1
|
Patel RR, Vidyasagar, Singh SK, Singh M. Recent advances in inhibitor development and metabolic targeting in tuberculosis therapy. Microb Pathog 2025; 203:107515. [PMID: 40154850 DOI: 10.1016/j.micpath.2025.107515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/12/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Despite being a preventable and treatable disease, tuberculosis (TB) remained the second leading infectious cause of death globally in 2022, surpassed only by COVID-19. The death rate from TB is influenced by numerous factors that include antibiotic drug resistance, noncompliance with chemotherapy by patients, concurrent infection with the human immunodeficiency virus, delayed diagnosis, varying effectiveness of the Bacille-Calmette-Guerin vaccine, and other factors. Even with the recent advances in our knowledge of Mycobacterium tuberculosis and the accessibility of advanced genomic tools such as proteomics and microarrays, alongside modern methodologies, the pursuit of next-generation inhibitors targeting distinct or multiple molecular pathways remains essential to combat the increasing antimicrobial resistance. Hence, there is an urgent need to identify and develop new drug targets against TB that have unique mechanisms. Novel therapeutic targets might encompass gene products associated with various aspects of mycobacterial biology, such as transcription, metabolism, cell wall formation, persistence, and pathogenesis. This review focuses on the present state of our knowledge and comprehension regarding various inhibitors targeting key metabolic pathways of M. tuberculosis. The discussion encompasses small molecule, synthetic, peptide, natural product and microbial inhibitors and navigates through promising candidates in different phases of clinical development. Additionally, we explore the crucial enzymes and targets involved in metabolic pathways, highlighting their inhibitors. The metabolic pathways explored include nucleotide synthesis, mycolic acid synthesis, peptidoglycan biosynthesis, and energy metabolism. Furthermore, advancements in genetic approaches like CRISPRi and conditional expression systems are discussed, focusing on their role in elucidating gene essentiality and vulnerability in Mycobacteria.
Collapse
Affiliation(s)
- Ritu Raj Patel
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Vidyasagar
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Sudhir Kumar Singh
- Virus Research and Diagnostic Laboratory, Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Meenakshi Singh
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
2
|
Singpanomchai N, Ratthawongjirakul P. The CRISPR-dCas9 interference system suppresses inhA gene expression in Mycobacterium smegmatis. Sci Rep 2024; 14:26116. [PMID: 39478003 PMCID: PMC11525817 DOI: 10.1038/s41598-024-77442-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
CRISPR-dead Cas9 interference (CRISPRi) has become a valuable tool for precise gene regulation. In this study, CRISPRi was designed to target the inhA gene of Mycobacterium smegmatis (Msm), a gene necessary for mycolic acid synthesis. Our findings revealed that sgRNA2 induced with 100 ng/ml aTc achieved over 90% downregulation of inhA gene expression and inhibited bacterial viability by approximately 1,000-fold. Furthermore, CRISPRi enhanced the susceptibility of M. smegmatis to isoniazid and rifampicin, which are both 50% and 90% lower than those of the wild-type strain or other strains, respectively. This study highlights the ability of CRISPRi to silence the inhA gene, which impacts bacterial viability and drug susceptibility. The findings provide valuable insights into the utility of CRISPRi as an alternative tool for gene regulation. CRISPRi might be further assessed for its synergistic effect with current anti-tuberculosis drugs and its possible implications for combating mycobacterial infections, especially drug-resistant tuberculosis.
Collapse
Affiliation(s)
- Nuntita Singpanomchai
- Inter-Department Program of Biomedical Sciences, Faculty of Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Panan Ratthawongjirakul
- Center of Excellence for Innovative Diagnosis of Antimicrobial Resistance, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
3
|
Yuliani Y, Ilmi AFN, Petsong S, Sawatpanich A, Chirakul S, Chatsuwan T, Palaga T, Rotcheewaphan S. CRISPR Interference-Mediated Silencing of the mmpL3 Gene in Mycobacterium smegmatis and Its Impact on Antimicrobial Susceptibility. Antibiotics (Basel) 2024; 13:483. [PMID: 38927150 PMCID: PMC11200583 DOI: 10.3390/antibiotics13060483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND The discovery of novel therapeutic agents, especially those targeting mycobacterial membrane protein large 3 (mmpL3), has shown promise. In this study, the CRISPR interference-Streptococcus thermophilus nuclease-deactivated Cas9 (CRISPRi-dCas9Sth1) system was utilized to suppress mmpL3 expression in Mycobacterium smegmatis, and its impacts on susceptibility to antimicrobial agents were evaluated. METHODS The repression of the mmpL3 gene was confirmed by RT-qPCR. The essentiality, growth curve, viability, and antimicrobial susceptibility of the mmpL3 knockdown strain were investigated. RESULTS mmpL3 silencing was achieved by utilizing 0.5 and 1 ng/mL anhydrotetracycline (ATc), resulting in reductions in the expression of 60.4% and 74.4%, respectively. mmpL3 silencing led to a significant decrease in bacterial viability when combined with one-half of the minimal inhibitory concentrations (MICs) of rifampicin, rifabutin, ceftriaxone, or isoniazid, along with 0.1 or 0.5 ng/mL ATc (p < 0.05). However, no significant difference was observed for clarithromycin or amikacin. CONCLUSIONS The downregulation of the mmpL3 gene in mycobacteria was achieved through the use of CRISPRi-dCas9Sth1, resulting in growth deficiencies and resensitization to certain antimicrobial agents. The impact was dependent upon the level of gene expression.
Collapse
Affiliation(s)
- Yonita Yuliani
- Medical Sciences, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (Y.Y.); (A.F.N.I.)
| | - Azizah Fitriana Nurul Ilmi
- Medical Sciences, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (Y.Y.); (A.F.N.I.)
| | - Suthidee Petsong
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (S.P.); (A.S.); (S.C.); (T.C.)
| | - Ajcharaporn Sawatpanich
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (S.P.); (A.S.); (S.C.); (T.C.)
| | - Sunisa Chirakul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (S.P.); (A.S.); (S.C.); (T.C.)
- Center of Excellence in Antimicrobial Stewardship, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (S.P.); (A.S.); (S.C.); (T.C.)
- Center of Excellence in Antimicrobial Stewardship, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Suwatchareeporn Rotcheewaphan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (S.P.); (A.S.); (S.C.); (T.C.)
- Center of Excellence in Antimicrobial Stewardship, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
4
|
Bosch B, DeJesus MA, Schnappinger D, Rock JM. Weak links: Advancing target-based drug discovery by identifying the most vulnerable targets. Ann N Y Acad Sci 2024; 1535:10-19. [PMID: 38595325 DOI: 10.1111/nyas.15139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Mycobacterium tuberculosis remains the most common infectious killer worldwide despite decades of antitubercular drug development. Effectively controlling the tuberculosis (TB) pandemic will require innovation in drug discovery. In this review, we provide a brief overview of the two main approaches to discovering new TB drugs-phenotypic screens and target-based drug discovery-and outline some of the limitations of each method. We then explore recent advances in genetic tools that aim to overcome some of these limitations. In particular, we highlight a novel metric to prioritize essential targets, termed vulnerability. Stratifying targets based on their vulnerability presents new opportunities for future target-based drug discovery campaigns.
