1
|
Shang KM, Elsheikha HM, Ma H, Wei YJ, Zhao JX, Qin Y, Li JM, Zhao ZY, Zhang XX. Metagenomic profiling of cecal microbiota and antibiotic resistome in rodents. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117186. [PMID: 39426111 DOI: 10.1016/j.ecoenv.2024.117186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/18/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
The rodent gut microbiota is a known reservoir of antimicrobial resistance, yet the distribution of antibiotic resistance genes (ARGs) within rodent cecal microbial communities and the specific bacterial species harboring these ARGs remain largely underexplored. This study employed high-throughput sequencing of 122 samples from five distinct rodent species to comprehensively profile the diversity and distribution of ARGs and to identify the bacterial hosts of these genes. A gene catalog of the rodent cecal microbiome was constructed, comprising 22,757,369 non-redundant genes. Analysis of the microbial composition and diversity revealed that Bacillota and Bacteroidota were the dominant bacterial phyla across different rodent species, with significant variations in species composition among the rodents. In total, 3703 putative antimicrobial resistance protein-coding genes were identified, corresponding to 392 unique ARG types classified into 32 resistance classes. The most enriched ARGs in the rodent cecal microbiome were associated with multidrug resistance, followed by glycopeptide and elfamycin antibiotics. Procrustes analysis demonstrated a correlation between the structure of the microbial community and the resistome. Metagenomic assembly-based host tracking indicated that most ARG-carrying contigs originated from the bacterial family Oscillospiraceae. Additionally, 130 ARGs showed significant correlations with mobile genetic elements. These findings provide new insights into the cecal microbiota and the prevalence of ARGs across five rodent species. Future research on a wider range of wild rodent species carrying ARGs will further elucidate the mechanisms underlying the transmission of antimicrobial resistance.
Collapse
Affiliation(s)
- Kai-Meng Shang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, PR China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - He Ma
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, PR China
| | - Yong-Jie Wei
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, PR China
| | - Ji-Xin Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, PR China
| | - Ya Qin
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, PR China; College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin Province, PR China
| | - Jian-Ming Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin Province, PR China; Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun, Jilin Province, PR China; Key Laboratory of Animal Production and Product Quality and Security, Ministry of Education, Ministry of National Education, Changchun, Jilin Province, PR China
| | - Zi-Yu Zhao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin Province, PR China
| | - Xiao-Xuan Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, PR China.
| |
Collapse
|
2
|
de Paula YH, Resende M, Chaves RF, Barbosa JA, Garbossa CAP, Costa MDO, Rigo F, Barducci RS, Santos AAD, Pacheco LG, Putarov TC, Cantarelli VDS. A new approach: preventive protocols with yeast products and essential oils can reduce the in-feed use of antibiotics in growing-finishing pigs. Transl Anim Sci 2024; 8:txae104. [PMID: 39185353 PMCID: PMC11344245 DOI: 10.1093/tas/txae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/12/2024] [Indexed: 08/27/2024] Open
Abstract
The objective of this study was to evaluate the effects of yeast products (YP) and essential oils (EO) in total or partial replacement to in-feed antibiotic protocols (growth promoter and prophylactic), both in recommended doses and in overdose of prophylactic antibiotics (PA), on growth performance, and diarrhea incidence in the growing-finishing pigs; and fecal microbiota in market hogs. Four hundred pigs (20.36 ± 2.64 kg) were assigned to five treatments in a randomized block design: diets with prophylactic and growth promoter antibiotics (ANT); ANT with 30% more PA (ANT+30); diets with less PA and YP (ANT+Y); diets with less PA, YP and EO (ANT+Y+EO); and antibiotics-free diets with YP and EO (Y+EO). The content of the active components of the YP was 60% purified β-1,3/1,6-glucans extracted from Saccharomyces cerevisiae yeast (Macrogard), 20% functional water-soluble MOS (HyperGen), and 18% MOS, extracted from Saccharomyces cerevisiae yeast (ActiveMOS). From 0 to 14 d, pigs of the ANT+30, ANT+Y, and ANT+Y+EO treatments showed a greater body weight (BW) and average daily gain (ADG) compared to pigs from the Y+EO group. From 14 to 35 d, pigs of ANT+30 and ANT+Y+EO treatments were heavier than Y+EO group. At 105 d, ANT pigs had a higher BW than the Y+EO group. For the entire period, ADG of ANT pigs was greater, and feed conversion ratio better than Y+EO pigs. From 0 to 35 d, pigs of the Y+EO treatment showed a higher diarrhea incidence compared to pigs of the other groups. From 49 to 70 d, ANT+Y and ANT+Y+EO treatments showed a lower diarrhea incidence than Y+EO group, which remained the case during the overall period. At 105 d, the alpha diversity of fecal microbiota by Shannon Entropy was lower in ANT, ANT+30, and Y+EO groups than observed for ANT+Y+EO group. The abundance of Firmicutes phylum and Firmicutes/Bacteroidetes ratio was higher in ANT than in ANT+Y+EO pigs. Proteobacteria phylum abundance in ANT+Y+EO was higher than ANT, ANT+Y, and Y+EO. Peptostreptococcaceae family abundance was higher in ANT, ANT+30, and ANT+Y groups than in ANT+Y+EO and Y+EO groups. ANT+Y+EO and Y+EO groups show a lower abundance of SMB53 genus than ANT and ANT+30 groups. In conclusion, the use of YP and EO, in partial replacement to the in-feed antibiotic protocols, does not reduce the growth performance, can replace antibiotic growth promotors, and reduce the in-feed use of PA in growing-finishing pigs. The use of YP and EO, together with PA, increases the microbial diversity, despite having important genera for weight gain in less abundance. Overdose of PA does not improve growth performance and reduces microbial diversity, which does not characterize it as an efficient preventive protocol.
Collapse
Affiliation(s)
| | - Maíra Resende
- Animal Science Department, Federal University of Lavras, Lavras, Brazil
| | | | | | - Cesar Augusto Pospissil Garbossa
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Suarez SA, Martiny AC. Intraspecific variation in antibiotic resistance potential within E. coli. Microbiol Spectr 2024; 12:e0316223. [PMID: 38661581 PMCID: PMC11237723 DOI: 10.1128/spectrum.03162-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 03/15/2024] [Indexed: 04/26/2024] Open
Abstract
Intraspecific genomic diversity brings the potential for an unreported and diverse reservoir of cryptic antibiotic resistance genes in pathogens, as cryptic resistance can occur without major mutations and horizontal transmission. Here, we predicted the differences in the types of antibiotics and genes that induce cryptic and latent resistance between micro-diverse Escherichia coli strains. For example, we hypothesize that known resistance genes will be the culprit of latent resistance within clinical strains. We used a modified functional metagenomics method to induce expression in eight E. coli strains. We found a total of 66 individual genes conferring phenotypic resistance to 11 out of 16 antibiotics. A total of 14 known antibiotic resistance genes comprised 21% of total identified genes, whereas the majority (52 genes) were unclassified cryptic resistance genes. Between the eight strains, 1.2% of core orthologous genes were positive (conferred resistance in at least one strain). Sixty-four percent of positive orthologous genes conferred resistance to only one strain, demonstrating high intraspecific variability of latent resistance genes. Cryptic resistance genes comprised most resistance genes among laboratory and clinical strains as well as natural, semisynthetic, and synthetic antibiotics. Known antibiotic resistance genes primarily conferred resistance to multiple antibiotics from varying origins and within multiple strains. Hence, it is uncommon for E. coli to develop cross-cryptic resistance to antibiotics from multiple origins or within multiple strains. We have uncovered prospective and previously unknown resistance genes as well as antibiotics that have the potential to trigger latent antibiotic resistance in E. coli strains from varying origins.IMPORTANCEIntraspecific genomic diversity may be a driving force in the emergence of adaptive antibiotic resistance. Adaptive antibiotic resistance enables sensitive bacterial cells to acquire temporary antibiotic resistance, creating an optimal window for the development of permanent mutational resistance. In this study, we investigate cryptic resistance, an adaptive resistance mechanism, and unveil novel (cryptic) antibiotic resistance genes that confer resistance when amplified within eight E. coli strains derived from clinical and laboratory origins. We identify the potential of cryptic resistance genes to confer cross-resistance to antibiotics from varying origins and within multiple strains. We discern antibiotic characteristics that promote latent resistance in multiple strains, considering intraspecific diversity. This study may help detect novel resistance genes and functional genes that could become responsible for cryptic resistance among diverse strains and antibiotics, thus also identifying potential novel antibiotic targets and mechanisms.
Collapse
Affiliation(s)
- Stacy A. Suarez
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | - Adam C. Martiny
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
- Department of Earth System Science, University of California, Irvine, California, USA
| |
Collapse
|
4
|
Saturio S, Rey A, Samarra A, Collado MC, Suárez M, Mantecón L, Solís G, Gueimonde M, Arboleya S. Old Folks, Bad Boon: Antimicrobial Resistance in the Infant Gut Microbiome. Microorganisms 2023; 11:1907. [PMID: 37630467 PMCID: PMC10458625 DOI: 10.3390/microorganisms11081907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
The development of the intestinal microbiome in the neonate starts, mainly, at birth, when the infant receives its founding microbial inoculum from the mother. This microbiome contains genes conferring resistance to antibiotics since these are found in some of the microorganisms present in the intestine. Similarly to microbiota composition, the possession of antibiotic resistance genes is affected by different perinatal factors. Moreover, antibiotics are the most used drugs in early life, and the use of antibiotics in pediatrics covers a wide variety of possibilities and treatment options. The disruption in the early microbiota caused by antibiotics may be of great relevance, not just because it may limit colonization by beneficial microorganisms and increase that of potential pathogens, but also because it may increase the levels of antibiotic resistance genes. The increase in antibiotic-resistant microorganisms is one of the major public health threats that humanity has to face and, therefore, understanding the factors that determine the development of the resistome in early life is of relevance. Recent advancements in sequencing technologies have enabled the study of the microbiota and the resistome at unprecedent levels. These aspects are discussed in this review as well as some potential interventions aimed at reducing the possession of resistance genes.
Collapse
Affiliation(s)
- Silvia Saturio
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain; (S.S.); (A.R.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (M.S.); (L.M.); (G.S.)
| | - Alejandra Rey
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain; (S.S.); (A.R.)
| | - Anna Samarra
- Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980 Paterna, Spain; (A.S.); (M.C.C.)
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980 Paterna, Spain; (A.S.); (M.C.C.)
| | - Marta Suárez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (M.S.); (L.M.); (G.S.)
- Pediatrics Service, Central University Hospital of Asturias (HUCA-SESPA), 33011 Oviedo, Spain
| | - Laura Mantecón
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (M.S.); (L.M.); (G.S.)
- Pediatrics Service, Central University Hospital of Asturias (HUCA-SESPA), 33011 Oviedo, Spain
| | - Gonzalo Solís
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (M.S.); (L.M.); (G.S.)
- Pediatrics Service, Central University Hospital of Asturias (HUCA-SESPA), 33011 Oviedo, Spain
| | - Miguel Gueimonde
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain; (S.S.); (A.R.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (M.S.); (L.M.); (G.S.)
| | - Silvia Arboleya
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain; (S.S.); (A.R.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (M.S.); (L.M.); (G.S.)
| |
Collapse
|
5
|
Theophilus RJ, Taft DH. Antimicrobial Resistance Genes (ARGs), the Gut Microbiome, and Infant Nutrition. Nutrients 2023; 15:3177. [PMID: 37513595 PMCID: PMC10383493 DOI: 10.3390/nu15143177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
The spread of antimicrobial resistance genes (ARGs) is a major public health crisis, with the ongoing spread of ARGs leading to reduced efficacy of antibiotic treatments. The gut microbiome is a key reservoir for ARGs, and because diet shapes the gut microbiome, diet also has the potential to shape the resistome. This diet-gut microbiome-resistome relationship may also be important in infants and young children. This narrative review examines what is known about the interaction between the infant gut microbiome, the infant resistome, and infant nutrition, including exploring the potential of diet to mitigate infant ARG carriage. While more research is needed, diet has the potential to reduce infant and toddler carriage of ARGs, an important goal as part of maintaining the efficacy of available antibiotics and preserving infant and toddler health.
