1
|
Krishnan JM, Roskin KM, Meeds HL, Blackard JT. Effect of fentanyl on HIV expression in peripheral blood mononuclear cells. Front Microbiol 2024; 15:1463441. [PMID: 39386369 PMCID: PMC11461324 DOI: 10.3389/fmicb.2024.1463441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Illicit drug use, particularly the synthetic opioid fentanyl, presents a significant global health challenge. Previous studies have shown that fentanyl enhances viral replication; yet, the mechanisms by which it affects HIV pathogenesis remain unclear. This study investigated the impact of fentanyl on HIV replication in CD4+ T lymphocytes. Methods CD4+ T lymphocytes from HIV-negative donors were activated, infected with HIVNL4-3, and treated with fentanyl. HIV proviral DNA and p24 antigen expression were quantified using real-time PCR and ELISA, respectively. Single-cell RNA libraries were analyzed to identify differentially expressed genes. Results Results indicated that fentanyl treatment increased HIV p24 expression and proviral DNA levels, and naltrexone mitigated these effects. Single-cell RNAseq analysis identified significantly altered gene expression in CD4+ T lymphocytes. Discussion The results of our findings suggest that fentanyl promotes HIV replication ex vivo, emphasizing the need for a deeper understanding of opioid-virus interactions to develop better treatment strategies for individuals with HIV and opioid use disorder.
Collapse
Affiliation(s)
- Janani Madhuravasal Krishnan
- Division of Digestive Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Krishna M. Roskin
- Divisions of Biomedical Informatics and Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Heidi L. Meeds
- Division of Digestive Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Jason T. Blackard
- Division of Digestive Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Center for Addiction Research, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
2
|
Malik JA, Affan Khan M, Lamba T, Adeel Zafar M, Nanda S, Owais M, Agrewala JN. Immunosuppressive effects of morphine on macrophage polarization and function. Eur J Pharmacol 2024; 975:176637. [PMID: 38729416 DOI: 10.1016/j.ejphar.2024.176637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Macrophages play a pivotal role in safeguarding against a broad spectrum of infections, from viral, bacterial, fungal to parasitic threats and contributing to the immune defense against cancer. While morphine's immunosuppressive effects on immune cells are extensively documented, a significant knowledge gap exists regarding its influence on macrophage polarization and differentiation. Hence, we conducted a study that unveils that prior exposure to morphine significantly impedes the differentiation of bone marrow cells into macrophages. Furthermore, the polarization of macrophages toward the M1 phenotype under M1-inducing conditions experiences substantial impairment, as evidenced by the diminished expression of CD80, CD86, CD40, iNOS, and MHCII. This correlates with reduced expression of M1 phenotypical markers such as iNOS, IL-1β, and IL-6, accompanied by noticeable morphological, size, and phagocytic alterations. Further, we also observed that morphine affected M2 macrophages. These findings emphasize the necessity for a more comprehensive understanding of the impact of morphine on compromising macrophage function and its potential ramifications for therapeutic approaches.
Collapse
Affiliation(s)
- Jonaid Ahmad Malik
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India
| | - Mohammad Affan Khan
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India
| | - Taruna Lamba
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India
| | - Mohammad Adeel Zafar
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India
| | - Sidhanta Nanda
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India
| | - Mohammad Owais
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Javed N Agrewala
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India.
| |
Collapse
|
3
|
Madhuravasal Krishnan J, Kong L, Karns R, Medvedovic M, Sherman KE, Blackard JT. The Synthetic Opioid Fentanyl Increases HIV Replication and Chemokine Co-Receptor Expression in Lymphocyte Cell Lines. Viruses 2023; 15:1027. [PMID: 37113007 PMCID: PMC10145664 DOI: 10.3390/v15041027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND In the United States, the illicit use of synthetic opioids such as fentanyl has led to a serious public health crisis. Synthetic opioids are known to enhance viral replication and to suppress immunologic responses, but their effects on HIV pathogenesis remain unclear. Thus, we examined the impact of fentanyl on HIV-susceptible and HIV-infected cell types. METHODS TZM-bl and HIV-infected lymphocyte cells were incubated with fentanyl at varying concentrations. Expression levels of the CXCR4 and CCR5 chemokine receptors and HIV p24 antigen were quantified with ELISA. HIV proviral DNA was quantified using SYBR RT-PCR. Cell viability was detected with the MTT assay. RNAseq was performed to characterize cellular gene regulation in the presence of fentanyl. RESULTS Fentanyl enhanced expression of both chemokine receptor levels in a dose-dependent manner in HIV-susceptible and infected cell lines. Similarly, fentanyl induced viral expression in HIV-exposed TZM-bl cells and in HIV-infected lymphocyte cell lines. Multiple genes associated with apoptosis, antiviral/interferon response, chemokine signaling, and NFκB signaling were differentially regulated. CONCLUSIONS Synthetic opioid fentanyl impacts HIV replication and chemokine co-receptor expression. Increased virus levels suggest that opioid use may increase the likelihood of transmission and accelerate disease progression.
Collapse
Affiliation(s)
- Janani Madhuravasal Krishnan
- Division of Digestive Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (J.M.K.)
| | - Ling Kong
- Division of Digestive Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (J.M.K.)
| | - Rebekah Karns
- Digestive Health Center, Cincinnati Children’s Hospital, Cincinnati, OH 45229, USA
| | - Mario Medvedovic
- Department of Environmental & Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Kenneth E. Sherman
- Division of Digestive Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (J.M.K.)
- Center for Addiction Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Jason T. Blackard
- Division of Digestive Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (J.M.K.)