Collapse
Affiliation(s)
- Barbara Bosch
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, New York, USA
| | - Michael A DeJesus
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, New York, USA
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA
| | - Jeremy M Rock
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, New York, USA
| |
Collapse
|
5
|
Winkler KR, Mizrahi V, Warner DF, De Wet TJ. High-throughput functional genomics: A (myco)bacterial perspective. Mol Microbiol 2023; 120:141-158. [PMID: 37278255 PMCID: PMC10953053 DOI: 10.1111/mmi.15103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/06/2023] [Accepted: 05/21/2023] [Indexed: 06/07/2023]
Abstract
Advances in sequencing technologies have enabled unprecedented insights into bacterial genome composition and dynamics. However, the disconnect between the rapid acquisition of genomic data and the (much slower) confirmation of inferred genetic function threatens to widen unless techniques for fast, high-throughput functional validation can be applied at scale. This applies equally to Mycobacterium tuberculosis, the leading infectious cause of death globally and a pathogen whose genome, despite being among the first to be sequenced two decades ago, still contains many genes of unknown function. Here, we summarize the evolution of bacterial high-throughput functional genomics, focusing primarily on transposon (Tn)-based mutagenesis and the construction of arrayed mutant libraries in diverse bacterial systems. We also consider the contributions of CRISPR interference as a transformative technique for probing bacterial gene function at scale. Throughout, we situate our analysis within the context of functional genomics of mycobacteria, focusing specifically on the potential to yield insights into M. tuberculosis pathogenicity and vulnerabilities for new drug and regimen development. Finally, we offer suggestions for future approaches that might be usefully applied in elucidating the complex cellular biology of this major human pathogen.
Collapse
Affiliation(s)
- Kristy R. Winkler
- Molecular Mycobacteriology Research Unit and DSI/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular MedicineUniversity of Cape TownRondeboschSouth Africa
| | - Valerie Mizrahi
- Molecular Mycobacteriology Research Unit and DSI/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular MedicineUniversity of Cape TownRondeboschSouth Africa
- Wellcome Centre for Infectious Diseases Research in AfricaUniversity of Cape TownRondeboschSouth Africa
| | - Digby F. Warner
- Molecular Mycobacteriology Research Unit and DSI/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular MedicineUniversity of Cape TownRondeboschSouth Africa
- Wellcome Centre for Infectious Diseases Research in AfricaUniversity of Cape TownRondeboschSouth Africa
| | - Timothy J. De Wet
- Molecular Mycobacteriology Research Unit and DSI/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular MedicineUniversity of Cape TownRondeboschSouth Africa
- Wellcome Centre for Infectious Diseases Research in AfricaUniversity of Cape TownRondeboschSouth Africa
- Department of Integrative Biomedical SciencesUniversity of Cape TownRondeboschSouth Africa
| |
Collapse
|
6
|
Li M, Patel HV, Cognetta AB, Smith TC, Mallick I, Cavalier JF, Previti ML, Canaan S, Aldridge BB, Cravatt BF, Seeliger JC. Identification of cell wall synthesis inhibitors active against Mycobacterium tuberculosis by competitive activity-based protein profiling. Cell Chem Biol 2022; 29:883-896.e5. [PMID: 34599873 PMCID: PMC8964833 DOI: 10.1016/j.chembiol.2021.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/08/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022]
Abstract
The identification and validation of a small molecule's targets is a major bottleneck in the discovery process for tuberculosis antibiotics. Activity-based protein profiling (ABPP) is an efficient tool for determining a small molecule's targets within complex proteomes. However, how target inhibition relates to biological activity is often left unexplored. Here, we study the effects of 1,2,3-triazole ureas on Mycobacterium tuberculosis (Mtb). After screening ∼200 compounds, we focus on 4 compounds that form a structure-activity series. The compound with negligible activity reveals targets, the inhibition of which is functionally less relevant for Mtb growth and viability, an aspect not addressed in other ABPP studies. Biochemistry, computational docking, and morphological analysis confirms that active compounds preferentially inhibit serine hydrolases with cell wall and lipid metabolism functions and that disruption of the cell wall underlies biological activity. Our findings show that ABPP identifies the targets most likely relevant to a compound's antibacterial activity.
Collapse
Affiliation(s)
- Michael Li
- Department of Pharmacological Sciences and Immunology Stony Brook University, Stony Brook, NY 11790, USA
| | - Hiren V Patel
- Department of Microbiology and Immunology Stony Brook University, Stony Brook, NY 11790, USA
| | - Armand B Cognetta
- Department of Chemistry, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Trever C Smith
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111, USA
| | - Ivy Mallick
- Aix-Marseille Université, CNRS, LISM, IMM FR3479, 13402 Marseille, France
| | | | - Mary L Previti
- Department of Pharmacological Sciences and Immunology Stony Brook University, Stony Brook, NY 11790, USA
| | - Stéphane Canaan
- Aix-Marseille Université, CNRS, LISM, IMM FR3479, 13402 Marseille, France
| | - Bree B Aldridge
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111, USA
| | - Benjamin F Cravatt
- Department of Chemistry, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jessica C Seeliger
- Department of Pharmacological Sciences and Immunology Stony Brook University, Stony Brook, NY 11790, USA.
| |
Collapse
|
7
|
Bertram R, Neumann B, Schuster CF. Status quo of tet regulation in bacteria. Microb Biotechnol 2022; 15:1101-1119. [PMID: 34713957 PMCID: PMC8966031 DOI: 10.1111/1751-7915.13926] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 11/27/2022] Open
Abstract
The tetracycline repressor (TetR) belongs to the most popular, versatile and efficient transcriptional regulators used in bacterial genetics. In the tetracycline (Tc) resistance determinant tet(B) of transposon Tn10, tetR regulates the expression of a divergently oriented tetA gene that encodes a Tc antiporter. These components of Tn10 and of other natural or synthetic origins have been used for tetracycline-dependent gene regulation (tet regulation) in at least 40 bacterial genera. Tet regulation serves several purposes such as conditional complementation, depletion of essential genes, modulation of artificial genetic networks, protein overexpression or the control of gene expression within cell culture or animal infection models. Adaptations of the promoters employed have increased tet regulation efficiency and have made this system accessible to taxonomically distant bacteria. Variations of TetR, different effector molecules and mutated DNA binding sites have enabled new modes of gene expression control. This article provides a current overview of tet regulation in bacteria.
Collapse
Affiliation(s)
- Ralph Bertram
- Institute of Clinical Hygiene, Medical Microbiology and InfectiologyParacelsus Medical UniversityProf.‐Ernst‐Nathan‐Straße 1Nuremberg90419Germany
| | - Bernd Neumann
- Institute of Clinical Hygiene, Medical Microbiology and InfectiologyParacelsus Medical UniversityProf.‐Ernst‐Nathan‐Straße 1Nuremberg90419Germany
| | - Christopher F. Schuster
- Department of Infectious DiseasesDivision of Nosocomial Pathogens and Antibiotic ResistancesRobert Koch InstituteBurgstraße 37Wernigerode38855Germany
| |
Collapse
|
8
|
Yang Y, Xu Y, Yue Y, Wang H, Cui Y, Pan M, Zhang X, Zhang L, Li H, Xu M, Tang Y, Chen S. Investigate Natural Product Indolmycin and the Synthetically Improved Analogue Toward Antimycobacterial Agents. ACS Chem Biol 2022; 17:39-53. [PMID: 34908399 DOI: 10.1021/acschembio.1c00394] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Indolmycin (IND) is a microbial natural product that selectively inhibits bacterial tryptophanyl-tRNA synthetase (TrpRS). The tryptophan biosynthesis pathway was recently shown to be an important target for developing new antibacterial agents against Mycobacterium tuberculosis (Mtb). We investigated the antibacterial activity of IND against several mycobacterial model strains. A TrpRS biochemical assay was developed to analyze a library of synthetic IND analogues. The 4″-methylated IND compound, Y-13, showed improved anti-Mtb activity with a minimum inhibitory concentration (MIC) of 1.88 μM (∼0.5 μg/mL). The MIC increased significantly when overexpression of TrpRS was induced in the genetically engineered surrogate M. bovis BCG. The cocrystal structure of Mtb TrpRS complexed with IND and ATP has revealed that the amino acid pocket is in a state between the open form of apo protein and the closed complex with the reaction intermediate. In whole-cell-based experiments, we studied the combination effect of Y-13 paired with different antibacterial agents. We evaluated the killing kinetics, the frequency of resistance to INDs, and the mode of resistance of IND-resistant mycobacteria by genome sequencing. The synergistic interaction of Y-13 with the TrpE allosteric inhibitor, indole propionic acid, suggests that prospective IND analogues could shut down tryptophan biosynthesis and protein biosynthesis in pathogens, leading to a new class of antibiotics. Finally, we discuss a strategy to expand the genome mining of antibiotic-producing microbes specifically for antimycobacterial development.