Collapse
Affiliation(s)
- Rufus J Theophilus
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611, USA
| | - Diana Hazard Taft
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
6
|
O’Connor L, Heyderman R. The challenges of defining the human nasopharyngeal resistome. Trends Microbiol 2023:S0966-842X(23)00056-2. [DOI: 10.1016/j.tim.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 04/03/2023]
|
7
|
Abstract
The construction and screening of metagenomic expression libraries have a great potential to identify novel genes with desired functions. Here, we describe metagenomic library preparation from fecal DNA, screening of libraries for antibiotic resistance genes (ARGs), massively parallel DNA sequencing of the enriched DNA fragments, and a computational pipeline for high-throughput assembly and annotation of functionally selected DNA.
Collapse
Affiliation(s)
- Bejan Mahmud
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Manish Boolchandani
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sanket Patel
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
8
|
Trivedi R, Upadhyay TK, Kausar MA, Saeed A, Sharangi AB, Almatroudi A, Alabdallah NM, Saeed M, Aqil F. Nanotechnological interventions of the microbiome as a next-generation antimicrobial therapy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155085. [PMID: 35398124 DOI: 10.1016/j.scitotenv.2022.155085] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/22/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
The rise of antimicrobial resistance (AMR) impacts public health due to the diminished potency of existing antibiotics. The microbiome plays an important role in the host's immune system activity and shows the history of exposure to antimicrobials and its manipulation in combating antimicrobial resistance. Advancements in gene technologies, DNA sequencing, and computational biology have emerged as powerful platforms to better understand the relationship between animals and microorganisms (MOs). The past few years have witnessed an increase in the use of nanotechnology, both in industry and in academia, as tools to tackle antimicrobial resistance. New strategies of microbiome manipulation have been developed, such as the use of prebiotics, probiotics, peptides, antibodies, an appropriate diet, phage therapy, and the use of various nanotechnological techniques. Owing to the research outcomes, targeted delivery of antimicrobials with some modifications with nanoparticles can lead to the destruction of resistant microbial cells. In addition, nanoparticles have been studied for their potential antimicrobial effects both in vitro and in vivo. In this review, we highlight key opportunistic areas for applying nanotechnologies with the aim of manipulating the microbiome for the treatment of antimicrobial resistance. Besides providing a detailed review on various nanomaterials, technologies, opportunities, technical needs, and potential approaches for the manipulation of the microbiome to address these challenges, we discuss future challenges and our perspective.
Collapse
Affiliation(s)
- Rashmi Trivedi
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara 391760, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara 391760, India.
| | - Mohd Adnan Kausar
- Department of Biochemistry, College of Medicine, University of Hail, PO Box 2240, Hail, Saudi Arabia
| | - Amir Saeed
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, PO Box 2240, Hail, Saudi Arabia
| | - Amit Baran Sharangi
- Department of Plantation Spices Medicinal and Aromatic Crops, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur 741252, India
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia
| | - Nadiyah M Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, PO Box 2240, Hail, Saudi Arabia.
| | - Farrukh Aqil
- UofL Health - Brown Cancer Center and Department of Medicine, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
9
|
Aljeldah MM. Antimicrobial Resistance and Its Spread Is a Global Threat. Antibiotics (Basel) 2022; 11:antibiotics11081082. [PMID: 36009948 PMCID: PMC9405321 DOI: 10.3390/antibiotics11081082] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 02/07/2023] Open
Abstract
Antimicrobial resistance (AMR) is a challenge to human wellbeing the world over and is one of the more serious public health concerns. AMR has the potential to emerge as a serious healthcare threat if left unchecked, and could put into motion another pandemic. This establishes the need for the establishment of global health solutions around AMR, taking into account microdata from different parts of the world. The positive influences in this regard could be establishing conducive social norms, charting individual and group behavior practices that favor global human health, and lastly, increasing collective awareness around the need for such action. Apart from being an emerging threat in the clinical space, AMR also increases treatment complexity, posing a real challenge to the existing guidelines around the management of antibiotic resistance. The attribute of resistance development has been linked to many genetic elements, some of which have complex transmission pathways between microbes. Beyond this, new mechanisms underlying the development of AMR are being discovered, making this field an important aspect of medical microbiology. Apart from the genetic aspects of AMR, other practices, including misdiagnosis, exposure to broad-spectrum antibiotics, and lack of rapid diagnosis, add to the creation of resistance. However, upgrades and innovations in DNA sequencing technologies with bioinformatics have revolutionized the diagnostic industry, aiding the real-time detection of causes of AMR and its elements, which are important to delineating control and prevention approaches to fight the threat.
Collapse
Affiliation(s)
- Mohammed M Aljeldah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafar al-Batin 31991, Saudi Arabia
| |
Collapse
|
10
|
Abstract
Antibiotic resistance is a global health challenge, involving the transfer of bacteria and genes between humans, animals and the environment. Although multiple barriers restrict the flow of both bacteria and genes, pathogens recurrently acquire new resistance factors from other species, thereby reducing our ability to prevent and treat bacterial infections. Evolutionary events that lead to the emergence of new resistance factors in pathogens are rare and challenging to predict, but may be associated with vast ramifications. Transmission events of already widespread resistant strains are, on the other hand, common, quantifiable and more predictable, but the consequences of each event are limited. Quantifying the pathways and identifying the drivers of and bottlenecks for environmental evolution and transmission of antibiotic resistance are key components to understand and manage the resistance crisis as a whole. In this Review, we present our current understanding of the roles of the environment, including antibiotic pollution, in resistance evolution, in transmission and as a mere reflection of the regional antibiotic resistance situation in the clinic. We provide a perspective on current evidence, describe risk scenarios, discuss methods for surveillance and the assessment of potential drivers, and finally identify some actions to mitigate risks.
Collapse
Affiliation(s)
- D G Joakim Larsson
- Centre for Antibiotic Resistance Research at University of Gothenburg, Gothenburg, Sweden.
- Institute of Biomedicine, Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Carl-Fredrik Flach
- Centre for Antibiotic Resistance Research at University of Gothenburg, Gothenburg, Sweden
- Institute of Biomedicine, Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
11
|
Mbehang Nguema PP, Onanga R, Ndong Atome GR, Tewa JJ, Mabika Mabika A, Muandze Nzambe JU, Obague Mbeang JC, Bitome Essono PY, Bretagnolle F, Godreuil S. High level of intrinsic phenotypic antimicrobial resistance in enterobacteria from terrestrial wildlife in Gabonese national parks. PLoS One 2021; 16:e0257994. [PMID: 34637441 PMCID: PMC8509864 DOI: 10.1371/journal.pone.0257994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 09/16/2021] [Indexed: 11/18/2022] Open
Abstract
Data on the prevalence of antibiotic resistance in Enterobacteriaceae in African wildlife are still relatively limited. The aim of this study was to estimate the prevalence of phenotypic intrinsic and acquired antimicrobial resistance of enterobacteria from several species of terrestrial wild mammals in national parks of Gabon. Colony culture and isolation were done using MacConkey agar. Isolates were identified using the VITEK 2 and MALDI-TOF methods. Antibiotic susceptibility was analysed and interpreted according to the European Committee on Antimicrobial Susceptibility Testing guidelines. The preliminary test for ESBL-producing Enterobacteriaceae was performed by replicating enterobacterial colonies on MacConkey agar supplemented with 2 mg/L cefotaxime (MCA+CTX). Extended-spectrum beta-lactamase (ESBL) production was confirmed with the double-disc synergy test (DDST). The inhibition zone diameters were read with SirScan. Among the 130 bacterial colonies isolated from 125 fecal samples, 90 enterobacterial isolates were identified. Escherichia coli (61%) was the most prevalent, followed by Enterobacter cloacae (8%), Proteus mirabilis (8%), Klebsiella variicola (7%), Klebsiella aerogenes (7%), Klebsiella oxytoca (4%), Citrobacter freundii (3%), Klebsiella pneumoniae (1%) and Serratia marcescens (1%). Acquired resistance was carried by E. coli (11% of all E. coli isolates) and E. cloacae (3% of all E. cloacae) isolates, while intrinsic resistance was detected in all the other resistant isolates (n = 31); K. variicola, K. oxytoca, K. pneumoniae, E. cloacae, K. aerogenes, S. marcescens and P. mirabilis). Our data show that most strains isolated in protected areas in Gabon are wild type isolates and carry intrinsic resistance rather than acquired resistance.
Collapse
Affiliation(s)
- Pierre Philippe Mbehang Nguema
- Departement Ecologie Animal, Institut de Recherche en Ecologie Tropicale (IRET), Libreville, Gabon
- Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
- UMR CNRS/uB 6282 Biogéosciences, Université de Bourgogne-Franche-Comté, Dijon, France
| | - Richard Onanga
- Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
| | - Guy Roger Ndong Atome
- Department de Chemie, Faculté des Sciences, Université des Sciences et Techniques de Masuku (USTM), Franceville, Gabon
| | - Jean Jules Tewa
- Departement de Mathematiques et Informatique, Faculté des Sciences, Université de Douala, Douala, Cameroun
| | - Arsène Mabika Mabika
- Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
| | | | | | | | - François Bretagnolle
- UMR CNRS/uB 6282 Biogéosciences, Université de Bourgogne-Franche-Comté, Dijon, France
| | - Sylvain Godreuil
- Centre Hospitalier Universitaire de Montpellier, Laboratoire de Bactériologie, Université de Montpellier, Montpellier, France
| |
Collapse
|
12
|
Sukhum KV, Vargas RC, Boolchandani M, D'Souza AW, Patel S, Kesaraju A, Walljasper G, Hegde H, Ye Z, Valenzuela RK, Gunderson P, Bendixsen C, Dantas G, Shukla SK. Manure Microbial Communities and Resistance Profiles Reconfigure after Transition to Manure Pits and Differ from Those in Fertilized Field Soil. mBio 2021; 12:e00798-21. [PMID: 33975936 PMCID: PMC8262906 DOI: 10.1128/mbio.00798-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 03/31/2021] [Indexed: 11/20/2022] Open
Abstract
In agricultural settings, microbes and antimicrobial resistance genes (ARGs) have the potential to be transferred across diverse environments and ecosystems. The consequences of these microbial transfers are unclear and understudied. On dairy farms, the storage of cow manure in manure pits and subsequent application to field soil as a fertilizer may facilitate the spread of the mammalian gut microbiome and its associated ARGs to the environment. To determine the extent of both taxonomic and resistance similarity during these transitions, we collected fresh manure, manure from pits, and field soil across 15 different dairy farms for three consecutive seasons. We used a combination of shotgun metagenomic sequencing and functional metagenomics to quantitatively interrogate taxonomic and ARG compositional variation on farms. We found that as the microbiome transitions from fresh dairy cow manure to manure pits, microbial taxonomic compositions and resistance profiles experience distinct restructuring, including decreases in alpha diversity and shifts in specific ARG abundances that potentially correspond to fresh manure going from a gut-structured community to an environment-structured community. Further, we did not find evidence of shared microbial community or a transfer of ARGs between manure and field soil microbiomes. Our results suggest that fresh manure experiences a compositional change in manure pits during storage and that the storage of manure in manure pits does not result in a depletion of ARGs. We did not find evidence of taxonomic or ARG restructuring of soil microbiota with the application of manure to field soils, as soil communities remained resilient to manure-induced perturbation.IMPORTANCE The addition of dairy cow manure-stored in manure pits-to field soil has the potential to introduce not only organic nutrients but also mammalian microbial communities and antimicrobial resistance genes (ARGs) to soil communities. Using shotgun sequencing paired with functional metagenomics, we showed that microbial community composition changed between fresh manure and manure pit samples with a decrease in gut-associated pathobionts, while ARG abundance and diversity remained high. However, field soil communities were distinct from those in manure in both microbial taxonomic and ARG composition. These results broaden our understanding of the transfer of microbial communities in agricultural settings and suggest that field soil microbial communities are resilient against the deposition of ARGs or microbial communities from manure.
