1
|
Liu Y, Chen D, Zhao L, Zhang H, Wu S, Chen X, Shen E, Li L, Yang Z, Wang Y, Yin F, Zhang Y, Shi Y, Zhou S, Li S, Du X, Guo J, Wang D, Wang H, Liu S, Jin G, Zhang H, Yu X, Chen X, Shang L, Liu Y, Liu Y. Stability study of recombinant 9-valent human papillomavirus vaccine based on Escherichia coli expression system. Hum Vaccin Immunother 2025; 21:2455807. [PMID: 39973250 PMCID: PMC11845052 DOI: 10.1080/21645515.2025.2455807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/31/2024] [Accepted: 01/16/2025] [Indexed: 02/21/2025] Open
Abstract
This study reports on the long-term stability of a recombinant 9-valent HPV vaccine, addressing a gap in the literature as previous research did not extend beyond 72 months. The vaccine targets HPV types 6, 11, 16, 18, 31, 33, 45, 52, and 58 and was produced using an E. coli expression system. We optimized soluble HPV L1 protein expression by truncating the N- and C-termini, resulting in HPV L1 virus-like particles (VLPs). Structural analysis confirmed the VLPs' resemblance to natural ones, suitable for vaccine production. Stability testing encompassed appearance, dosage, pH, osmolarity, aluminum content, polysorbate 80, in vitro relative potency, abnormal toxicity, in vivo potency, sterility, and endotoxin levels. The vaccine showed stability under extreme conditions of light (4500 lx) and shaking table vibration (10-30 rpm) for at least 7 days at 5 ± 3°C. Long-term storage at 5 ± 3°C maintained stability for up to 72 months, while accelerated testing at 25 ± 2°C showed stability for at least 12 months. The findings suggest that the vaccine's potency is best preserved under protection from high temperatures and direct light, with even harsh conditions not significantly compromising stability. This enhances the global distribution potential of the HPV vaccine.
Collapse
Affiliation(s)
- Yuying Liu
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Dan Chen
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Li Zhao
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Haijiang Zhang
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Shuming Wu
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Xiao Chen
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Ercui Shen
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Ling Li
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Zengmin Yang
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Yan Wang
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Fei Yin
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Yao Zhang
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Yazheng Shi
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Shuyi Zhou
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Shuang Li
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Xiaoli Du
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Jiaping Guo
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Di Wang
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Huan Wang
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Shujuan Liu
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Guiying Jin
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Hongcai Zhang
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Xinyu Yu
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Xuejiao Chen
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Lulu Shang
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Yang Liu
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Yongjiang Liu
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| |
Collapse
|
2
|
Bi J, Tiong E, Koo YS, Zhou W, Wong FT. Further characterization and engineering of an 11-amino acid motif for enhancing recombinant soluble protein expression. Microb Cell Fact 2025; 24:122. [PMID: 40413522 DOI: 10.1186/s12934-025-02738-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 05/05/2025] [Indexed: 05/27/2025] Open
Abstract
BACKGROUND Escherichia coli (E. coli) is a popular system for recombinant protein production, owing to its low cost and availability of genetic tools. However, the expression of soluble recombinant proteins remains an issue. As such, various solubility-enhancing and yield-improving methods such as the addition of fusion tags have been developed. This study focuses on a small solubility tag (NT11), derived from the N-terminal domain of a duplicated carbonic anhydrase from Dunaliella species. The small size of NT11 (< 10 kDa) lowers the chance of protein folding interference and post-translation removal requirement, which ultimately minimizes cost of production. RESULTS A comprehensive analysis was performed to improve the characteristics of the 11-amino acid tag. By investigating the alanine-scan library of NT11, we achieved at least a two-fold increase in protein yield for three different proteins and identified key residues for further development. We also demonstrated that the NT11 tag is not limited to the N-terminal position and can function at either the N- or C-terminal of the protein, providing flexibility in designing constructs. With these new insights, we have successfully doubled the recombinant soluble protein yields of valuable growth factors, such as fibroblast growth factor 2 (FGF2) and human epidermal growth factor (hEGF) in E. coli. CONCLUSION The further characterisation and development of the NT11 tag have provided valuable insights into the optimisation process for such small tags and expanded our understanding of its potential applications. The ability of the NT11 tag to be positioned at either the N- or C- termini within the protein construct without compromising its effectiveness to enhance soluble recombinant protein yields, makes it a valuable tool across a diverse range of proteins. Collectively, these findings demonstrate a promising approach to simplify and enhance the efficiency of soluble recombinant protein production.
Collapse
Affiliation(s)
- Jiawu Bi
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos #07-06, Singapore, 138673, Republic of Singapore
- Department of Food Science and Technology, National University of Singapore (NUS), Faculty of Science, 2 Science Drive 2, Singapore, 117542, Republic of Singapore
| | - Elaine Tiong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos #07-06, Singapore, 138673, Republic of Singapore
| | - Ying Sin Koo
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, Neuros, #07-01, Singapore, 138665, Republic of Singapore
| | - Weibiao Zhou
- Department of Food Science and Technology, National University of Singapore (NUS), Faculty of Science, 2 Science Drive 2, Singapore, 117542, Republic of Singapore
| | - Fong Tian Wong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos #07-06, Singapore, 138673, Republic of Singapore.
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, Neuros, #07-01, Singapore, 138665, Republic of Singapore.
| |
Collapse
|
3
|
Mótyán JA, Veres ÁN, Tőzsér J. Characterization of the E26H Mutant Schistosoma japonicum Glutathione S-Transferase. Proteins 2025; 93:1054-1066. [PMID: 39748618 PMCID: PMC11968563 DOI: 10.1002/prot.26794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 11/10/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025]
Abstract
Glutathione-S-transferase, such as that of Schistosoma japonicum (sjGST) belongs to the most widely utilized fusion tags in the recombinant protein technology. The E26H mutation of sjGST has already been found to remarkably improve its ability for binding divalent ions, enabling its purification with immobilized metal affinity chromatography (IMAC). Nevertheless, most characteristics of this mutant remained unexplored to date. In this study, we performed a comparative analysis of the wild-type and the E26H mutant sjGST by using in vitro as well as in silico approaches. We confirmed that the sjGST(E26H) protein exhibits significantly increased affinity for binding nickel ions as compared to the wild-type. In addition, we proved that the sjGST(E26H) can be purified efficiently either with glutathione- or immobilized metal ion-affinity chromatography, even in consecutive purification steps. The human retroviral-like aspartic protease 1 (ASPRV1) conjugated with the sjGST(E26H) fusion tag was also successfully purified by using both of these affinity chromatographic approaches. Our studies revealed that the E26H mutant sjGST can be used as a versatile affinity tag because the modified protein retains the kinetic features of the wild-type and its affinity towards glutathione, while can be purified efficiently by IMAC, as well.
Collapse
Affiliation(s)
- János András Mótyán
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Ágota Nagyné Veres
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - József Tőzsér
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| |
Collapse
|
4
|
Sadeeq M, Li Y, Wang C, Hou F, Zuo J, Xiong P. Unlocking the power of antimicrobial peptides: advances in production, optimization, and therapeutics. Front Cell Infect Microbiol 2025; 15:1528583. [PMID: 40365533 PMCID: PMC12070195 DOI: 10.3389/fcimb.2025.1528583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/19/2025] [Indexed: 05/15/2025] Open
Abstract
Antimicrobial peptides (AMPs) are critical effectors of innate immunity, presenting a compelling alternative to conventional antibiotics amidst escalating antimicrobial resistance. Their broad-spectrum efficacy and inherent low resistance development are countered by production challenges, including limited yields and proteolytic degradation, which restrict their clinical translation. While chemical synthesis offers precise structural control, it is often prohibitively expensive and complex for large-scale production. Heterologous expression systems provide a scalable, cost-effective platform, but necessitate optimization. This review comprehensively examines established and emerging AMP production strategies, encompassing fusion protein technologies, molecular engineering approaches, rational peptide design, and post-translational modifications, with an emphasis on maximizing yield, bioactivity, stability, and safety. Furthermore, we underscore the transformative role of artificial intelligence, particularly machine learning algorithms, in accelerating AMP discovery and optimization, thereby propelling their expanded therapeutic application and contributing to the global fight against drug-resistant infections.
Collapse
Affiliation(s)
| | | | | | | | - Jia Zuo
- Biosynthesis and Bio Transformation Center, School of Life Sciences and Medicine,
Shandong University of Technology (SDUT), Zibo, China
| | - Peng Xiong
- Biosynthesis and Bio Transformation Center, School of Life Sciences and Medicine,
Shandong University of Technology (SDUT), Zibo, China
| |
Collapse
|
5
|
Asrat T, Jackman D, Booth V. Bacterial expression, purification and folding of exceptionally hydrophobic and essential protein: Surfactant Protein-B (SP-B). PLoS One 2025; 20:e0321446. [PMID: 40279330 PMCID: PMC12027065 DOI: 10.1371/journal.pone.0321446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/06/2025] [Indexed: 04/27/2025] Open
Abstract
Lung Surfactant Protein B (SP-B) is essential for life. It is thus striking that, to this point, no method for making the full-length protein has been published and consequently we lack detailed understanding of SP-B's basic structure-function relationships, as well as an inability to make it for clinical use. The major challenge in producing SP-B lies with its exceptionally hydrophobic nature. In this work, we present a method to produce recombinant SP-B in bacteria that can be used to make the full-length protein as well as the product focused on here, which is a construct lacking the N-terminal 7 residues, rSP-B (Δ7NTC48S-SP-B-6His). The construct is produced as a fusion to Staphylococcus nuclease A (SN) in Escherichia coli C43 cells, a strain known to promote production of toxic and membrane recombinant proteins. After cleavage from SN, rSP-B is folded on column and then exchanged into the lipid or detergent system of choice. rSP-B prepared in this way exhibits the correct secondary structure and demonstrates surface activity. The yield obtained is 0.3 mg of purified rSP-B (Δ7NTC48S-SP-B-6His) per liter of initial bacterial culture. We expect this method for producing SP-B will be valuable in enabling basic research into SP-B's mechanisms, as well as possibly facilitating the inclusion of SP-B in lung surfactant formulations to treat common and frequently fatal lung conditions and in lung surfactant-based drug delivery.
Collapse
Affiliation(s)
- Tadiwos Asrat
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Donna Jackman
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Valerie Booth
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
- Department Physics and Physical Oceanography, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| |
Collapse
|
6
|
Gaur D, Wohlever ML. A suite of pre-assembled, pET28b-based Golden Gate vectors for efficient protein engineering and expression. Protein Sci 2025; 34:e70106. [PMID: 40130802 PMCID: PMC11934214 DOI: 10.1002/pro.70106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/26/2025]
Abstract
Expression and purification of recombinant proteins in Escherichia coli is a bedrock technique in biochemistry and molecular biology. Expression optimization requires testing different combinations of solubility tags, affinity purification techniques, and site-specific proteases. This optimization is laborious and time-consuming as these features are spread across different vector series and require different cloning strategies with varying efficiencies. Modular cloning kits based on the Golden Gate system exist, but they are not optimized for protein biochemistry and are overly complicated for many applications, such as undergraduate research or simple screening of protein purification features. An ideal solution is for a single gene synthesis or PCR product to be compatible with a large series of pre-assembled Golden Gate vectors containing a broad array of purification features at either the N or C terminus. To our knowledge, no such system exists. To fulfill this unmet need, we Golden Gate domesticated the pET28b vector and developed a suite of 21 vectors with different combinations of purification tags, solubility domains, visualization/labeling tags, and protease sites. We also developed a vector series with nine different N-terminal tags and no C-terminal cloning scar. The system is modular, allowing users to easily customize the vectors with their preferred combinations of features. To allow for easy visual screening of cloned vectors, we optimized constitutive expression of the fluorescent protein mScarlet3 in the reverse strand, resulting in a red to white color change upon successful cloning. Testing with the model protein sfGFP shows the ease of visual screening, high efficiency of cloning, and robust protein expression. These vectors provide versatile, high-throughput solutions for protein engineering and functional studies in E. coli.
Collapse
Affiliation(s)
- Deepika Gaur
- Department of Cell BiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | | |
Collapse
|
7
|
Mainali P, Chua MSW, Tan DJ, Loo BLW, Ow DSW. Enhancing recombinant growth factor and serum protein production for cultivated meat manufacturing. Microb Cell Fact 2025; 24:41. [PMID: 39956904 PMCID: PMC11831813 DOI: 10.1186/s12934-025-02670-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/03/2025] [Indexed: 02/18/2025] Open
Abstract
The commercial growth factors (GFs) and serum proteins (SPs) contribute to the high cost associated with the serum-free media for cultivated meat production. Producing recombinant GFs and SPs in scale from microbial cell factories can reduce the cost of culture media. Escherichia coli is a frequently employed host in the expression recombinant GFs and SPs. This review explores critical strategies for cost reduction in GFs and SPs production, focusing on yield enhancement, product improvement, purification innovation, and process innovation. Firstly, the review discusses the use of fusion tags to increase the solubility and yield of GFs & SPs, highlighting various studies that have successfully employed these tags for yield enhancement. We then explore how tagging strategies can streamline and economize the purification process, further reducing production costs. Additionally, we address the challenge of low half-life in GFs and SPs and propose potential strategies that can enhance their stability. Furthermore, improvements in the E. coli chassis and cell engineering strategies are also described, with an emphasis on the key areas that can improve yield and identify areas for cost minimization. Finally, we discuss key bioprocessing areas which can facilitate easier scale-up, enhance yield, titer, and productivity, and ultimately lower long-term production costs. It is crucial to recognize that not all suggested approaches can be applied simultaneously, as their relevance varies with different GFs and SPs. However, integrating of multiple strategies is anticipated to yield a cumulative effect, significantly reducing production costs. This collective effort is expected to substantially decrease the price of cultivated meat, contributing to the broader goal of developing sustainable and affordable meat.