Collapse
Affiliation(s)
- Yuhong Yang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Yuanyuan Xu
- Global Health Drug Discovery Institute, Haidian, Beijing 100192, China
| | - Yuan Yue
- Ministry of Education Key Laboratory of Protein Sciences, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Heng Wang
- Global Health Drug Discovery Institute, Haidian, Beijing 100192, China
| | - Yumeng Cui
- Global Health Drug Discovery Institute, Haidian, Beijing 100192, China
| | - Miaomiao Pan
- Global Health Drug Discovery Institute, Haidian, Beijing 100192, China
| | - Xi Zhang
- Global Health Drug Discovery Institute, Haidian, Beijing 100192, China
| | - Lin Zhang
- Global Health Drug Discovery Institute, Haidian, Beijing 100192, China
| | - Haitao Li
- Ministry of Education Key Laboratory of Protein Sciences, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Min Xu
- Global Health Drug Discovery Institute, Haidian, Beijing 100192, China
| | - Yefeng Tang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Shawn Chen
- Global Health Drug Discovery Institute, Haidian, Beijing 100192, China
| |
Collapse
|
9
|
Perveen S, Sharma R. Screening approaches and therapeutic targets: The two driving wheels of tuberculosis drug discovery. Biochem Pharmacol 2022; 197:114906. [PMID: 34990594 DOI: 10.1016/j.bcp.2021.114906] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 12/21/2022]
Abstract
Tuberculosis (TB) is an infectious disease, infecting a quarter of world's population. Drug resistant TB further exacerbates the grim scenario of the drying TB drug discovery pipeline. The limited arsenal to fight TB presses the need for thorough efforts for identifying promising hits to combat the disease. The review highlights the efforts in the field of tuberculosis drug discovery, with an emphasis on massive drug screening campaigns for identifying novel hits against Mtb in both industry and academia. As an intracellular pathogen, mycobacteria reside in a complicated intracellular environment with multiple factors at play. Here, we outline various strategies employed in an effort to mimic the intracellular milieu for bringing the screening models closer to the actual settings. The review also focuses on the novel targets and pathways that could aid in target-based drug discovery in TB. The recent high throughput screening efforts resulting in the identification of potent hits against Mtb has been summarized in this article. There is a pressing need for effective screening strategies and approaches employing innovative tools and recent technologies; including nanotechnology, gene-editing tools such as CRISPR-cas system, host-directed bacterial killing and high content screening to augment the TB drug discovery pipeline with safer and shorter drug regimens.
Collapse
Affiliation(s)
- Summaya Perveen
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rashmi Sharma
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
10
|
Structure-Aware Mycobacterium tuberculosis Functional Annotation Uncloaks Resistance, Metabolic, and Virulence Genes. mSystems 2021; 6:e0067321. [PMID: 34726489 PMCID: PMC8562490 DOI: 10.1128/msystems.00673-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Accurate and timely functional genome annotation is essential for translating basic pathogen research into clinically impactful advances. Here, through literature curation and structure-function inference, we systematically update the functional genome annotation of Mycobacterium tuberculosis virulent type strain H37Rv. First, we systematically curated annotations for 589 genes from 662 publications, including 282 gene products absent from leading databases. Second, we modeled 1,711 underannotated proteins and developed a semiautomated pipeline that captured shared function between 400 protein models and structural matches of known function on Protein Data Bank, including drug efflux proteins, metabolic enzymes, and virulence factors. In aggregate, these structure- and literature-derived annotations update 940/1,725 underannotated H37Rv genes and generate hundreds of functional hypotheses. Retrospectively applying the annotation to a recent whole-genome transposon mutant screen provided missing function for 48% (13/27) of underannotated genes altering antibiotic efficacy and 33% (23/69) required for persistence during mouse tuberculosis (TB) infection. Prospective application of the protein models enabled us to functionally interpret novel laboratory generated pyrazinamide (PZA)-resistant mutants of unknown function, which implicated the emerging coenzyme A depletion model of PZA action in the mutants’ PZA resistance. Our findings demonstrate the functional insight gained by integrating structural modeling and systematic literature curation, even for widely studied microorganisms. Functional annotations and protein structure models are available at https://tuberculosis.sdsu.edu/H37Rv in human- and machine-readable formats. IMPORTANCEMycobacterium tuberculosis, the primary causative agent of tuberculosis, kills more humans than any other infectious bacterium. Yet 40% of its genome is functionally uncharacterized, leaving much about the genetic basis of its resistance to antibiotics, capacity to withstand host immunity, and basic metabolism yet undiscovered. Irregular literature curation for functional annotation contributes to this gap. We systematically curated functions from literature and structural similarity for over half of poorly characterized genes, expanding the functionally annotated Mycobacterium tuberculosis proteome. Applying this updated annotation to recent in vivo functional screens added functional information to dozens of clinically pertinent proteins described as having unknown function. Integrating the annotations with a prospective functional screen identified new mutants resistant to a first-line TB drug, supporting an emerging hypothesis for its mode of action. These improvements in functional interpretation of clinically informative studies underscore the translational value of this functional knowledge. Structure-derived annotations identify hundreds of high-confidence candidates for mechanisms of antibiotic resistance, virulence factors, and basic metabolism and other functions key in clinical and basic tuberculosis research. More broadly, they provide a systematic framework for improving prokaryotic reference annotations.
Collapse
|
11
|
Dutta E, DeJesus MA, Ruecker N, Zaveri A, Koh EI, Sassetti CM, Schnappinger D, Ioerger TR. An improved statistical method to identify chemical-genetic interactions by exploiting concentration-dependence. PLoS One 2021; 16:e0257911. [PMID: 34597304 PMCID: PMC8486102 DOI: 10.1371/journal.pone.0257911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 09/13/2021] [Indexed: 11/18/2022] Open
Abstract
Chemical-genetics (C-G) experiments can be used to identify interactions between inhibitory compounds and bacterial genes, potentially revealing the targets of drugs, or other functionally interacting genes and pathways. C-G experiments involve constructing a library of hypomorphic strains with essential genes that can be knocked-down, treating it with an inhibitory compound, and using high-throughput sequencing to quantify changes in relative abundance of individual mutants. The hypothesis is that, if the target of a drug or other genes in the same pathway are present in the library, such genes will display an excessive fitness defect due to the synergy between the dual stresses of protein depletion and antibiotic exposure. While assays at a single drug concentration are susceptible to noise and can yield false-positive interactions, improved detection can be achieved by requiring that the synergy between gene and drug be concentration-dependent. We present a novel statistical method based on Linear Mixed Models, called CGA-LMM, for analyzing C-G data. The approach is designed to capture the dependence of the abundance of each gene in the hypomorph library on increasing concentrations of drug through slope coefficients. To determine which genes represent candidate interactions, CGA-LMM uses a conservative population-based approach in which genes with negative slopes are considered significant only if they are outliers with respect to the rest of the population (assuming that most genes in the library do not interact with a given inhibitor). We applied the method to analyze 3 independent hypomorph libraries of M. tuberculosis for interactions with antibiotics with anti-tubercular activity, and we identify known target genes or expected interactions for 7 out of 9 drugs where relevant interacting genes are known.