Collapse
Affiliation(s)
- Kimberley V Sukhum
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Rhiannon C Vargas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Manish Boolchandani
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Alaric W D'Souza
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Sanket Patel
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Akhil Kesaraju
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Gretchen Walljasper
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Harshad Hegde
- Center for Oral Systemic Health, Marshfield Clinic Research Institute, Marshfield, Wisconsin, USA
| | - Zhan Ye
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, Wisconsin, USA
| | - Robert K Valenzuela
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, Wisconsin, USA
| | - Paul Gunderson
- Lake Region State College, Devils Lake, North Dakota, USA
| | - Casper Bendixsen
- National Farm Medicine Center, Marshfield Clinic Research Institute, Marshfield, Wisconsin, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Sanjay K Shukla
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, Wisconsin, USA
- Computation and Informatics in Biology Program, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
13
|
Obermeier MM, Wicaksono WA, Taffner J, Bergna A, Poehlein A, Cernava T, Lindstaedt S, Lovric M, Müller Bogotá CA, Berg G. Plant resistome profiling in evolutionary old bog vegetation provides new clues to understand emergence of multi-resistance. THE ISME JOURNAL 2021; 15:921-937. [PMID: 33177608 PMCID: PMC8027415 DOI: 10.1038/s41396-020-00822-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 12/30/2022]
Abstract
The expanding antibiotic resistance crisis calls for a more in depth understanding of the importance of antimicrobial resistance genes (ARGs) in pristine environments. We, therefore, studied the microbiome associated with Sphagnum moss forming the main vegetation in undomesticated, evolutionary old bog ecosystems. In our complementary analysis of culture collections, metagenomic data and a fosmid library from different geographic sites in Europe, we identified a low abundant but highly diverse pool of resistance determinants, which targets an unexpectedly broad range of 29 antibiotics including natural and synthetic compounds. This derives both, from the extraordinarily high abundance of efflux pumps (up to 96%), and the unexpectedly versatile set of ARGs underlying all major resistance mechanisms. Multi-resistance was frequently observed among bacterial isolates, e.g. in Serratia, Rouxiella, Pandoraea, Paraburkholderia and Pseudomonas. In a search for novel ARGs, we identified the new class A β-lactamase Mm3. The native Sphagnum resistome comprising a highly diversified and partially novel set of ARGs contributes to the bog ecosystem´s plasticity. Our results reinforce the ecological link between natural and clinically relevant resistomes and thereby shed light onto this link from the aspect of pristine plants. Moreover, they underline that diverse resistomes are an intrinsic characteristic of plant-associated microbial communities, they naturally harbour many resistances including genes with potential clinical relevance.
Collapse
Affiliation(s)
- Melanie Maria Obermeier
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12/I, 8010, Graz, Austria
- ACIB GmbH, Krenngasse 37/II, 8010, Graz, Austria
| | - Wisnu Adi Wicaksono
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12/I, 8010, Graz, Austria
| | - Julian Taffner
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12/I, 8010, Graz, Austria
| | - Alessandro Bergna
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12/I, 8010, Graz, Austria
- ACIB GmbH, Krenngasse 37/II, 8010, Graz, Austria
| | - Anja Poehlein
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Grisebachstrasse 8, 37077, Göttingen, Germany
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12/I, 8010, Graz, Austria
| | - Stefanie Lindstaedt
- Know-Center GmbH, Research Center for Data-Driven Business & Big Data Analytics, Infeldgasse 13/VI, 8010, Graz, Austria
| | - Mario Lovric
- Know-Center GmbH, Research Center for Data-Driven Business & Big Data Analytics, Infeldgasse 13/VI, 8010, Graz, Austria
| | - Christina Andrea Müller Bogotá
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12/I, 8010, Graz, Austria.
- ACIB GmbH, Krenngasse 37/II, 8010, Graz, Austria.
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12/I, 8010, Graz, Austria
- ACIB GmbH, Krenngasse 37/II, 8010, Graz, Austria
| |
Collapse
|
14
|
Kim DW, Cha CJ. Antibiotic resistome from the One-Health perspective: understanding and controlling antimicrobial resistance transmission. Exp Mol Med 2021; 53:301-309. [PMID: 33642573 PMCID: PMC8080597 DOI: 10.1038/s12276-021-00569-z] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 01/31/2023] Open
Abstract
The concept of the antibiotic resistome was introduced just over a decade ago, and since then, active resistome studies have been conducted. In the present study, we describe the previously established concept of the resistome, which encompasses all types of antibiotic resistance genes (ARGs), and the important findings from each One-Health sector considering this concept, thereby emphasizing the significance of the One-Health approach in understanding ARG transmission. Cutting-edge research methodologies are essential for deciphering the complex resistome structure in the microbiomes of humans, animals, and the environment. Based on the recent achievements of resistome studies in multiple One-Health sectors, future directions for resistome research have been suggested to improve the understanding and control of ARG transmission: (1) ranking the critical ARGs and their hosts; (2) understanding ARG transmission at the interfaces of One-Health sectors; (3) identifying selective pressures affecting the emergence, transmission, and evolution of ARGs; and (4) elucidating the mechanisms that allow an organism to overcome taxonomic barriers in ARG transmission.
Collapse
Affiliation(s)
- Dae-Wi Kim
- grid.411545.00000 0004 0470 4320Division of Life Sciences, Jeonbuk National University, Jeonju, 54896 Republic of Korea
| | - Chang-Jun Cha
- grid.254224.70000 0001 0789 9563Department of Systems Biotechnology and Center for Antibiotic Resistome, Chung-Ang University, Anseong, 17546 Republic of Korea
| |
Collapse
|
15
|
de Abreu VAC, Perdigão J, Almeida S. Metagenomic Approaches to Analyze Antimicrobial Resistance: An Overview. Front Genet 2021; 11:575592. [PMID: 33537056 PMCID: PMC7848172 DOI: 10.3389/fgene.2020.575592] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/04/2020] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial resistance is a major global public health problem, which develops when pathogens acquire antimicrobial resistance genes (ARGs), primarily through genetic recombination between commensal and pathogenic microbes. The resistome is a collection of all ARGs. In microorganisms, the primary method of ARG acquisition is horizontal gene transfer (HGT). Thus, understanding and identifying HGTs, can provide insight into the mechanisms of antimicrobial resistance transmission and dissemination. The use of high-throughput sequencing technologies has made the analysis of ARG sequences feasible and accessible. In particular, the metagenomic approach has facilitated the identification of community-based antimicrobial resistance. This approach is useful, as it allows access to the genomic data in an environmental sample without the need to isolate and culture microorganisms prior to analysis. Here, we aimed to reflect on the challenges of analyzing metagenomic data in the three main approaches for studying antimicrobial resistance: (i) analysis of microbial diversity, (ii) functional gene analysis, and (iii) searching the most complete and pertinent resistome databases.
Collapse
Affiliation(s)
- Vinicius A C de Abreu
- Laboratório de Bioinformática e Computação de Alto Desempenho (LaBioCad), Faculdade de Computação (FACOMP), Universidade Federal do Pará, Belém, Brazil
| | - José Perdigão
- Laboratório de Bioinformática e Computação de Alto Desempenho (LaBioCad), Faculdade de Computação (FACOMP), Universidade Federal do Pará, Belém, Brazil
| | - Sintia Almeida
- Central de Genômica e Bioinformática (CeGenBio), Núcleo de Pesquisa e Desenvolvimento de Medicamentos (NPDM), Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, Fortaleza, Brazil
| |
Collapse
|
16
|
Turrini P, Tescari M, Visaggio D, Pirolo M, Lugli GA, Ventura M, Frangipani E, Visca P. The microbial community of a biofilm lining the wall of a pristine cave in Western New Guinea. Microbiol Res 2020; 241:126584. [DOI: 10.1016/j.micres.2020.126584] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 01/04/2023]
|
17
|
Imchen M, Moopantakath J, Kumavath R, Barh D, Tiwari S, Ghosh P, Azevedo V. Current Trends in Experimental and Computational Approaches to Combat Antimicrobial Resistance. Front Genet 2020; 11:563975. [PMID: 33240317 PMCID: PMC7677515 DOI: 10.3389/fgene.2020.563975] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022] Open
Abstract
A multitude of factors, such as drug misuse, lack of strong regulatory measures, improper sewage disposal, and low-quality medicine and medications, have been attributed to the emergence of drug resistant microbes. The emergence and outbreaks of multidrug resistance to last-line antibiotics has become quite common. This is further fueled by the slow rate of drug development and the lack of effective resistome surveillance systems. In this review, we provide insights into the recent advances made in computational approaches for the surveillance of antibiotic resistomes, as well as experimental formulation of combinatorial drugs. We explore the multiple roles of antibiotics in nature and the current status of combinatorial and adjuvant-based antibiotic treatments with nanoparticles, phytochemical, and other non-antibiotics based on synergetic effects. Furthermore, advancements in machine learning algorithms could also be applied to combat the spread of antibiotic resistance. Development of resistance to new antibiotics is quite rapid. Hence, we review the recent literature on discoveries of novel antibiotic resistant genes though shotgun and expression-based metagenomics. To decelerate the spread of antibiotic resistant genes, surveillance of the resistome is of utmost importance. Therefore, we discuss integrative applications of whole-genome sequencing and metagenomics together with machine learning models as a means for state-of-the-art surveillance of the antibiotic resistome. We further explore the interactions and negative effects between antibiotics and microbiomes upon drug administration.
Collapse
Affiliation(s)
- Madangchanok Imchen
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, India
| | - Jamseel Moopantakath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, India
| | - Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, India
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Purba Medinipur, India
| | - Sandeep Tiwari
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, United States
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
18
|
Lupande-Mwenebitu D, Baron SA, Nabti LZ, Lunguya-Metila O, Lavigne JP, Rolain JM, Diene SM. Current status of resistance to antibiotics in the Democratic Republic of the Congo: A review. J Glob Antimicrob Resist 2020; 22:818-825. [PMID: 32688007 DOI: 10.1016/j.jgar.2020.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/23/2020] [Accepted: 07/04/2020] [Indexed: 11/29/2022] Open
Abstract
A review of literature was conducted to assess the prevalence and mechanisms of antibiotic resistance to date, mainly to β-lactam antibiotics, cephalosporins, carbapenems, colistin, and tigecycline in the Democratic Republic of the Congo (DRC). English and French publications were listed and analysed using PubMed/Medline, Google Scholar, and African Journals database between 1 January 1990 and 31 December 2019. For the 30 published articles found: (1) bacterial resistance to antibiotics concerned both Gram-negative and Gram-positive bacteria; (2) multidrug resistance prevalence was the same in half of Streptococcus pneumoniae isolates; (3) a worrying prevalence of methicillin-resistant Staphylococcus aureus (MRSA) was noted, which is associated with co-resistance to several other antibiotics; and (4) resistance to third-generation cephalosporins was very high in Enterobacteriaceae, mainly because of blaCTX-M-1 group and blaSHV genes. Data on carbapenem and colistin resistance were not available in DRC until recently. Further work is required to set up a surveillance system for antibiotic resistance in DRC.