Collapse
Affiliation(s)
- Prashant Mainali
- Agency for Science, Technology and Research (A*STAR), Bioprocessing Technology Institute (BTI), 20 Biopolis Way, Centros #06-01, Singapore, 138668, Republic of Singapore
| | - Melvin Shen-Wei Chua
- Agency for Science, Technology and Research (A*STAR), Bioprocessing Technology Institute (BTI), 20 Biopolis Way, Centros #06-01, Singapore, 138668, Republic of Singapore
| | - Ding-Jie Tan
- Agency for Science, Technology and Research (A*STAR), Bioprocessing Technology Institute (BTI), 20 Biopolis Way, Centros #06-01, Singapore, 138668, Republic of Singapore
| | - Bernard Liat-Wen Loo
- Food, Chemical and Biotechnology, Singapore Institute of Technology, 10 Dover Dr, Singapore, 138683, Republic of Singapore
| | - Dave Siak-Wei Ow
- Agency for Science, Technology and Research (A*STAR), Bioprocessing Technology Institute (BTI), 20 Biopolis Way, Centros #06-01, Singapore, 138668, Republic of Singapore.
| |
Collapse
|
8
|
Aguiar TQ, Leal T, Rodrigues DG, Abrunhosa L, Oliveira C, Domingues L. Recombinant bovine serum albumin domain II as bioreceptor for ochratoxin A capture. Talanta 2025; 283:127126. [PMID: 39489069 DOI: 10.1016/j.talanta.2024.127126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/19/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Established chromatographic techniques for mycotoxin control in foodstuffs require prior sample enrichment and clean-up, typically achieved using immunoaffinity columns (IACs). Bovine serum albumin (BSA) has recently emerged as a cost-effective alternative to antibodies used in IACs. This study aimed at exploring the BSA domain II (BDII), which houses the primary binding site for ochratoxin A (OTA), as a bioreceptor for OTA capture. Recombinant BDII (rBDII) was produced in soluble form by Escherichia coli Origami 2(DE3), fused to a His6 (HisBDII) or thioredoxin-His6 (TrxBDII) tag, with yields up to 19 ± 4.3 mg/Lculture in shake-flask. Fluorescence and circular dichroism (CD) spectroscopy revealed interaction of OTA with both rBDII variants, with estimated binding constants for OTA-HisBDII/TrxBDII complexes in the range of 5.7-9.3 × 104 M-1. CD also showed an α/β structure of rBDII variants, in opposition to the predominant α-helical structure of whole BSA, and slight increase in their α-helical content upon binding to OTA. TrxBDII immobilized on Ni-NTA resin successfully captured OTA from spiked samples at the optimum pH range of 6.5-7.0, allowing OTA extraction, clean-up, and enrichment from spiked white grape juice, with up to 84 ± 7.4 % recovery.
Collapse
Affiliation(s)
- Tatiana Q Aguiar
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| | - Tânia Leal
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Diana G Rodrigues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - Luís Abrunhosa
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Carla Oliveira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
9
|
Rahmatabadi SS, Bashiri H, Soleymani B. A comprehensive review on fructosyl peptide oxidase as an important enzyme for present hemoglobin A1c assays. Biotechnol Appl Biochem 2025; 72:268-281. [PMID: 39099239 DOI: 10.1002/bab.2647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/17/2024] [Indexed: 08/06/2024]
Abstract
Glycated proteins are generated by binding of glucose to the proteins in blood stream through a nonenzymatic reaction. Hemoglobin A1c (HbA1c) is a glycated protein with glucose at the N-terminal of β-chain. HbA1c is extensively used as an indicator for assessing the blood glucose concentration in diabetes patients. There are different conventional clinical methods for the detection of HbA1c. However, enzymatic detection method has newly obtained great attention for its high precision and cost-effectiveness. Today, fructosyl peptide oxidase (FPOX) plays a key role in the enzymatic measurement of HbA1c, and different companies have marketed HbA1c assay systems based on FPOX. Recent investigations show that FPOX could be used in assaying HbA1 without requiring HbA1c primary digestion. It could also be applied as a biosensor for HbA1c detection. In this review, we have discussed the recent improvements of FPOX properties, different methods of FPOX purification, solubility, and immobilization, and also the use of FPOX in HbA1c biosensors.
Collapse
Affiliation(s)
- Seyyed Soheil Rahmatabadi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hoda Bashiri
- Department of Plant Production Engineering and Genetics, Razi University, Kermanshah, Iran
| | - Bijan Soleymani
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
10
|
Kimura M, Sakoh T, Sakaguchi M, Ishikawa S, Odagiri T, Yoshino N, Muraki Y. Expression and functional analysis of mouse chitinases without the ZZ domain of Staphylococcus aureus Protein A. Int J Biol Macromol 2025; 290:139932. [PMID: 39824406 DOI: 10.1016/j.ijbiomac.2025.139932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/01/2024] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
Chitinase plays a role in mammalian immune responses, particularly in the degradation of fungal cell walls. The aim of the present study was to express and characterize recombinant mouse chitotriosidase (Chit1) and acidic mammalian chitinase (AMCase) without the ZZ domain, a domain that may interfere with immunological analyses. We successfully expressed recombinant chitinases without the ZZ domain (Chit1-V5-His and AMCase-V5-His) as a soluble protein from an expression vector pET21a in the Escherichia coli Rosetta-gami B (DE3) strain. Chit1-V5-His exhibited chitinolytic activity similar to that of ProteinA-Chit1-V5-His (a recombinant Chit1 with the ZZ domain) and natural Chit1, both with synthetic and natural substrates. Differential scanning fluorimetry and thermal stability assays revealed that Chit1-V5-His retained functional stability comparable to that of ProteinA-Chit1-V5-His, although ProteinA-Chit1-V5-His was more thermally stable. AMCase-V5-His demonstrated prominent chitinolytic activity at pH 2.0, aligning with the properties of natural AMCase. Owing to the lack of the ZZ domain that potentially binds to immunoglobulin G Fc region, Chit1-V5-His and AMCase-V5-His are advantageous tools for immunological analyses, as they do not block the Fc receptor-mediated phagocytosis of fungi by polymorphonuclear neutrophils and macrophages. Thus, this expression system effectively produces functional chitinases, facilitating further studies on their roles in mammalian immunity.
Collapse
Affiliation(s)
- Masahiro Kimura
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate 028-3694, Japan; Department of Chemistry and Life Science, Kogakuin University, 2665‑1 Nakano‑Cho, Hachioji, Tokyo 192-0015, Japan
| | - Takumi Sakoh
- Department of Chemistry and Life Science, Kogakuin University, 2665‑1 Nakano‑Cho, Hachioji, Tokyo 192-0015, Japan
| | - Masayoshi Sakaguchi
- Department of Chemistry and Life Science, Kogakuin University, 2665‑1 Nakano‑Cho, Hachioji, Tokyo 192-0015, Japan
| | - Shizuma Ishikawa
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate 028-3694, Japan
| | - Takashi Odagiri
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate 028-3694, Japan
| | - Naoto Yoshino
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate 028-3694, Japan
| | - Yasushi Muraki
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate 028-3694, Japan.
| |
Collapse
|
11
|
J PKR, Tummuru M, Ramkumar KM. Engineering a high-throughput clone for industrial-scale production of long-acting GLP-1 analogue with retained bio-efficacy. Biotechnol Prog 2025:e3529. [PMID: 39846515 DOI: 10.1002/btpr.3529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/09/2024] [Accepted: 12/24/2024] [Indexed: 01/24/2025]
Abstract
Type 2 diabetes mellitus (T2DM) and obesity are critical global health issues with rising incidence rates. Glucagon-like peptide-1 (GLP-1) analogues have emerged as effective treatments due to their ability to regulate blood glucose levels and gastric emptying through central nervous signals involving hypothalamic receptors, such as leptin. To address the short plasma half-life of native GLP-1, a C-16 fatty acid was conjugated to lysine in the GLP-1 analogue sequence to enhance its longevity. This study focuses on engineering a high-throughput clone and evaluation of novel GLP-1 analogues with improved bio-efficacy and production yields. Five plasmid models were created using different N-terminal fusion partners and assessed for hydrophobicity, instability index, and isoelectric point. Three optimal plasmid models were selected based on high-valued hydrophobicity, solubility, and partial solubility. These plasmids were constructed with the pET24a vector, incorporating GLP-1 with fusion tags via recombinant DNA technology and transformed into E. coli BL21 DE3 hosts. The proteins were purified through enzyme digestion and chromatography, resulting in a high-yield peptide. The GLP-1 peptide was conjugated with in-house developed fatty acid compound n-Palmitoyl glutamic acid (n-PGA) and purified using C18 column chromatography, achieving a final product yield of 170-190 mg per liter of fermentation culture. Biological activity was confirmed by cyclic adenosine monophosphate (cAMP) generation and 3 T3 cell differentiation assays, showing a 1.5-fold increase in mRNA gene expression with the clone having n-terminal hydrophobic amino acids, thioredoxin-modified tag, and enterokinase cleavage site, indicating high purity and biological potency of the GLP-1 analogue.
Collapse
Affiliation(s)
- Praveen Kumar Reddy J
- Department of Research and Development Biologics, Virchow Biotech Private Ltd, Hyderabad, India
| | - Murali Tummuru
- Department of Research and Development Biologics, Virchow Biotech Private Ltd, Hyderabad, India
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
12
|
Mahdi G, Alamdary A, Kaghazian H, Ahmadi N, Mardani R, Gholami A. Biopharmaceutical Analysis by HPLC: Practices and Challenges. Chonnam Med J 2025; 61:19-31. [PMID: 39958269 PMCID: PMC11821985 DOI: 10.4068/cmj.2025.61.1.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 10/31/2024] [Accepted: 11/12/2024] [Indexed: 02/18/2025] Open
Abstract
High-Performance Liquid Chromatography (HPLC) is an essential analytical technique in the biopharmaceutical industry, crucial for the separation, identification, and quantification of complex biological molecules such as monoclonal antibodies and recombinant proteins. It plays a vital role in assessing the purity, potency, and stability of biopharmaceutical products, which are critical for regulatory approval. HPLC offers high resolution and sensitivity, allowing for the detection of small quantities of compounds in complex samples. Its versatility is evident in various modes, including reversed-phase, ion-exchange, size-exclusion, and affinity chromatography. However, challenges remain, such as selecting the appropriate stationary phase, addressing peak overlapping and matrix interference, and optimizing operational parameters like flow rate and mobile phase composition. Standardization and method validation are essential for ensuring reproducibility, accuracy, and regulatory compliance in HPLC analyses. The need for reliable reference materials and calibration methods is also a significant challenge. Recent advancements in HPLC technology, including ultra-high-performance liquid chromatography (UHPLC) and hybrid systems that integrate HPLC with mass spectrometry, are helping to overcome these challenges by enhancing sensitivity, resolution, and analysis speed. In summary, as biopharmaceutical products grow more complex, HPLC's role will continue to evolve, highlighting the need for ongoing research and development to refine this critical analytical tool.
Collapse
Affiliation(s)
- Golshan Mahdi
- Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Ashkan Alamdary
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Hooman Kaghazian
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Nayebali Ahmadi
- Department of Medical Lab Technology, Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rajab Mardani
- Department of Viral Vaccine, Research and Production Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Alireza Gholami
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
13
|
Choi SI, Jin Y, Choi Y, Seong BL. Beyond Misfolding: A New Paradigm for the Relationship Between Protein Folding and Aggregation. Int J Mol Sci 2024; 26:53. [PMID: 39795912 PMCID: PMC11720324 DOI: 10.3390/ijms26010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
Aggregation is intricately linked to protein folding, necessitating a precise understanding of their relationship. Traditionally, aggregation has been viewed primarily as a sequential consequence of protein folding and misfolding. However, this conventional paradigm is inherently incomplete and can be deeply misleading. Remarkably, it fails to adequately explain how intrinsic and extrinsic factors, such as charges and cellular macromolecules, prevent intermolecular aggregation independently of intramolecular protein folding and structure. The pervasive inconsistencies between protein folding and aggregation call for a new framework. In all combined reactions of molecules, both intramolecular and intermolecular rate (or equilibrium) constants are mutually independent; accordingly, intrinsic and extrinsic factors independently affect both rate constants. This universal principle, when applied to protein folding and aggregation, indicates that they should be treated as two independent yet interconnected processes. Based on this principle, a new framework provides groundbreaking insights into misfolding, Anfinsen's thermodynamic hypothesis, molecular chaperones, intrinsic chaperone-like activities of cellular macromolecules, intermolecular repulsive force-driven aggregation inhibition, proteome solubility maintenance, and proteinopathies. Consequently, this paradigm shift not only refines our current understanding but also offers a more comprehensive view of how aggregation is coupled to protein folding in the complex cellular milieu.