Collapse
Affiliation(s)
- Esha Dutta
- Department of Computer Science, Texas A&M University, College Station, TX, United States of America
| | - Michael A. DeJesus
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, United States of America
| | - Nadine Ruecker
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, United States of America
| | - Anisha Zaveri
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, United States of America
| | - Eun-Ik Koh
- Department of Microbiology & Physiological Systems, University of Massachusetts Medical School, Worchester, MA, United States of America
| | - Christopher M. Sassetti
- Department of Microbiology & Physiological Systems, University of Massachusetts Medical School, Worchester, MA, United States of America
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, United States of America
| | - Thomas R. Ioerger
- Department of Computer Science, Texas A&M University, College Station, TX, United States of America
| |
Collapse
|
12
|
Evans JC, Murugesan D, Post JM, Mendes V, Wang Z, Nahiyaan N, Lynch SL, Thompson S, Green SR, Ray PC, Hess J, Spry C, Coyne AG, Abell C, Boshoff HIM, Wyatt PG, Rhee KY, Blundell TL, Barry CE, Mizrahi V. Targeting Mycobacterium tuberculosis CoaBC through Chemical Inhibition of 4'-Phosphopantothenoyl-l-cysteine Synthetase (CoaB) Activity. ACS Infect Dis 2021; 7:1666-1679. [PMID: 33939919 PMCID: PMC8205227 DOI: 10.1021/acsinfecdis.0c00904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 02/02/2023]
Abstract
Coenzyme A (CoA) is a ubiquitous cofactor present in all living cells and estimated to be required for up to 9% of intracellular enzymatic reactions. Mycobacterium tuberculosis (Mtb) relies on its own ability to biosynthesize CoA to meet the needs of the myriad enzymatic reactions that depend on this cofactor for activity. As such, the pathway to CoA biosynthesis is recognized as a potential source of novel tuberculosis drug targets. In prior work, we genetically validated CoaBC as a bactericidal drug target in Mtb in vitro and in vivo. Here, we describe the identification of compound 1f, a small molecule inhibitor of the 4'-phosphopantothenoyl-l-cysteine synthetase (PPCS; CoaB) domain of the bifunctional Mtb CoaBC, and show that this compound displays on-target activity in Mtb. Compound 1f was found to inhibit CoaBC uncompetitively with respect to 4'-phosphopantothenate, the substrate for the CoaB-catalyzed reaction. Furthermore, metabolomic profiling of wild-type Mtb H37Rv following exposure to compound 1f produced a signature consistent with perturbations in pantothenate and CoA biosynthesis. As the first report of a direct small molecule inhibitor of Mtb CoaBC displaying target-selective whole-cell activity, this study confirms the druggability of CoaBC and chemically validates this target.
Collapse
Affiliation(s)
- Joanna C. Evans
- MRC/NHLS/UCT
Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence
for Biomedical TB Research & Wellcome Centre for Infectious Diseases
Research in Africa, Institute of Infectious Disease and Molecular
Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, South Africa
| | - Dinakaran Murugesan
- Drug
Discovery Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, Scotland, U.K.
| | - John M. Post
- Drug
Discovery Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, Scotland, U.K.
| | - Vitor Mendes
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.
| | - Zhe Wang
- Department
of Microbiology and Immunology, Weill Cornell
Medical College, New York, New York 10065, United States
| | - Navid Nahiyaan
- Department
of Microbiology and Immunology, Weill Cornell
Medical College, New York, New York 10065, United States
| | - Sasha L. Lynch
- MRC/NHLS/UCT
Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence
for Biomedical TB Research & Wellcome Centre for Infectious Diseases
Research in Africa, Institute of Infectious Disease and Molecular
Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, South Africa
| | - Stephen Thompson
- Drug
Discovery Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, Scotland, U.K.
| | - Simon R. Green
- Drug
Discovery Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, Scotland, U.K.
| | - Peter C. Ray
- Drug
Discovery Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, Scotland, U.K.
| | - Jeannine Hess
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Christina Spry
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Anthony G. Coyne
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Chris Abell
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Helena I. M. Boshoff
- Tuberculosis
Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease,
National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Paul G. Wyatt
- Drug
Discovery Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, Scotland, U.K.
| | - Kyu Y. Rhee
- Department
of Microbiology and Immunology, Weill Cornell
Medical College, New York, New York 10065, United States
| | - Tom L. Blundell
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.
| | - Clifton E. Barry
- MRC/NHLS/UCT
Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence
for Biomedical TB Research & Wellcome Centre for Infectious Diseases
Research in Africa, Institute of Infectious Disease and Molecular
Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, South Africa
- Tuberculosis
Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease,
National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Valerie Mizrahi
- MRC/NHLS/UCT
Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence
for Biomedical TB Research & Wellcome Centre for Infectious Diseases
Research in Africa, Institute of Infectious Disease and Molecular
Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, South Africa
| |
Collapse
|
13
|
Fricke PM, Klemm A, Bott M, Polen T. On the way toward regulatable expression systems in acetic acid bacteria: target gene expression and use cases. Appl Microbiol Biotechnol 2021; 105:3423-3456. [PMID: 33856535 PMCID: PMC8102297 DOI: 10.1007/s00253-021-11269-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/24/2021] [Accepted: 04/04/2021] [Indexed: 01/06/2023]
Abstract
Acetic acid bacteria (AAB) are valuable biocatalysts for which there is growing interest in understanding their basics including physiology and biochemistry. This is accompanied by growing demands for metabolic engineering of AAB to take advantage of their properties and to improve their biomanufacturing efficiencies. Controlled expression of target genes is key to fundamental and applied microbiological research. In order to get an overview of expression systems and their applications in AAB, we carried out a comprehensive literature search using the Web of Science Core Collection database. The Acetobacteraceae family currently comprises 49 genera. We found overall 6097 publications related to one or more AAB genera since 1973, when the first successful recombinant DNA experiments in Escherichia coli have been published. The use of plasmids in AAB began in 1985 and till today was reported for only nine out of the 49 AAB genera currently described. We found at least five major expression plasmid lineages and a multitude of further expression plasmids, almost all enabling only constitutive target gene expression. Only recently, two regulatable expression systems became available for AAB, an N-acyl homoserine lactone (AHL)-inducible system for Komagataeibacter rhaeticus and an L-arabinose-inducible system for Gluconobacter oxydans. Thus, after 35 years of constitutive target gene expression in AAB, we now have the first regulatable expression systems for AAB in hand and further regulatable expression systems for AAB can be expected. KEY POINTS: • Literature search revealed developments and usage of expression systems in AAB. • Only recently 2 regulatable plasmid systems became available for only 2 AAB genera. • Further regulatable expression systems for AAB are in sight.
Collapse
Affiliation(s)
- Philipp Moritz Fricke
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Angelika Klemm
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Michael Bott
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Tino Polen
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
14
|
Yuan T, Werman JM, Sampson NS. The pursuit of mechanism of action: uncovering drug complexity in TB drug discovery. RSC Chem Biol 2021; 2:423-440. [PMID: 33928253 PMCID: PMC8081351 DOI: 10.1039/d0cb00226g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 12/23/2020] [Indexed: 12/21/2022] Open
Abstract
Whole cell-based phenotypic screens have become the primary mode of hit generation in tuberculosis (TB) drug discovery during the last two decades. Different drug screening models have been developed to mirror the complexity of TB disease in the laboratory. As these culture conditions are becoming more and more sophisticated, unraveling the drug target and the identification of the mechanism of action (MOA) of compounds of interest have additionally become more challenging. A good understanding of MOA is essential for the successful delivery of drug candidates for TB treatment due to the high level of complexity in the interactions between Mycobacterium tuberculosis (Mtb) and the TB drug used to treat the disease. There is no single "standard" protocol to follow and no single approach that is sufficient to fully investigate how a drug restrains Mtb. However, with the recent advancements in -omics technologies, there are multiple strategies that have been developed generally in the field of drug discovery that have been adapted to comprehensively characterize the MOAs of TB drugs in the laboratory. These approaches have led to the successful development of preclinical TB drug candidates, and to a better understanding of the pathogenesis of Mtb infection. In this review, we describe a plethora of efforts based upon genetic, metabolomic, biochemical, and computational approaches to investigate TB drug MOAs. We assess these different platforms for their strengths and limitations in TB drug MOA elucidation in the context of Mtb pathogenesis. With an emphasis on the essentiality of MOA identification, we outline the unmet needs in delivering TB drug candidates and provide direction for further TB drug discovery.