Collapse
Affiliation(s)
- David Lupande-Mwenebitu
- Faculté de Pharmacie, IRD, APHM, MEPHI, Aix Marseille University, 19-21 Boulevard Jean Moulin, 13385 Marseille, France; Université Catholique de Bukavu (UCB), Hôpital Provincial Général de Référence de Bukavu, Bukavu, Congo
| | - Sophie Alexandra Baron
- Faculté de Pharmacie, IRD, APHM, MEPHI, Aix Marseille University, 19-21 Boulevard Jean Moulin, 13385 Marseille, France
| | - Larbi Zakaria Nabti
- Faculté de Pharmacie, IRD, APHM, MEPHI, Aix Marseille University, 19-21 Boulevard Jean Moulin, 13385 Marseille, France
| | | | - Jean-Philippe Lavigne
- Service de Microbiologie et Hygiène hospitalière, VBMI, INSERM U1047, Université de Montpellier, CHU Nîmes, Nîmes, France
| | - Jean-Marc Rolain
- Faculté de Pharmacie, IRD, APHM, MEPHI, Aix Marseille University, 19-21 Boulevard Jean Moulin, 13385 Marseille, France; IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13385 Marseille, France.
| | - Seydina Mouhamadou Diene
- Faculté de Pharmacie, IRD, APHM, MEPHI, Aix Marseille University, 19-21 Boulevard Jean Moulin, 13385 Marseille, France; IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13385 Marseille, France.
| |
Collapse
|
19
|
Prevalence of Extended-Spectrum β-Lactamases in E. coli of Rats in the Region North East of Gabon. Vet Med Int 2020; 2020:5163493. [PMID: 32733665 PMCID: PMC7383316 DOI: 10.1155/2020/5163493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/24/2020] [Accepted: 07/02/2020] [Indexed: 11/17/2022] Open
Abstract
Antibiotic resistance occurs in the environment by multiplication and the spread of multidrug-resistant bacteria that would be due to an improper and incorrect use of antibiotics in human and veterinary medicine. The aim of this study was to establish the prevalence of E.coli producing Extended-Spectrum beta-Lactamase (ESBL) antibiotics from rats and gregarious animals in a semirural area of Gabon and to evaluate the origin of a resistance distribution in the environment from animal feces. The bacterial culture was carried out, and the identification of E. coli strains on a specific medium and the antibiotic susceptibility tests allowed establishing the prevalence. Characterization of resistance genes was performed by gene amplification after DNA extraction. On 161 feces collected in rats, 32 strains were isolated, and 11 strains of E. coli produced ESBL with a prevalence of 34.37%. Molecular tests showed that CTX-M genes 214 bp were identified in rats. The presence of CTX-M genes could have a human origin. So, the rats can carry ESBL-producing Enterobacteriaceae which poses a risk to human health and pets in this region of Gabon.
Collapse
|
20
|
Moon K, Jeon JH, Kang I, Park KS, Lee K, Cha CJ, Lee SH, Cho JC. Freshwater viral metagenome reveals novel and functional phage-borne antibiotic resistance genes. MICROBIOME 2020; 8:75. [PMID: 32482165 PMCID: PMC7265639 DOI: 10.1186/s40168-020-00863-4] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/11/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND Antibiotic resistance developed by bacteria is a significant threat to global health. Antibiotic resistance genes (ARGs) spread across different bacterial populations through multiple dissemination routes, including horizontal gene transfer mediated by bacteriophages. ARGs carried by bacteriophages are considered especially threatening due to their prolonged persistence in the environment, fast replication rates, and ability to infect diverse bacterial hosts. Several studies employing qPCR and viral metagenomics have shown that viral fraction and viral sequence reads in clinical and environmental samples carry many ARGs. However, only a few ARGs have been found in viral contigs assembled from metagenome reads, with most of these genes lacking effective antibiotic resistance phenotypes. Owing to the wide application of viral metagenomics, nevertheless, different classes of ARGs are being continuously found in viral metagenomes acquired from diverse environments. As such, the presence and functionality of ARGs encoded by bacteriophages remain up for debate. RESULTS We evaluated ARGs excavated from viral contigs recovered from urban surface water viral metagenome data. In virome reads and contigs, diverse ARGs, including polymyxin resistance genes, multidrug efflux proteins, and β-lactamases, were identified. In particular, when a lenient threshold of e value of ≤ 1 × e-5 and query coverage of ≥ 60% were employed in the Resfams database, the novel β-lactamases blaHRV-1 and blaHRVM-1 were found. These genes had unique sequences, forming distinct clades of class A and subclass B3 β-lactamases, respectively. Minimum inhibitory concentration analyses for E. coli strains harboring blaHRV-1 and blaHRVM-1 and catalytic kinetics of purified HRV-1 and HRVM-1 showed reduced susceptibility to penicillin, narrow- and extended-spectrum cephalosporins, and carbapenems. These genes were also found in bacterial metagenomes, indicating that they were harbored by actively infecting phages. CONCLUSION Our results showed that viruses in the environment carry as-yet-unreported functional ARGs, albeit in small quantities. We thereby suggest that environmental bacteriophages could be reservoirs of widely variable, unknown ARGs that could be disseminated via virus-host interactions. Video abstract.
Collapse
Affiliation(s)
- Kira Moon
- Department of Biological Sciences, Inha University, Incheon, 22212, Republic of Korea
| | - Jeong Ho Jeon
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Ilnam Kang
- Department of Biological Sciences, Inha University, Incheon, 22212, Republic of Korea
| | - Kwang Seung Park
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Kihyun Lee
- Department of Systems Biotechnology and Center for Antibiotic Resistome, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Chang-Jun Cha
- Department of Systems Biotechnology and Center for Antibiotic Resistome, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggi-do, 17058, Republic of Korea.
| | - Jang-Cheon Cho
- Department of Biological Sciences, Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|
21
|
Sukumar S, Martin FE, Hughes TE, Adler CJ. Think before you prescribe: how dentistry contributes to antibiotic resistance. Aust Dent J 2019; 65:21-29. [PMID: 31613388 DOI: 10.1111/adj.12727] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2019] [Indexed: 01/02/2023]
Abstract
Antibiotic resistance presents a daunting challenge to health professionals worldwide and has the potential to create major problems for modern health care, resulting in more medical expenditure, extended hospital stays and increased morbidity and mortality. Advanced genome sequencing technologies present a complex picture of resistance, extending our understanding beyond the pharmacotherapeutic interface between pathogens and antibiotics. This review discusses the global scope and scale of antibiotic resistance and contextualizes it for the dental practitioner, emphasizing the role we must play in limiting the progression of resistance through antibiotic stewardship and disease prevention.
Collapse
Affiliation(s)
- S Sukumar
- Faculty of Medicine and Health, Sydney Dental School, University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, Institute of Dental Research, Sydney Dental School, University of Sydney, Sydney, New South Wales, Australia
| | - F E Martin
- Faculty of Medicine and Health, Sydney Dental School, University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, Institute of Dental Research, Sydney Dental School, University of Sydney, Sydney, New South Wales, Australia
| | - T E Hughes
- Faculty of Health and Medical Sciences, Adelaide Dental School, The University of Adelaide, Adelaide, South Australia, Australia
| | - C J Adler
- Faculty of Medicine and Health, Institute of Dental Research, Sydney Dental School, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
22
|
Sukhum KV, Diorio-Toth L, Dantas G. Genomic and Metagenomic Approaches for Predictive Surveillance of Emerging Pathogens and Antibiotic Resistance. Clin Pharmacol Ther 2019; 106:512-524. [PMID: 31172511 PMCID: PMC6692204 DOI: 10.1002/cpt.1535] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/14/2019] [Indexed: 12/12/2022]
Abstract
Antibiotic-resistant organisms (AROs) are a major concern to public health worldwide. While antibiotics have been naturally produced by environmental bacteria for millions of years, modern widespread use of antibiotics has enriched resistance mechanisms in human-impacted bacterial environments. Antibiotic resistance genes (ARGs) continue to emerge and spread rapidly. To combat the global threat of antibiotic resistance, researchers must develop methods to rapidly characterize AROs and ARGs, monitor their spread across space and time, and identify novel ARGs and resistance pathways. We review how high-throughput sequencing-based methods can be combined with classic culture-based assays to characterize, monitor, and track AROs and ARGs. Then, we evaluate genomic and metagenomic methods for identifying ARGs and biosynthetic pathways for novel antibiotics from genomic data sets. Together, these genomic analyses can improve surveillance and prediction of emerging resistance threats and accelerate the development of new antibiotic therapies to combat resistance.
Collapse
Affiliation(s)
- Kimberley V. Sukhum
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University in St Louis School of Medicine, St Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Luke Diorio-Toth
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University in St Louis School of Medicine, St Louis, MO, USA
- To whom correspondence should be addressed during review: LD-T ()
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University in St Louis School of Medicine, St Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St Louis School of Medicine, St Louis, MO, USA
- Department of Molecular Microbiology, Washington University in St Louis School of Medicine, St Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO, USA
- Corresponding author: GD ()
| |
Collapse
|
23
|
Boolchandani M, D'Souza AW, Dantas G. Sequencing-based methods and resources to study antimicrobial resistance. Nat Rev Genet 2019; 20:356-370. [PMID: 30886350 PMCID: PMC6525649 DOI: 10.1038/s41576-019-0108-4] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antimicrobial resistance extracts high morbidity, mortality and economic costs yearly by rendering bacteria immune to antibiotics. Identifying and understanding antimicrobial resistance are imperative for clinical practice to treat resistant infections and for public health efforts to limit the spread of resistance. Technologies such as next-generation sequencing are expanding our abilities to detect and study antimicrobial resistance. This Review provides a detailed overview of antimicrobial resistance identification and characterization methods, from traditional antimicrobial susceptibility testing to recent deep-learning methods. We focus on sequencing-based resistance discovery and discuss tools and databases used in antimicrobial resistance studies.
Collapse
Affiliation(s)
- Manish Boolchandani
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Alaric W D'Souza
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
- Department of Pathology & Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
24
|
Fang H, Huang K, Yu J, Ding C, Wang Z, Zhao C, Yuan H, Wang Z, Wang S, Hu J, Cui Y. Metagenomic analysis of bacterial communities and antibiotic resistance genes in the Eriocheir sinensis freshwater aquaculture environment. CHEMOSPHERE 2019; 224:202-211. [PMID: 30822726 DOI: 10.1016/j.chemosphere.2019.02.068] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/02/2019] [Accepted: 02/10/2019] [Indexed: 06/09/2023]
Abstract
Aquaculture has attracted significant attention as an environmental gateway to the development of antibiotic resistance. The industry of Chinese mitten crab Eriocheir sinensis contributes significantly to the freshwater aquaculture industry in China. However, the situation of antibiotic resistance in the E. sinensis aquaculture environment is not known. In this study, high-throughput sequencing based metagenomic approaches were used to comprehensively investigate the structure of bacterial communities, the abundance and diversity of antibiotic resistance genes (ARGs), as well as mobile genetic elements (MGEs) in three E. sinensis aquaculture ponds in Jiangsu Province, China. The dominant phyla were Proteobacteria, Actinobacteria, and Bacteroidetes in water samples and Proteobacteria, Chloroflexi, Verrucomicrobia, and Bacteroidetes in sediment samples. Bacitracin and multidrug were predominant ARG types in water and sediment samples, respectively. There was a significant correlation between MGEs and ARGs. In particular, plasmids were the most abundant MGEs and strongly correlated with ARGs. This is the first study of antibiotic resistome that uses metagenomic approaches in the E. sinensis aquaculture environment. The results indicate that the opportunistic pathogens may acquire ARGs via horizontal gene transfer, intensifying the potential risk to human health.
