and starter culture manufacturers in their efforts to reduce phage problems.
Collapse
Affiliation(s)
| | - Helge Holo
- Laboratory of Microbial Gene Technology and Food Microbiology, Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O.B. 5003, N-1432 Aas, Norway.
- Tine SA, N-0187 Oslo, Norway.
| |
Collapse
|
24
|
Szymczak P, Vogensen FK, Janzen T. Novel isolates of Streptococcus thermophilus bacteriophages from group 5093 identified with an improved multiplex PCR typing method. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2018.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Lemay ML, Otto A, Maaß S, Plate K, Becher D, Moineau S. Investigating Lactococcus lactis MG1363 Response to Phage p2 Infection at the Proteome Level. Mol Cell Proteomics 2019; 18:704-714. [PMID: 30679258 PMCID: PMC6442364 DOI: 10.1074/mcp.ra118.001135] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/08/2018] [Indexed: 01/03/2023] Open
Abstract
Phages are viruses that specifically infect and eventually kill their bacterial hosts. Bacterial fermentation and biotechnology industries see them as enemies, however, they are also investigated as antibacterial agents for the treatment or prevention of bacterial infections in various sectors. They also play key ecological roles in all ecosystems. Despite decades of research some aspects of phage biology are still poorly understood. In this study, we used label-free quantitative proteomics to reveal the proteotypes of Lactococcus lactis MG1363 during infection by the virulent phage p2, a model for studying the biology of phages infecting Gram-positive bacteria. Our approach resulted in the high-confidence detection and quantification of 59% of the theoretical bacterial proteome, including 226 bacterial proteins detected only during phage infection and 6 proteins unique to uninfected bacteria. We also identified many bacterial proteins of differing abundance during the infection. Using this high-throughput proteomic datasets, we selected specific bacterial genes for inactivation using CRISPR-Cas9 to investigate their involvement in phage replication. One knockout mutant lacking gene llmg_0219 showed resistance to phage p2 because of a deficiency in phage adsorption. Furthermore, we detected and quantified 78% of the theoretical phage proteome and identified many proteins of phage p2 that had not been previously detected. Among others, we uncovered a conserved small phage protein (pORFN1) coded by an unannotated gene. We also applied a targeted approach to achieve greater sensitivity and identify undetected phage proteins that were expected to be present. This allowed us to follow the fate of pORF46, a small phage protein of low abundance. In summary, this work offers a unique view of the virulent phages' takeover of bacterial cells and provides novel information on phage-host interactions.
Collapse
Affiliation(s)
- Marie-Laurence Lemay
- From the ‡Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, QC, G1V 0A6, Canada;; §Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, QC, G1V 0A6, Canada;; Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Université Laval, Québec City, QC, G1V 0A6, Canada
| | - Andreas Otto
- ¶Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Sandra Maaß
- ¶Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Kristina Plate
- ¶Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Dörte Becher
- ¶Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Sylvain Moineau
- From the ‡Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, QC, G1V 0A6, Canada;; §Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, QC, G1V 0A6, Canada;; Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Université Laval, Québec City, QC, G1V 0A6, Canada.
| |
Collapse
|
26
|
Kupczok A, Neve H, Huang KD, Hoeppner MP, Heller KJ, Franz CMAP, Dagan T. Rates of Mutation and Recombination in Siphoviridae Phage Genome Evolution over Three Decades. Mol Biol Evol 2019; 35:1147-1159. [PMID: 29688542 PMCID: PMC5913663 DOI: 10.1093/molbev/msy027] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The evolution of asexual organisms is driven not only by the inheritance of genetic modification but also by the acquisition of foreign DNA. The contribution of vertical and horizontal processes to genome evolution depends on their rates per year and is quantified by the ratio of recombination to mutation. These rates have been estimated for bacteria; however, no estimates have been reported for phages. Here, we delineate the contribution of mutation and recombination to dsDNA phage genome evolution. We analyzed 34 isolates of the 936 group of Siphoviridae phages using a Lactococcus lactis strain from a single dairy over 29 years. We estimate a constant substitution rate of 1.9 × 10−4 substitutions per site per year due to mutation that is within the range of estimates for eukaryotic RNA and DNA viruses. The reconstruction of recombination events reveals a constant rate of five recombination events per year and 4.5 × 10−3 nucleotide alterations due to recombination per site per year. Thus, the recombination rate exceeds the substitution rate, resulting in a relative effect of recombination to mutation (r/m) of ∼24 that is homogenous over time. Especially in the early transcriptional region, we detect frequent gene loss and regain due to recombination with phages of the 936 group, demonstrating the role of the 936 group pangenome as a reservoir of genetic variation. The observed substitution rate homogeneity conforms to the neutral theory of evolution; hence, the neutral theory can be applied to phage genome evolution and also to genetic variation brought about by recombination.