Collapse
Affiliation(s)
- Seong Il Choi
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Vaccine Innovative Technology ALliance (VITAL)-Korea, Seoul 03722, Republic of Korea; (Y.J.); (Y.C.)
| | - Yoontae Jin
- Vaccine Innovative Technology ALliance (VITAL)-Korea, Seoul 03722, Republic of Korea; (Y.J.); (Y.C.)
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Yura Choi
- Vaccine Innovative Technology ALliance (VITAL)-Korea, Seoul 03722, Republic of Korea; (Y.J.); (Y.C.)
- Department of Integrative Biotechnology, Yonsei University, Incheon 21983, Republic of Korea
| | - Baik L. Seong
- Vaccine Innovative Technology ALliance (VITAL)-Korea, Seoul 03722, Republic of Korea; (Y.J.); (Y.C.)
- Department of Microbiology, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
14
|
Ojima-Kato T. Advances in recombinant protein production in microorganisms and functional peptide tags. Biosci Biotechnol Biochem 2024; 89:1-10. [PMID: 39479788 DOI: 10.1093/bbb/zbae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/13/2024] [Indexed: 12/24/2024]
Abstract
Recombinant protein production in prokaryotic and eukaryotic cells is a fundamental technology for both research and industry. Achieving efficient protein synthesis is key to accelerating the discovery, characterization, and practical application of proteins. This review focuses on recent advances in recombinant protein production and strategies for more efficient protein production, especially using Escherichia coli and Saccharomyces cerevisiae. Additionally, this review summarizes the development of various functional peptide tags that can be employed for protein production, modification, and purification, including translation-enhancing peptide tags developed by our research group.
Collapse
Affiliation(s)
- Teruyo Ojima-Kato
- Laboratory of Molecular Biotechnology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
15
|
Naumenko KN, Berezhnev EA, Kurgina TA, Sukhanova MV, Lavrik OI. Effects of the RNA-Binding Protein Sam68 on Poly(ADP-Ribose)polymerase 1 Activity. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:2143-2154. [PMID: 39865028 DOI: 10.1134/s0006297924120046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 01/28/2025]
Abstract
Taking into account involvement of the RNA-binding proteins in regulation of activity of poly(ADP-ribose) polymerase 1 (PARP1), a key factor of DNA repair, the effect of the intrinsically disordered protein Sam68 (Src-associated substrate during mitosis of 68 kDa) on catalytic activity of this enzyme was studied. Plasmid containing coding sequence of the Sam68 protein was obtained. Using the obtained construct, conditions for the Sam68 expression in Escherichia coli cells were optimized and procedure for protein purification was developed. It was found that Sam68 is able to regulate catalytic activity of PARP1, stimulating auto-poly(ADP-ribosyl)ation of PARP1, interacting with the damaged DNA and purified poly(ADP-ribose) (PAR). Based on the experimental data, a hypothesis on the mechanism of PARP1 activity stimulation by the Sam68 protein was proposed, which involves formation of a complex of Sam68 with poly(ADP-ribosyl)ated PARP1. Sam68 interacts with PAR, shielding its negative charge, which increases the time of PARP1 in the complex with damaged DNA and the overall yield of PAR synthesized by this enzyme.
Collapse
Affiliation(s)
- Konstantin N Naumenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Egor A Berezhnev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Tatyana A Kurgina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Maria V Sukhanova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| |
Collapse
|
16
|
Jiang R, Yuan S, Zhou Y, Wei Y, Li F, Wang M, Chen B, Yu H. Strategies to overcome the challenges of low or no expression of heterologous proteins in Escherichia coli. Biotechnol Adv 2024; 75:108417. [PMID: 39038691 DOI: 10.1016/j.biotechadv.2024.108417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
Protein expression is a critical process in diverse biological systems. For Escherichia coli, a widely employed microbial host in industrial catalysis and healthcare, researchers often face significant challenges in constructing recombinant expression systems. To maximize the potential of E. coli expression systems, it is essential to address problems regarding the low or absent production of certain target proteins. This article presents viable solutions to the main factors posing challenges to heterologous protein expression in E. coli, which includes protein toxicity, the intrinsic influence of gene sequences, and mRNA structure. These strategies include specialized approaches for managing toxic protein expression, addressing issues related to mRNA structure and codon bias, advanced codon optimization methodologies that consider multiple factors, and emerging optimization techniques facilitated by big data and machine learning.
Collapse
Affiliation(s)
- Ruizhao Jiang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Industrial Biocatalysis (Tsinghua University), the Ministry of Education, Beijing 100084, China
| | - Shuting Yuan
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Industrial Biocatalysis (Tsinghua University), the Ministry of Education, Beijing 100084, China
| | - Yilong Zhou
- Tanwei College, Tsinghua University, Beijing 100084, China
| | - Yuwen Wei
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Industrial Biocatalysis (Tsinghua University), the Ministry of Education, Beijing 100084, China
| | - Fulong Li
- Beijing Evolyzer Co.,Ltd., 100176, China
| | | | - Bo Chen
- Beijing Evolyzer Co.,Ltd., 100176, China
| | - Huimin Yu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Industrial Biocatalysis (Tsinghua University), the Ministry of Education, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
17
|
Sahoo A, Das PK, Veeranki VD, Patra S. Production of recombinant human insulin from a promising Pseudomonas fluorescens cell factory and its kinetic modeling. Int J Biol Macromol 2024; 280:135742. [PMID: 39293616 DOI: 10.1016/j.ijbiomac.2024.135742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/14/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024]
Abstract
Insulin intake is recommended for diabetics in addition to a proper diet and lifestyle to maintain adequate blood glucose level. Currently, there is a need for an alternative expression system for insulin production as the current expression systems may not meet the growing demand due to various constraints. Here, we demonstrate the synthesis of human insulin in an unconventional expression system based on Pseudomonas fluorescens, a BSL 1 bacterium. Human insulin was produced in the form of proinsulin fused with fusion protein. Then, the proinsulin fusion protein was purified using Ni-NTA chromatography and converted into human insulin. The physicochemical parameters for producing proinsulin fusion protein are optimized. Glucose and ammonium chloride are determined to be suitable carbon and nitrogen sources, respectively. The validity of insulin and proinsulin fusion protein is assessed using western blot and quantified using ELISA techniques. Up to 145.35 mg/l of the proinsulin fusion protein is achieved at the shake flask level. Further, MALDI-TOF and RP-HPLC analysis of the purified human insulin were observed to be close to the theoretical value and insulin standard, respectively. The expression of the recombinant fusion protein was found to be 214.7 mg/l in a batch bioreactor, a ∼48% enhancement over the shake flask level. Further, kinetic modeling was performed to understand the system regarding growth, substrate utilization and product formation, and to estimate the various kinetic parameters. This study establishes the potential of the P. fluorescens expression system for producing human insulin.
Collapse
Affiliation(s)
- Ansuman Sahoo
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Prabir Kumar Das
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Venkata Dasu Veeranki
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Sanjukta Patra
- Enzyme & Microbial Technology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, Assam, India
| |
Collapse
|
18
|
Srisaisap M, Suwankhajit T, Boonserm P. A fusion protein designed for soluble expression, rapid purification, and enhanced stability of parasporin-2 with potential therapeutic applications. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 43:e00851. [PMID: 39219730 PMCID: PMC11364052 DOI: 10.1016/j.btre.2024.e00851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024]
Abstract
Bacillus thuringiensis parasporin-2 (PS2Aa1 or Mpp46Aa1) selectively destroys human cancer cells, making it a promising anticancer agent. PS2Aa1 protoxin expression in Escherichia coli typically results in inclusion bodies that must be solubilized and digested by proteinase K to become active. Here, maltose-binding protein (MBP) was fused to the N-terminus of PS2Aa1, either full-length (MBP-fPS2) or truncated (MBP-tPS2), to increase soluble protein expression in E. coli and avoid solubilization and proteolytic activation. Soluble MBP-fPS2 and MBD-tPS2 proteins were produced in E. coli and purified with endotoxin levels below 1 EU/μg. MBP-fPS2 was cytotoxic against T cell leukemia MOLT-4 and Jurkat cell lines after proteinase-K digestion. However, MBP-tPS2 was cytotoxic immediately without MBP tag removal or activation. MBP-tPS2's thermal stability also makes it appropriate for bioproduction and therapeutic applications.
Collapse
Affiliation(s)
- Monrudee Srisaisap
- Institute of Molecular Biosciences, Mahidol University, Phuttamonthon Salaya, Nakhon Pathom 73170, Thailand
| | - Thanya Suwankhajit
- Undergraduate Program in Biological Sciences, Mahidol University International College, Mahidol University, Phuttamonthon Salaya, Nakhon Pathom 73170, Thailand
| | - Panadda Boonserm
- Institute of Molecular Biosciences, Mahidol University, Phuttamonthon Salaya, Nakhon Pathom 73170, Thailand
| |
Collapse
|
19
|
Pang B, Song M, Yang J, Mo H, Wang K, Chen X, Huang Y, Gu R, Guan C. Efficient production of a highly active lysozyme from European flat oyster Ostrea edulis. J Biotechnol 2024; 391:40-49. [PMID: 38848819 DOI: 10.1016/j.jbiotec.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024]
Abstract
Lysozyme, an antimicrobial agent, is extensively employed in the food and healthcare sectors to facilitate the breakdown of peptidoglycan. However, the methods to improve its catalytic activity and secretory expression still need to be studied. In the present study, twelve lysozymes from different origins were heterologously expressed using the Komagataella phaffii expression system. Among them, the lysozyme from the European flat oyster Ostrea edulis (oeLYZ) showed the highest activity. Via a semi-rational approach to reduce the structural free energy, the double mutant Y15A/S39R (oeLYZdm) with the catalytic activity 1.8-fold greater than that of the wild type was generated. Subsequently, different N-terminal fusion tags were employed to enhance oeLYZdm expression. The fusion with peptide tag 6×Glu resulted in a remarkable increase in the recombinant oeLYZdm expression, from 2.81 × 103 U mL-1 to 2.11 × 104 U mL-1 in shake flask culture, and eventually reaching 2.05 × 105 U mL-1 in a 3-L fermenter. The work produced the greatest amount of heterologous oeLYZ expression in microbial systems that are known to exist. Reducing the structural free energy and employing the N-terminal fusion tags are effective strategies to improve the catalytic activity and secretory expression of lysozyme.
Collapse
Affiliation(s)
- Bo Pang
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Manxi Song
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Jiahao Yang
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Haobin Mo
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Kai Wang
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Xia Chen
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Yujun Huang
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Ruixia Gu
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Chengran Guan
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, Jiangsu 225127, China.
| |
Collapse
|
20
|
Tan Y, Li M, Zhou Z, Tan P, Yu H, Fan G, Hong L. PETA: evaluating the impact of protein transfer learning with sub-word tokenization on downstream applications. J Cheminform 2024; 16:92. [PMID: 39095917 PMCID: PMC11297785 DOI: 10.1186/s13321-024-00884-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/13/2024] [Indexed: 08/04/2024] Open
Abstract
Protein language models (PLMs) play a dominant role in protein representation learning. Most existing PLMs regard proteins as sequences of 20 natural amino acids. The problem with this representation method is that it simply divides the protein sequence into sequences of individual amino acids, ignoring the fact that certain residues often occur together. Therefore, it is inappropriate to view amino acids as isolated tokens. Instead, the PLMs should recognize the frequently occurring combinations of amino acids as a single token. In this study, we use the byte-pair-encoding algorithm and unigram to construct advanced residue vocabularies for protein sequence tokenization, and we have shown that PLMs pre-trained using these advanced vocabularies exhibit superior performance on downstream tasks when compared to those trained with simple vocabularies. Furthermore, we introduce PETA, a comprehensive benchmark for systematically evaluating PLMs. We find that vocabularies comprising 50 and 200 elements achieve optimal performance. Our code, model weights, and datasets are available at https://github.com/ginnm/ProteinPretraining . SCIENTIFIC CONTRIBUTION: This study introduces advanced protein sequence tokenization analysis, leveraging the byte-pair-encoding algorithm and unigram. By recognizing frequently occurring combinations of amino acids as single tokens, our proposed method enhances the performance of PLMs on downstream tasks. Additionally, we present PETA, a new comprehensive benchmark for the systematic evaluation of PLMs, demonstrating that vocabularies of 50 and 200 elements offer optimal performance.
Collapse
Affiliation(s)
- Yang Tan
- School of Information Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai National Center for Applied Mathematics (SJTU Center), & Institute of Natural Science, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Artificial Intelligence Laboratory, Shanghai, 200240, China
- Chongqing Artificial Intelligence Research Institute of Shanghai Jiao Tong University, Chongqing, 200240, China
| | - Mingchen Li
- School of Information Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai National Center for Applied Mathematics (SJTU Center), & Institute of Natural Science, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Artificial Intelligence Laboratory, Shanghai, 200240, China
- Chongqing Artificial Intelligence Research Institute of Shanghai Jiao Tong University, Chongqing, 200240, China
| | - Ziyi Zhou
- Shanghai National Center for Applied Mathematics (SJTU Center), & Institute of Natural Science, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Pan Tan
- Shanghai National Center for Applied Mathematics (SJTU Center), & Institute of Natural Science, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Artificial Intelligence Laboratory, Shanghai, 200240, China
| | - Huiqun Yu
- School of Information Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Guisheng Fan
- School of Information Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Liang Hong
- Shanghai National Center for Applied Mathematics (SJTU Center), & Institute of Natural Science, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Shanghai Artificial Intelligence Laboratory, Shanghai, 200240, China.