- Center for Addiction Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
4
|
Yu PC, Hao CY, Fan YZ, Liu D, Qiao YF, Yao JB, Li CZ, Yu Y. Altered Membrane Expression and Function of CD11b Play a Role in the Immunosuppressive Effects of Morphine on Macrophages at the Nanomolar Level. Pharmaceuticals (Basel) 2023; 16:282. [PMID: 37259426 PMCID: PMC9963077 DOI: 10.3390/ph16020282] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 11/17/2023] Open
Abstract
Morphine, one of the most efficacious analgesics, is effective in severe pain, especially in patients with concomitant painful cancers. The clinical use of morphine may be accompanied by increased immunosuppression, susceptibility to infection and postoperative tumor metastatic recurrence, and the specific mechanisms and clinical strategies to alleviate this suppression remain to be investigated. Expression of CD11b is closely associated with the macrophage phagocytosis of xenobiotic particles, bacteria or tumor cells. Here, we find that morphine at 0.1-10 nM levels inhibited CD11b expression and function on macrophages via a μ-opioid receptor (MOR)-dependent mechanism, thereby reducing macrophage phagocytosis of tumor cells, a process that can be reversed by thymopentin (TP5), a commonly used immune-enhancing adjuvant in clinical practice. By knocking down or overexpressing MOR on macrophages and using naloxone, an antagonist of the MOR receptor, and LA1, a molecule that promotes macrophage CD11b activation, we suggest that morphine may regulate macrophage phagocytosis by inhibiting the surface expression and function of macrophage CD11b through the membrane expression and activation of MOR. The CD47/SIRPα axis, which is engaged in macrophage-tumor immune escape, was not significantly affected by morphine. Notably, TP5, when combined with morphine, reversed the inhibition of macrophage phagocytosis by morphine through mechanisms that promote membrane expression of CD11b and modulate its downstream signaling (e.g., NOS2, IFNG, IL1B and TNFA, as well as AGR1, PDGFB, IL6, STAT3, and MYC). Thus, altered membrane expression and function of CD11b may mediate the inhibition of macrophage phagocytosis by therapeutic doses of morphine, and the reversal of this process by TP5 may provide an effective palliative option for clinical immunosuppression by morphine.
Collapse
Affiliation(s)
- Peng-Cheng Yu
- School of Basic Medicine and Clinical Pharmacy and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Cui-Yun Hao
- School of Basic Medicine and Clinical Pharmacy and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ying-Zhe Fan
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Di Liu
- School of Basic Medicine and Clinical Pharmacy and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yi-Fan Qiao
- School of Basic Medicine and Clinical Pharmacy and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jia-Bao Yao
- School of Basic Medicine and Clinical Pharmacy and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Chang-Zhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China
| | - Ye Yu
- School of Basic Medicine and Clinical Pharmacy and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
5
|
Zhang J, Liu W, Shi L, Liu X, Wang M, Li W, Yu D, Wang Y, Zhang J, Yun K, Yan J. The Effects of Drug Addiction and Detoxification on the Human Oral Microbiota. Microbiol Spectr 2023; 11:e0396122. [PMID: 36722952 PMCID: PMC10100366 DOI: 10.1128/spectrum.03961-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/08/2022] [Indexed: 02/02/2023] Open
Abstract
Drug addiction can powerfully and chronically damage human health. Detoxification contributes to health recovery of the body. It is well established that drug abuse is associated with poor oral health in terms of dental caries and periodontal diseases. We supposed that drug addiction and detoxification might have significant effects on the oral microbiota. To test the hypothesis, we assessed the effects of drug (heroin and methylamphetamine) addiction/detoxification on the oral microbiota based on 16S rRNA gene sequencing by an observational investigation, including 495 saliva samples from participants. The oral microbial compositions differed between non-users, current and former drug users. Lower alpha diversities were observed in current drug users, with no significant differences between non-users and former drug users. Heroin and METH addiction can cause consistent variations in several specific phyla, such as the enrichment of Acidobacteria and depletion of Proteobacteria and Tenericutes. Current drug users had significantly lower relative abundances of Neisseria subflava and Haemophilus parainfluenzae compared to non-users and former drug users. The result of random forest prediction model suggested that the oral microbiota has a powerful classification potential for distinguishing current drug users from non-users and former drug users. A cooccurrence network analysis showed that current drug users had more complex oral microbial networks and lower functional modularity. Overall, our study suggested that drug addiction may damage the balance of the oral microbiota. These results may have benefits for further understanding the effects of addiction-related oral microbiota on the health of drug users and promoting the microbiota to serve as a potential tool for accurate forensic identification. IMPORTANCE Drug addiction has serious negative consequences for human health and public security. The evidence indicates that drug abuse can cause poor oral health. In the current study, we observed that drug addiction caused oral microbial dysbiosis. Detoxication have positive effects on the recovery of oral microbial community structures to some extent. Understanding the effects of drug addiction and detoxification on oral microbial communities will promote a more rational approach for recovering the oral function and health of drug users. Furthermore, specific microbial species might be considered biomarkers that could provide information regarding drug abuse status for saliva left at crime scenes. To the best of our knowledge, this is the first report on the role of the oral microbiota in drug addiction and detoxification. Our findings give new clues to understand the association between drug addiction and oral health.