Collapse
Affiliation(s)
- Anne Kupczok
- Genomic Microbiology Group, Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-Institut (Federal Research Institute of Nutrition and Food), Kiel, Germany
| | - Kun D Huang
- Genomic Microbiology Group, Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Marc P Hoeppner
- Institute of Clinical Molecular Biology (IKMB), Kiel University, Kiel, Germany
| | - Knut J Heller
- Department of Microbiology and Biotechnology, Max Rubner-Institut (Federal Research Institute of Nutrition and Food), Kiel, Germany
| | - Charles M A P Franz
- Department of Microbiology and Biotechnology, Max Rubner-Institut (Federal Research Institute of Nutrition and Food), Kiel, Germany
| | - Tal Dagan
- Genomic Microbiology Group, Institute of General Microbiology, Kiel University, Kiel, Germany
| |
Collapse
|
27
|
Sadiq FA, He G, Sakandar HA, Li Y, Ou K. Lactococcus lactis phages from the perspective of their diversity, thermal and biocidal resistance. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2018.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
Hayes S, Duhoo Y, Neve H, Murphy J, Noben JP, Franz CMAP, Cambillau C, Mahony J, Nauta A, van Sinderen D. Identification of Dual Receptor Binding Protein Systems in Lactococcal 936 Group Phages. Viruses 2018; 10:v10120668. [PMID: 30486343 PMCID: PMC6315561 DOI: 10.3390/v10120668] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 01/14/2023] Open
Abstract
Siphoviridae of the lactococcal 936 group are the most commonly encountered bacteriophages in the dairy processing environment. The 936 group phages possess a discrete baseplate at the tip of their tail—a complex harbouring the Receptor Binding Protein (RBP) which is responsible for host recognition and attachment. The baseplate-encoding region is highly conserved amongst 936 phages, with 112 of 115 publicly available phages exhibiting complete synteny. Here, we detail the three exceptions (Phi4.2, Phi4R15L, and Phi4R16L), which differ from this genomic architecture in possessing an apparent second RBP-encoding gene upstream of the “classical” rbp gene. The newly identified RBP possesses an elongated neck region relative to currently defined 936 phage RBPs and is genetically distinct from defined 936 group RBPs. Through detailed characterisation of the representative phage Phi4.2 using a wide range of complementary techniques, we demonstrated that the above-mentioned three phages possess a complex and atypical baseplate structure. Furthermore, the presence of both RBPs in the tail tip of the mature virion was confirmed, while the anticipated host-binding capabilities of both proteins were also verified.
Collapse
Affiliation(s)
- Stephen Hayes
- School of Microbiology & APC Microbiome Ireland, University College Cork, Western Road, Cork T12 YT20, Ireland.
| | - Yoan Duhoo
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS), Campus de Luminy, 13288 Marseille, France.
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-Institut, 24103 Kiel, Germany.
| | - James Murphy
- School of Microbiology & APC Microbiome Ireland, University College Cork, Western Road, Cork T12 YT20, Ireland.
| | - Jean-Paul Noben
- Biomedical Research Institute, Hasselt University, 3500 Diepenbeek, Belgium.
| | - Charles M A P Franz
- Department of Microbiology and Biotechnology, Max Rubner-Institut, 24103 Kiel, Germany.
| | - Christian Cambillau
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS), Campus de Luminy, 13288 Marseille, France.
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, 13288 Marseille, France.
| | - Jennifer Mahony
- School of Microbiology & APC Microbiome Ireland, University College Cork, Western Road, Cork T12 YT20, Ireland.
| | - Arjen Nauta
- FrieslandCampina, 3818 Amersfoort, The Netherlands.
| | - Douwe van Sinderen
- School of Microbiology & APC Microbiome Ireland, University College Cork, Western Road, Cork T12 YT20, Ireland.
| |
Collapse
|
29
|
Molecular, physiological and phylogenetic traits of Lactococcus 936-type phages from distinct dairy environments. Sci Rep 2018; 8:12540. [PMID: 30135597 PMCID: PMC6105707 DOI: 10.1038/s41598-018-30371-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/20/2018] [Indexed: 11/13/2022] Open
Abstract
Bacteriophage infection of Lactococcus species can cause serious disruption of dairy fermentation processes. The most common isolates from the dairy environment are Siphoviridae lytic 936-type phages. To gain specific knowledge about this group of phages in Polish dairies, we examined 90 isolates from 8 different locations. Based on restriction fragment length polymorphism analysis, coupled with physiological and molecular studies, the isolated phages were divided into 8 distinct groups. Whole-genome sequencing of single representatives from each phage group provided data about their biology and genetic composition. The phages present an overall conserved genome organization. High sequence homology to another Polish isolate, Lactococcus phage bIBB29, indicates their close phylogenetic relatedness to this strain. Such similarity may be suggestive of a general genome conservation among phages persisting in Polish dairies. Comparative genome analyses with other 936-type phages revealed several discriminative traits, including the presence and position of HNH endonuclease genes, varying number of orfs in the early gene region, and a putative TpeX gene. Interestingly, host range of the sequenced phages was restricted to L. lactis subsp. lactis biovar. diacetylactis strains. The results provide new data regarding phages present in the Polish dairy environment and permit analysis of their biology, genome composition and relatedness to other Lactococcus 936-type phages.