- Chongqing Artificial Intelligence Research Institute of Shanghai Jiao Tong University, Chongqing, 200240, China.
| |
Collapse
|
21
|
Zhang X, Hu X, Zhang T, Yang L, Liu C, Xu N, Wang H, Sun W. PLM_Sol: predicting protein solubility by benchmarking multiple protein language models with the updated Escherichia coli protein solubility dataset. Brief Bioinform 2024; 25:bbae404. [PMID: 39179250 PMCID: PMC11343611 DOI: 10.1093/bib/bbae404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/19/2024] [Accepted: 08/07/2024] [Indexed: 08/26/2024] Open
Abstract
Protein solubility plays a crucial role in various biotechnological, industrial, and biomedical applications. With the reduction in sequencing and gene synthesis costs, the adoption of high-throughput experimental screening coupled with tailored bioinformatic prediction has witnessed a rapidly growing trend for the development of novel functional enzymes of interest (EOI). High protein solubility rates are essential in this process and accurate prediction of solubility is a challenging task. As deep learning technology continues to evolve, attention-based protein language models (PLMs) can extract intrinsic information from protein sequences to a greater extent. Leveraging these models along with the increasing availability of protein solubility data inferred from structural database like the Protein Data Bank holds great potential to enhance the prediction of protein solubility. In this study, we curated an Updated Escherichia coli protein Solubility DataSet (UESolDS) and employed a combination of multiple PLMs and classification layers to predict protein solubility. The resulting best-performing model, named Protein Language Model-based protein Solubility prediction model (PLM_Sol), demonstrated significant improvements over previous reported models, achieving a notable 6.4% increase in accuracy, 9.0% increase in F1_score, and 11.1% increase in Matthews correlation coefficient score on the independent test set. Moreover, additional evaluation utilizing our in-house synthesized protein resource as test data, encompassing diverse types of enzymes, also showcased the good performance of PLM_Sol. Overall, PLM_Sol exhibited consistent and promising performance across both independent test set and experimental set, thereby making it well suited for facilitating large-scale EOI studies. PLM_Sol is available as a standalone program and as an easy-to-use model at https://zenodo.org/doi/10.5281/zenodo.10675340.
Collapse
Affiliation(s)
- Xuechun Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
- University of Chinese Academy of Sciences, No. 1 Yanqihu East Rd, Huairou District, Beijing 101408, China
| | - Xiaoxuan Hu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
- University of Chinese Academy of Sciences, No. 1 Yanqihu East Rd, Huairou District, Beijing 101408, China
| | - Tongtong Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
- University of Chinese Academy of Sciences, No. 1 Yanqihu East Rd, Huairou District, Beijing 101408, China
| | - Ling Yang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
- University of Chinese Academy of Sciences, No. 1 Yanqihu East Rd, Huairou District, Beijing 101408, China
| | - Chunhong Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
- University of Chinese Academy of Sciences, No. 1 Yanqihu East Rd, Huairou District, Beijing 101408, China
| | - Ning Xu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
- University of Chinese Academy of Sciences, No. 1 Yanqihu East Rd, Huairou District, Beijing 101408, China
| | - Haoyi Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
- University of Chinese Academy of Sciences, No. 1 Yanqihu East Rd, Huairou District, Beijing 101408, China
- Beijing Institute for Stem Cell and Regenerative Medicine, A 3 Datun Road, Chaoyang District, Beijing 100100, China
| | - Wen Sun
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, A 3 Datun Road, Chaoyang District, Beijing 100100, China
| |
Collapse
|
22
|
Liu J, Fischer A, Cserjan-Puschmann M, Lingg N, Oostenbrink C. Caspase-Based Fusion Protein Technology: Substrate Cleavability Described by Computational Modeling and Simulation. J Chem Inf Model 2024; 64:5691-5700. [PMID: 38946265 PMCID: PMC11267566 DOI: 10.1021/acs.jcim.4c00316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/02/2024]
Abstract
The Caspase-based fusion protein technology (CASPON) allows for universal cleavage of fusion tags from proteins of interest to reconstitute the native N-terminus. While the CASPON enzyme has been optimized to be promiscuous against a diversity of N-terminal peptides, the cleavage efficacy for larger proteins can be surprisingly low. We develop an efficient means to rationalize and predict the cleavage efficiency based on a structural representation of the intrinsically disordered N-terminal peptides and their putative interactions with the CASPON enzyme. The number of favorably interacting N-terminal conformations shows a very good agreement with the experimentally observed cleavage efficiency, in agreement with a conformational selection model. The method relies on computationally cheap molecular dynamics simulations to efficiently generate a diverse collection of N-terminal conformations, followed by a simple fitting procedure into the CASPON enzyme. It can be readily used to assess the CASPON cleavability a priori.
Collapse
Affiliation(s)
- Jakob Liu
- Austrian
Centre of Industrial Biotechnology, Muthgasse 18, 1190 Vienna, Austria
- Institute
of Molecular Modeling and Simulation, University
of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Andreas Fischer
- Austrian
Centre of Industrial Biotechnology, Muthgasse 18, 1190 Vienna, Austria
- Department
of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences,
Vienna (BOKU), Muthgasse
18, 1190 Vienna, Austria
| | - Monika Cserjan-Puschmann
- Austrian
Centre of Industrial Biotechnology, Muthgasse 18, 1190 Vienna, Austria
- Department
of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences,
Vienna (BOKU), Muthgasse
18, 1190 Vienna, Austria
| | - Nico Lingg
- Austrian
Centre of Industrial Biotechnology, Muthgasse 18, 1190 Vienna, Austria
- Department
of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences,
Vienna (BOKU), Muthgasse
18, 1190 Vienna, Austria
| | - Chris Oostenbrink
- Institute
of Molecular Modeling and Simulation, University
of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
- Christian
Doppler Laboratory for Molecular Informatics in the Biosciences, University of Natural Resources and Life Sciences,
Vienna, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
23
|
Willi JA, Karim AS, Jewett MC. Cell-Free Translation Quantification via a Fluorescent Minihelix. ACS Synth Biol 2024; 13:2253-2259. [PMID: 38979618 DOI: 10.1021/acssynbio.4c00266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Cell-free gene expression systems are used in numerous applications, including medicine making, diagnostics, and educational kits. Accurate quantification of nonfluorescent proteins in these systems remains a challenge. To address this challenge, we report the adaptation and use of an optimized tetra-cysteine minihelix both as a fusion protein and as a standalone reporter with the FlAsH dye. The fluorescent reporter helix is short enough to be encoded on a primer pair to tag any protein of interest via PCR. Both the tagged protein and the standalone reporter can be detected quantitatively in real time or at the end of cell-free expression reactions with standard 96/384-well plate readers, an RT-qPCR system, or gel electrophoresis without the need for staining. The fluorescent signal is stable and correlates linearly with the protein concentration, enabling product quantification. We modified the reporter to study cell-free expression dynamics and engineered ribosome activity. We anticipate that the fluorescent minihelix reporter will facilitate efforts in engineering in vitro transcription and translation systems.
Collapse
Affiliation(s)
- Jessica A Willi
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S Karim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
24
|
Marasinghe SD, Gajanayaka ND, Sathyadith J, Lee Y, Bandara MS, Eom TY, Kang YH, Sunwoo IY, Gang Y, Wijewickrama S, Jo E, Park HS, Park GH, Oh C. Circular bioeconomy in action: Upscaling cutlassfish waste for eco-friendly recombinant protein production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174780. [PMID: 39009167 DOI: 10.1016/j.scitotenv.2024.174780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/30/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
The fish processing industry generates a significant amount of waste, and the recycling of this waste is an issue of global concern. We sought to utilize the heads of cutlassfish (Trichiurus lepturus), which are typically discarded during processing, to produce peptone, which is an important source of amino acids for microbial growth and recombinant protein production. Cutlassfish head muscle (CHM) were isolated, and the optimal protease and reaction conditions for peptone production were determined. The resulting peptone contained 12.22 % total nitrogen and 3.19 % amino nitrogen, with an average molecular weight of 609 Da, indicating efficient hydrolysis of CHM. Growth assays using Escherichia coli have shown that cutlassfish head peptone (CP) supports similar or superior growth compared to other commercial peptones. In addition, when recombinant chitosanase from Bacillus subtilis and human superoxide dismutase were produced in E. coli, CP gave the highest expression levels among six commercial peptones tested. In addition, the expression levels of chitosanase and superoxide dismutase were 20 % and 32 % higher, respectively, in CP medium compared to the commonly used Luria-Bertani (LB) medium. This study demonstrates the potential of using cuttlassfish waste in the production of microbial media, thereby adding significant value to fish waste. The results contribute to sustainable waste management practices and open avenues for innovative uses of fish processing by-products in biotechnological applications.
Collapse
Affiliation(s)
- Svini Dileepa Marasinghe
- Korea Institute of Ocean Science and Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea; University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Navindu Dinara Gajanayaka
- Korea Institute of Ocean Science and Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea; University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Jonathan Sathyadith
- Korea Institute of Ocean Science and Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea; University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Youngdeuk Lee
- Korea Institute of Ocean Science and Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea
| | - Minthari Sakethanika Bandara
- Korea Institute of Ocean Science and Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea; University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Tae-Yang Eom
- Korea Institute of Ocean Science and Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea; University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Yoon-Hyeok Kang
- Korea Institute of Ocean Science and Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea; University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - In Yung Sunwoo
- Korea Institute of Ocean Science and Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea
| | - Yehui Gang
- Korea Institute of Ocean Science and Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea; University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Sithumini Wijewickrama
- Korea Institute of Ocean Science and Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea; University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Eunyoung Jo
- Korea Institute of Ocean Science and Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea
| | - Heung Sik Park
- Korea Institute of Ocean Science and Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea
| | - Gun-Hoo Park
- Korea Institute of Ocean Science and Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea.
| | - Chulhong Oh
- Korea Institute of Ocean Science and Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea; University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea.
| |
Collapse
|
25
|
İncir İ, Kaplan Ö. Escherichia coli as a versatile cell factory: Advances and challenges in recombinant protein production. Protein Expr Purif 2024; 219:106463. [PMID: 38479588 DOI: 10.1016/j.pep.2024.106463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/25/2024] [Accepted: 03/11/2024] [Indexed: 05/08/2024]
Abstract
E. coli plays a substantial role in recombinant protein production. Its importance increased with the discovery of recombinant DNA technology and the subsequent production of the first recombinant insulin in E. coli. E. coli is a widely used and cost-effective host to produce recombinant proteins. It is also noteworthy that a significant portion of the approved therapeutic proteins have been produced in this organism. Despite these advantages, it has some disadvantages, such as toxicity and lack of eukaryotic post-translational modifications that can lead to the production of misfolded, insoluble, or dysfunctional proteins. This study focused on the challenges and engineering approaches for improved expression and solubility in recombinant protein production in E. coli. In this context, solution strategies such as strain and vector selection, codon usage, mRNA stability, expression conditions, translocation to the periplasmic region and addition of fusion tags in E. coli were discussed.
Collapse
Affiliation(s)
- İbrahim İncir
- Karamanoğlu Mehmetbey University, Kazım Karabekir Vocational School, Department of Medical Services and Techniques, Environmental Health Program Karaman, Turkey.
| | - Özlem Kaplan
- Alanya Alaaddin Keykubat University, Rafet Kayış Faculty of Engineering, Department of Genetics and Bioengineering, Antalya, Turkey.
| |
Collapse
|
26
|
Gibisch M, Müller M, Tauer C, Albrecht B, Hahn R, Cserjan-Puschmann M, Striedner G. A production platform for disulfide-bonded peptides in the periplasm of Escherichia coli. Microb Cell Fact 2024; 23:166. [PMID: 38840157 PMCID: PMC11155123 DOI: 10.1186/s12934-024-02446-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Recombinant peptide production in Escherichia coli provides a sustainable alternative to environmentally harmful and size-limited chemical synthesis. However, in-vivo production of disulfide-bonded peptides at high yields remains challenging, due to degradation by host proteases/peptidases and the necessity of translocation into the periplasmic space for disulfide bond formation. RESULTS In this study, we established an expression system for efficient and soluble production of disulfide-bonded peptides in the periplasm of E. coli. We chose model peptides with varying complexity (size, structure, number of disulfide bonds), namely parathyroid hormone 1-84, somatostatin 1-28, plectasin, and bovine pancreatic trypsin inhibitor (aprotinin). All peptides were expressed without and with the N-terminal, low molecular weight CASPON™ tag (4.1 kDa), with the expression cassette being integrated into the host genome. During BioLector™ cultivations at microliter scale, we found that most of our model peptides can only be sufficiently expressed in combination with the CASPON™ tag, otherwise expression was only weak or undetectable on SDS-PAGE. Undesired degradation by host proteases/peptidases was evident even with the CASPON™ tag. Therefore, we investigated whether degradation happened before or after translocation by expressing the peptides in combination with either a co- or post-translational signal sequence. Our results suggest that degradation predominantly happened after the translocation, as degradation fragments appeared to be identical independent of the signal sequence, and expression was not enhanced with the co-translational signal sequence. Lastly, we expressed all CASPON™-tagged peptides in two industry-relevant host strains during C-limited fed-batch cultivations in bioreactors. We found that the process performance was highly dependent on the peptide-host-combination. The titers that were reached varied between 0.6-2.6 g L-1, and exceeded previously published data in E. coli. Moreover, all peptides were shown by mass spectrometry to be expressed to completion, including full formation of disulfide bonds. CONCLUSION In this work, we demonstrated the potential of the CASPON™ technology as a highly efficient platform for the production of soluble peptides in the periplasm of E. coli. The titers we show here are unprecedented whenever parathyroid hormone, somatostatin, plectasin or bovine pancreatic trypsin inhibitor were produced in E. coli, thus making our proposed upstream platform favorable over previously published approaches and chemical synthesis.