Collapse
Affiliation(s)
- Hao Fang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Kailong Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Junnan Yu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Chengcheng Ding
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing, 210042, China
| | - Zhifeng Wang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Cheng Zhao
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Hezhong Yuan
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Zhuang Wang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Se Wang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Jianlin Hu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Yibin Cui
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing, 210042, China.
| |
Collapse
|
25
|
Gut resistome plasticity in pediatric patients undergoing hematopoietic stem cell transplantation. Sci Rep 2019; 9:5649. [PMID: 30948795 PMCID: PMC6449395 DOI: 10.1038/s41598-019-42222-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/26/2019] [Indexed: 12/12/2022] Open
Abstract
The gut microbiome of pediatric patients undergoing allo-hematopoietic stem cell transplantation (HSCT) has recently been considered as a potential reservoir of antimicrobial resistance, with important implications in terms of patient mortality rate. By means of shotgun metagenomics, here we explored the dynamics of the gut resistome - i.e. the pattern of antibiotic resistance genes provided by the gut microbiome - in eight pediatric patients undergoing HSCT, half of whom developed acute Graft-versus-Host Disease (aGvHD). According to our findings, the patients developing aGvHD are characterized by post-HSCT expansion of their gut resistome, involving the acquisition of new resistances, as well as the consolidation of those already present before HSCT. Interestingly, the aGvHD-associated bloom in resistome diversity is not limited to genes coding for resistance to the antibiotics administered along the therapeutic course, but rather involves a broad pattern of different resistance classes, including multidrug resistance, as well as resistance to macrolides, aminoglycosides, tetracyclines and beta-lactams. Our data stress the relevance of mapping the gut resistome in HSCT pediatric patients to define the most appropriate anti-infective treatment post HSCT.
Collapse
|
26
|
Asante J, Osei Sekyere J. Understanding antimicrobial discovery and resistance from a metagenomic and metatranscriptomic perspective: advances and applications. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:62-86. [PMID: 30637962 DOI: 10.1111/1758-2229.12735] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 12/12/2018] [Indexed: 06/09/2023]
Abstract
Our inability to cultivate most microorganisms, specifically bacteria, in the laboratory has for many years restricted our view and understanding of the bacterial meta-resistome in all living and nonliving environments. As a result, reservoirs, sources and distribution of antibiotic resistance genes (ARGS) and antibiotic-producers, as well as the effects of human activity and antibiotics on the selection and dissemination of ARGs were not well comprehended. With the advances made in the fields of metagenomics and metatranscriptomics, many of the hitherto little-understood concepts are becoming clearer. Further, the discovery of antibiotics such as lugdinin and lactocillin from the human microbiota, buttressed the importance of these new fields. Metagenomics and metatranscriptomics are becoming important clinical diagnostic tools for screening and detecting pathogens and ARGs, assessing the effects of antibiotics, other xenobiotics and human activity on the environment, characterizing the microbiome and the environmental resistome with lesser turnaround time and decreasing cost, as well as discovering antibiotic-producers. However, challenges with accurate binning, skewed ARGs databases, detection of less abundant and allelic variants of ARGs and efficient mobilome characterization remain. Ongoing efforts in long-read, phased- and single-cell sequencing, strain-resolved binning, chromosomal-conformation capture, DNA-methylation binning and deep-learning bioinformatic approaches offer promising prospects in reconstructing complete strain-level genomes and mobilomes from metagenomes.
Collapse
Affiliation(s)
- Jonathan Asante
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - John Osei Sekyere
- Department of Medical Microbiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
27
|
Berglund F, Österlund T, Boulund F, Marathe NP, Larsson DGJ, Kristiansson E. Identification and reconstruction of novel antibiotic resistance genes from metagenomes. MICROBIOME 2019; 7:52. [PMID: 30935407 PMCID: PMC6444489 DOI: 10.1186/s40168-019-0670-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 03/21/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Environmental and commensal bacteria maintain a diverse and largely unknown collection of antibiotic resistance genes (ARGs) that, over time, may be mobilized and transferred to pathogens. Metagenomics enables cultivation-independent characterization of bacterial communities but the resulting data is noisy and highly fragmented, severely hampering the identification of previously undescribed ARGs. We have therefore developed fARGene, a method for identification and reconstruction of ARGs directly from shotgun metagenomic data. RESULTS fARGene uses optimized gene models and can therefore with high accuracy identify previously uncharacterized resistance genes, even if their sequence similarity to known ARGs is low. By performing the analysis directly on the metagenomic fragments, fARGene also circumvents the need for a high-quality assembly. To demonstrate the applicability of fARGene, we reconstructed β-lactamases from five billion metagenomic reads, resulting in 221 ARGs, of which 58 were previously not reported. Based on 38 ARGs reconstructed by fARGene, experimental verification showed that 81% provided a resistance phenotype in Escherichia coli. Compared to other methods for detecting ARGs in metagenomic data, fARGene has superior sensitivity and the ability to reconstruct previously unknown genes directly from the sequence reads. CONCLUSIONS We conclude that fARGene provides an efficient and reliable way to explore the unknown resistome in bacterial communities. The method is applicable to any type of ARGs and is freely available via GitHub under the MIT license.
Collapse
Affiliation(s)
- Fanny Berglund
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Tobias Österlund
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Boulund
- Center for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Nachiket P Marathe
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Marine Research (IMR), Bergen, Norway
| | - D G Joakim Larsson
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Erik Kristiansson
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden.
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
28
|
Thakur S, Gray GC. The Mandate for a Global "One Health" Approach to Antimicrobial Resistance Surveillance. Am J Trop Med Hyg 2018; 100:227-228. [PMID: 30608047 PMCID: PMC6367630 DOI: 10.4269/ajtmh.18-0973] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
| | - Gregory C Gray
- Division of Infectious Diseases, Duke Medicine, Global Health Institute, and Nicholas School of the Environment, Duke University, Durham, North Carolina
| |
Collapse
|
29
|
Vargas-Albores F, Martínez-Córdova LR, Martínez-Porchas M, Calderón K, Lago-Lestón A. Functional metagenomics: a tool to gain knowledge for agronomic and veterinary sciences. Biotechnol Genet Eng Rev 2018; 35:69-91. [PMID: 30221593 DOI: 10.1080/02648725.2018.1513230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The increased global demand for food production has motivated agroindustries to increase their own levels of production. Scientific efforts have contributed to improving these production systems, aiding to solve problems and establishing novel conceptual views and sustainable alternatives to cope with the increasing demand. Although microorganisms are key players in biological systems and may drive certain desired responses toward food production, little is known about the microbial communities that constitute the microbiomes associated with agricultural and veterinary activities. Understanding the diversity, structure and in situ interactions of microbes, together with how these interactions occur within microbial communities and with respect to their environments (including hosts), constitutes a major challenge with an enormous relevance for agriculture and biotechnology. The emergence of high-throughput sequencing technologies, together with novel and more accessible bioinformatics tools, has allowed researchers to learn more about the functional potential and functional activity of these microbial communities. These tools constitute a relevant approach for understanding the metabolic processes that can occur or are currently occurring in a given system and for implementing novel strategies focused on solving production problems or improving sustainability. Several 'omics' sciences and their applications in agriculture are discussed in this review, and the usage of functional metagenomics is proposed to achieve substantial advances for food agroindustries and veterinary sciences.
Collapse
Affiliation(s)
- Francisco Vargas-Albores
- a Centro de Investigación en Alimentación y Desarrollo , A.C. Coordinación de Tecnología de Alimentos de Origen Animal , Hermosillo , Mexico
| | - Luis R Martínez-Córdova
- b Departamento de Investigaciones Científicas y Tecnológicas de la Universidad de Sonora , Universidad de Sonora , Hermosillo , Mexico
| | - Marcel Martínez-Porchas
- a Centro de Investigación en Alimentación y Desarrollo , A.C. Coordinación de Tecnología de Alimentos de Origen Animal , Hermosillo , Mexico
| | - Kadiya Calderón
- b Departamento de Investigaciones Científicas y Tecnológicas de la Universidad de Sonora , Universidad de Sonora , Hermosillo , Mexico
| | | |
Collapse
|
30
|
Abundance and diversity of the faecal resistome in slaughter pigs and broilers in nine European countries. Nat Microbiol 2018; 3:898-908. [DOI: 10.1038/s41564-018-0192-9] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 05/30/2018] [Accepted: 06/08/2018] [Indexed: 11/08/2022]
|
31
|
Bengtsson-Palme J. The diversity of uncharacterized antibiotic resistance genes can be predicted from known gene variants-but not always. MICROBIOME 2018; 6:125. [PMID: 29981578 PMCID: PMC6035801 DOI: 10.1186/s40168-018-0508-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/25/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND Antibiotic resistance is considered one of the most urgent threats to modern healthcare, and the role of the environment in resistance development is increasingly recognized. It is often assumed that the abundance and diversity of known resistance genes are representative also for the non-characterized fraction of the resistome in a given environment, but this assumption has not been verified. In this study, this hypothesis is tested, using the resistance gene profiles of 1109 metagenomes from various environments. RESULTS This study shows that the diversity and abundance of known antibiotic resistance genes can generally predict the diversity and abundance of undescribed resistance genes. However, the extent of this predictability is dependent on the type of environment investigated. Furthermore, it is shown that carefully selected small sets of resistance genes can describe total resistance gene diversity remarkably well. CONCLUSIONS The results of this study suggest that knowledge gained from large-scale quantifications of known resistance genes can be utilized as a proxy for unknown resistance factors. This is important for current and proposed monitoring efforts for environmental antibiotic resistance and has implications for the design of risk ranking strategies and the choices of measures and methods for describing resistance gene abundance and diversity in the environment.
Collapse
Affiliation(s)
- Johan Bengtsson-Palme
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, 330 North Orchard Street, Madison, WI, 53715, USA.
- Centre for Antibiotic Resistance research (CARe) at University of Gothenburg, Gothenburg, Sweden.
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10, SE-413 46, Gothenburg, Sweden.
| |
Collapse
|
32
|
Guitor AK, Wright GD. Antimicrobial Resistance and Respiratory Infections. Chest 2018; 154:1202-1212. [PMID: 29959904 DOI: 10.1016/j.chest.2018.06.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/06/2018] [Accepted: 06/18/2018] [Indexed: 11/17/2022] Open
Abstract
Since their introduction into health care and clinical practice in the early 20th century, antibiotics have revolutionized medicine. Alarmingly, these drugs are increasingly threatened by bacteria that have developed a broad diversity of resistance mechanisms. Antibiotic resistance can be transferred between bacteria, often on mobile genetic elements; be acquired from the environment; or arise through mutation because of selective pressures of the drugs themselves. There are various strategies to resistance, including active efflux of the drug from the bacterial cell, reduced permeability of the cell envelope, alteration of the drug's target within the bacterial cell, and modification or destruction of the antibiotic. Streptococcus pneumoniae, Haemophilus influenzae, Pseudomonas aeruginosa, and Mycobacterium tuberculosis frequently are implicated in respiratory infections, often manifesting with reduced susceptibility to multiple classes of antibiotics. Some mechanisms of resistance, such as the β-lactamases that confer resistance to penicillins and related drugs, have been well characterized and are widespread in clinical isolates. Other newly identified determinants, including the colistin resistance gene mcr-1, are spreading rapidly worldwide and threaten last-resort treatments of multidrug-resistant organisms. Various approaches to detecting antibiotic resistance provide surveys of the determinants that are available for transfer into pathogenic bacteria. Together with molecular characterization of newly identified mechanisms, this surveillance can target drug discovery efforts and increase antibiotic stewardship. A greater understanding of the mechanisms of antibiotic resistance in respiratory pathogens combined with rapid diagnostics ultimately will reduce treatment failure due to inappropriate antibiotic use and prevent further spread of resistance.