Collapse
|
30
|
Chaudhry WN, Pleška M, Shah NN, Weiss H, McCall IC, Meyer JR, Gupta A, Guet CC, Levin BR. Leaky resistance and the conditions for the existence of lytic bacteriophage. PLoS Biol 2018; 16:e2005971. [PMID: 30114198 PMCID: PMC6112682 DOI: 10.1371/journal.pbio.2005971] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 08/28/2018] [Accepted: 07/26/2018] [Indexed: 12/16/2022] Open
Abstract
In experimental cultures, when bacteria are mixed with lytic (virulent) bacteriophage, bacterial cells resistant to the phage commonly emerge and become the dominant population of bacteria. Following the ascent of resistant mutants, the densities of bacteria in these simple communities become limited by resources rather than the phage. Despite the evolution of resistant hosts, upon which the phage cannot replicate, the lytic phage population is most commonly maintained in an apparently stable state with the resistant bacteria. Several mechanisms have been put forward to account for this result. Here we report the results of population dynamic/evolution experiments with a virulent mutant of phage Lambda, λVIR, and Escherichia coli in serial transfer cultures. We show that, following the ascent of λVIR-resistant bacteria, λVIR is maintained in the majority of cases in maltose-limited minimal media and in all cases in nutrient-rich broth. Using mathematical models and experiments, we show that the dominant mechanism responsible for maintenance of λVIR in these resource-limited populations dominated by resistant E. coli is a high rate of either phenotypic or genetic transition from resistance to susceptibility—a hitherto undemonstrated mechanism we term "leaky resistance." We discuss the implications of leaky resistance to our understanding of the conditions for the maintenance of phage in populations of bacteria—their “existence conditions.” While it is clear that bacteriophage abound in bacterial communities, their role in the ecology and evolution of these communities remains poorly understood. Fundamental questions remain unanswered, such as, are phage regulating the population densities of their host bacteria? And how are virulent phage maintained in bacterial communities, following the seemingly inevitable evolution of resistant bacteria? Here we present a theoretical and experimental investigation to provide evidence for a new mechanism for maintaining phage in populations dominated by resistant bacteria. This mechanism, which we term “leaky resistance,” is based on a high rate of either phenotypic or genetic transition from resistance to susceptibility.
Collapse
Affiliation(s)
- Waqas N. Chaudhry
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Maroš Pleška
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Nilang N. Shah
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Howard Weiss
- School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Ingrid C. McCall
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Justin R. Meyer
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Animesh Gupta
- Department of Physics, University of California San Diego, La Jolla, California, United States of America
| | - Călin C. Guet
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Bruce R. Levin
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
31
|
The Tape Measure Protein Is Involved in the Heat Stability of Lactococcus lactis Phages. Appl Environ Microbiol 2018; 84:AEM.02082-17. [PMID: 29150509 DOI: 10.1128/aem.02082-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/10/2017] [Indexed: 01/24/2023] Open
Abstract
Virulent lactococcal phages are still a major risk for milk fermentation processes as they may lead to slowdowns and low-quality fermented dairy products, particularly cheeses. Some of the phage control strategies used by the industry rely on heat treatments. Recently, a few Lactococcus lactis phages were found to be highly thermo-resistant. To identify the genetic determinant(s) responsible for the thermal resistance of lactococcal phages, we used the virulent phage CB14 (of the Lactococcus lactis 936 [now Sk1virus] phage group) to select for phage mutants with increased heat stability. By treating phage CB14 to successive low and high temperatures, we were able to select two CB14 derivatives with increased heat stability. Sequencing of their genome revealed the same nucleotide sequences as the wild-type phage CB14, except for a same-sized deletion (120 bp) in the gene coding for the tape measure protein (TMP) of each phage mutant, but at a different position. The TMP protein sequences of these mutant phages were compared with their homologues in other wild-type L. lactis phages with a wide diversity in heat stability. Comparative analysis showed that the same nucleotide deletion appears to have also occurred in the gene coding for the TMP of highly thermo-resistant lactococcal phages P1532 and P680. We propose that the TMP is, in part, responsible for the heat stability of the highly predominant lactococcal phages of the Sk1virus group.IMPORTANCE Virulent lactococcal phages still represent a major risk for milk fermentation as they may lead to slowdowns and low-quality fermented dairy products. Heat treatment is one of the most commonly used methods to control these virulent phages in cheese by-products. Recently, a few Lactococcus lactis phages, members of the Sk1virus group, have emerged with high thermal stability. To our knowledge, the genetic determinant(s) responsible for this thermal resistance in lactococcal phages is unknown. A better understanding of the thermal stability of these emerging virulent lactococcal phages is needed to improve industrial control strategies. In this work, we report the identification of a phage structural protein that is involved in the heat stability of a virulent Sk1virus phage. Identifying such a genetic determinant for heat stability is a first step in understanding the emergence of this group of thermostable phages.