Collapse
Affiliation(s)
- Jun Zhang
- Shanxi Medical University, Taiyuan, People's Republic of China
| | - Wenli Liu
- Beijing Center for Physical and Chemical Analysis, Beijing, People's Republic of China
| | - Linyu Shi
- Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xu Liu
- Beijing Center for Physical and Chemical Analysis, Beijing, People's Republic of China
| | - Mengchun Wang
- Shanxi Medical University, Taiyuan, People's Republic of China
| | - Wanting Li
- Shanxi Medical University, Taiyuan, People's Republic of China
| | - Daijing Yu
- Shanxi Medical University, Taiyuan, People's Republic of China
| | - Yaya Wang
- Shanxi Medical University, Taiyuan, People's Republic of China
| | - Jingjing Zhang
- Beijing Center for Physical and Chemical Analysis, Beijing, People's Republic of China
| | - Keming Yun
- Shanxi Medical University, Taiyuan, People's Republic of China
| | - Jiangwei Yan
- Shanxi Medical University, Taiyuan, People's Republic of China
| |
Collapse
|
6
|
Zhang B, Liu JB, Zhou L, Wang X, Khan S, Hu WH, Ho WZ. Cytosolic DNA sensor activation inhibits HIV infection of macrophages. J Med Virol 2023; 95:e28253. [PMID: 36286245 PMCID: PMC9839519 DOI: 10.1002/jmv.28253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 01/17/2023]
Abstract
Cytosolic recognition of microbial DNA in macrophages results in the activation of the interferon (IFN)-dependent antiviral innate immunity. Here, we examined whether activating DNA sensors in peripheral blood monocyte-derived macrophages (MDMs) can inhibit human immunodeficiency virus (HIV). We observed that the stimulation of MDMs with poly(dA:dT) or poly(dG:dC) (synthetic ligands for the DNA sensors) inhibited HIV infection and replication. MDMs treated with poly(dA:dT) or poly(dG:dC) expressed higher levels of both type I and type III IFNs than untreated cells. Activation of the DNA sensors in MDMs also induced the expression of the multiple intracellular anti-HIV factors, including IFN-stimulated genes (ISGs: ISG15, ISG56, Viperin, OAS2, GBP5, MxB, and Tetherin) and the HIV restriction microRNAs (miR-29c, miR-138, miR-146a, miR-155, miR-198, and miR-223). In addition, the DNA sensor activation of MDM upregulated the expression of the CC chemokines (RANTES, MIP-1α, MIP-1β), the ligands for HIV entry coreceptor CCR5. These observations indicate that the cytosolic DNA sensors have a protective role in the macrophage intracellular immunity against HIV and that targeting the DNA sensors has therapeutic potential for immune activation-based anti-HIV treatment.
Collapse
Affiliation(s)
| | | | - Lina Zhou
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Xu Wang
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Shazheb Khan
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Wen-Hui Hu
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Wen-Zhe Ho
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Kong L, Shata MTM, Brown JL, Lyons MS, Sherman KE, Blackard JT. The synthetic opioid fentanyl increases HIV replication and chemokine co-receptor expression in vitro. J Neurovirol 2022; 28:583-594. [PMID: 35976538 PMCID: PMC11135282 DOI: 10.1007/s13365-022-01090-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/19/2022] [Accepted: 07/27/2022] [Indexed: 01/13/2023]
Abstract
The US is experiencing a major public health crisis that is fueled by the illicit use of synthetic opioids including fentanyl. While several drugs of abuse can enhance viral replication and/or antagonize immune responses, the impact of specific synthetic opioids on HIV pathogenesis is poorly understood. Thus, we evaluated the effects of fentanyl on HIV replication in vitro. HIV-susceptible or HIV-expressing cell lines were incubated with fentanyl. HIV p24 synthesis and chemokine receptor levels were quantified by ELISA in culture supernatants and cell lysates, respectively. Addition of fentanyl resulted in a dose-dependent increase in HIV replication. Fentanyl enhanced expression of the HIV chemokine co-receptors CXCR4 and CCR5 and caused a dose-dependent decrease in cell viability. The opioid antagonist naltrexone blocked the effect of fentanyl on HIV replication and CCR5 receptor levels but not CXCR4 receptor levels. TLR9 expression was induced by HIV; however, fentanyl inhibited TLR9 expression in a dose-dependent manner. These data demonstrate that the synthetic opioid fentanyl can promote HIV replication in vitro. As increased HIV levels are associated with accelerated disease progression and higher likelihood of transmission, additional research is required to enhance the understanding of opioid-virus interactions and to develop new and/or optimized treatment strategies for persons with HIV and opioid use disorder.
Collapse
Affiliation(s)
- Ling Kong
- Division of Digestive Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, ML 0595, 231 Albert Sabin Way, Cincinnati, OH, 45267-0595, USA
| | - Mohamed Tarek M Shata
- Division of Digestive Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, ML 0595, 231 Albert Sabin Way, Cincinnati, OH, 45267-0595, USA
| | - Jennifer L Brown
- Addiction Sciences Division, Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Psychology, University of Cincinnati, Cincinnati, OH, USA
- Center for Addiction Research, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Michael S Lyons
- Department of Emergency Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Center for Addiction Research, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kenneth E Sherman
- Division of Digestive Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, ML 0595, 231 Albert Sabin Way, Cincinnati, OH, 45267-0595, USA
- Center for Addiction Research, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jason T Blackard
- Division of Digestive Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, ML 0595, 231 Albert Sabin Way, Cincinnati, OH, 45267-0595, USA.