Collapse
Affiliation(s)
- Martin Gibisch
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Matthias Müller
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Christopher Tauer
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Bernd Albrecht
- Boehringer-Ingelheim RCV GmbH & Co KG, Dr.-Boehringer-Gasse 5-11, Vienna, Austria
| | - Rainer Hahn
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Monika Cserjan-Puschmann
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria.
| | - Gerald Striedner
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| |
Collapse
|
27
|
Hojjati-Razgi AS, Nazarian S, Samiei-Abianeh H, Vazirizadeh A, Kordbacheh E, Aghaie SM. Expression of Recombinant Stonustoxin Alpha Subunit and Preparation of polyclonal antiserum for Stonustoxin Neutralization Studies. Protein J 2024; 43:627-638. [PMID: 38760596 DOI: 10.1007/s10930-024-10203-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 05/19/2024]
Abstract
Stonustoxin (SNTX) is a lethal protein found in stonefish venom, responsible for many of the symptoms associated with stonefish envenomation. To counter stonefish venom challenges, antivenom is a well-established and effective solution. In this study, we aimed to produce the recombinant alpha subunit protein of Stonustoxin from Synanceia horrida and prepare antibodies against it The SNTXα gene sequence was optimized for E. coli BL21 (DE3) expression and cloned into the pET17b vector. Following purification, the recombinant protein was subcutaneously injected into rabbits, and antibodies were extracted from rabbit´s serum using a G protein column As a result of codon optimization, the codon adaptation index for the SNTXα cassette increased to 0.94. SDS-PAGE analysis validated the expression of SNTXα, with a band observed at 73.5 kDa with a yield of 60 mg/l. ELISA results demonstrated rabbits antibody titers were detectable up to a 1:256,000 dilution. The isolated antibody from rabbit´s serum exhibited a concentration of 1.5 mg/ml, and its sensitivity allowed the detection of a minimum protein concentration of 9.7 ng. In the neutralization assay the purified antibody against SNTXα protected mice challenged with 2 LD50. In conclusion, our study successfully expressed the alpha subunit of Stonustoxin in a prokaryotic host, enabling the production of antibodies for potential use in developing stonefish antivenom.
Collapse
Affiliation(s)
| | - Shahram Nazarian
- Department of Biology, Faculty of Basic Sciences, Imam Hossein University, Tehran, Iran.
| | - Hossein Samiei-Abianeh
- Department of Biology, Faculty of Basic Sciences, Imam Hossein University, Tehran, Iran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Vazirizadeh
- Department of Marine Biotechnology, The Persian Gulf Research and Studies Center, The Persian Gulf University, Bushehr, Iran
| | - Emad Kordbacheh
- Department of Biology, Faculty of Basic Sciences, Imam Hossein University, Tehran, Iran
| | - Seyed Mojtaba Aghaie
- Department of Biology, Faculty of Basic Sciences, Imam Hossein University, Tehran, Iran
| |
Collapse
|
28
|
Allen MC, Karplus PA, Mehl RA, Cooley RB. Genetic Encoding of Phosphorylated Amino Acids into Proteins. Chem Rev 2024; 124:6592-6642. [PMID: 38691379 PMCID: PMC11658404 DOI: 10.1021/acs.chemrev.4c00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Reversible phosphorylation is a fundamental mechanism for controlling protein function. Despite the critical roles phosphorylated proteins play in physiology and disease, our ability to study individual phospho-proteoforms has been hindered by a lack of versatile methods to efficiently generate homogeneous proteins with site-specific phosphoamino acids or with functional mimics that are resistant to phosphatases. Genetic code expansion (GCE) is emerging as a transformative approach to tackle this challenge, allowing direct incorporation of phosphoamino acids into proteins during translation in response to amber stop codons. This genetic programming of phospho-protein synthesis eliminates the reliance on kinase-based or chemical semisynthesis approaches, making it broadly applicable to diverse phospho-proteoforms. In this comprehensive review, we provide a brief introduction to GCE and trace the development of existing GCE technologies for installing phosphoserine, phosphothreonine, phosphotyrosine, and their mimics, discussing both their advantages as well as their limitations. While some of the technologies are still early in their development, others are already robust enough to greatly expand the range of biologically relevant questions that can be addressed. We highlight new discoveries enabled by these GCE approaches, provide practical considerations for the application of technologies by non-GCE experts, and also identify avenues ripe for further development.
Collapse
Affiliation(s)
- Michael C. Allen
- Oregon State University, GCE4All Research Center, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331 USA
| | - P. Andrew Karplus
- Oregon State University, GCE4All Research Center, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331 USA
| | - Ryan A. Mehl
- Oregon State University, GCE4All Research Center, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331 USA
| | - Richard B. Cooley
- Oregon State University, GCE4All Research Center, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331 USA
| |
Collapse
|
29
|
Tang NC, Su JC, Shmidov Y, Kelly G, Deshpande S, Sirohi P, Peterson N, Chilkoti A. Synthetic intrinsically disordered protein fusion tags that enhance protein solubility. Nat Commun 2024; 15:3727. [PMID: 38697982 PMCID: PMC11066018 DOI: 10.1038/s41467-024-47519-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/03/2024] [Indexed: 05/05/2024] Open
Abstract
We report the de novo design of small (<20 kDa) and highly soluble synthetic intrinsically disordered proteins (SynIDPs) that confer solubility to a fusion partner with minimal effect on the activity of the fused protein. To identify highly soluble SynIDPs, we create a pooled gene-library utilizing a one-pot gene synthesis technology to create a large library of repetitive genes that encode SynIDPs. We identify three small (<20 kDa) and highly soluble SynIDPs from this gene library that lack secondary structure and have high solvation. Recombinant fusion of these SynIDPs to three known inclusion body forming proteins rescue their soluble expression and do not impede the activity of the fusion partner, thereby eliminating the need for removal of the SynIDP tag. These findings highlight the utility of SynIDPs as solubility tags, as they promote the soluble expression of proteins in E. coli and are small, unstructured proteins that minimally interfere with the biological activity of the fused protein.
Collapse
Affiliation(s)
- Nicholas C Tang
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Jonathan C Su
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Yulia Shmidov
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Garrett Kelly
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Sonal Deshpande
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Parul Sirohi
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Nikhil Peterson
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
30
|
Zhou LZ, Wang L, Chen X, Ge Z, Mergner J, Li X, Küster B, Längst G, Qu LJ, Dresselhaus T. The RALF signaling pathway regulates cell wall integrity during pollen tube growth in maize. THE PLANT CELL 2024; 36:1673-1696. [PMID: 38142229 PMCID: PMC11062432 DOI: 10.1093/plcell/koad324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 11/20/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
Autocrine signaling pathways regulated by RAPID ALKALINIZATION FACTORs (RALFs) control cell wall integrity during pollen tube germination and growth in Arabidopsis (Arabidopsis thaliana). To investigate the role of pollen-specific RALFs in another plant species, we combined gene expression data with phylogenetic and biochemical studies to identify candidate orthologs in maize (Zea mays). We show that Clade IB ZmRALF2/3 mutations, but not Clade III ZmRALF1/5 mutations, cause cell wall instability in the sub-apical region of the growing pollen tube. ZmRALF2/3 are mainly located in the cell wall and are partially able to complement the pollen germination defect of their Arabidopsis orthologs AtRALF4/19. Mutations in ZmRALF2/3 compromise pectin distribution patterns leading to altered cell wall organization and thickness culminating in pollen tube burst. Clade IB, but not Clade III ZmRALFs, strongly interact as ligands with the pollen-specific Catharanthus roseus RLK1-like (CrRLK1L) receptor kinases Z. mays FERONIA-like (ZmFERL) 4/7/9, LORELEI-like glycosylphosphatidylinositol-anchor (LLG) proteins Z. mays LLG 1 and 2 (ZmLLG1/2), and Z. mays pollen extension-like (PEX) cell wall proteins ZmPEX2/4. Notably, ZmFERL4 outcompetes ZmLLG2 and ZmPEX2 outcompetes ZmFERL4 for ZmRALF2 binding. Based on these data, we suggest that Clade IB RALFs act in a dual role as cell wall components and extracellular sensors to regulate cell wall integrity and thickness during pollen tube growth in maize and probably other plants.
Collapse
Affiliation(s)
- Liang-Zi Zhou
- Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Lele Wang
- Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Xia Chen
- Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Zengxiang Ge
- Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China
| | - Julia Mergner
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), 85354 Freising, Germany
| | - Xingli Li
- Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Bernhard Küster
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), 85354 Freising, Germany
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich (TUM), 85354 Freising, Germany
| | - Gernot Längst
- Biochemistry Center Regensburg, University of Regensburg, 93053 Regensburg, Germany
| | - Li-Jia Qu
- Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
31
|
Pennone V, Rosini E, Mascheroni E, Gianola S, Castellini G, Bargeri S, Lovati AB. Revolutionizing orthopedic healthcare: a systematic review unveiling recombinant antimicrobial peptides. Front Microbiol 2024; 15:1370826. [PMID: 38756724 PMCID: PMC11097975 DOI: 10.3389/fmicb.2024.1370826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/08/2024] [Indexed: 05/18/2024] Open
Abstract
The increasing demand for orthopedic surgeries, including joint replacements, is driven by an aging population and improved diagnosis of joint conditions. Orthopedic surgeries carry a risk of infection, especially in patients with comorbidities. The rise of antibiotic resistance exacerbates this issue, necessitating alternatives like in vitro bioengineered antimicrobial peptides (AMPs), offering broad-spectrum activity and multiple action mechanisms. This review aimed to assess the prevalence of antimicrobial potential and the yield after purification among recombinant AMP families. The antimicrobial potential was evaluated using the Minimum Inhibitory Concentration (MIC) values against the most common bacteria involved in clinical infections. This systematic review adhered to PRISMA guidelines, focusing on in vitro studies of recombinant AMPs. The search strategy was run on PubMed, Scopus and Embase up to 30th March 2023. The Population, Exposure and Outcome model was used to extract the data from studies and ToxRTool for the risk of bias analysis. This review included studies providing peptide production yield data and MIC values against pathogenic bacteria. Non-English texts, reviews, conference abstracts, books, studies focusing solely on chemical synthesis, those reporting incomplete data sets, using non-standard MIC assessment methods, or presenting MIC values as ranges rather than precise concentrations, were excluded. From 370 publications, 34 studies on AMPs were analyzed. These covered 46 AMPs across 18 families, with Defensins and Hepcidins being most common. Yields varied from 0.5 to 2,700 mg/L. AMPs were tested against 23 bacterial genera, with MIC values ranging from 0.125 to >1,152 μg/mL. Arenicins showed the highest antimicrobial activity, particularly against common orthopedic infection pathogens. However, AMP production yields varied and some AMPs demonstrated limited effectiveness against certain bacterial strains. This systematic review emphasizes the critical role of bioengineered AMPs to cope infections and antibiotic resistance. It meticulously evaluates recombinant AMPs, focusing on their antimicrobial efficacy and production yields. The review highlights that, despite the variability in AMP yields and effectiveness, Arenicins and Defensins are promising candidates for future research and clinical applications in treating antibiotic-resistant orthopedic infections. This study contributes significantly to the understanding of AMPs in healthcare, underscoring their potential in addressing the growing challenge of antibiotic resistance. Systematic review registration:https://osf.io/2uq4c/.