Collapse
|
32
|
Lemay ML, Renaud AC, Rousseau GM, Moineau S. Targeted Genome Editing of Virulent Phages Using CRISPR-Cas9. Bio Protoc 2018; 8:e2674. [PMID: 34179229 DOI: 10.21769/bioprotoc.2674] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/14/2017] [Accepted: 12/17/2017] [Indexed: 11/02/2022] Open
Abstract
This protocol describes a straightforward method to generate specific mutations in the genome of strictly lytic phages. Briefly, a targeting CRISPR-Cas9 system and a repair template suited for homologous recombination are provided inside a bacterial host, here the Gram-positive model Lactococcus lactis MG1363. The CRISPR-Cas9 system is programmed to cleave a specific region present on the genome of the invading phage, but absent from the recombination template. The system either triggers the recombination event or exerts the selective pressure required to isolate recombinant phages. With this methodology, we generated multiple gene knockouts, a point mutation and an insertion in the genome of the virulent lactococcal phage p2. Considering the broad host range of the plasmids used in this protocol, the latter can be extrapolated to other phage-host pairs.
Collapse
Affiliation(s)
- Marie-Laurence Lemay
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, and Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, QC, Canada
| | - Ariane C Renaud
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, and Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, QC, Canada
| | - Geneviève M Rousseau
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, and Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, QC, Canada
| | - Sylvain Moineau
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, and Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, QC, Canada
| |
Collapse
|
33
|
Oliveira J, Mahony J, Hanemaaijer L, Kouwen TRHM, van Sinderen D. Biodiversity of bacteriophages infecting Lactococcus lactis starter cultures. J Dairy Sci 2017; 101:96-105. [PMID: 29103710 DOI: 10.3168/jds.2017-13403] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/10/2017] [Indexed: 01/21/2023]
Abstract
In the current study, we characterized 137 Lactococcus lactis bacteriophages that had been isolated between 1997 and 2012 from whey samples obtained from industrial facilities located in 16 countries. Multiplex PCR grouping of these 137 phage isolates revealed that the majority (61.31%) belonged to the 936 group, with the remainder belonging to the P335 and c2 groups (23.36 and 15.33%, respectively). Restriction profile analysis of phage genomic DNA indicated a high degree of genetic diversity within this phage collection. Furthermore, based on a host-range survey of the phage collection using 113 dairy starter strains, we showed that the c2-group isolates exhibited a broader host range than isolates of the 936 and P335 groups.
Collapse
Affiliation(s)
- Joana Oliveira
- School of Microbiology, University College Cork, Cork, Ireland
| | - Jennifer Mahony
- School of Microbiology, University College Cork, Cork, Ireland; Alimentary Pharmabiotic Centre (APC) Microbiome Institute, University College Cork, Cork, Ireland T12 YT20
| | | | | | - Douwe van Sinderen
- School of Microbiology, University College Cork, Cork, Ireland; Alimentary Pharmabiotic Centre (APC) Microbiome Institute, University College Cork, Cork, Ireland T12 YT20.
| |
Collapse
|
34
|
Metagenomic Analysis of Dairy Bacteriophages: Extraction Method and Pilot Study on Whey Samples Derived from Using Undefined and Defined Mesophilic Starter Cultures. Appl Environ Microbiol 2017; 83:AEM.00888-17. [PMID: 28754704 DOI: 10.1128/aem.00888-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/13/2017] [Indexed: 02/07/2023] Open
Abstract
Despite being potentially highly useful for characterizing the biodiversity of phages, metagenomic studies are currently not available for dairy bacteriophages, partly due to the lack of a standard procedure for phage extraction. We optimized an extraction method that allows the removal of the bulk protein from whey and milk samples with losses of less than 50% of spiked phages. The protocol was applied to extract phages from whey in order to test the notion that members of Lactococcus lactis 936 (now Sk1virus), P335, c2 (now C2virus) and Leuconostoc phage groups are the most frequently encountered in the dairy environment. The relative abundance and diversity of phages in eight and four whey mixtures from dairies using undefined mesophilic mixed-strain cultures containing Lactococcus lactis subsp. lactis biovar diacetylactis and Leuconostoc species (i.e., DL starter cultures) and defined cultures, respectively, were assessed. Results obtained from transmission electron microscopy and high-throughput sequence analyses revealed the dominance of Lc. lactis 936 phages (order Caudovirales, family Siphoviridae) in dairies using undefined DL starter cultures and Lc. lactis c2 phages (order Caudovirales, family Siphoviridae) in dairies using defined cultures. The 936 and Leuconostoc phages demonstrated limited diversity. Possible coinduction of temperate P335 prophages and satellite phages in one of the whey mixtures was also observed.IMPORTANCE The method optimized in this study could provide an important basis for understanding the dynamics of the phage community (abundance, development, diversity, evolution, etc.) in dairies with different sizes, locations, and production strategies. It may also enable the discovery of previously unknown phages, which is crucial for the development of rapid molecular biology-based methods for phage burden surveillance systems. The dominance of only a few phage groups in the dairy environment signifies the depth of knowledge gained over the past decades, which served as the basis for designing current phage control strategies. The presence of a correlation between phages and the type of starter cultures being used in dairies might help to improve the selection and/or design of suitable, custom, and cost-efficient phage control strategies.