- Center for Addiction Research, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
8
|
Wen S, Jiang Y, Liang S, Cheng Z, Zhu X, Guo Q. Opioids Regulate the Immune System: Focusing on Macrophages and Their Organelles. Front Pharmacol 2022; 12:814241. [PMID: 35095529 PMCID: PMC8790028 DOI: 10.3389/fphar.2021.814241] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/20/2021] [Indexed: 01/02/2023] Open
Abstract
Opioids are the most widely used analgesics and therefore have often been the focus of pharmacological research. Macrophages are the most plastic cells in the hematopoietic system. They show great functional diversity in various organism tissues and are an important consideration for the study of phagocytosis, cellular immunity, and molecular immunology. The expression of opioid receptors in macrophages indicates that opioid drugs act on macrophages and regulate their functions. This article reviewed the collection of research on effects of opioids on macrophage function. Studies show that opioids, both endogenous and exogenous, can affect the function of macrophages, effecting their proliferation, chemotaxis, transport, phagocytosis, expression of cytokines and chemokine receptors, synthesis and secretion of cytokines, polarization, and apoptosis. Many of these effects are closely associated with mitochondrial function and functions of other organelles in macrophages. Therefore, in depth research into effects of opioids on macrophage organelles may lead to some interesting new discoveries. In view of the important role of macrophages in HIV infection and tumor progression, this review also discusses effects of opioids on macrophages in these two pathological conditions.
Collapse
Affiliation(s)
- Shaohua Wen
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Jiang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shuang Liang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhigang Cheng
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyan Zhu
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Drugs of Abuse and Their Impact on Viral Pathogenesis. Viruses 2021; 13:v13122387. [PMID: 34960656 PMCID: PMC8707190 DOI: 10.3390/v13122387] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/23/2021] [Accepted: 11/27/2021] [Indexed: 02/07/2023] Open
Abstract
Commonly misused substances such as alcohol, cocaine, heroin, methamphetamine, and opioids suppress immune responses and may impact viral pathogenesis. In recent years, illicit use of opioids has fueled outbreaks of several viral pathogens, including the human immunodeficiency virus (HIV), hepatitis B virus (HBV), and hepatitis C virus (HCV). This review focuses on the myriad of mechanisms by which drugs of abuse impact viral replication and disease progression. Virus–drug interactions can accelerate viral disease progression and lead to increased risk of virus transmission.
Collapse
|
10
|
Acharya A, Olwenyi OA, Thurman M, Pandey K, Morsey BM, Lamberty B, Ferguson N, Callen S, Fang Q, Buch SJ, Fox HS, Byrareddy SN. Chronic morphine administration differentially modulates viral reservoirs in SIVmac251 infected rhesus macaque model. J Virol 2021; 95:JVI.01657-20. [PMID: 33328304 PMCID: PMC8092838 DOI: 10.1128/jvi.01657-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
HIV persists in cellular reservoirs despite effective combined antiretroviral therapy (cART) and there is viremia flare up upon therapy interruption. Opioids modulate the immune system and suppress antiviral gene responses, which significantly impact people living with HIV (PLWH). However, the effect of opioids on viral reservoir dynamics remain elusive. Herein, we developed a morphine dependent SIVmac251 infected Rhesus macaque (RM) model to study the impact of opioids on HIV reservoirs. RMs on a morphine (or saline control) regimen were infected with SIVmac251. The cART was initiated in approximately half the animals five weeks post-infection, and morphine/saline administration continued until the end of the study. Among the untreated RM, we did not find any difference in plasma/CSF or in cell-associated DNA/RNA viral load in anatomical tissues. On the other hand, within the cART suppressed macaques, there was a reduction in cell-associated DNA load, intact proviral DNA levels, and in inducible SIV reservoir in lymph nodes (LNs) of morphine administered RMs. In distinction to LNs, in the CNS, the size of latent SIV reservoirs was higher in the CD11b+ microglia/macrophages in morphine dependent RMs. These results suggest that in the proposed model, morphine plays a differential role in SIV reservoirs by reducing the CD4+ T-cell reservoir in lymphoid tissues, while increasing the microglia/reservoir size in CNS tissue. The findings from this pre-clinical model will serve as a tool for screening therapeutic strategies to reduce/eliminate HIV reservoirs in opioid dependent PLWH.IMPORTANCE Identification and clearance of HIV reservoirs is a major challenge in achieving a cure for HIV. This is further complicated by co-morbidities that may alter the size of the reservoirs. There is an overlap between the risk factors for HIV and opioid abuse. Opiates have been recognized as prominent co-morbidities in HIV-infected populations. People infected with HIV also abusing opioids have immune modulatory effects and more severe neurological disease. However, the impact of opioid abuse on HIV reservoirs remains unclear. In this study, we used morphine dependent SIVmac251 infected rhesus macaque (RM) model to study the impact of opioids on HIV reservoirs. Our studies suggested that people with HIV who abuse opioids had higher reservoirs in CNS than the lymphoid system. Extrapolating the macaque findings in humans suggests that such differential modulation of HIV reservoirs among people living with HIV abusing opioids could be considered for future HIV cure research efforts.