Collapse
Affiliation(s)
- Vincenzo Pennone
- Cell and Tissue Engineering Laboratory, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Elena Rosini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Elena Mascheroni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Silvia Gianola
- Unit of Clinical Epidemiology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Greta Castellini
- Unit of Clinical Epidemiology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Silvia Bargeri
- Unit of Clinical Epidemiology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Arianna B. Lovati
- Cell and Tissue Engineering Laboratory, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| |
Collapse
|
32
|
Rizarullah, Aditama R, Giri-Rachman EA, Hertadi R. Designing a Novel Multiepitope Vaccine from the Human Papilloma Virus E1 and E2 Proteins for Indonesia with Immunoinformatics and Molecular Dynamics Approaches. ACS OMEGA 2024; 9:16547-16562. [PMID: 38617694 PMCID: PMC11007845 DOI: 10.1021/acsomega.4c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 04/16/2024]
Abstract
One of the deadliest malignant cancer in women globally is cervical cancer. Specifically, cervical cancer is the second most common type of cancer in Indonesia. The main infectious agent of cervical cancer is the human papilloma virus (HPV). Although licensed prophylactic vaccines are available, cervical cancer cases are on the rise. Therapy using multiepitope-based vaccines is a very promising therapy for cervical cancer. This study aimed to develop a multiepitope vaccine based on the E1 and E2 proteins of HPV 16, 18, 45, and 52 using in silico. In this study, we develop a novel multiepitope vaccine candidate using an immunoinformatic approach. We predicted the epitopes of the cytotoxic T lymphocyte (CTL) and helper T lymphocyte (HTL) and evaluated their immunogenic properties. Population coverage analysis of qualified epitopes was conducted to determine the successful use of the vaccine worldwide. The epitopes were constructed into a multiepitope vaccine by using AAY linkers between the CTL epitopes and GPGPG linkers between the HTL epitopes. The tertiary structure of the multiepitope vaccine was modeled with AlphaFold and was evaluated by Prosa-web. The results of vaccine construction were analyzed for B-cell epitope prediction, molecular docking with Toll like receptor-4 (TLR4), and molecular dynamics simulation. The results of epitope prediction obtained 4 CTL epitopes and 7 HTL epitopes that are eligible for construction of multiepitope vaccines. Prediction of the physicochemical properties of multiepitope vaccines obtained good results for recombinant protein production. The interaction showed that the interaction of the multiepitope vaccine-TLR4 complex is stable based on the binding free energy value -106.5 kcal/mol. The results of the immune response simulation show that multiepitope vaccine candidates could activate the adaptive and humoral immune systems and generate long-term B-cell memory. According to these results, the development of a multiepitope vaccine with a reverse vaccinology approach is a breakthrough to develop potential cervical cancer therapeutic vaccines.
Collapse
Affiliation(s)
- Rizarullah
- Biochemistry
and Biomolecular Engineering Research Division, Faculty of Mathematics
and Natural Sciences, Bandung Institute
of Technology, Jl. Ganesa No. 10, Bandung 40132, Indonesia
- Department
of Biochemistry, Faculty of Medicine, Abulyatama
University, Jl. Blangbintang Lama, Aceh Besar 23372, Indonesia
| | - Reza Aditama
- Biochemistry
and Biomolecular Engineering Research Division, Faculty of Mathematics
and Natural Sciences, Bandung Institute
of Technology, Jl. Ganesa No. 10, Bandung 40132, Indonesia
| | - Ernawati Arifin Giri-Rachman
- Genetics
and Molecular Biotechnology Research Division, School of Life Sciences
and Technology, Bandung Institute of Technology, Jl. Ganesa No. 10, Bandung 40132, Indonesia
| | - Rukman Hertadi
- Biochemistry
and Biomolecular Engineering Research Division, Faculty of Mathematics
and Natural Sciences, Bandung Institute
of Technology, Jl. Ganesa No. 10, Bandung 40132, Indonesia
| |
Collapse
|
33
|
Gruchow HM, Opdensteinen P, Buyel JF. Membrane-based inverse-transition purification facilitates a rapid isolation of various spider-silk elastin-like polypeptide fusion proteins from extracts of transgenic tobacco. Transgenic Res 2024; 33:21-33. [PMID: 38573429 PMCID: PMC11021290 DOI: 10.1007/s11248-024-00375-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/05/2024] [Indexed: 04/05/2024]
Abstract
Plants can produce complex pharmaceutical and technical proteins. Spider silk proteins are one example of the latter and can be used, for example, as compounds for high-performance textiles or wound dressings. If genetically fused to elastin-like polypeptides (ELPs), the silk proteins can be reversibly precipitated from clarified plant extracts at moderate temperatures of ~ 30 °C together with salt concentrations > 1.5 M, which simplifies purification and thus reduces costs. However, the technologies developed around this mechanism rely on a repeated cycling between soluble and aggregated state to remove plant host cell impurities, which increase process time and buffer consumption. Additionally, ELPs are difficult to detect using conventional staining methods, which hinders the analysis of unit operation performance and process development. Here, we have first developed a surface plasmon resonance (SPR) spectroscopy-based assay to quantity ELP fusion proteins. Then we tested different filters to prepare clarified plant extract with > 50% recovery of spider silk ELP fusion proteins. Finally, we established a membrane-based purification method that does not require cycling between soluble and aggregated ELP state but operates similar to an ultrafiltration/diafiltration device. Using a data-driven design of experiments (DoE) approach to characterize the system of reversible ELP precipitation we found that membranes with pore sizes up to 1.2 µm and concentrations of 2-3 M sodium chloride facilitate step a recovery close to 100% and purities of > 90%. The system can thus be useful for the purification of ELP-tagged proteins produced in plants and other hosts.
Collapse
Affiliation(s)
- H M Gruchow
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - P Opdensteinen
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - J F Buyel
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
- Institute of Bioprocess Science and Engineering (IBSE), Department of Biotechnology (DBT), University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria.
| |
Collapse
|
34
|
Eskandari A, Nezhad NG, Leow TC, Rahman MBA, Oslan SN. Essential factors, advanced strategies, challenges, and approaches involved for efficient expression of recombinant proteins in Escherichia coli. Arch Microbiol 2024; 206:152. [PMID: 38472371 DOI: 10.1007/s00203-024-03871-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/31/2023] [Accepted: 01/25/2024] [Indexed: 03/14/2024]
Abstract
Producing recombinant proteins is a major accomplishment of biotechnology in the past century. Heterologous hosts, either eukaryotic or prokaryotic, are used for the production of these proteins. The utilization of microbial host systems continues to dominate as the most efficient and affordable method for biotherapeutics and food industry productions. Hence, it is crucial to analyze the limitations and advantages of microbial hosts to enhance the efficient production of recombinant proteins on a large scale. E. coli is widely used as a host for the production of recombinant proteins. Researchers have identified certain obstacles with this host, and given the growing demand for recombinant protein production, there is an immediate requirement to enhance this host. The following review discusses the elements contributing to the manifestation of recombinant protein. Subsequently, it sheds light on innovative approaches aimed at improving the expression of recombinant protein. Lastly, it delves into the obstacles and optimization methods associated with translation, mentioning both cis-optimization and trans-optimization, producing soluble recombinant protein, and engineering the metal ion transportation. In this context, a comprehensive description of the distinct features will be provided, and this knowledge could potentially enhance the expression of recombinant proteins in E. coli.
Collapse
Affiliation(s)
- Azadeh Eskandari
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Biochemistry, FacultyofBiotechnologyand BiomolecularSciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Nima Ghahremani Nezhad
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Enzyme Technology and X-Ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | | | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Department of Biochemistry, FacultyofBiotechnologyand BiomolecularSciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Enzyme Technology and X-Ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
35
|
Kaur H, Rode S, Lonare S, Demiwal P, Narasimhappa P, Arun E, Kumar R, Das J, Ramamurthy PC, Sircar D, Sharma AK. Heterologous expression, biochemical characterization and prospects for insecticide biosensing potential of carboxylesterase Ha006a from Helicoverpa armigera. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 200:105844. [PMID: 38582571 DOI: 10.1016/j.pestbp.2024.105844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/08/2024]
Abstract
Enzymes have attracted considerable scientific attention for their crucial role in detoxifying a wide range of harmful compounds. In today's global context, the extensive use of insecticides has emerged as a significant threat to the environment, sparking substantial concern. Insects, including economically important pests like Helicoverpa armigera, have developed resistance to conventional pest control methods through enzymes like carboxyl/cholinesterases. This study specifically focuses on a notable carboxyl/cholinesterase enzyme from Helicoverpa armigera (Ha006a), with the goal of harnessing its potential to combat environmental toxins. A total of six insecticides belonging to two different classes displayed varying inhibitory responses towards Ha006a, thereby rendering it effective in detoxifying a broader spectrum of insecticides. The significance of this research lies in discovering the bioremediation property of Ha006a, as it hydrolyzes synthetic pyrethroids (fenvalerate, λ-cyhalothrin and deltamethrin) and sequesters organophosphate (paraoxon ethyl, profenofos, and chlorpyrifos) insecticides. Additionally, the interaction studies between organophosphate insecticides and Ha006a helped in the fabrication of a novel electroanalytical sensor using a modified carbon paste electrode (MCPE). This sensor boasts impressive sensitivity, with detection limits of 0.019 μM, 0.15 μM, and 0.025 μM for paraoxon ethyl, profenofos, and chlorpyrifos, respectively. This study provides a comprehensive biochemical and biophysical characterization of the purified esterase Ha006a, showcasing its potential to remediate different classes of insecticides.
Collapse
Affiliation(s)
- Harry Kaur
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Surabhi Rode
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Sapna Lonare
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Pratibha Demiwal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Pavithra Narasimhappa
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore 560012, India
| | - Etisha Arun
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Rakesh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India; Division of Crop Improvement, ICAR-Central Institute for Cotton Research (ICAR-CICR), Nagpur 440010, Maharashtra, India
| | - Joy Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India; Division of Crop Improvement, ICAR-Central Institute for Cotton Research (ICAR-CICR), Nagpur 440010, Maharashtra, India
| | - Praveen C Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore 560012, India
| | - Debabrata Sircar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Ashwani Kumar Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India.
| |
Collapse
|
36
|
Zhou Q, Huang D, Yang H, Hong Z, Wang C. Improvement of Carotenoids' Production by Increasing the Activity of Beta-Carotene Ketolase with Different Strategies. Microorganisms 2024; 12:377. [PMID: 38399781 PMCID: PMC10891602 DOI: 10.3390/microorganisms12020377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Canthaxanthin is an important antioxidant with wide application prospects, and β-carotene ketolase is the key enzyme involved in the biosynthesis of canthaxanthin. However, the challenge for the soluble expression of β-carotene ketolase is that it hinders the large-scale production of carotenoids such as canthaxanthin and astaxanthin. Hence, this study employed several strategies aiming to improve the soluble expression of β-carotene ketolase and its activity, including selecting optimal expression vectors, screening induction temperatures, adding soluble expression tags, and adding a molecular chaperone. Results showed that all these strategies can improve the soluble expression and activity of β-carotene ketolase in Escherichia coli. In particular, the production of soluble β-carotene ketolase was increased 8 times, with a commercial molecular chaperon of pG-KJE8, leading to a 1.16-fold enhancement in the canthaxanthin production from β-carotene. Interestingly, pG-KJE8 could also enhance the soluble expression of β-carotene ketolase derived from eukaryotic microalgae. Further research showed that the production of canthaxanthin and echinenone was significantly improved by as many as 30.77 times when the pG-KJE8 was added, indicating the molecular chaperone performed differently among different β-carotene ketolase. This study not only laid a foundation for further research on the improvement of β-carotene ketolase activity but also provided new ideas for the improvement of carotenoid production.
Collapse
Affiliation(s)
- Qiaomian Zhou
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (Q.Z.); (D.H.)
| | - Danqiong Huang
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (Q.Z.); (D.H.)
- Shenzhen Engineering Laboratory for Marine Algal Biological Development and Application, Shenzhen 518060, China
| | - Haihong Yang
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (Q.Z.); (D.H.)
| | - Zeyu Hong
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (Q.Z.); (D.H.)
| | - Chaogang Wang
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (Q.Z.); (D.H.)
- Shenzhen Engineering Laboratory for Marine Algal Biological Development and Application, Shenzhen 518060, China
| |
Collapse
|
37
|
Gomez-Lugo JJ, Casillas-Vega NG, Gomez-Loredo A, Balderas-Renteria I, Zarate X. High-Yield Expression and Purification of Scygonadin, an Antimicrobial Peptide, Using the Small Metal-Binding Protein SmbP. Microorganisms 2024; 12:278. [PMID: 38399682 PMCID: PMC10893511 DOI: 10.3390/microorganisms12020278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
(1) Background: Producing active antimicrobial peptides with disulfide bonds in bacterial strains is challenging. The cytoplasm of Escherichia coli has a reducing environment, which is not favorable to the formation of disulfide bonds. Additionally, E. coli may express proteins as insoluble aggregates known as inclusion bodies and have proteolytic systems that can degrade recombinant peptides. Using E. coli strains like SHuffle and tagging the peptides with fusion proteins is a common strategy to overcome these difficulties. Still, the larger size of carrier proteins can affect the final yield of recombinant peptides. Therefore, a small fusion protein that can be purified using affinity chromatography may be an ideal strategy for producing antimicrobial peptides in E. coli. (2) Methods: In this study, we investigated the use of the small metal-binding protein SmbP as a fusion partner for expressing and purifying the antimicrobial peptide scygonadin in E. coli. Two constructs were designed: a monomer and a tandem repeat; both were tagged with SmbP at the N-terminus. The constructs were expressed in E. coli SHuffle T7 and purified using immobilized metal-affinity chromatography. Finally, their antimicrobial activity was determined against Staphylococcus aureus. (3) Results: SmbP is a remarkable fusion partner for purifying both scygonadin constructs, yielding around 20 mg for the monomer and 30 mg for the tandem repeat per 1 mL of IMAC column, reaching 95% purity. Both protein constructs demonstrated antimicrobial activity against S. aureus at MICs of 4 μM and 40 μM, respectively. (4) Conclusions: This study demonstrates the potential of SmbP for producing active peptides for therapeutic applications. The two scygonadin constructs in this work showed promising antimicrobial activity against S. aureus, suggesting they could be potential candidates for developing new antimicrobial drugs.