Collapse
|
35
|
Lemay ML, Tremblay DM, Moineau S. Genome Engineering of Virulent Lactococcal Phages Using CRISPR-Cas9. ACS Synth Biol 2017; 6:1351-1358. [PMID: 28324650 DOI: 10.1021/acssynbio.6b00388] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Phages are biological entities found in every ecosystem. Although much has been learned about them in past decades, significant knowledge gaps remain. Manipulating virulent phage genomes is challenging. To date, no efficient gene-editing tools exist for engineering virulent lactococcal phages. Lactococcus lactis is a bacterium extensively used as a starter culture in various milk fermentation processes, and its phage sensitivity poses a constant risk to the cheese industry. The lactococcal phage p2 is one of the best-studied models for these virulent phages. Despite its importance, almost half of its genes have no functional assignment. CRISPR-Cas9 genome editing technology, which is derived from a natural prokaryotic defense mechanism, offers new strategies for phage research. Here, the well-known Streptococcus pyogenes CRISPR-Cas9 was used in a heterologous host to modify the genome of a strictly lytic phage. Implementation of our adapted CRISPR-Cas9 tool in the prototype phage-sensitive host L. lactis MG1363 allowed us to modify the genome of phage p2. A simple, reproducible technique to generate precise mutations that allow the study of lytic phage genes and their encoded proteins in vivo is described.
Collapse
Affiliation(s)
- Marie-Laurence Lemay
- Département
de biochimie, de microbiologie, et de bioinformatique, Faculté
des sciences et de génie, Félix d’Hérelle
Reference Center for Bacterial Viruses, and Groupe de recherche en
écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Québec G1V 0A6, Canada
| | - Denise M. Tremblay
- Département
de biochimie, de microbiologie, et de bioinformatique, Faculté
des sciences et de génie, Félix d’Hérelle
Reference Center for Bacterial Viruses, and Groupe de recherche en
écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Québec G1V 0A6, Canada
| | - Sylvain Moineau
- Département
de biochimie, de microbiologie, et de bioinformatique, Faculté
des sciences et de génie, Félix d’Hérelle
Reference Center for Bacterial Viruses, and Groupe de recherche en
écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Québec G1V 0A6, Canada
| |
Collapse
|
36
|
Wagner N, Samtlebe M, Franz CM, Neve H, Heller KJ, Hinrichs J, Atamer Z. Dairy bacteriophages isolated from whey powder: Thermal inactivation and kinetic characterisation. Int Dairy J 2017. [DOI: 10.1016/j.idairyj.2016.12.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
37
|
Muhammed MK, Krych L, Nielsen DS, Vogensen FK. A high-throughput qPCR system for simultaneous quantitative detection of dairy Lactococcus lactis and Leuconostoc bacteriophages. PLoS One 2017; 12:e0174223. [PMID: 28339484 PMCID: PMC5365131 DOI: 10.1371/journal.pone.0174223] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 03/05/2017] [Indexed: 11/20/2022] Open
Abstract
Simultaneous quantitative detection of Lactococcus (Lc.) lactis and Leuconostoc species bacteriophages (phages) has not been reported in dairies using undefined mixed-strain DL-starters, probably due to the lack of applicable methods. We optimized a high-throughput qPCR system that allows simultaneous quantitative detection of Lc. lactis 936 (now SK1virus), P335, c2 (now C2virus) and Leuconostoc phage groups. Component assays are designed to have high efficiencies and nearly the same dynamic detection ranges, i.e., from ~1.1 x 105 to ~1.1 x 101 phage genomes per reaction, which corresponds to ~9 x 107 to ~9 x 103 phage particles mL-1 without any additional up-concentrating steps. The amplification efficiencies of the corresponding assays were 100.1±2.6, 98.7±2.3, 101.0±2.3 and 96.2±6.2. The qPCR system was tested on samples obtained from a dairy plant that employed traditional mother-bulk-cheese vat system. High levels of 936 and P335 phages were detected in the mother culture and the bulk starter, but also in the whey samples. Low levels of phages were detected in the cheese milk samples.