Collapse
Affiliation(s)
- Arpan Acharya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Omalla A Olwenyi
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michellie Thurman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kabita Pandey
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Brenda M Morsey
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Benjamin Lamberty
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Natasha Ferguson
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shannon Callen
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Qiu Fang
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shilpa J Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard S Fox
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
11
|
Biondi BE, Mohanty S, Wyk BV, Montgomery RR, Shaw AC, Springer SA. Design and implementation of a prospective cohort study of persons living with and without HIV infection who are initiating medication treatment for opioid use disorder. Contemp Clin Trials Commun 2021; 21:100704. [PMID: 33490708 PMCID: PMC7807244 DOI: 10.1016/j.conctc.2021.100704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/15/2020] [Accepted: 01/01/2021] [Indexed: 02/02/2023] Open
Abstract
Background Opioid use disorder (OUD) negatively impacts the HIV continuum of care for persons living with HIV. Medication treatment for OUD (MOUD) may have differential biological effects in individuals with HIV and OUD. To address the question of modulation of immune responses by MOUDs, we describe state of the art systems biology approaches to carry out the first prospective, longitudinal study of persons with and without HIV infection with OUD initiating MOUD. Methods A prospective cohort study of persons with DSM-5 diagnosed OUD who are living with and without HIV infection and initiating treatment with methadone or buprenorphine is underway to assess biological effects of these medications on immunobiological outcomes. Results We describe the recruitment, laboratory, and statistical methods of this study as well as the protocol details. Of those screened for enrollment into the study, 468 (36%) were eligible and 135 were enrolled thus far. Retention through month 6 has been high at 80%. Conclusions This study will use state of the art systems biology approaches to carry out the first prospective, longitudinal studies of persons living with and without HIV with DSM-5 OUD initiating treatment with MOUD.
Collapse
Affiliation(s)
- Breanne E Biondi
- Department of Internal Medicine, Section of Infectious Diseases, AIDS Program, Yale School of Medicine, New Haven, CT, USA
| | - Subhasis Mohanty
- Department of Internal Medicine, Section of Infectious Diseases, AIDS Program, Yale School of Medicine, New Haven, CT, USA
| | - Brent Vander Wyk
- Department of Internal Medicine, Section of Geriatrics, Yale School of Medicine, New Haven, CT, USA
| | - Ruth R Montgomery
- Department of Internal Medicine, Section of Rheumatology, Yale School of Medicine, New Haven, CT, USA
| | - Albert C Shaw
- Department of Internal Medicine, Section of Infectious Diseases, AIDS Program, Yale School of Medicine, New Haven, CT, USA
| | - Sandra A Springer
- Department of Internal Medicine, Section of Infectious Diseases, AIDS Program, Yale School of Medicine, New Haven, CT, USA.,Center for Interdisciplinary Research on AIDS, Yale University School of Public Health, New Haven, CT, USA
| |
Collapse
|
12
|
Liu H, Xu W, Feng J, Ma H, Zhang J, Xie X, Zhuang D, Shen W, Liu H, Zhou W. Increased Expression of Plasma miRNA-320a and let-7b-5p in Heroin-Dependent Patients and Its Clinical Significance. Front Psychiatry 2021; 12:679206. [PMID: 34267687 PMCID: PMC8275879 DOI: 10.3389/fpsyt.2021.679206] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/04/2021] [Indexed: 12/23/2022] Open
Abstract
Heroin use disorder is a chronic and relapsing disease that induces persistent changes in the brain. The diagnoses of heroin use disorders are mainly based on subjective reports and no valid biomarkers available. Recent researches have revealed that circulating miRNAs are useful non-invasive biomarkers for diagnosing brain diseases such as Alzheimer's disease, multiple sclerosis, schizophrenia, and bipolar disorder. However, studies on circulating miRNAs for the diagnosis of heroin use disorders are rarely reported. In this study, we investigated the differential expression of plasma miRNAs in 57 heroin-dependent patients. Based on literature research and microarray analysis, two candidate miRNAs, miR-320a and let-7b-5p, were selected and analyzed by quantitative real-time RT-PCR. The results showed miR-320a and let-7b were significantly upregulated in plasma of the heroin-dependent patients compared to that in healthy controls. The area under curves (AUCs) of receiver operating characteristic (ROC) curves of miR-320a and let-7b-5p were 0.748 and 0.758, respectively. The sensitivities of miR-320a and let-7b-5p were 71.9 and 70.2%, while the specificities of miR-320a and let-7b-5p were 76.1 and 78.3%, respectively. The combination of these two miRNAs predicted heron dependence with an AUC of 0.782 (95% CI 0.687-0.876), with 73.7% sensitivity and 82.6% specificity. Our findings suggest a potential use for circulating miRNAs as biomarkers for the diagnosis of heroin abuse.
Collapse
Affiliation(s)
- Haixiong Liu
- Laboratory of Behavioral Neuroscience, Key Laboratory of Addiction Research of Zhejiang Province, School of Medicine, Ningbo Institute of Microcirculation and Henbane, Ningbo Kangning Hospital, Ningbo University, Ningbo, China
| | - Wenjin Xu
- Molecular Diagnostic Laboratory, Ningbo Institute of Medical Science, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, China
| | - Jiying Feng
- Molecular Diagnostic Laboratory, Ningbo Institute of Medical Science, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, China
| | - Hong Ma
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, China
| | - Jianbin Zhang
- Molecular Diagnostic Laboratory, Ningbo Institute of Medical Science, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, China
| | - Xiaohu Xie
- Molecular Diagnostic Laboratory, Ningbo Institute of Medical Science, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, China
| | - Dingding Zhuang
- Molecular Diagnostic Laboratory, Ningbo Institute of Medical Science, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, China
| | - Wenwen Shen
- Molecular Diagnostic Laboratory, Ningbo Institute of Medical Science, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, China
| | - Huifen Liu
- Molecular Diagnostic Laboratory, Ningbo Institute of Medical Science, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, China
| | - Wenhua Zhou
- Molecular Diagnostic Laboratory, Ningbo Institute of Medical Science, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, China
| |
Collapse
|
13
|
Azzoni L, Metzger D, Montaner LJ. Effect of Opioid Use on Immune Activation and HIV Persistence on ART. J Neuroimmune Pharmacol 2020; 15:643-657. [PMID: 32974750 DOI: 10.1007/s11481-020-09959-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023]
Abstract
While there is an emerging consensus that engagement of the Mu opioid receptor by opioids may modulate various stages the HIV life cycle (e.g.: increasing cell susceptibility to infection, promoting viral transcription, and depressing immune responses to virally-infected cells), the overall effect on latency and viral reservoirs remains unclear. Importantly, the hypothesis that the increase in immune activation observed in chronic opioid users by direct or indirect mechanisms (i.e., microbial translocation) would lead to a larger HIV reservoir after ART-suppression has not been supported to date. The potential for a subsequent decrease in reservoirs after ART-suppression has been postulated and is supported by early reports of opioid users having lower latent HIV burden. Here, we review experimental data supporting the link between opioid use and HIV modulation, as well as the scientific premise for expecting differential changes in immune activation and HIV reservoir between different medications for opioid use disorder. A better understanding of potential changes in HIV reservoirs relative to the engagement of the Mu opioid receptor and ART-mediated immune reconstitution will help guide future cure-directed studies in persons living with HIV and opioid use disorder. Graphical Abstract Review. HIV replication, immune activation and dysbiosis: opioids may affect immune reconstitution outcomes despite viral suppression.