Collapse
Affiliation(s)
- Tianao Yuan
- Department of Chemistry, Stony Brook UniversityStony BrookNY 11794-3400USA+1-631-632-5738+1-631-632-7952
| | - Joshua M. Werman
- Department of Chemistry, Stony Brook UniversityStony BrookNY 11794-3400USA+1-631-632-5738+1-631-632-7952
| | - Nicole S. Sampson
- Department of Chemistry, Stony Brook UniversityStony BrookNY 11794-3400USA+1-631-632-5738+1-631-632-7952
| |
Collapse
|
15
|
Dalberto PF, de Souza EV, Abbadi BL, Neves CE, Rambo RS, Ramos AS, Macchi FS, Machado P, Bizarro CV, Basso LA. Handling the Hurdles on the Way to Anti-tuberculosis Drug Development. Front Chem 2020; 8:586294. [PMID: 33330374 PMCID: PMC7710551 DOI: 10.3389/fchem.2020.586294] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022] Open
Abstract
The global epidemic of tuberculosis (TB) imposes a sustained epidemiologic vigilance and investments in research by governments. Mycobacterium tuberculosis, the main causative agent of TB in human beings, is a very successful pathogen, being the main cause of death in the population among infectious agents. In 2018, ~10 million individuals were contaminated with this bacillus and became ill with TB, and about 1.2 million succumbed to the disease. Most of the success of the M. tuberculosis to linger in the population comes from its ability to persist in an asymptomatic latent state into the host and, in fact, the majority of the individuals are unaware of being contaminated. Even though TB is a treatable disease and is curable in most cases, the treatment is lengthy and laborious. In addition, the rise of resistance to first-line anti-TB drugs elicits a response from TB research groups to discover new chemical entities, preferably with novel mechanisms of action. The pathway to find a new TB drug, however, is arduous and has many barriers that are difficult to overcome. Fortunately, several approaches are available today to be pursued by scientists interested in anti-TB drug development, which goes from massively testing chemical compounds against mycobacteria, to discovering new molecular targets by genetic manipulation. This review presents some difficulties found along the TB drug development process and illustrates different approaches that might be used to try to identify new molecules or targets that are able to impair M. tuberculosis survival.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Luiz A. Basso
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF) and Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| |
Collapse
|
16
|
Fricke PM, Link T, Gätgens J, Sonntag C, Otto M, Bott M, Polen T. A tunable L-arabinose-inducible expression plasmid for the acetic acid bacterium Gluconobacter oxydans. Appl Microbiol Biotechnol 2020; 104:9267-9282. [PMID: 32974745 PMCID: PMC7567684 DOI: 10.1007/s00253-020-10905-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 01/21/2023]
Abstract
Abstract The acetic acid bacterium (AAB) Gluconobacter oxydans incompletely oxidizes a wide variety of carbohydrates and is therefore used industrially for oxidative biotransformations. For G. oxydans, no system was available that allows regulatable plasmid-based expression. We found that the l-arabinose-inducible PBAD promoter and the transcriptional regulator AraC from Escherichia coli MC4100 performed very well in G. oxydans. The respective pBBR1-based plasmids showed very low basal expression of the reporters β-glucuronidase and mNeonGreen, up to 480-fold induction with 1% l-arabinose, and tunability from 0.1 to 1% l-arabinose. In G. oxydans 621H, l-arabinose was oxidized by the membrane-bound glucose dehydrogenase, which is absent in the multi-deletion strain BP.6. Nevertheless, AraC-PBAD performed similar in both strains in the exponential phase, indicating that a gene knockout is not required for application of AraC-PBAD in wild-type G. oxydans strains. However, the oxidation product arabinonic acid strongly contributed to the acidification of the growth medium in 621H cultures during the stationary phase, which resulted in drastically decreased reporter activities in 621H (pH 3.3) but not in BP.6 cultures (pH 4.4). These activities could be strongly increased quickly solely by incubating stationary cells in d-mannitol-free medium adjusted to pH 6, indicating that the reporters were hardly degraded yet rather became inactive. In a pH-controlled bioreactor, these reporter activities remained high in the stationary phase (pH 6). Finally, we created a multiple cloning vector with araC-PBAD based on pBBR1MCS-5. Together, we demonstrated superior functionality and good tunability of an AraC-PBAD system in G. oxydans that could possibly also be used in other AAB. Key points • We found the AraC-PBADsystem from E. coli MC4100 was well tunable in G. oxydans. • In the absence of AraC orl-arabinose, expression from PBADwas extremely low. • This araC-PBADsystem could also be fully functional in other acetic acid bacteria. Electronic supplementary material The online version of this article (10.1007/s00253-020-10905-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Philipp Moritz Fricke
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Tobias Link
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Jochem Gätgens
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Christiane Sonntag
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Maike Otto
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Michael Bott
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Tino Polen
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
| |
Collapse
|
17
|
Transcriptional Inhibition of the F 1F 0-Type ATP Synthase Has Bactericidal Consequences on the Viability of Mycobacteria. Antimicrob Agents Chemother 2020; 64:AAC.00492-20. [PMID: 32423951 DOI: 10.1128/aac.00492-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/11/2020] [Indexed: 12/16/2022] Open
Abstract
Bedaquiline, an inhibitor of the mycobacterial ATP synthase, has revolutionized the treatment of Mycobacterium tuberculosis infection. Although a potent inhibitor, it is characterized by poorly understood delayed time-dependent bactericidal activity. Here, we demonstrate that in contrast to bedaquiline, the transcriptional inhibition of the ATP synthase in M. tuberculosis and Mycobacterium smegmatis has rapid bactericidal activity. These results validate the mycobacterial ATP synthase as a drug target with the potential for rapid bactericidal activity.
Collapse
|
18
|
Heterogeneous activation of persulfate by Ag doped BiFeO3 composites for tetracycline degradation. J Colloid Interface Sci 2020; 566:33-45. [DOI: 10.1016/j.jcis.2020.01.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/03/2020] [Accepted: 01/04/2020] [Indexed: 12/22/2022]
|
19
|
Biosynthesis of Galactan in Mycobacterium tuberculosis as a Viable TB Drug Target? Antibiotics (Basel) 2020; 9:antibiotics9010020. [PMID: 31935842 PMCID: PMC7168186 DOI: 10.3390/antibiotics9010020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 12/27/2019] [Accepted: 01/02/2020] [Indexed: 12/21/2022] Open
Abstract
While target-based drug design has proved successful in several therapeutic areas, this approach has not yet provided compelling outcomes in the field of antibacterial agents. This statement remains especially true for the development of novel therapeutic interventions against tuberculosis, an infectious disease that is among the top ten leading causes of death globally. Mycobacterial galactan is an important component of the protective cell wall core of the tuberculosis pathogen and it could provide a promising target for the design of new drugs. In this review, we summarize the current knowledge on galactan biosynthesis in Mycobacterium tuberculosis, including landmark findings that led to the discovery and understanding of three key enzymes in this pathway: UDP-galactose mutase, and galactofuranosyl transferases GlfT1 and GlfT2. Moreover, we recapitulate the efforts aimed at their inhibition. The predicted common transition states of the three enzymes provide the lucrative possibility of multitargeting in pharmaceutical development, a favourable property in the mitigation of drug resistance. We believe that a tight interplay between target-based computational approaches and experimental methods will result in the development of original inhibitors that could serve as the basis of a new generation of drugs against tuberculosis.