Collapse
Affiliation(s)
- Musemma K. Muhammed
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Lukasz Krych
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Dennis S. Nielsen
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Finn K. Vogensen
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
- * E-mail:
| |
Collapse
|
38
|
Hayes S, Murphy J, Mahony J, Lugli GA, Ventura M, Noben JP, Franz CMAP, Neve H, Nauta A, Van Sinderen D. Biocidal Inactivation of Lactococcus lactis Bacteriophages: Efficacy and Targets of Commonly Used Sanitizers. Front Microbiol 2017; 8:107. [PMID: 28210242 PMCID: PMC5288689 DOI: 10.3389/fmicb.2017.00107] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/16/2017] [Indexed: 02/02/2023] Open
Abstract
Lactococcus lactis strains, being intensely used in the dairy industry, are particularly vulnerable to members of the so-called 936 group of phages. Sanitization and disinfection using purpose-made biocidal solutions is a critical step in controlling phage contamination in such dairy processing plants. The susceptibility of 36 936 group phages to biocidal treatments was examined using 14 biocides and commercially available sanitizers. The targets of a number of these biocides were investigated by means of electron microscopic and proteomic analyses. The results from this study highlight significant variations in phage resistance to biocides among 936 phages. Furthermore, rather than possessing resistance to specific biocides or biocide types, biocide-resistant phages tend to possess a broad tolerance to multiple classes of antimicrobial compounds.
Collapse
Affiliation(s)
- Stephen Hayes
- School of Microbiology, University College Cork Cork, Ireland
| | - James Murphy
- School of Microbiology, University College Cork Cork, Ireland
| | - Jennifer Mahony
- School of Microbiology, University College CorkCork, Ireland; APC Microbiome Institute, University College CorkCork, Ireland
| | - Gabriele A Lugli
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma Parma, Italy
| | - Jean-Paul Noben
- Biomedical Research Institute, Hasselt University Diepenbeek, Belgium
| | - Charles M A P Franz
- Department of Microbiology and Biotechnology, Max Rubner-Institut Kiel, Germany
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-Institut Kiel, Germany
| | | | - Douwe Van Sinderen
- School of Microbiology, University College CorkCork, Ireland; APC Microbiome Institute, University College CorkCork, Ireland
| |
Collapse
|
39
|
Genome Sequences of Eight Prophages Isolated from Lactococcus lactis Dairy Strains. GENOME ANNOUNCEMENTS 2016; 4:4/6/e00906-16. [PMID: 27834693 PMCID: PMC5105086 DOI: 10.1128/genomea.00906-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
P335 group phages represent the most divergent phage group infecting dairy Lactococcus lactis strains and have significant implications for the dairy processing industry. Here, we report the complete genome sequences of eight lactococcal prophages chemically induced from industrial lactococcal strains that propagate lytically on one of two laboratory strains.
Collapse
|
40
|
Murphy J, Bottacini F, Mahony J, Kelleher P, Neve H, Zomer A, Nauta A, van Sinderen D. Comparative genomics and functional analysis of the 936 group of lactococcal Siphoviridae phages. Sci Rep 2016; 6:21345. [PMID: 26892066 PMCID: PMC4759559 DOI: 10.1038/srep21345] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 01/21/2016] [Indexed: 01/14/2023] Open
Abstract
Genome sequencing and comparative analysis of bacteriophage collections has greatly enhanced our understanding regarding their prevalence, phage-host interactions as well as the overall biodiversity of their genomes. This knowledge is very relevant to phages infecting Lactococcus lactis, since they constitute a significant risk factor for dairy fermentations. Of the eighty four lactococcal phage genomes currently available, fifty five belong to the so-called 936 group, the most prevalent of the ten currently recognized lactococcal phage groups. Here, we report the genetic characteristics of a new collection of 936 group phages. By combining these genomes to those sequenced previously we determined the core and variable elements of the 936 genome. Genomic variation occurs across the 936 phage genome, such as genetic elements that (i) lead to a +1 translational frameshift resulting in the formation of additional structures on the phage tail, (ii) specify a double neck passage structure, and (iii) encode packaging module-associated methylases. Hierarchical clustering of the gene complement of the 936 group phages and nucleotide alignments allowed grouping of the ninety 936 group phages into distinct clusters, which in general appear to correspond with their geographical origin.