Collapse
Affiliation(s)
- Livio Azzoni
- HIV Immunopathogenesis Laboratory, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - David Metzger
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, 3535 Market Street, Suite 4100, Philadelphia, PA, 19104, USA
| | - Luis J Montaner
- HIV Immunopathogenesis Laboratory, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
14
|
Tregubenko P, Zvonarev V. Impact of Opioid Use in Hematological Malignancies: Clinical, Immunological and Concomitant Aspects. J Hematol 2020; 9:41-54. [PMID: 32855752 PMCID: PMC7430860 DOI: 10.14740/jh689] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023] Open
Abstract
Opioid agents play a unique role in pain and symptom management for cancer patients. Research shows that opiate use, especially when associated with underlying cancer, has significant effects on hematological parameters. These changes may lead to greater risk for immunosuppression, tumor growth and progression of metastatic processes. The aim of this review is to explore the effects of opiates on various metabolic and biological processes, as well as the hematopoietic system, especially in cancer patients. Our findings demonstrate that the tumor-promoting effects of opiates remain contradictory, as both growth-promoting and anti-tumor effects have been observed. However, available data suggest that opiates can facilitate the proliferation and migration of tumor cells, and understanding of this process on cancer treatment is tremendously important.
Collapse
Affiliation(s)
- Polina Tregubenko
- Internal Medicine Residency Program, Albert Einstein College of Medicine, Jacobi Medical Center, Bronx, NY, USA
| | - Valeriy Zvonarev
- School of Behavioral Sciences, California Southern University, Costa Mesa, CA, USA.,Psychiatry Residency Training Program, Center for Behavioral Medicine, UMKC, 1000 E. 24th Street, Kansas City, MO 64108, USA
| |
Collapse
|
15
|
Wang MR, Wu DD, Luo F, Zhong CJ, Wang X, Zhu N, Wu YJ, Hu HT, Feng Y, Wang X, Xiong HR, Hou W. Methadone Inhibits Viral Restriction Factors and Facilitates HIV Infection in Macrophages. Front Immunol 2020; 11:1253. [PMID: 32719674 PMCID: PMC7350609 DOI: 10.3389/fimmu.2020.01253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/18/2020] [Indexed: 01/15/2023] Open
Abstract
Opioid abuse alters the functions of immune cells in both in vitro and in vivo systems, including macrophages. Here, we investigated the effects of methadone, a widely used opioid receptor agonist for treatment of opiate addiction, on the expression of intracellular viral restriction factors and HIV replication in primary human macrophages. We showed that methadone enhanced the HIV infectivity in primary human macrophages. Mechanistically, methadone treatment of macrophages reduced the expression of interferons (IFN-β and IFN-λ2) and the IFN-stimulated anti-HIV genes (APOBEC3F/G and MxB). In addition, methadone-treated macrophages showed lower levels of several anti-HIV microRNAs (miRNA-28, miR-125b, miR-150, and miR-155) compared to untreated cells. Exogenous IFN-β treatment restored the methadone-induced reduction in the expression of the above genes. These effects of methadone on HIV and the antiviral factors were antagonized by pretreatment of cells with naltrexone. These findings provide additional evidence to support further studies on the role of opiates, including methadone, in the immunopathogenesis of HIV disease.