Collapse
|
20
|
Derailing the aspartate pathway of Mycobacterium tuberculosis to eradicate persistent infection. Nat Commun 2019; 10:4215. [PMID: 31527595 PMCID: PMC6746716 DOI: 10.1038/s41467-019-12224-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 08/28/2019] [Indexed: 11/17/2022] Open
Abstract
A major constraint for developing new anti-tuberculosis drugs is the limited number of validated targets that allow eradication of persistent infections. Here, we uncover a vulnerable component of Mycobacterium tuberculosis (Mtb) persistence metabolism, the aspartate pathway. Rapid death of threonine and homoserine auxotrophs points to a distinct susceptibility of Mtb to inhibition of this pathway. Combinatorial metabolomic and transcriptomic analysis reveals that inability to produce threonine leads to deregulation of aspartate kinase, causing flux imbalance and lysine and DAP accumulation. Mtb’s adaptive response to this metabolic stress involves a relief valve-like mechanism combining lysine export and catabolism via aminoadipate. We present evidence that inhibition of the aspartate pathway at different branch-point enzymes leads to clearance of chronic infections. Together these findings demonstrate that the aspartate pathway in Mtb relies on a combination of metabolic control mechanisms, is required for persistence, and represents a target space for anti-tuberculosis drug development. Amino acid biosynthetic pathways are an attractive alternative to treat chronic infections such as Mycobacterium tuberculosis (Mtb). Here, the authors investigate the metabolic response to disruption of the aspartate pathway in persistent Mtb and identify essential enzymes as potential new targets for drug development.
Collapse
|
21
|
Utilization of CRISPR Interference To Validate MmpL3 as a Drug Target in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2019; 63:AAC.00629-19. [PMID: 31160289 DOI: 10.1128/aac.00629-19] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 05/29/2019] [Indexed: 12/14/2022] Open
Abstract
There is an urgent need for novel therapeutics to treat Mycobacterium tuberculosis infections. Genetic strategies for validating novel targets are available, yet their time-consuming nature limits their utility. Here, using MmpL3 as a model target, we report on the application of mycobacterial CRISPR interference for the rapid validation of target essentiality and compound mode of action. This strategy has the potential to rapidly accelerate tuberculosis drug discovery.
Collapse
|
22
|
Rittershaus ESC, Baek SH, Krieger IV, Nelson SJ, Cheng YS, Nambi S, Baker RE, Leszyk JD, Shaffer SA, Sacchettini JC, Sassetti CM. A Lysine Acetyltransferase Contributes to the Metabolic Adaptation to Hypoxia in Mycobacterium tuberculosis. Cell Chem Biol 2018; 25:1495-1505.e3. [PMID: 30318462 PMCID: PMC6309504 DOI: 10.1016/j.chembiol.2018.09.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 05/14/2018] [Accepted: 09/12/2018] [Indexed: 01/07/2023]
Abstract
Upon inhibition of respiration, which occurs in hypoxic or nitric oxide-containing host microenvironments, Mycobacterium tuberculosis (Mtb) adopts a non-replicating "quiescent" state and becomes relatively unresponsive to antibiotic treatment. We used comprehensive mutant fitness analysis to identify regulatory and metabolic pathways that are essential for the survival of quiescent Mtb. This genetic study identified a protein acetyltransferase (Mt-Pat/Rv0998) that promoted survival and altered the flux of carbon from oxidative to reductive tricarboxylic acid (TCA) reactions. Reductive TCA requires malate dehydrogenase (MDH) and maintains the redox state of the NAD+/NADH pool. Genetic or chemical inhibition of MDH resulted in rapid cell death in both hypoxic cultures and in murine lung. These phenotypic data, in conjunction with significant structural differences between human and mycobacterial MDH enzymes that could be exploited for drug development, suggest a new strategy for eradicating quiescent bacteria.
Collapse
Affiliation(s)
- Emily S. C. Rittershaus
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School. Worcester, MA. 01650 USA
| | - Seung-Hun Baek
- Department of Microbiology, Yonsei University College of Medicine, Seoul Korea
| | - Inna V. Krieger
- Department of Biochemistry and Biophysics. Texas A&M University. College Station, TX. 77843 USA
| | - Samantha J. Nelson
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School. Worcester, MA. 01650 USA
| | - Yu-Shan Cheng
- Department of Biochemistry and Biophysics. Texas A&M University. College Station, TX. 77843 USA
| | - Subhalaxmi Nambi
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School. Worcester, MA. 01650 USA
| | - Richard E. Baker
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School. Worcester, MA. 01650 USA
| | - John D. Leszyk
- Proteomics and Mass Spectrometry Facility, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA. 01650 USA
| | - Scott A. Shaffer
- Proteomics and Mass Spectrometry Facility, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA. 01650 USA
| | - James C. Sacchettini
- Department of Biochemistry and Biophysics. Texas A&M University. College Station, TX. 77843 USA
| | - Christopher M. Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School. Worcester, MA. 01650 USA
| |
Collapse
|
23
|
Dhiman R, Singh R. Recent advances for identification of new scaffolds and drug targets for Mycobacterium tuberculosis. IUBMB Life 2018; 70:905-916. [PMID: 29761628 DOI: 10.1002/iub.1863] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/07/2018] [Indexed: 02/06/2023]
Abstract
Tuberculosis (TB) is a leading cause of mortality and morbidity with an estimated 1.7 billion people latently infected with the pathogen worldwide. Clinically, TB infection presents itself as an asymptomatic infection, which gradually manifests to life threatening disease. The emergence of various drug resistant strains of Mycobacterium tuberculosis and lengthy duration of chemotherapy are major challenges in the field of TB drug development. Hence, there is an urgent need to develop scaffolds that possess a novel mechanism of action, can shorten the duration of therapy, and are active against both drug resistant and susceptible strains. In this review, we will discuss recent progress made in the field of TB drug development with emphasis on screening methods and drug targets from M. tuberculosis. The current review provides insights into mechanism of action of new scaffolds that are being evaluated in various stages of clinical trials. © 2018 IUBMB Life, 70(9):905-916, 2018.
Collapse
Affiliation(s)
- Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Ramandeep Singh
- Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, Haryana, India
| |
Collapse
|
24
|
Abstract
![]()
Current tuberculosis
(TB) drug development efforts are not sufficient
to end the global TB epidemic. Recent efforts have focused on the
development of whole-cell screening assays because biochemical, target-based
inhibitor screens during the last two decades have not delivered new
TB drugs. Mycobacterium tuberculosis (Mtb), the causative
agent of TB, encounters diverse microenvironments and can be found
in a variety of metabolic states in the human host. Due to the complexity
and heterogeneity of Mtb infection, no single model can fully recapitulate
the in vivo conditions in which Mtb is found in TB patients, and there
is no single “standard” screening condition to generate
hit compounds for TB drug development. However, current screening
assays have become more sophisticated as researchers attempt to mirror
the complexity of TB disease in the laboratory. In this review, we
describe efforts using surrogates and engineered strains of Mtb to
focus screens on specific targets. We explain model culture systems
ranging from carbon starvation to hypoxia, and combinations thereof,
designed to represent the microenvironment which Mtb encounters in
the human body. We outline ongoing efforts to model Mtb infection
in the lung granuloma. We assess these different models, their ability
to generate hit compounds, and needs for further TB drug development,
to provide direction for future TB drug discovery.
Collapse
Affiliation(s)
- Tianao Yuan
- Department of Chemistry, Stony Brook University , Stony Brook, New York 11794-3400, United States
| | - Nicole S Sampson
- Department of Chemistry, Stony Brook University , Stony Brook, New York 11794-3400, United States.,Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University , Stellenbosch 7600, South Africa
| |
Collapse
|
25
|
Mukherjee R, Chandra Pal A, Banerjee M. Enabling faster Go/No-Go decisions through secondary screens in anti-mycobacterial drug discovery. Tuberculosis (Edinb) 2017; 106:44-52. [PMID: 28802404 DOI: 10.1016/j.tube.2017.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/30/2017] [Accepted: 06/28/2017] [Indexed: 10/19/2022]
Abstract
Management of tuberculosis, already a global health emergency, is becoming increasingly challenging with extensive misuse of second line drugs and their inaccessibility to eighty percent of the eligible patients. Rising statistics of antimicrobial resistance underscores the need for a set of completely new and more effective class of compounds with novel mechanisms of action that can be administered in combination to replace and shorten the present intensive six months regimen. In this review, we stress on the importance and the successes of phenotypic screening for discovery of anti-mycobacterial compound and discuss the importance of performing secondary screens and counter screens to get early estimate on compound's potentials for a successful development. We also highlight the recent advances and the related caveats in the assays that have been developed and discuss new screening modalities that can be incorporated during hit-selection to gain a quick insight into the mechanism of action, thus enabling quicker decisions in a hit triage.