Collapse
Affiliation(s)
- James Murphy
- School of Microbiology, University College Cork, Cork, Ireland
| | | | - Jennifer Mahony
- School of Microbiology, University College Cork, Cork, Ireland
| | - Philip Kelleher
- School of Microbiology, University College Cork, Cork, Ireland
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Kiel, Germany
| | - Aldert Zomer
- School of Microbiology, University College Cork, Cork, Ireland
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Arjen Nauta
- FrieslandCampina, Amersfoort, The Netherlands
| | - Douwe van Sinderen
- School of Microbiology, University College Cork, Cork, Ireland
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| |
Collapse
|
41
|
van Zyl LJ, Taylor MP, Trindade M. Engineering resistance to phage GVE3 in Geobacillus thermoglucosidasius. Appl Microbiol Biotechnol 2015; 100:1833-1841. [DOI: 10.1007/s00253-015-7109-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 10/13/2015] [Accepted: 10/16/2015] [Indexed: 11/30/2022]
|
42
|
A virulent phage infecting Lactococcus garvieae, with homology to Lactococcus lactis phages. Appl Environ Microbiol 2015; 81:8358-65. [PMID: 26407890 DOI: 10.1128/aem.02603-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 09/22/2015] [Indexed: 11/20/2022] Open
Abstract
A new virulent phage belonging to the Siphoviridae family and able to infect Lactococcus garvieae strains was isolated from compost soil. Phage GE1 has a prolate capsid (56 by 38 nm) and a long noncontractile tail (123 nm). It had a burst size of 139 and a latent period of 31 min. Its host range was limited to only two L. garvieae strains out of 73 tested. Phage GE1 has a double-stranded DNA genome of 24,847 bp containing 48 predicted open reading frames (ORFs). Putative functions could be assigned to only 14 ORFs, and significant matches in public databases were found for only 17 ORFs, indicating that GE1 is a novel phage and its genome contains several new viral genes and encodes several new viral proteins. Of these 17 ORFs, 16 were homologous to deduced proteins of virulent phages infecting the dairy bacterium Lactococcus lactis, including previously characterized prolate-headed phages. Comparative genome analysis confirmed the relatedness of L. garvieae phage GE1 to L. lactis phages c2 (22,172 bp) and Q54 (26,537 bp), although its genome organization was closer to that of phage c2. Phage GE1 did not infect any of the 58 L. lactis strains tested. This study suggests that phages infecting different lactococcal species may have a common ancestor.
Collapse
|
43
|
Pujato SA, Mercanti DJ, Guglielmotti DM, Rousseau GM, Moineau S, Reinheimer JA, Quiberoni ADL. Phages of dairy Leuconostoc mesenteroides: Genomics and factors influencing their adsorption. Int J Food Microbiol 2015; 201:58-65. [DOI: 10.1016/j.ijfoodmicro.2015.02.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 02/05/2015] [Accepted: 02/16/2015] [Indexed: 10/24/2022]
|
44
|
|
45
|
The plasmid complement of Lactococcus lactis UC509.9 encodes multiple bacteriophage resistance systems. Appl Environ Microbiol 2014; 80:4341-9. [PMID: 24814781 DOI: 10.1128/aem.01070-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Lactococcus lactis subsp. cremoris strains are used globally for the production of fermented dairy products, particularly hard cheeses. Believed to be of plant origin, L. lactis strains that are used as starter cultures have undergone extensive adaptation to the dairy environment, partially through the acquisition of extrachromosomal DNA in the form of plasmids that specify technologically important phenotypic traits. Here, we present a detailed analysis of the eight plasmids of L. lactis UC509.9, an Irish dairy starter strain. Key industrial phenotypes were mapped, and genes that are typically associated with lactococcal plasmids were identified. Four distinct, plasmid-borne bacteriophage resistance systems were identified, including two abortive infection systems, AbiB and AbiD1, thereby supporting the observed phage resistance of L. lactis UC509.9. AbiB escape mutants were generated for phage sk1, which were found to carry mutations in orf6, which encodes the major capsid protein of this phage.
Collapse
|
46
|
Ainsworth S, Sadovskaya I, Vinogradov E, Courtin P, Guerardel Y, Mahony J, Grard T, Cambillau C, Chapot-Chartier MP, van Sinderen D. Differences in lactococcal cell wall polysaccharide structure are major determining factors in bacteriophage sensitivity. mBio 2014; 5:e00880-14. [PMID: 24803515 PMCID: PMC4010823 DOI: 10.1128/mbio.00880-14] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/31/2014] [Indexed: 01/01/2023] Open
Abstract
ABSTRACT Analysis of the genetic locus encompassing a cell wall polysaccharide (CWPS) biosynthesis operon of eight strains of Lactococcus lactis, identified as belonging to the same CWPS type C genotype, revealed the presence of a variable region among the strains examined. The results allowed the identification of five subgroups of the C type named subtypes C1 to C5. This variable region contains genes encoding glycosyltransferases that display low or no sequence homology between the subgroups. In this study, we purified an acidic polysaccharide from the cell wall of L. lactis 3107 (subtype C2) and confirmed that it is structurally different from the previously established CWPS of subtype C1 L. lactis MG1363. The CWPS of L. lactis 3107 is composed of pentasaccharide repeating units linked by phosphodiester bonds with the structure 6-α-Glc-3-β-Galf-3-β-GlcNAc-2-β-Galf-6-α-GlcNAc-1-P. Combinations of genes from the variable region of subtype C2 were introduced into a mutant of subtype C1 L. lactis NZ9000 deficient in CWPS biosynthesis. The resulting recombinant mutant synthesized a polysaccharide with a composition characteristic of that of subtype C2 L. lactis 3107 and not wild-type C1 L. lactis NZ9000. By challenging the recombinant mutant with various lactococcal phages, we demonstrated that CWPS is the host cell surface receptor of tested bacteriophages of both the P335 and 936 groups and that differences between the CWPS structures play a crucial role in determining phage host range. IMPORTANCE Despite the efforts of nearly 80 years of lactococcal phage research, the precise nature of the cell surface receptors of the P335 and 936 phage group receptors has remained elusive. This work demonstrates the molecular nature of a P335 group receptor while bolstering the evidence of its role in host recognition by phages of the 936 group and at least partially explains why such phages have a very narrow host range. The information generated will be instrumental in understanding the molecular mechanisms of how phages recognize specific saccharidic receptors located on the surface of their bacterial host.