Collapse
Affiliation(s)
- Mei-Rong Wang
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Institute of Medical Virology, Wuhan University, Wuhan, China
| | - Di-Di Wu
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Institute of Medical Virology, Wuhan University, Wuhan, China
| | - Fan Luo
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Institute of Medical Virology, Wuhan University, Wuhan, China
| | - Chao-Jie Zhong
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Institute of Medical Virology, Wuhan University, Wuhan, China
| | - Xin Wang
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Institute of Medical Virology, Wuhan University, Wuhan, China
| | - Ni Zhu
- School of Basic Medicine, Hubei University of Science and Technology, Xianning, China
| | - Ying-Jun Wu
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Institute of Medical Virology, Wuhan University, Wuhan, China
| | - Hai-Tao Hu
- Department of Microbiology and Immunology, Sealy Center for Vaccine Development and Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| | - Yong Feng
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Institute of Medical Virology, Wuhan University, Wuhan, China
| | - Xu Wang
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Hai-Rong Xiong
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Institute of Medical Virology, Wuhan University, Wuhan, China
| | - Wei Hou
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Institute of Medical Virology, Wuhan University, Wuhan, China
- School of Basic Medicine, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
16
|
Liu H, Zhou R, Liu Y, Guo L, Wang X, Hu W, Ho W. HIV infection suppresses TLR3 activation-mediated antiviral immunity in microglia and macrophages. Immunology 2020; 160:269-279. [PMID: 32053234 PMCID: PMC7341545 DOI: 10.1111/imm.13181] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 11/30/2019] [Accepted: 02/11/2020] [Indexed: 12/17/2022] Open
Abstract
Monocytic-lineage cells in the central nervous system (CNS), including microglia and brain resident macrophages, are the key players in the CNS innate immunity against viral infections, including human immunodeficiency virus (HIV). However, these cells also serve as the major targets and reservoirs for HIV in the CNS. To address the question of how HIV can establish persistent infection in the target cells in the CNS, we examined whether HIV has the ability to counteract Toll-like receptor 3 (TLR3) activation-mediated antiviral immunity in microglia and macrophages. We observed that HIV latently infected microglial cells (HC69·5) expressed reduced levels of TLR3 and TLR3 activation-mediated interferons (IFN-α/β and IFN-λ) as compared with the uninfected control cells (C20). In addition, HIV infection of primary human macrophages suppressed the expression of TLR3 and the IFNs. HIV infection also inhibited the expression of the antiviral IFN-stimulated genes (ISGs) and the HIV-restriction miRNAs. Mechanistically, HIV infection inhibited the phosphorylation of IFN regulatory factors (IRF3 and IRF7) and signal transducer and activator of transcription proteins (STAT1 and STAT3) in both HIV latently infected microglia and acutely infected macrophages. These findings provide previously unrecognized and sound mechanisms for HIV infection and persistence in the primary target and reservoir cells in the brain.
Collapse
Affiliation(s)
- Hang Liu
- School of Basic Medical SciencesWuhan UniversityWuhanChina
- Department of Pathology and Laboratory MedicineTemple University Lewis Katz School of MedicinePhiladelphiaPAUSA
| | - Run‐Hong Zhou
- Department of Pathology and Laboratory MedicineTemple University Lewis Katz School of MedicinePhiladelphiaPAUSA
| | - Yu Liu
- Department of Pathology and Laboratory MedicineTemple University Lewis Katz School of MedicinePhiladelphiaPAUSA
| | - Le Guo
- Department of Pathology and Laboratory MedicineTemple University Lewis Katz School of MedicinePhiladelphiaPAUSA
| | - Xu Wang
- Department of Pathology and Laboratory MedicineTemple University Lewis Katz School of MedicinePhiladelphiaPAUSA
| | - Wen‐Hui Hu
- Department of Pathology and Laboratory MedicineTemple University Lewis Katz School of MedicinePhiladelphiaPAUSA
| | - Wen‐Zhe Ho
- School of Basic Medical SciencesWuhan UniversityWuhanChina
- Department of Pathology and Laboratory MedicineTemple University Lewis Katz School of MedicinePhiladelphiaPAUSA
| |
Collapse
|
17
|
Blackard JT, Brown JL, Lyons MS. Synthetic Opioid Use and Common Injection-associated Viruses: Expanding the Translational Research Agenda. Curr HIV Res 2020; 17:94-101. [PMID: 31210115 DOI: 10.2174/1570162x17666190618154534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/29/2019] [Accepted: 06/11/2019] [Indexed: 01/20/2023]
Abstract
The US is in the midst of a major epidemic of opioid addiction and related comorbidities. People with opioid use disorder (OUD) are at significant risk for transmission of several blood-borne pathogens including the human immunodeficiency virus (HIV), hepatitis B virus (HBV), and hepatitis C virus (HCV). Commonly abused opioids and their receptors promote viral replication and virus-mediated pathology. However, most studies demonstrating an adverse effect of drugs of abuse have been conducted in vitro, the specific effects of synthetic opioids on viral replication have been poorly characterized, and the evaluation of opioid-virus interactions in clinically relevant populations is rare. Rigorous characterization of the interactions among synthetic opioids, host cells, and common injection-associated viral infections will require an interdisciplinary research approach and translational studies conducted on humans. Such research promises to improve clinical management paradigms for difficult-to-treat populations, facilitate rational public health policies given severely strained resources, and reveal additional pathways for novel target-specific therapeutic interventions. This mini-review examines the published literature on the effects of opioids on HIV, HBV, and HCV pathogenesis and proposes a series of scientific questions and considerations to establish a translational research agenda focused on opioid-virus interactions.