Collapse
Affiliation(s)
- Jessica J. Gomez-Lugo
- Facultad de Ciencias Quimicas, Universidad Autonoma de Nuevo Leon, Avenida Universidad s/n, Ciudad Universitaria, San Nicolas de los Garza 66455, Mexico; (J.J.G.-L.); (A.G.-L.); (I.B.-R.)
| | - Nestor G. Casillas-Vega
- Departamento de Patologia Clinica, Hospital Universitario Dr. Jose Eleuterio Gonzalez, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Monterrey 64460, Mexico;
| | - Alma Gomez-Loredo
- Facultad de Ciencias Quimicas, Universidad Autonoma de Nuevo Leon, Avenida Universidad s/n, Ciudad Universitaria, San Nicolas de los Garza 66455, Mexico; (J.J.G.-L.); (A.G.-L.); (I.B.-R.)
- Centro de Investigacion en Biotecnologia y Nanotecnologia, Facultad de Ciencias Quimicas, Universidad Autonoma de Nuevo Leon, Parque de Investigacion e Innovacion Tecnologica, Km 10 Autopista al Aeropuerto Mariano Escobedo, Apodaca 66629, Mexico
| | - Isaias Balderas-Renteria
- Facultad de Ciencias Quimicas, Universidad Autonoma de Nuevo Leon, Avenida Universidad s/n, Ciudad Universitaria, San Nicolas de los Garza 66455, Mexico; (J.J.G.-L.); (A.G.-L.); (I.B.-R.)
| | - Xristo Zarate
- Facultad de Ciencias Quimicas, Universidad Autonoma de Nuevo Leon, Avenida Universidad s/n, Ciudad Universitaria, San Nicolas de los Garza 66455, Mexico; (J.J.G.-L.); (A.G.-L.); (I.B.-R.)
| |
Collapse
|
38
|
Flores-Fernández CN, Lin D, Robins K, O'Callaghan CA. DNA methylases for site-selective inhibition of type IIS restriction enzyme activity. Appl Microbiol Biotechnol 2024; 108:174. [PMID: 38270650 PMCID: PMC10810934 DOI: 10.1007/s00253-024-13015-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/08/2024] [Accepted: 01/14/2024] [Indexed: 01/26/2024]
Abstract
DNA methylases of the restriction-modifications (R-M) systems are promising enzymes for the development of novel molecular and synthetic biology tools. Their use in vitro enables the deployment of independent and controlled catalytic reactions. This work aimed to produce recombinant DNA methylases belonging to the R-M systems, capable of in vitro inhibition of the type IIS restriction enzymes BsaI, BpiI, or LguI. Non-switchable methylases are those whose recognition sequences fully overlap the recognition sequences of their associated endonuclease. In switch methylases, the methylase and endonuclease recognition sequences only partially overlap, allowing sequence engineering to alter methylation without altering restriction. In this work, ten methylases from type I and II R-M systems were selected for cloning and expression in E. coli strains tolerant to methylation. Isopropyl β-D-1-thiogalactopyranoside (IPTG) concentrations and post-induction temperatures were tested to optimize the soluble methylases expression, which was achieved with 0.5 mM IPTG at 20 °C. The C-terminal His6-Tag versions showed better expression than the N-terminal tagged versions. DNA methylation was analyzed using purified methylases and custom test plasmids which, after the methylation reactions, were digested using the corresponding associated type IIS endonuclease. The non-switchable methylases M2.Eco31I, M2.BsaI, M2.HpyAII, and M1.MboII along with the switch methylases M.Osp807II and M2.NmeMC58II showed the best activity for site-selective inhibition of type IIS restriction enzyme activity. This work demonstrates that our recombinant methylases were able to block the activity of type IIS endonucleases in vitro, allowing them to be developed as valuable tools in synthetic biology and DNA assembly techniques. KEY POINTS: • Non-switchable methylases always inhibit the relevant type IIS endonuclease activity • Switch methylases inhibit the relevant type IIS endonuclease activity depending on the sequence engineering of their recognition site • Recombinant non-switchable and switch methylases were active in vitro and can be deployed as tools in synthetic biology and DNA assembly.
Collapse
Affiliation(s)
- Carol N Flores-Fernández
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Da Lin
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
- Current address: Triple Helix Biotechnology Ltd, Moneta Building (B280), Babraham Research Campus, Babraham, Cambridge, CB22 3AT, UK
| | - Katherine Robins
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
- Current address: Complete Regulatory, 19-20 King Edward Street, Macclesfield, SK10 1AQ, UK
| | - Chris A O'Callaghan
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK.
| |
Collapse
|
39
|
Zeballos N, Comino N, Andrés-Sanz D, Santiago-Arcos J, Azkargorta M, Elortza F, Diamanti E, López-Gallego F. Region-Directed Enzyme Immobilization through Engineering Protein Surface with Histidine Clusters. ACS APPLIED MATERIALS & INTERFACES 2024; 16:833-846. [PMID: 38135284 PMCID: PMC10788835 DOI: 10.1021/acsami.3c15993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023]
Abstract
Enzyme immobilization is a key enabling technology for a myriad of industrial applications, yet immobilization science is still too empirical to reach highly active and robust heterogeneous biocatalysts through a general approach. Conventional protein immobilization methods lack control over how enzymes are oriented on solid carriers, resulting in negative conformational changes that drive enzyme deactivation. Site-selective enzyme immobilization through peptide tags and protein domains addresses the orientation issue, but this approach limits the possible orientations to the N- and C-termini of the target enzyme. In this work, we engineer the surface of two model dehydrogenases to introduce histidine clusters into flexible regions not involved in catalysis, through which immobilization is driven. By varying the position and the histidine density of the clusters, we create a small library of enzyme variants to be immobilized on different carriers functionalized with different densities of various metal chelates (Co2+, Cu2+, Ni2+, and Fe3+). We first demonstrate that His-clusters can be as efficient as the conventional His-tags in immobilizing enzymes, recovering even more activity and gaining stability against some denaturing agents. Furthermore, we find that the enzyme orientation as well as the type and density of the metal chelates affect the immobilization parameters (immobilization yield and recovered activity) and the stability of the immobilized enzymes. According to proteomic studies, His-clusters enable a different enzyme orientation as compared to His-tag. Finally, these oriented heterogeneous biocatalysts are implemented in batch reactions, demonstrating that the stability achieved by an optimized orientation translates into increased operational stability.
Collapse
Affiliation(s)
- Nicoll Zeballos
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramon 194, 20014 San Sebastián, Spain
| | - Natalia Comino
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramon 194, 20014 San Sebastián, Spain
| | - Daniel Andrés-Sanz
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramon 194, 20014 San Sebastián, Spain
| | - Javier Santiago-Arcos
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramon 194, 20014 San Sebastián, Spain
| | - Mikel Azkargorta
- Center
for Cooperative Research in Biology (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 800 Bld, 48160 Derio, Bizkaia, Spain
- Centro
de Investigación Biomédica en Red de Enfermedades Hepáticas
y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Felix Elortza
- Center
for Cooperative Research in Biology (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 800 Bld, 48160 Derio, Bizkaia, Spain
- Centro
de Investigación Biomédica en Red de Enfermedades Hepáticas
y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Eleftheria Diamanti
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramon 194, 20014 San Sebastián, Spain
| | - Fernando López-Gallego
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramon 194, 20014 San Sebastián, Spain
- Ikerbasque,
Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
40
|
Fujii H. In Vitro Kinase Assay with Recombinant SnRK2s: An Example for Assaying Stress-Responsive Kinases in Plants. Methods Mol Biol 2024; 2832:163-170. [PMID: 38869794 DOI: 10.1007/978-1-0716-3973-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Protein phosphorylation is one of the most important posttranslational modifications in cell signaling pathways. Kinases and phosphatases play essential roles in transferring information between sensors and effectors under stress conditions. Several methods have been developed to analyze the phosphorylation mechanisms. Each method has advantages and disadvantages. In vitro kinase assay using recombinant proteins is a method to analyze kinase activities under simplified conditions. It is a good strategy to understand each mechanism one by one, although it is not always suitable to estimate the feature of complex machinery in vivo. In this chapter, the purification of recombinant proteins produced in Escherichia coli followed by assaying a kinase activity using radioactivity is described.
Collapse
Affiliation(s)
- Hiroaki Fujii
- Department of Life Technologies, University of Turku, Turku, Finland.
| |
Collapse
|
41
|
Kim H, Yang I, Lim SI. Streamlined construction of robust heteroprotein complexes by self-induced in-cell disulfide pairing. Int J Biol Macromol 2024; 254:127965. [PMID: 37944724 DOI: 10.1016/j.ijbiomac.2023.127965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Biomolecules and their functional subdomains are essential building blocks in the creation of multifunctional nanocomplexes. Methyl-binding domain protein 2 (MBD2) and p66α stand out as small α-helical motifs with an ability to self-assemble into a heterodimeric coiled-coil, making them promising building units. Yet, their practical use is hindered by rapid dissociation upon dilution. In this study, novel fusion tags, MBD2 and p66α variants, were developed to covalently link during co-expression in E. coli SHuffle. Through strategic placement of cysteine at each α-helix's terminus, intracellular crosslinking occurred with high specificity and yield, facilitated by preserved α-helical interactions. This instant disulfide bonding in the oxidative cytoplasm of E. coli SHuffle efficiently overcame the need for inefficient in vitro oxidation and protein extraction prone to creating non-specific adducts and suboptimal bioprocesses. In contrast to their wild-type counterparts, the GFP-mCherry protein complex cross-linked by the fusion tags maintained the heterodimeric state even under extensive dilution. The fusion tags, when combined with the E. coli SHuffle system, allowed for the streamlined co-expression of a stable protein complex through self-induced intracellular cysteine coupling. The approach demonstrated herein holds great promise for producing multifunctional and robust heteroprotein complexes.
Collapse
Affiliation(s)
- Hyunji Kim
- Department of Chemical Engineering, Pukyong National University, Yongso-ro 45, Nam-gu, Busan, Republic of Korea
| | - Iji Yang
- Department of Chemical Engineering, Pukyong National University, Yongso-ro 45, Nam-gu, Busan, Republic of Korea
| | - Sung In Lim
- Department of Chemical Engineering, Pukyong National University, Yongso-ro 45, Nam-gu, Busan, Republic of Korea.
| |
Collapse
|
42
|
Martinez-Martin I, Crousilles A, Ochoa JP, Velazquez-Carreras D, Mortensen SA, Herrero-Galan E, Delgado J, Dominguez F, Garcia-Pavia P, de Sancho D, Wilmanns M, Alegre-Cebollada J. Titin domains with reduced core hydrophobicity cause dilated cardiomyopathy. Cell Rep 2023; 42:113490. [PMID: 38052212 DOI: 10.1016/j.celrep.2023.113490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/28/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
The underlying genetic defect in most cases of dilated cardiomyopathy (DCM), a common inherited heart disease, remains unknown. Intriguingly, many patients carry single missense variants of uncertain pathogenicity targeting the giant protein titin, a fundamental sarcomere component. To explore the deleterious potential of these variants, we first solved the wild-type and mutant crystal structures of I21, the titin domain targeted by pathogenic variant p.C3575S. Although both structures are remarkably similar, the reduced hydrophobicity of deeply buried position 3575 strongly destabilizes the mutant domain, a scenario supported by molecular dynamics simulations and by biochemical assays that show no disulfide involving C3575. Prompted by these observations, we have found that thousands of similar hydrophobicity-reducing variants associate specifically with DCM. Hence, our results imply that titin domain destabilization causes DCM, a conceptual framework that not only informs pathogenicity assessment of gene variants but also points to therapeutic strategies counterbalancing protein destabilization.
Collapse
Affiliation(s)
- Ines Martinez-Martin
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain.
| | - Audrey Crousilles
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, 22607 Hamburg, Germany
| | - Juan Pablo Ochoa
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro Majadahonda, IDIPHIM, CIBERCV, 28222 Madrid, Spain; Health in Code, 15008 A Coruña, Spain
| | | | - Simon A Mortensen
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, 22607 Hamburg, Germany
| | - Elias Herrero-Galan
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Javier Delgado
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Fernando Dominguez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro Majadahonda, IDIPHIM, CIBERCV, 28222 Madrid, Spain
| | - Pablo Garcia-Pavia
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro Majadahonda, IDIPHIM, CIBERCV, 28222 Madrid, Spain
| | - David de Sancho
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, UPV/EHU, 20018 Donostia-San Sebastian, Euskadi, Spain; Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastian, Euskadi, Spain
| | - Matthias Wilmanns
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, 22607 Hamburg, Germany
| | | |
Collapse
|
43
|
Hong X, Liu X, Su B, Lin J. Improved Antimicrobial Activity of Bovine Lactoferrin Peptide (LFcinB) Based on Rational Design. Protein J 2023; 42:633-644. [PMID: 37568054 DOI: 10.1007/s10930-023-10142-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2023] [Indexed: 08/13/2023]
Abstract
Bovine lactoferrin peptide (LFcinB), as an antimicrobial peptide, is expected to be an alternative of antibiotics owing to its broad-spectrum antimicrobial activity and specific mechanism. However, the weak antimicrobial activity, high hemolysis, and poor stability of LFcinB limited its applications in the field of biomedicine, food and agriculture. In order to improve the antimicrobial activity of LFcinB, five mutants were designed rationally, of which mutant LF4 (M10W/P16R/A24L) showed highest antimicrobial activity. The bioinformatics analysis indicated that the improved antimicrobial activity of LF4 was related to its increased cations, higher amphiphilicity and the extension of the β-sheet in the structure. These studies will highlight the important role of bioinformatic tools in designing ideal biopeptides and lay a foundation for further development of antimicrobial peptides.