Collapse
Affiliation(s)
- Raju Mukherjee
- Division of Biology, Indian Institute of Science Education and Research, Karakambadi Road, Tirupati, 517507, India.
| | - Anup Chandra Pal
- Division of Biology, Indian Institute of Science Education and Research, Karakambadi Road, Tirupati, 517507, India
| | - Mousumi Banerjee
- Indian Institute of Technology, Tirupati, Renigunta Road, Tirupati, 517506, India
| |
Collapse
|
26
|
Emerging Approaches to Tuberculosis Drug Development: At Home in the Metabolome. Trends Pharmacol Sci 2017; 38:393-405. [PMID: 28169001 DOI: 10.1016/j.tips.2017.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 01/24/2023]
Abstract
Once considered a crowning achievement of modern drug development, tuberculosis (TB) chemotherapy has proven increasingly unable to keep pace with the spread of the pandemic and rise of drug resistance. Efforts to revive the TB drug development pipeline have, in the meantime, faltered. Closer analysis reveals key experimental deficiencies that have hindered our ability to 'reverse engineer' knowledge of antibiotic mechanisms into rational drug development. Here, we discuss the emerging potential of metabolomics; the systems level study of small molecule metabolites, to help overcome these gaps and serve as a unique biochemical bridge between the phenotypic properties of chemical compounds and biological targets.
Collapse
|
27
|
Korte J, Alber M, Trujillo CM, Syson K, Koliwer-Brandl H, Deenen R, Köhrer K, DeJesus MA, Hartman T, Jacobs WR, Bornemann S, Ioerger TR, Ehrt S, Kalscheuer R. Trehalose-6-Phosphate-Mediated Toxicity Determines Essentiality of OtsB2 in Mycobacterium tuberculosis In Vitro and in Mice. PLoS Pathog 2016; 12:e1006043. [PMID: 27936238 PMCID: PMC5148154 DOI: 10.1371/journal.ppat.1006043] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/04/2016] [Indexed: 01/13/2023] Open
Abstract
Trehalose biosynthesis is considered an attractive target for the development of antimicrobials against fungal, helminthic and bacterial pathogens including Mycobacterium tuberculosis. The most common biosynthetic route involves trehalose-6-phosphate (T6P) synthase OtsA and T6P phosphatase OtsB that generate trehalose from ADP/UDP-glucose and glucose-6-phosphate. In order to assess the drug target potential of T6P phosphatase, we generated a conditional mutant of M. tuberculosis allowing the regulated gene silencing of the T6P phosphatase gene otsB2. We found that otsB2 is essential for growth of M. tuberculosis in vitro as well as for the acute infection phase in mice following aerosol infection. By contrast, otsB2 is not essential for the chronic infection phase in mice, highlighting the substantial remodelling of trehalose metabolism during infection by M. tuberculosis. Blocking OtsB2 resulted in the accumulation of its substrate T6P, which appears to be toxic, leading to the self-poisoning of cells. Accordingly, blocking T6P production in a ΔotsA mutant abrogated otsB2 essentiality. T6P accumulation elicited a global upregulation of more than 800 genes, which might result from an increase in RNA stability implied by the enhanced neutralization of toxins exhibiting ribonuclease activity. Surprisingly, overlap with the stress response caused by the accumulation of another toxic sugar phosphate molecule, maltose-1-phosphate, was minimal. A genome-wide screen for synthetic lethal interactions with otsA identified numerous genes, revealing additional potential drug targets synergistic with OtsB2 suitable for combination therapies that would minimize the emergence of resistance to OtsB2 inhibitors. Trehalose biosynthesis is considered an attractive target for the development of new drugs against various microbial pathogens including Mycobacterium tuberculosis. In this human pathogen, two partially redundant pathways mediate trehalose biosynthesis. The OtsA-OtsB2 pathway, which dominates in culture, involves trehalose-6-phosphate (T6P) synthase OtsA and T6P phosphatase OtsB2. While OtsA is dispensable, OtsB2 is strictly essential for growth of M. tuberculosis. Using conditional gene silencing, we here show that essentiality of OtsB2 is linked to accumulation of its substrate T6P, which exhibits direct or indirect toxic effects. Regulated gene expression in vivo revealed that OtsB2 is required to establish an acute infection of M. tuberculosis in a mouse infection model, but is surprisingly fully dispensable during the chronic infection phase. This highlights that trehalose metabolism of M. tuberculosis is substantially remodelled during infection.
Collapse
Affiliation(s)
- Jan Korte
- Institute for Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Institute for Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Marina Alber
- Institute for Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Carolina M. Trujillo
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Karl Syson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, Norfolk, United Kingdom
| | - Hendrik Koliwer-Brandl
- Institute for Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - René Deenen
- Biological and Medical Research Center (BMFZ), Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Michael A. DeJesus
- Department of Computer Science, Texas A&M University, College Station, Texas, United States of America
| | - Travis Hartman
- Department of Microbiology and Immunology, Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - William R. Jacobs
- Department of Microbiology and Immunology, Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Stephen Bornemann
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, Norfolk, United Kingdom
| | - Thomas R. Ioerger
- Department of Computer Science, Texas A&M University, College Station, Texas, United States of America
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Rainer Kalscheuer
- Institute for Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Institute for Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
28
|
Evans JC, Trujillo C, Wang Z, Eoh H, Ehrt S, Schnappinger D, Boshoff HIM, Rhee KY, Barry CE, Mizrahi V. Validation of CoaBC as a Bactericidal Target in the Coenzyme A Pathway of Mycobacterium tuberculosis. ACS Infect Dis 2016; 2:958-968. [PMID: 27676316 PMCID: PMC5153693 DOI: 10.1021/acsinfecdis.6b00150] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
Mycobacterium tuberculosis relies on its own ability to biosynthesize coenzyme A to meet the
needs of the myriad enzymatic reactions that depend on this cofactor
for activity. As such, the essential pantothenate and coenzyme A biosynthesis
pathways have attracted attention as targets for tuberculosis drug
development. To identify the optimal step for coenzyme A pathway disruption
in M. tuberculosis, we constructed
and characterized a panel of conditional knockdown mutants in coenzyme
A pathway genes. Here, we report that silencing of coaBC was bactericidal in vitro, whereas silencing of panB, panC, or coaE was bacteriostatic
over the same time course. Silencing of coaBC was
likewise bactericidal in vivo, whether initiated at infection or during
either the acute or chronic stages of infection, confirming that CoaBC
is required for M. tuberculosis to grow and persist in mice and arguing against significant CoaBC
bypass via transport and assimilation of host-derived pantetheine
in this animal model. These results provide convincing genetic validation
of CoaBC as a new bactericidal drug target.