Collapse
Affiliation(s)
- Allison K Guitor
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Gerard D Wright
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
33
|
Miranda CD, Godoy FA, Lee MR. Current Status of the Use of Antibiotics and the Antimicrobial Resistance in the Chilean Salmon Farms. Front Microbiol 2018; 9:1284. [PMID: 29967597 PMCID: PMC6016283 DOI: 10.3389/fmicb.2018.01284] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 05/25/2018] [Indexed: 12/17/2022] Open
Abstract
The Chilean salmon industry has undergone a rapid development making the country the world's second largest producer of farmed salmon, but this growth has been accompanied by an intensive use of antibiotics. This overuse has become so significant that Chilean salmon aquaculture currently has one of the highest rates of antibiotic consumption per ton of harvested fish in the world. This review has focused on discussing use of antibiotics and current status of scientific knowledge regarding to incidence of antimicrobial resistance and associated genes in the Chilean salmonid farms. Over recent years there has been a consistent increase in the amount of antimicrobials used by Chilean salmonid farms, from 143.2 tons in 2010 to 382.5 tons in 2016. During 2016, Chilean companies utilized approximately 0.53 kg of antibiotics per ton of harvested salmon, 363.4 tons (95%) were used in marine farms, and 19.1 tons (5%) in freshwater farms dedicated to smolt production. Florfenicol and oxytetracycline were by far the most frequently used antibiotics during 2016 (82.5 and 16.8%, respectively), mainly being used to treat Piscirickettsia salmonis, currently considered the main bacterial threat to this industry. However, the increasing development of this industry in Chile, as well as the intensive use of antimicrobials, has not been accompanied by the necessary scientific research needed to understand the impact of the intensive use of antibiotics in this industry. Over the last two decades several studies assessing antimicrobial resistance and the resistome in the freshwater and marine environment impacted by salmon farming have been conducted, but information on the ecological and environmental consequences of antibiotic use in fish farming is still scarce. In addition, studies reporting the antimicrobial susceptibility of bacterial pathogens, mainly P. salmonis, have been developed, but a high number of these studies were aimed at setting their epidemiological cut-off values. In conclusion, further studies are urgently required, mainly focused on understanding the evolution and epidemiology of resistance genes in Chilean salmonid farming, and to investigate the feasibility of a link between these genes among bacteria from salmonid farms and human and fish pathogens.
Collapse
Affiliation(s)
- Claudio D Miranda
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo, Chile.,Centro AquaPacífico, Coquimbo, Chile
| | - Felix A Godoy
- Centro i~mar, Universidad de Los Lagos, Puerto Montt, Chile
| | - Matthew R Lee
- Centro i~mar, Universidad de Los Lagos, Puerto Montt, Chile
| |
Collapse
|
34
|
Plasmid-mediated colistin resistance in animals: current status and future directions. Anim Health Res Rev 2018; 18:136-152. [DOI: 10.1017/s1466252317000111] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
AbstractColistin, a peptide antibiotic belonging to the polymyxin family, is one of the last effective drugs for the treatment of multidrug resistant Gram-negative infections. Recent discovery of a novel mobile colistin resistance gene,mcr-1, from people and food animals has caused a significant public health concern and drawn worldwide attention. Extensive usage of colistin in food animals has been proposed as a major driving force for the emergence and transmission ofmcr-1; thus, there is a worldwide trend to limit colistin usage in animal production. However, despite lack of colistin usage in food animals in the USA,mcr-1-positiveEscherichia coliisolates were still isolated from swine. In this paper, we provided an overview of colistin usage and epidemiology ofmcr-1in food animals, and summarized the current status of mechanistic and evolutionary studies of the plasmid-mediated colistin resistance. Based on published information, we further discussed several non-colistin usage risk factors that may contribute to the persistence, transmission, and emergence of colistin resistance in an animal production system. Filling the knowledge gaps identified in this review is critical for risk assessment and risk management of colistin resistance, which will facilitate proactive and effective strategies to mitigate colistin resistance in future animal production systems.
Collapse
|
35
|
Abstract
AbstractAntibiotic resistance (AR) is ancient. Use of antibiotics is a selective driving force that enriches AR genes and promotes the emergence of resistant pathogens. It also has been widely accepted that horizontal gene transfer (HGT) occurs everywhere and plays a critical role in the transmission of AR genes among bacteria. However, our understanding of HGT processes primarily build on extensivein vitrostudies; to date, there is still a significant knowledge gap regardingin situHGT events as well as the factors that influence HGT in different ecological niches. This review is focused on the HGT process in the intestinal tract, a ‘melting pot’ for gene exchange. Several factors that potentially influencein vivoHGT efficiency in the intestine are identified and summarized, which include SOS-inducing agents, stress hormones, microbiota and microbiota-derived factors. We highlight recent discoveries demonstrating that certain antibiotics, which are widely used in animal industry, can enhance HGT in the intestine by serving as DNA-damaging, SOS-inducing agents. Despite recent progress, research onin vivoHGT events is still in its infancy. A better understanding of the factors influencing HGT in the intestine is highly warranted for developing effective strategies to mitigate AR in animal production as well as in future agricultural ecosystems.
Collapse
|
36
|
Miranda CD, Godoy FA, Lee MR. Current Status of the Use of Antibiotics and the Antimicrobial Resistance in the Chilean Salmon Farms. Front Microbiol 2018. [PMID: 29967597 DOI: 10.3389/fmicb.2018.01284/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023] Open
Abstract
The Chilean salmon industry has undergone a rapid development making the country the world's second largest producer of farmed salmon, but this growth has been accompanied by an intensive use of antibiotics. This overuse has become so significant that Chilean salmon aquaculture currently has one of the highest rates of antibiotic consumption per ton of harvested fish in the world. This review has focused on discussing use of antibiotics and current status of scientific knowledge regarding to incidence of antimicrobial resistance and associated genes in the Chilean salmonid farms. Over recent years there has been a consistent increase in the amount of antimicrobials used by Chilean salmonid farms, from 143.2 tons in 2010 to 382.5 tons in 2016. During 2016, Chilean companies utilized approximately 0.53 kg of antibiotics per ton of harvested salmon, 363.4 tons (95%) were used in marine farms, and 19.1 tons (5%) in freshwater farms dedicated to smolt production. Florfenicol and oxytetracycline were by far the most frequently used antibiotics during 2016 (82.5 and 16.8%, respectively), mainly being used to treat Piscirickettsia salmonis, currently considered the main bacterial threat to this industry. However, the increasing development of this industry in Chile, as well as the intensive use of antimicrobials, has not been accompanied by the necessary scientific research needed to understand the impact of the intensive use of antibiotics in this industry. Over the last two decades several studies assessing antimicrobial resistance and the resistome in the freshwater and marine environment impacted by salmon farming have been conducted, but information on the ecological and environmental consequences of antibiotic use in fish farming is still scarce. In addition, studies reporting the antimicrobial susceptibility of bacterial pathogens, mainly P. salmonis, have been developed, but a high number of these studies were aimed at setting their epidemiological cut-off values. In conclusion, further studies are urgently required, mainly focused on understanding the evolution and epidemiology of resistance genes in Chilean salmonid farming, and to investigate the feasibility of a link between these genes among bacteria from salmonid farms and human and fish pathogens.
Collapse
Affiliation(s)
- Claudio D Miranda
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo, Chile
- Centro AquaPacífico, Coquimbo, Chile
| | - Felix A Godoy
- Centro i~mar, Universidad de Los Lagos, Puerto Montt, Chile
| | - Matthew R Lee
- Centro i~mar, Universidad de Los Lagos, Puerto Montt, Chile
| |
Collapse
|
37
|
Choudhuri AH, Khurana P, Biswas PS, Uppal R. Epidemiology and risk factors for multidrug-resistant bacteria in critically ill patients with liver disease. Saudi J Anaesth 2018; 12:389-394. [PMID: 30100836 PMCID: PMC6044160 DOI: 10.4103/sja.sja_749_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Background and Aims: The critically ill patients with liver disease are vulnerable to infections in both community and hospital settings. The nosocomial infections are often caused by multidrug-resistant (MDR) bacteria. The present observational study was conducted to describe the epidemiology, course, and outcome of MDR bacterial infection and identify the risk factors of such infection in critically ill patients with liver disease. Materials and Methods: A retrospective observational study was conducted on 106 consecutive critically patients with liver disease admitted in the Intensive Care Unit between March 2015 and February 2017. The MDR and non-MDR (non-MDR) groups were compared and the risk factors identified by multivariate analysis. Results: Out of the 106 patients enrolled in the study, 23 patients had infections caused by MDR bacteria. The MDR-infected patients had severe liver disease (Child–Pugh score 11 ± 2.3 vs. 7 ± 3.9; P = 0.04), longer duration of antibiotic usage (6 ± 2.7 days vs. 2 ± 1.5 days; P = 0.04), greater use of total parenteral nutrition (TPN) (73.9% vs. 62.6%; P = 0.04), and more concurrent antifungal administration (60.8% vs. 38.5%; P = 0.04). The mortality was higher in MDR group (hazard ratio = 1.86; P < 0.05). The independent predictors of MDR bacterial infection were Child–Pugh score >10, prior carbapenem use, antibiotic use for more than 10 days, TPN use, and concurrent antifungal administration. Conclusion: The study demonstrated a high prevalence of MDR bacterial infection in critically ill patients with a higher mortality over non-MDR bacterial infection and also identified the independent predictors of such infections.
Collapse
Affiliation(s)
- Anirban Hom Choudhuri
- Department of Anaesthesiology and Intensive Care, GB Pant Institute of Postgraduate Medical Education and Research, New Delhi, India
| | - Priyanka Khurana
- Department of Anaesthesiology and Intensive Care, GB Pant Institute of Postgraduate Medical Education and Research, New Delhi, India
| | - Partha Sarathi Biswas
- Department of Psychiatry, GB Pant Institute of Postgraduate Medical Education and Research, New Delhi, India
| | - Rajeev Uppal
- Department of Anaesthesiology and Intensive Care, GB Pant Institute of Postgraduate Medical Education and Research, New Delhi, India
| |
Collapse
|
38
|
Noyes NR, Weinroth ME, Parker JK, Dean CJ, Lakin SM, Raymond RA, Rovira P, Doster E, Abdo Z, Martin JN, Jones KL, Ruiz J, Boucher CA, Belk KE, Morley PS. Enrichment allows identification of diverse, rare elements in metagenomic resistome-virulome sequencing. MICROBIOME 2017; 5:142. [PMID: 29041965 PMCID: PMC5645900 DOI: 10.1186/s40168-017-0361-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 10/05/2017] [Indexed: 05/29/2023]
Abstract
BACKGROUND Shotgun metagenomic sequencing is increasingly utilized as a tool to evaluate ecological-level dynamics of antimicrobial resistance and virulence, in conjunction with microbiome analysis. Interest in use of this method for environmental surveillance of antimicrobial resistance and pathogenic microorganisms is also increasing. In published metagenomic datasets, the total of all resistance- and virulence-related sequences accounts for < 1% of all sequenced DNA, leading to limitations in detection of low-abundance resistome-virulome elements. This study describes the extent and composition of the low-abundance portion of the resistome-virulome, using a bait-capture and enrichment system that incorporates unique molecular indices to count DNA molecules and correct for enrichment bias. RESULTS The use of the bait-capture and enrichment system significantly increased on-target sequencing of the resistome-virulome, enabling detection of an additional 1441 gene accessions and revealing a low-abundance portion of the resistome-virulome that was more diverse and compositionally different than that detected by more traditional metagenomic assays. The low-abundance portion of the resistome-virulome also contained resistance genes with public health importance, such as extended-spectrum betalactamases, that were not detected using traditional shotgun metagenomic sequencing. In addition, the use of the bait-capture and enrichment system enabled identification of rare resistance gene haplotypes that were used to discriminate between sample origins. CONCLUSIONS These results demonstrate that the rare resistome-virulome contains valuable and unique information that can be utilized for both surveillance and population genetic investigations of resistance. Access to the rare resistome-virulome using the bait-capture and enrichment system validated in this study can greatly advance our understanding of microbiome-resistome dynamics.