Collapse
Affiliation(s)
- Stuart Ainsworth
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Irina Sadovskaya
- Université du Littoral-Côte d’Opale, Bassin Napoléon, Boulogne-sur-Mer, France
| | - Evguenii Vinogradov
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, Canada
| | | | - Yann Guerardel
- Université Lille 1, UGSF, CNRS UMR 8576, Villeneuve d’Ascq, France
| | - Jennifer Mahony
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Thierry Grard
- Université du Littoral-Côte d’Opale, Bassin Napoléon, Boulogne-sur-Mer, France
| | - Christian Cambillau
- Centre National de la Recherche Scientifique & Aix Marseille Université Architecture et Fonction des Macromolécules Biologiques, UMR 6098, Marseille, France
| | | | | |
Collapse
|
47
|
Waller AS, Yamada T, Kristensen DM, Kultima JR, Sunagawa S, Koonin EV, Bork P. Classification and quantification of bacteriophage taxa in human gut metagenomes. ISME JOURNAL 2014; 8:1391-402. [PMID: 24621522 DOI: 10.1038/ismej.2014.30] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 01/17/2014] [Accepted: 01/24/2014] [Indexed: 12/27/2022]
Abstract
Bacteriophages have key roles in microbial communities, to a large extent shaping the taxonomic and functional composition of the microbiome, but data on the connections between phage diversity and the composition of communities are scarce. Using taxon-specific marker genes, we identified and monitored 20 viral taxa in 252 human gut metagenomic samples, mostly at the level of genera. On average, five phage taxa were identified in each sample, with up to three of these being highly abundant. The abundances of most phage taxa vary by up to four orders of magnitude between the samples, and several taxa that are highly abundant in some samples are absent in others. Significant correlations exist between the abundances of some phage taxa and human host metadata: for example, 'Group 936 lactococcal phages' are more prevalent and abundant in Danish samples than in samples from Spain or the United States of America. Quantification of phages that exist as integrated prophages revealed that the abundance profiles of prophages are highly individual-specific and remain unique to an individual over a 1-year time period, and prediction of prophage lysis across the samples identified hundreds of prophages that are apparently active in the gut and vary across the samples, in terms of presence and lytic state. Finally, a prophage-host network of the human gut was established and includes numerous novel host-phage associations.
Collapse
Affiliation(s)
- Alison S Waller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Takuji Yamada
- Department of Biological Information, Tokyo Institute of Technology, Graduate School of Bioscience and Biotechnology, Yokohama, Japan
| | - David M Kristensen
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jens Roat Kultima
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Shinichi Sunagawa
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Eugene V Koonin
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
48
|
Campagna C, Villion M, Labrie SJ, Duchaine C, Moineau S. Inactivation of dairy bacteriophages by commercial sanitizers and disinfectants. Int J Food Microbiol 2014; 171:41-7. [DOI: 10.1016/j.ijfoodmicro.2013.11.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 11/01/2013] [Accepted: 11/11/2013] [Indexed: 01/14/2023]
|
49
|
Mahony J, van Sinderen D. Current taxonomy of phages infecting lactic acid bacteria. Front Microbiol 2014; 5:7. [PMID: 24478767 PMCID: PMC3900856 DOI: 10.3389/fmicb.2014.00007] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 01/07/2014] [Indexed: 01/29/2023] Open
Abstract
Phages infecting lactic acid bacteria have been the focus of significant research attention over the past three decades. Through the isolation and characterization of hundreds of phage isolates, it has been possible to classify phages of the dairy starter and adjunct bacteria Lactococus lactis, Streptococcus thermophilus, Leuconostoc spp., and Lactobacillus spp. Among these, phages of L. lactis have been most thoroughly scrutinized and serve as an excellent model system to address issues that arise when attempting taxonomic classification of phages infecting other LAB species. Here, we present an overview of the current taxonomy of phages infecting LAB genera of industrial significance, the methods employed in these taxonomic efforts and how these may be employed for the taxonomy of phages of currently underrepresented and emerging phage species.
Collapse
Affiliation(s)
- Jennifer Mahony
- Department of Microbiology, University College Cork Cork, Ireland
| | - Douwe van Sinderen
- Department of Microbiology, University College Cork Cork, Ireland ; Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork Cork, Ireland
| |
Collapse
|
50
|
Murphy J, Mahony J, Bonestroo M, Nauta A, van Sinderen D. Impact of thermal and biocidal treatments on lactococcal 936-type phages. Int Dairy J 2014. [DOI: 10.1016/j.idairyj.2013.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|