Collapse
Affiliation(s)
- Joanna C. Evans
- MRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, South Africa
| | - Carolina Trujillo
- Department of Microbiology
and Immunology, Weill Cornell Medical College, New York, New York 10065, United States
| | - Zhe Wang
- Department of Microbiology
and Immunology, Weill Cornell Medical College, New York, New York 10065, United States
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medical College, New York, New York 10065, United States
| | - Hyungjin Eoh
- Department of Microbiology
and Immunology, Weill Cornell Medical College, New York, New York 10065, United States
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medical College, New York, New York 10065, United States
| | - Sabine Ehrt
- Department of Microbiology
and Immunology, Weill Cornell Medical College, New York, New York 10065, United States
| | - Dirk Schnappinger
- Department of Microbiology
and Immunology, Weill Cornell Medical College, New York, New York 10065, United States
| | - Helena I. M. Boshoff
- Tuberculosis
Research Section, Laboratory of Clinical Infectious Diseases, National
Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Kyu Y. Rhee
- Department of Microbiology
and Immunology, Weill Cornell Medical College, New York, New York 10065, United States
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medical College, New York, New York 10065, United States
| | - Clifton E. Barry
- MRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, South Africa
- Tuberculosis
Research Section, Laboratory of Clinical Infectious Diseases, National
Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Valerie Mizrahi
- MRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, South Africa
| |
Collapse
|
29
|
Singh V, Dhar N, Pató J, Kolly GS, Korduláková J, Forbak M, Evans JC, Székely R, Rybniker J, Palčeková Z, Zemanová J, Santi I, Signorino-Gelo F, Rodrigues L, Vocat A, Covarrubias AS, Rengifo MG, Johnsson K, Mowbray S, Buechler J, Delorme V, Brodin P, Knott GW, Aínsa JA, Warner DF, Kéri G, Mikušová K, McKinney JD, Cole ST, Mizrahi V, Hartkoorn RC. Identification of aminopyrimidine-sulfonamides as potent modulators of Wag31-mediated cell elongation in mycobacteria. Mol Microbiol 2016; 103:13-25. [PMID: 27677649 DOI: 10.1111/mmi.13535] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2016] [Indexed: 12/01/2022]
Abstract
There is an urgent need to discover new anti-tubercular agents with novel mechanisms of action in order to tackle the scourge of drug-resistant tuberculosis. Here, we report the identification of such a molecule - an AminoPYrimidine-Sulfonamide (APYS1) that has potent, bactericidal activity against M. tuberculosis. Mutations in APYS1-resistant M. tuberculosis mapped exclusively to wag31, a gene that encodes a scaffolding protein thought to orchestrate cell elongation. Recombineering confirmed that a Gln201Arg mutation in Wag31 was sufficient to cause resistance to APYS1, however, neither overexpression nor conditional depletion of wag31 impacted M. tuberculosis susceptibility to this compound. In contrast, expression of the wildtype allele of wag31 in APYS1-resistant M. tuberculosis was dominant and restored susceptibility to APYS1 to wildtype levels. Time-lapse imaging and scanning electron microscopy revealed that APYS1 caused gross malformation of the old pole of M. tuberculosis, with eventual lysis. These effects resembled the morphological changes observed following transcriptional silencing of wag31 in M. tuberculosis. These data show that Wag31 is likely not the direct target of APYS1, but the striking phenotypic similarity between APYS1 exposure and genetic depletion of Wag31 in M. tuberculosis suggests that APYS1 might indirectly affect Wag31 through an as yet unknown mechanism.
Collapse
Affiliation(s)
- Vinayak Singh
- Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, MRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, South Africa
| | - Neeraj Dhar
- Microbiology and Microsystems, Global Health Institute, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - János Pató
- Vichem Chemie Research Ltd, Herman, Otto u. 15, Budapest, 1022, Hungary
| | - Gaëlle S Kolly
- Microbial Pathogenesis, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jana Korduláková
- Now at: 1st Department of Internal Medicine, University of Cologne, Cologne, Germany
| | - Martin Forbak
- Now at: 1st Department of Internal Medicine, University of Cologne, Cologne, Germany
| | - Joanna C Evans
- Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, MRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, South Africa
| | - Rita Székely
- Microbial Pathogenesis, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jan Rybniker
- Microbial Pathogenesis, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Now at: 1st Department of Internal Medicine, University of Cologne, Cologne, Germany
| | - Zuzana Palčeková
- Faculty of Natural Sciences, Department of Biochemistry, Comenius University in Bratislava, Bratislava, Slovakia
| | - Júlia Zemanová
- Faculty of Natural Sciences, Department of Biochemistry, Comenius University in Bratislava, Bratislava, Slovakia
| | - Isabella Santi
- Microbiology and Microsystems, Global Health Institute, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - François Signorino-Gelo
- Microbiology and Microsystems, Global Health Institute, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Liliana Rodrigues
- Departamento de Microbiología, Facultad de Medicina, Universidad de Zaragoza, and Fundación ARAID, Zaragoza, Spain; CIBERES, Instituto de Salud Carlos III, Madrid, Zaragoza, Spain
| | - Anthony Vocat
- Microbial Pathogenesis, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Adrian S Covarrubias
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Monica G Rengifo
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Kai Johnsson
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sherry Mowbray
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Joseph Buechler
- Alere (San Diego), Summer Ridge Road, San Diego, CA, 92121, USA
| | - Vincent Delorme
- Center for Infection and Immunity, Inserm U1019, CNRS UMR8204, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Priscille Brodin
- Center for Infection and Immunity, Inserm U1019, CNRS UMR8204, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Graham W Knott
- Interdisciplinary Centre for Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - José A Aínsa
- Departamento de Microbiología, Facultad de Medicina, Universidad de Zaragoza, and Fundación ARAID, Zaragoza, Spain; CIBERES, Instituto de Salud Carlos III, Madrid, Zaragoza, Spain
| | - Digby F Warner
- Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, MRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, South Africa
| | - György Kéri
- Vichem Chemie Research Ltd, Herman, Otto u. 15, Budapest, 1022, Hungary
| | - Katarína Mikušová
- Faculty of Natural Sciences, Department of Biochemistry, Comenius University in Bratislava, Bratislava, Slovakia
| | - John D McKinney
- Microbiology and Microsystems, Global Health Institute, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Stewart T Cole
- Microbial Pathogenesis, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Valerie Mizrahi
- Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, MRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, South Africa
| | - Ruben C Hartkoorn
- Microbial Pathogenesis, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
30
|
Mikušová K, Ekins S. Learning from the past for TB drug discovery in the future. Drug Discov Today 2016; 22:534-545. [PMID: 27717850 DOI: 10.1016/j.drudis.2016.09.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 09/25/2016] [Accepted: 09/28/2016] [Indexed: 12/14/2022]
Abstract
Tuberculosis drug discovery has shifted in recent years from a primarily target-based approach to one that uses phenotypic high-throughput screens. As examples of this, through our EU-funded FP7 collaborations, New Medicines for Tuberculosis was target-based and our more-recent More Medicines for Tuberculosis project predominantly used phenotypic screening. From these projects we have examples of success (DprE1) and failure (PimA) going from drug to target and from target to drug, respectively. It is clear that we still have much to learn about the drug targets and the complex effects of the drugs on Mycobacterium tuberculosis. We propose a more integrated approach that learns from earlier drug discovery efforts that could help to move drug discovery forward.
Collapse
Affiliation(s)
- Katarína Mikušová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Sean Ekins
- Collaborative Drug Discovery, Inc., 1633 Bayshore Highway, Suite 342, Burlingame, CA 94010, USA; Collaborations in Chemistry, 5616 Hilltop Needmore Road, Fuquay Varina, NC 27526, USA.
| |
Collapse
|
31
|
Singh V, Mizrahi V. Identification and validation of novel drug targets in Mycobacterium tuberculosis. Drug Discov Today 2016; 22:503-509. [PMID: 27649943 DOI: 10.1016/j.drudis.2016.09.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/28/2016] [Accepted: 09/12/2016] [Indexed: 10/21/2022]
Abstract
Tuberculosis (TB) is a global epidemic associated increasingly with resistance to first- and second-line antitubercular drugs. The magnitude of this global health threat underscores the urgent need to discover new antimycobacterial agents that have novel mechanisms of action (MOA). In this review, we highlight some of the key advances that have enabled the strengths of target-led and phenotypic approaches to TB drug discovery to be harnessed both independently and in combination. Critically, these promise to fuel the front-end of the TB drug pipeline with new, pharmacologically validated drug targets together with lead compounds that act on these targets.
Collapse
Affiliation(s)
- Vinayak Singh
- MRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, Anzio Road, Observatory 7925, South Africa.
| | - Valerie Mizrahi
- MRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, Anzio Road, Observatory 7925, South Africa
| |
Collapse
|