Collapse
Affiliation(s)
- Noelle R Noyes
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Maggie E Weinroth
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, USA
| | - Jennifer K Parker
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Chris J Dean
- Department of Computer Sciences, Colorado State University, Fort Collins, CO, USA
| | - Steven M Lakin
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Robert A Raymond
- Department of Computer Sciences, Colorado State University, Fort Collins, CO, USA
| | - Pablo Rovira
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, USA
| | - Enrique Doster
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Zaid Abdo
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Jennifer N Martin
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, USA
| | - Kenneth L Jones
- Department of Pediatrics, Section of Hematology Oncology and Bone Marrow Transplant, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jaime Ruiz
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, Florida, USA
| | - Christina A Boucher
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, Florida, USA
| | - Keith E Belk
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, USA
| | - Paul S Morley
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
39
|
Xu Z, Stogios PJ, Quaile AT, Forsberg KJ, Patel S, Skarina T, Houliston S, Arrowsmith C, Dantas G, Savchenko A. Structural and Functional Survey of Environmental Aminoglycoside Acetyltransferases Reveals Functionality of Resistance Enzymes. ACS Infect Dis 2017; 3:653-665. [PMID: 28756664 DOI: 10.1021/acsinfecdis.7b00068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Aminoglycoside N-acetyltransferases (AACs) confer resistance against the clinical use of aminoglycoside antibiotics. The origin of AACs can be traced to environmental microbial species representing a vast reservoir for new and emerging resistance enzymes, which are currently undercharacterized. Here, we performed detailed structural characterization and functional analyses of four metagenomic AAC (meta-AACs) enzymes recently identified in a survey of agricultural and grassland soil microbiomes ( Forsberg et al. Nature 2014 , 509 , 612 ). These enzymes are new members of the Gcn5-Related-N-Acetyltransferase superfamily and confer resistance to the aminoglycosides gentamicin C, sisomicin, and tobramycin. Moreover, the meta-AAC0020 enzyme demonstrated activity comparable with an AAC(3)-I enzyme that serves as a model AAC enzyme identified in a clinical bacterial isolate. The crystal structure of meta-AAC0020 in complex with sisomicin confirmed an unexpected AAC(6') regiospecificity of this enzyme and revealed a drug binding mechanism distinct from previously characterized AAC(6') enzymes. Together, our data highlights the presence of highly active antibiotic-modifying enzymes in the environmental microbiome and reveals unexpected diversity in substrate specificity. These observations of additional AAC enzymes must be considered in the search for novel aminoglycosides less prone to resistance.
Collapse
Affiliation(s)
- Zhiyu Xu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto , 200 College Street, Room 333, Toronto, Ontario M5S 3E5, Canada
| | - Peter J Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto , 200 College Street, Room 333, Toronto, Ontario M5S 3E5, Canada
- Center for Structural Genomics of Infectious Diseases (CSGID) , Health Research Innovation Center, 3280 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Andrew T Quaile
- Department of Chemical Engineering and Applied Chemistry, University of Toronto , 200 College Street, Room 333, Toronto, Ontario M5S 3E5, Canada
| | - Kevin J Forsberg
- Center for Genome Sciences & Systems Biology, Washington University School of Medicine , 4515 McKinley Avenue, Room 5314, St. Louis, Missouri 63110, United States
| | - Sanket Patel
- Center for Genome Sciences & Systems Biology, Washington University School of Medicine , 4515 McKinley Avenue, Room 5314, St. Louis, Missouri 63110, United States
- Department of Pathology and Immunology, Washington University School of Medicine , 660 S. Euclid Avenue, St. Louis, Missouri 63110, United States
| | - Tatiana Skarina
- Department of Chemical Engineering and Applied Chemistry, University of Toronto , 200 College Street, Room 333, Toronto, Ontario M5S 3E5, Canada
- Center for Structural Genomics of Infectious Diseases (CSGID) , Health Research Innovation Center, 3280 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Scott Houliston
- Department of Medical Biophysics, University of Toronto , 101 College Street, Room 4-601, Toronto, Ontario M5G 1L7, Canada
| | - Cheryl Arrowsmith
- Department of Medical Biophysics, University of Toronto , 101 College Street, Room 4-601, Toronto, Ontario M5G 1L7, Canada
| | - Gautam Dantas
- Center for Genome Sciences & Systems Biology, Washington University School of Medicine , 4515 McKinley Avenue, Room 5314, St. Louis, Missouri 63110, United States
- Department of Pathology and Immunology, Washington University School of Medicine , 660 S. Euclid Avenue, St. Louis, Missouri 63110, United States
- Department of Biomedical Engineering, Washington University in St. Louis , 1 Brookings Drive, St. Louis, Missouri 63130-6100, United States
- Department of Molecular Microbiology, Washington University School of Medicine , 660 S. Euclid Avenue, St. Louis, Missouri 63110, United States
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto , 200 College Street, Room 333, Toronto, Ontario M5S 3E5, Canada
- Center for Structural Genomics of Infectious Diseases (CSGID) , Health Research Innovation Center, 3280 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary , 2C66 Health Research Innovation Center, 3280 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
40
|
Bacci G, Mengoni A, Fiscarelli E, Segata N, Taccetti G, Dolce D, Paganin P, Morelli P, Tuccio V, De Alessandri A, Lucidi V, Bevivino A. A Different Microbiome Gene Repertoire in the Airways of Cystic Fibrosis Patients with Severe Lung Disease. Int J Mol Sci 2017; 18:E1654. [PMID: 28758937 PMCID: PMC5578044 DOI: 10.3390/ijms18081654] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 12/12/2022] Open
Abstract
In recent years, next-generation sequencing (NGS) was employed to decipher the structure and composition of the microbiota of the airways in cystic fibrosis (CF) patients. However, little is still known about the overall gene functions harbored by the resident microbial populations and which specific genes are associated with various stages of CF lung disease. In the present study, we aimed to identify the microbial gene repertoire of CF microbiota in twelve patients with severe and normal/mild lung disease by performing sputum shotgun metagenome sequencing. The abundance of metabolic pathways encoded by microbes inhabiting CF airways was reconstructed from the metagenome. We identified a set of metabolic pathways differently distributed in patients with different pulmonary function; namely, pathways related to bacterial chemotaxis and flagellar assembly, as well as genes encoding efflux-mediated antibiotic resistance mechanisms and virulence-related genes. The results indicated that the microbiome of CF patients with low pulmonary function is enriched in virulence-related genes and in genes encoding efflux-mediated antibiotic resistance mechanisms. Overall, the microbiome of severely affected adults with CF seems to encode different mechanisms for the facilitation of microbial colonization and persistence in the lung, consistent with the characteristics of multidrug-resistant microbial communities that are commonly observed in patients with severe lung disease.
Collapse
Affiliation(s)
- Giovanni Bacci
- Department of Biology, University of Florence, Florence 50019, Italy.
| | - Alessio Mengoni
- Department of Biology, University of Florence, Florence 50019, Italy.
| | - Ersilia Fiscarelli
- Cystic Fibrosis Microbiology and Cystic Fibrosis Center, "Bambino Gesù" Children's Hospital and Research Institute, Rome 00165, Italy.
| | - Nicola Segata
- Centre for Integrative Biology, University of Trento, Trento 38123, Italy.
| | - Giovanni Taccetti
- Department of Pediatric Medicine, Cystic Fibrosis Center, Anna Meyer Children's University Hospital, Florence 50139, Italy.
| | - Daniela Dolce
- Department of Pediatric Medicine, Cystic Fibrosis Center, Anna Meyer Children's University Hospital, Florence 50139, Italy.
| | - Patrizia Paganin
- Territorial and Production Systems Sustainability Department, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Rome 00123, Italy.
| | - Patrizia Morelli
- Cystic Fibrosis Center, IRCCS G. Gaslini Institute, Genoa 16146, Italy.
| | - Vanessa Tuccio
- Cystic Fibrosis Microbiology and Cystic Fibrosis Center, "Bambino Gesù" Children's Hospital and Research Institute, Rome 00165, Italy.
| | | | - Vincenzina Lucidi
- Cystic Fibrosis Microbiology and Cystic Fibrosis Center, "Bambino Gesù" Children's Hospital and Research Institute, Rome 00165, Italy.
| | - Annamaria Bevivino
- Territorial and Production Systems Sustainability Department, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Rome 00123, Italy.
| |
Collapse
|
41
|
Crofts TS, Gasparrini AJ, Dantas G. Next-generation approaches to understand and combat the antibiotic resistome. Nat Rev Microbiol 2017; 15:422-434. [PMID: 28392565 DOI: 10.1038/nrmicro.2017.28] [Citation(s) in RCA: 343] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antibiotic resistance is a natural feature of diverse microbial ecosystems. Although recent studies of the antibiotic resistome have highlighted barriers to the horizontal transfer of antibiotic resistance genes between habitats, the rapid global spread of genes that confer resistance to carbapenem, colistin and quinolone antibiotics illustrates the dire clinical and societal consequences of such events. Over time, the study of antibiotic resistance has grown from focusing on single pathogenic organisms in axenic culture to studying antibiotic resistance in pathogenic, commensal and environmental bacteria at the level of microbial communities. As the study of antibiotic resistance advances, it is important to incorporate this comprehensive approach to better inform global antibiotic resistance surveillance and antibiotic development. It is increasingly becoming apparent that although not all resistance genes are likely to geographically and phylogenetically disseminate, the threat presented by those that are is serious and warrants an interdisciplinary research focus. In this Review, we highlight seminal work in the resistome field, discuss recent advances in the studies of resistomes, and propose a resistome paradigm that can pave the way for the improved proactive identification and mitigation of emerging antibiotic resistance threats.
Collapse
Affiliation(s)
- Terence S Crofts
- Center for Genome Sciences &Systems Biology, Washington University School of Medicine, 4515 McKinley Avenue, Campus Box 8510, St. Louis, Missouri 63110, USA
| | - Andrew J Gasparrini
- Center for Genome Sciences &Systems Biology, Washington University School of Medicine, 4515 McKinley Avenue, Campus Box 8510, St. Louis, Missouri 63110, USA
| | - Gautam Dantas
- Center for Genome Sciences &Systems Biology, Washington University School of Medicine, 4515 McKinley Avenue, Campus Box 8510, St. Louis, Missouri 63110, USA.,Department of Pathology and Immunology, Washington University School of Medicine.,Department of Molecular Microbiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA.,Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63130, USA
| |
Collapse
|
42
|
Boolchandani M, Patel S, Dantas G. Functional Metagenomics to Study Antibiotic Resistance. Methods Mol Biol 2017; 1520:307-329. [PMID: 27873261 DOI: 10.1007/978-1-4939-6634-9_19] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The construction and screening of metagenomic expression libraries has great potential to identify novel genes and their functions. Here, we describe metagenomic library preparation from fecal DNA, screening of libraries for antibiotic resistance genes (ARGs), massively parallel DNA sequencing of the enriched DNA fragments, and a computational pipeline for high-throughput assembly and annotation of functionally selected DNA.