Collapse
Affiliation(s)
- Xiaokun Hong
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, Fujian, China
| | - Xueqian Liu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, Fujian, China
| | - Bingmei Su
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, Fujian, China.
| | - Juan Lin
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, Fujian, China.
| |
Collapse
|
44
|
Ahuja R, Kaur A, Kumari G, Kumar A, Kumar S, Roy AK, Majumdar T. Enhanced expression and solubility of main protease (Mpro) of SARS-CoV-2 from E. coli. Protein Expr Purif 2023; 211:106337. [PMID: 37453569 DOI: 10.1016/j.pep.2023.106337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/28/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
The main protease (Mpro) of SARS-CoV-2 is a essential enzyme that facilitates viral transcription and replication. Furthermore, the conservation of Mpro across different variants and its non-overlapping nature with human proteases make it an appealing target for therapeutic interventions against SARS-CoV-2. Multiple inhibitors specifically target Mpro to mitigate the infection caused by SARS-CoV-2. In the current study, successful cloning and expression of SARS-CoV-2 Mpro were achieved using two E. coli hosts, namely BL21-DE3 and BL21-DE3-RIL. By optimizing the conditions for induction, the expression of Mpro in the soluble fraction of E. coli was improved. Subsequently, Mpro was purified using affinity chromatography, yielding significantly higher quantities from the BL21-DE3-RIL strain compared to the BL21-DE3 strain, with the former producing nearly twice as much as the latter. The purified Mpro was further characterized by mass spectrometry, fluorescence spectroscopy and circular dichroism (CD). Through fluorescence quenching studies, it was discovered that both GC376 and chitosan, which are inhibitors of Mpro, induced structural changes in the purified Mpro protein. This indicates that the protein retained its functional activity even after being expressed in a bacterial host. Further, FRET-based assay highlighted that the enzymatic activity of Mpro was significantly reduced in presence of both GC376 and chitosan. Consequently, the utilization of optimal conditions and the BL21-DE3-RIL bacterial host facilitates the cost-effective production of Mpro on a large scale, enabling high yields. This production approach can be applied for the screening of potent therapeutic drugs, making it a valuable resource for drug development endeavors.
Collapse
Affiliation(s)
- Rahul Ahuja
- National Institute of Immunology, New Delhi, 110067, India.
| | | | - Geetika Kumari
- National Institute of Immunology, New Delhi, 110067, India
| | - Amit Kumar
- National Institute of Immunology, New Delhi, 110067, India
| | - Santosh Kumar
- National Institute of Immunology, New Delhi, 110067, India
| | - Atul Kumar Roy
- National Institute of Immunology, New Delhi, 110067, India
| | | |
Collapse
|
45
|
Lappöhn CA, Oestreich AM, Stei R, Weber LG, Maerz L, Wolff MW. Process intensification for the production of a C-tagged antimicrobial peptide in Escherichia coli - First steps toward a platform technology. J Biosci Bioeng 2023; 136:358-365. [PMID: 37770299 DOI: 10.1016/j.jbiosc.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 09/30/2023]
Abstract
The production of antimicrobial peptides/proteins (AMPs) in sufficient quantities for clinical evaluation is challenging because complex peptides are unsuitable for chemical synthesis, natural sources have low yields, and heterologous systems often have low expression levels or require product-specific process adaptations. Here we describe the production of a complex AMP, the insect metalloproteinase inhibitor (IMPI), by adding a C-terminal C-tag to increase the yield compared to the unmodified peptide. We used a design of experiments approach for process intensification in Escherichia coli Rosetta-gami 2(DE3)pLysS cells and achieved a yield of 260 mg L-1, which is up to 30-fold higher than previously reported. The C-tag also enhanced product purity but had no effect on IMPI activity, making tag removal unnecessary and therefore simplifying process analytics and downstream processing. We have confirmed that the C-tag is compatible with the peptide and could form the basis of a platform technology for the expression, purification and detection of diverse AMPs produced in E. coli.
Collapse
Affiliation(s)
- Carolin A Lappöhn
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr. 14, 35390 Giessen, Germany
| | - Arne M Oestreich
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr. 14, 35390 Giessen, Germany
| | - Robin Stei
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr. 14, 35390 Giessen, Germany
| | - Linus G Weber
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr. 14, 35390 Giessen, Germany
| | - Lea Maerz
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr. 14, 35390 Giessen, Germany
| | - Michael W Wolff
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr. 14, 35390 Giessen, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany.
| |
Collapse
|
46
|
Alias FL, Nezhad NG, Normi YM, Ali MSM, Budiman C, Leow TC. Recent Advances in Overexpression of Functional Recombinant Lipases. Mol Biotechnol 2023; 65:1737-1749. [PMID: 36971996 DOI: 10.1007/s12033-023-00725-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023]
Abstract
Heterologous functional expression of the recombinant lipases is typically a bottleneck due to the expression in the insoluble fraction as inclusion bodies (IBs) which are in inactive form. Due to the importance of lipases in various industrial applications, many investigations have been conducted to discover suitable approaches to obtain functional lipase or increase the expressed yield in the soluble fraction. The utilization of the appropriate prokaryotic and eukaryotic expression systems, along with the suitable vectors, promoters, and tags, has been recognized as a practical approach. One of the most powerful strategies to produce bioactive lipases is using the molecular chaperones co-expressed along with the target protein's genes into the expression host to produce the lipase in soluble fraction as a bioactive form. The refolding of expressed lipase from IBs (inactive) is another practical strategy which is usually carried out through chemical and physical methods. Based on recent investigations, the current review simultaneously highlights strategies to express the bioactive lipases and recover the bioactive lipases from the IBs in insoluble form.
Collapse
Affiliation(s)
- Fatin Liyana Alias
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Nima Ghahremani Nezhad
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Yahaya M Normi
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Cahyo Budiman
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
47
|
Kind L, Driver M, Raasakka A, Onck PR, Njølstad PR, Arnesen T, Kursula P. Structural properties of the HNF-1A transactivation domain. Front Mol Biosci 2023; 10:1249939. [PMID: 37908230 PMCID: PMC10613711 DOI: 10.3389/fmolb.2023.1249939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/26/2023] [Indexed: 11/02/2023] Open
Abstract
Hepatocyte nuclear factor 1α (HNF-1A) is a transcription factor with important gene regulatory roles in pancreatic β-cells. HNF1A gene variants are associated with a monogenic form of diabetes (HNF1A-MODY) or an increased risk for type 2 diabetes. While several pancreatic target genes of HNF-1A have been described, a lack of knowledge regarding the structure-function relationships in HNF-1A prohibits a detailed understanding of HNF-1A-mediated gene transcription, which is important for precision medicine and improved patient care. Therefore, we aimed to characterize the understudied transactivation domain (TAD) of HNF-1A in vitro. We present a bioinformatic approach to dissect the TAD sequence, analyzing protein structure, sequence composition, sequence conservation, and the existence of protein interaction motifs. Moreover, we developed the first protocol for the recombinant expression and purification of the HNF-1A TAD. Small-angle X-ray scattering and synchrotron radiation circular dichroism suggested a disordered conformation for the TAD. Furthermore, we present functional data on HNF-1A undergoing liquid-liquid phase separation, which is in line with in silico predictions and may be of biological relevance for gene transcriptional processes in pancreatic β-cells.
Collapse
Affiliation(s)
- Laura Kind
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Mark Driver
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
| | - Arne Raasakka
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Patrick R. Onck
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
| | - Pål Rasmus Njølstad
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Section of Endocrinology and Metabolism, Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Surgery, Haukeland University Hospital, Bergen, Norway
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
48
|
Elsayed A, Jaber N, Al-Remawi M, Abu-Salah K. From cell factories to patients: Stability challenges in biopharmaceuticals manufacturing and administration with mitigation strategies. Int J Pharm 2023; 645:123360. [PMID: 37657507 DOI: 10.1016/j.ijpharm.2023.123360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/19/2023] [Accepted: 08/30/2023] [Indexed: 09/03/2023]
Abstract
Active ingredients of biopharmaceuticals consist of a wide array of biomolecular structures, including those of enzymes, monoclonal antibodies, nucleic acids, and recombinant proteins. Recently, these molecules have dominated the pharmaceutical industry owing to their safety and efficacy. However, their manufacturing is hindered by high cost, inadequate batch-to-batch equivalence, inherent instability, and other quality issues. This article is an up-to-date review of the challenges encountered during different stages of biopharmaceutical production and mitigation of problems arising during their development, formulation, manufacturing, and administration. It is a broad overview discussion of stability issues encountered during product life cycle i.e., upstream processing (aggregation, solubility, host cell proteins, color change), downstream bioprocessing (aggregation, fragmentation), formulation, manufacturing, and delivery to patients.
Collapse
Affiliation(s)
- Amani Elsayed
- College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Nisrein Jaber
- Faculty of Pharmacy, Al Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Mayyas Al-Remawi
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman 1196, Jordan.
| | - Khalid Abu-Salah
- King Saud Bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Department of Nanomedicine, Riyadh, Saudi Arabia
| |
Collapse
|
49
|
Le NTP, Phan TTP, Truong TTT, Schumann W, Nguyen HD. N-terminal LysSN-His-tag improves the production of intracellular recombinant protein in Bacillus subtilis. Cell Biochem Funct 2023; 41:823-832. [PMID: 37515537 DOI: 10.1002/cbf.3832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/31/2023]
Abstract
Choosing fusion tags to enhance the recombinant protein levels in the cytoplasm of Bacillus subtilis has been limited. Our previous study demonstrated that His-tag at the N-terminus could increase the expression levels of the low-expression gene egfp, while significantly reducing the high-expression genes gfp+ and bgaB in the cytoplasm of B. subtilis. In this study, we aimed to prove the potential of a fusion tag, the combination of the N-terminal domain of B. subtilis lysyl tRNA synthetase (LysSN) and His-tag with varying numbers of histidine (6xHis, 8xHis, 10xHis) by investigating their effects on the expression levels of egfp, gfp+ and bgaB in B. subtilis. For the low-expression gene, LysSN-xHis-tag could enhance the fluorescent intensity of EGFP 23.5 times higher than EGFP without a fusion tag, and 1.5 times higher than that fused with only His-tag. For high-expression genes, the expression level of BgaB and GFP+ was 2.9 and 12.5 times higher than that of His-tag, respectively. The number of histidines in LysSN-xHis-tag did not influence the expression levels of the high-expression genes but affected the expression levels of the low-expression gene.
Collapse
Affiliation(s)
- Ngan Thi Phuong Le
- Center for Bioscience and Biotechnology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Trang Thi Phuong Phan
- Center for Bioscience and Biotechnology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
- Laboratory of Molecular Biotechnology, University of Science, Ho Chi Minh City, Vietnam
| | - Tuom Thi Tinh Truong
- Center for Bioscience and Biotechnology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
- Cancer Research Laboratory, University of Science, Ho Chi Minh City, Vietnam
| | - Wolfgang Schumann
- Center for Bioscience and Biotechnology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Hoang Duc Nguyen
- Center for Bioscience and Biotechnology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|
50
|
Jones MA, Butler ND, Anderson SR, Wirt SA, Govil I, Lyu X, Fang Y, Kunjapur AM. Discovery of L-threonine transaldolases for enhanced biosynthesis of beta-hydroxylated amino acids. Commun Biol 2023; 6:929. [PMID: 37696954 PMCID: PMC10495429 DOI: 10.1038/s42003-023-05293-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023] Open
Abstract
Beta-hydroxy non-standard amino acids (β-OH-nsAAs) have utility as small molecule drugs, precursors for beta-lactone antibiotics, and building blocks for polypeptides. While the L-threonine transaldolase (TTA), ObiH, is a promising enzyme for β-OH-nsAA biosynthesis, little is known about other natural TTA sequences. We ascertained the specificity of the TTA enzyme class more comprehensively by characterizing 12 candidate TTA gene products across a wide range (20-80%) of sequence identities. We found that addition of a solubility tag substantially enhanced the soluble protein expression level within this difficult-to-express enzyme family. Using an optimized coupled enzyme assay, we identified six TTAs, including one with less than 30% sequence identity to ObiH that exhibits broader substrate scope, two-fold higher L-Threonine (L-Thr) affinity, and five-fold faster initial reaction rates under conditions tested. We harnessed these TTAs for first-time bioproduction of β-OH-nsAAs with handles for bio-orthogonal conjugation from supplemented precursors during aerobic fermentation of engineered Escherichia coli, where we observed that higher affinity of the TTA for L-Thr increased titer. Overall, our work reveals an unexpectedly high level of sequence diversity and broad substrate specificity in an enzyme family whose members play key roles in the biosynthesis of therapeutic natural products that could benefit from chemical diversification.
Collapse
Affiliation(s)
- Michaela A Jones
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Neil D Butler
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Shelby R Anderson
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Sean A Wirt
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Ishika Govil
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Xinyi Lyu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Yinzhi Fang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Aditya M Kunjapur
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|