Collapse
Affiliation(s)
- Manish Boolchandani
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sanket Patel
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Gautam Dantas
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA. .,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA. .,Department of Biomedical Engineering, Washington University, St. Louis, MO, USA. .,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
43
|
New antibiotics from Nature’s chemical inventory. Bioorg Med Chem 2016; 24:6227-6252. [DOI: 10.1016/j.bmc.2016.09.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/07/2016] [Indexed: 01/07/2023]
|
44
|
Adu-Oppong B, Gasparrini AJ, Dantas G. Genomic and functional techniques to mine the microbiome for novel antimicrobials and antimicrobial resistance genes. Ann N Y Acad Sci 2016; 1388:42-58. [PMID: 27768825 DOI: 10.1111/nyas.13257] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/16/2016] [Accepted: 08/22/2016] [Indexed: 02/07/2023]
Abstract
Microbial communities contain diverse bacteria that play important roles in every environment. Advances in sequencing and computational methodologies over the past decades have illuminated the phylogenetic and functional diversity of microbial communities from diverse habitats. Among the activities encoded in microbiomes are the abilities to synthesize and resist small molecules, yielding antimicrobial activity. These functions are of particular interest when viewed in light of the public health emergency posed by the increase in clinical antimicrobial resistance and the dwindling antimicrobial discovery and approval pipeline, and given the intimate ecological and evolutionary relationship between antimicrobial biosynthesis and resistance. Here, we review genomic and functional methods that have been developed for accessing the antimicrobial biosynthesis and resistance capacity of microbiomes and highlight outstanding examples of their applications.
Collapse
Affiliation(s)
- Boahemaa Adu-Oppong
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri
| | - Andrew J Gasparrini
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri
| | - Gautam Dantas
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri.,Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
45
|
Gasparrini AJ, Crofts TS, Gibson MK, Tarr PI, Warner BB, Dantas G. Antibiotic perturbation of the preterm infant gut microbiome and resistome. Gut Microbes 2016; 7:443-9. [PMID: 27472377 PMCID: PMC5154371 DOI: 10.1080/19490976.2016.1218584] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The gut microbiota plays important roles in nutrient absorption, immune system development, and pathogen colonization resistance. Perturbations early in life may be detrimental to host health in the short and the long-term. Antibiotics are among the many factors that influence the development of the microbiota. Because antibiotics are heavily administered during the first critical years of gut microbiota development, it is important to understand the effects of these interventions. Infants, particularly those born prematurely, represent an interesting population because they receive early and often extensive antibiotic therapy in the first months after birth. Gibson et al. recently demonstrated that antibiotic therapy in preterm infants can dramatically affect the gut microbiome. While meropenem, ticarcillin-clavulanate, and cefotaxime treatments were associated with decreased species richness, gentamicin and vancomycin had variable effects on species richness. Interestingly, the direction of species richness response could be predicted based on the abundance of 2 species and 2 genes in the microbiome prior to gentamicin or vancomycin treatment. Nonetheless, all antibiotic treatments enriched the presence of resistance genes and multidrug resistant organisms. Treatment with different antibiotics further resulted in unique population shifts of abundant organisms and selection for different sets of resistance genes. In this addendum, we provide an extended discussion of these recent findings, and outline important future directions for elucidating the interplay between antibiotics and preterm infant gut microbiota development.
Collapse
Affiliation(s)
- Andrew J. Gasparrini
- Center for Genome Sciences and Systems
Biology, Washington University School of Medicine, St Louis, MO,
USA
| | - Terence S. Crofts
- Center for Genome Sciences and Systems
Biology, Washington University School of Medicine, St Louis, MO,
USA,Department of Pathology and Immunology,
Washington University School of Medicine, St Louis, MO,
USA
| | - Molly K. Gibson
- Center for Genome Sciences and Systems
Biology, Washington University School of Medicine, St Louis, MO,
USA
| | - Phillip I. Tarr
- Department of Pediatrics, Washington
University School of Medicine, St Louis, MO, USA,Department of Molecular Microbiology,
Washington University School of Medicine, St Louis, MO,
USA
| | - Barbara B. Warner
- Department of Pediatrics, Washington
University School of Medicine, St Louis, MO, USA
| | - Gautam Dantas
- Center for Genome Sciences and Systems
Biology, Washington University School of Medicine, St Louis, MO,
USA,Department of Pathology and Immunology,
Washington University School of Medicine, St Louis, MO,
USA,Department of Molecular Microbiology,
Washington University School of Medicine, St Louis, MO,
USA,Department of Biomedical Engineering,
Washington University, St Louis, MO, USA
| |
Collapse
|
46
|
Abstract
Antibiotic resistance is considered one of the greatest threats to global public health. Resistance is often conferred by the presence of antibiotic resistance genes (ARGs), which are readily found in the oral microbiome. In-depth genetic analyses of the oral microbiome through metagenomic techniques reveal a broad distribution of ARGs (including novel ARGs) in individuals not recently exposed to antibiotics, including humans in isolated indigenous populations. This has resulted in a paradigm shift from focusing on the carriage of antibiotic resistance in pathogenic bacteria to a broader concept of an oral resistome, which includes all resistance genes in the microbiome. Metagenomics is beginning to demonstrate the role of the oral resistome and horizontal gene transfer within and between commensals in the absence of selective pressure, such as an antibiotic. At the chairside, metagenomic data reinforce our need to adhere to current antibiotic guidelines to minimize the spread of resistance, as such data reveal the extent of ARGs without exposure to antimicrobials and the ecologic changes created in the oral microbiome by even a single dose of antibiotics. The aim of this review is to discuss the role of metagenomics in the investigation of the oral resistome, including the transmission of antibiotic resistance in the oral microbiome. Future perspectives, including clinical implications of the findings from metagenomic investigations of oral ARGs, are also considered.
Collapse
|
47
|
Baweja M, Nain L, Kawarabayasi Y, Shukla P. Current Technological Improvements in Enzymes toward Their Biotechnological Applications. Front Microbiol 2016; 7:965. [PMID: 27379087 PMCID: PMC4909775 DOI: 10.3389/fmicb.2016.00965] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/03/2016] [Indexed: 01/07/2023] Open
Abstract
Enzymes from extremophiles are creating interest among researchers due to their unique properties and the enormous power of catalysis at extreme conditions. Since community demands are getting more intensified, therefore, researchers are applying various approaches viz. metagenomics to increase the database of extremophilic species. Furthermore, the innovations are being made in the naturally occurring enzymes utilizing various tools of recombinant DNA technology and protein engineering, which allows redesigning of the enzymes for its better fitment into the process. In this review, we discuss the biochemical constraints of psychrophiles during survival at the lower temperature. We summarize the current knowledge about the sources of such enzymes and their in vitro modification through mutagenesis to explore their biotechnological potential. Finally, we recap the microbial cell surface display to enhance the efficiency of the process in cost effective way.
Collapse
Affiliation(s)
- Mehak Baweja
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak India
| | - Lata Nain
- Division of Microbiology, Indian Agricultural Research Institute, New Delhi India
| | - Yutaka Kawarabayasi
- National Institute of Advanced Industrial Science and Technology, Tsukuba Japan
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak India
| |
Collapse
|
48
|
Pehrsson EC, Tsukayama P, Patel S, Mejía-Bautista M, Sosa-Soto G, Navarrete KM, Calderon M, Cabrera L, Hoyos-Arango W, Bertoli MT, Berg DE, Gilman RH, Dantas G. Interconnected microbiomes and resistomes in low-income human habitats. Nature 2016; 533:212-6. [PMID: 27172044 PMCID: PMC4869995 DOI: 10.1038/nature17672] [Citation(s) in RCA: 385] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/16/2016] [Indexed: 01/27/2023]
Abstract
Antibiotic-resistant infections annually claim hundreds of thousands of lives worldwide. This problem is exacerbated by resistance gene exchange between pathogens and benign microbes from diverse habitats. Mapping resistance gene dissemination between humans and their environment is a public health priority. We characterized the bacterial community structure and resistance exchange networks of hundreds of interconnected human fecal and environmental samples from two low-income Latin American communities. We found that resistomes across habitats are generally structured by bacterial phylogeny along ecological gradients, but identified key resistance genes that cross habitat boundaries and determined their association with mobile genetic elements. We also assessed the effectiveness of widely-used excreta management strategies in reducing fecal bacteria and resistance genes in these settings representative of low- and middle-income countries. Our results lay the foundation for quantitative risk assessment and surveillance of resistance dissemination across interconnected habitats in settings representing over two-thirds of the world’s population.
Collapse
Affiliation(s)
- Erica C Pehrsson
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Pablo Tsukayama
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Sanket Patel
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, Missouri 63110, USA.,Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Melissa Mejía-Bautista
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, Missouri 63110, USA.,Facultad de Ciencias de la Salud "Dr. Luis Edmundo Vásquez", Universidad Dr. José Matías Delgado, El Salvador
| | - Giordano Sosa-Soto
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, Missouri 63110, USA.,Facultad de Ciencias de la Salud "Dr. Luis Edmundo Vásquez", Universidad Dr. José Matías Delgado, El Salvador
| | - Karla M Navarrete
- Facultad de Ciencias de la Salud "Dr. Luis Edmundo Vásquez", Universidad Dr. José Matías Delgado, El Salvador
| | - Maritza Calderon
- Laboratorios de Investigación y Desarrollo, Universidad Peruana Cayetano Heredia, San Martin de Porres, Lima 31, Peru
| | - Lilia Cabrera
- Asociacion Benéfica PRISMA, San Miguel, Lima 32, Peru
| | - William Hoyos-Arango
- Facultad de Ciencias de la Salud "Dr. Luis Edmundo Vásquez", Universidad Dr. José Matías Delgado, El Salvador
| | - M Teresita Bertoli
- Facultad de Ciencias de la Salud "Dr. Luis Edmundo Vásquez", Universidad Dr. José Matías Delgado, El Salvador
| | - Douglas E Berg
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri 63110, USA.,Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Robert H Gilman
- Laboratorios de Investigación y Desarrollo, Universidad Peruana Cayetano Heredia, San Martin de Porres, Lima 31, Peru.,Asociacion Benéfica PRISMA, San Miguel, Lima 32, Peru.,Department of International Health, Johns Hopkins School of Public Health, Baltimore, Maryland 21205, USA
| | - Gautam Dantas
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, Missouri 63110, USA.,Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri 63110, USA.,Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri 63110, USA.,Department of Biomedical Engineering, Washington University, St Louis, Missouri 63105, USA
| |
Collapse
|
49
|
Perry J, Waglechner N, Wright G. The Prehistory of Antibiotic Resistance. Cold Spring Harb Perspect Med 2016; 6:6/6/a025197. [PMID: 27252395 DOI: 10.1101/cshperspect.a025197] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Antibiotic resistance is a global problem that is reaching crisis levels. The global collection of resistance genes in clinical and environmental samples is the antibiotic "resistome," and is subject to the selective pressure of human activity. The origin of many modern resistance genes in pathogens is likely environmental bacteria, including antibiotic producing organisms that have existed for millennia. Recent work has uncovered resistance in ancient permafrost, isolated caves, and in human specimens preserved for hundreds of years. Together with bioinformatic analyses on modern-day sequences, these studies predict an ancient origin of resistance that long precedes the use of antibiotics in the clinic. Understanding the history of antibiotic resistance is important in predicting its future evolution.
Collapse
Affiliation(s)
- Julie Perry
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Nicholas Waglechner
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Gerard Wright
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
50
|
Abstract
In this issue of Chemistry & Biology, Forsberg et al. (2015) show how metagenomics and biological chemistry can be combined to discover new classes of antibiotic resistance from soil metagenomes. The authors specifically reveal previously unseen resistance mechanisms and genes evident in soils, which will better inform both environmental and clinical studies on antibiotic resistance.
Collapse
Affiliation(s)
- David W Graham
- School of Civil Engineering & Geosciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
| |
Collapse
|