Collapse
Affiliation(s)
- Jason T Blackard
- Division of Digestive Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, United States
| | - Jennifer L Brown
- Addiction Sciences Division, Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, United States
| | - Michael S Lyons
- Department of Emergency Medicine, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, United States
| |
Collapse
|
18
|
Abstract
Research on the effects of opioids on immune responses was stimulated in the 1980s by the intersection of use of intravenous heroin and HIV infection, to determine if opioids were enhancing HIV progression. The majority of experiments administering opioid alkaloids (morphine and heroin) in vivo, or adding these drugs to cell cultures in vitro, showed that they were immunosuppressive. Immunosuppression was reported as down-regulation: of Natural Killer cell activity; of responses of T and B cells to mitogens; of antibody formation in vivo and in vitro; of depression of phagocytic and microbicidal activity of neutrophils and macrophages; of cytokine and chemokine production by macrophages, microglia, and astrocytes; by sensitization to various infections using animal models; and by enhanced replication of HIV in vitro. The specificity of the receptor involved in the immunosuppression was shown to be the mu opioid receptor (MOR) by using pharmacological antagonists and mice genetically deficient in MOR. Beginning with a paper published in 2005, evidence was presented that morphine is immune-stimulating via binding to MD2, a molecule associated with Toll-like Receptor 4 (TLR4), the receptor for bacterial lipopolysaccharide (LPS). This concept was pursued to implicate inflammation as a mechanism for the psychoactive effects of the opioid. This review considers the validity of this hypothesis and concludes that it is hard to sustain. The experiments demonstrating immunosuppression were carried out in vivo in rodent strains with normal levels of TLR4, or involved use of cells taken from animals that were wild-type for expression of TLR4. Since engagement of TLR4 is universally accepted to result in immune activation by up-regulation of NF-κB, if morphine were binding to TLR4, it would be predicted that opioids would have been found to be pro-inflammatory, which they were not. Further, morphine is immunosuppressive in mice with a defective TLR4 receptor. Morphine and morphine withdrawal have been shown to permit leakage of Gram-negative bacteria and LPS from the intestinal lumen. LPS is the major ligand for TLR4. It is proposed that an occult variable in experiments where morphine is being proposed to activate TLR4 is actually underlying sepsis induced by the opioid.
Collapse
Affiliation(s)
- Toby K. Eisenstein
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
19
|
Wang X, Sun L, Zhou Y, Su QJ, Li JL, Ye L, Liu MQ, Zhou W, Ho WZ. Heroin Abuse and/or HIV Infection Dysregulate Plasma Exosomal miRNAs. J Neuroimmune Pharmacol 2019; 15:400-408. [PMID: 31828734 DOI: 10.1007/s11481-019-09892-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 10/29/2019] [Indexed: 12/13/2022]
Abstract
Exosomes play an important role in cell-to-cell communication as they can transfer functional molecules such as microRNAs (miRNAs) from one cell to another, exerting biological and immunological functions. Here, we investigated the impact of HIV infection and/or heroin use on the expression of the miRNAs in plasma exosomes. We found that HIV infection or heroin use upregulated the majority (98%) of a panel of plasma exosomal miRNAs associated with immune regulation and inflammation. We also observed the enhanced effect of HIV infection and heroin use on some of these upregulated miRNAs. Our further investigation showed that the levels of four of neuro-inflammation-related miRNAs (146a, 126, 21, and let-7a) were higher in HIV-infected heroin users as compared with the control subjects. These findings indicate that the dysregulations of the plasma exosomal miRNAs support further studies to determine the role of the miRNAs in HIV and/or heroin use-mediated immune modulation and neuro-inflammation. Graphical abstract.
Collapse
Affiliation(s)
- Xu Wang
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Li Sun
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA.,Xinjiang Uygur Pharmaceutical Co., Ltd, Wulumuqi, 830000, China
| | - Yu Zhou
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA.,Eternity Bioscience Inc., 6 Cedarbrook Drive, Cranbury, NJ, 08512, USA
| | - Qi-Jian Su
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530021, China
| | - Jie-Liang Li
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Li Ye
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Man-Qing Liu
- Wuhan Centers for Disease Prevention & Control, Wuhan, 430024, China
| | - Wang Zhou
- Wuhan Centers for Disease Prevention & Control, Wuhan, 430024, China
| | - Wen-Zhe Ho
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA.
| |
Collapse
|
20
|
Chilunda V, Calderon TM, Martinez-Aguado P, Berman JW. The impact of substance abuse on HIV-mediated neuropathogenesis in the current ART era. Brain Res 2019; 1724:146426. [PMID: 31473221 PMCID: PMC6889827 DOI: 10.1016/j.brainres.2019.146426] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/16/2019] [Accepted: 08/28/2019] [Indexed: 12/21/2022]
Abstract
Approximately 37 million people worldwide are infected with human immunodeficiency virus (HIV). One highly significant complication of HIV infection is the development of HIV-associated neurocognitive disorders (HAND) in 15-55% of people living with HIV (PLWH), that persists even in the antiretroviral therapy (ART) era. The entry of HIV into the central nervous system (CNS) occurs within 4-8 days after peripheral infection. This establishes viral reservoirs that may persist even in the presence of ART. Once in the CNS, HIV infects resident macrophages, microglia, and at low levels, astrocytes. In response to chronic infection and cell activation within the CNS, viral proteins, inflammatory mediators, and host and viral neurotoxic factors produced over extended periods of time result in neuronal injury and loss, cognitive deficits and HAND. Substance abuse is a common comorbidity in PLWH and has been shown to increase neuroinflammation and cognitive disorders. Additionally, it has been associated with poor ART adherence, and increased viral load in the cerebrospinal fluid (CSF), that may also contribute to increased neuroinflammation and neuronal injury. Studies have examined mechanisms that contribute to neuroinflammation and neuronal damage in PLWH, and how substances of abuse exacerbate these effects. This review will focus on how substances of abuse, with an emphasis on methamphetamine (meth), cocaine, and opioids, impact blood brain barrier (BBB) integrity and transmigration of HIV-infected and uninfected monocytes across the BBB, as well as their effects on monocytes/macrophages, microglia, and astrocytes within the CNS. We will also address how these substances of abuse may contribute to HIV-mediated neuropathogenesis in the context of suppressive ART. Additionally, we will review the effects of extracellular dopamine, a neurotransmitter that is increased in the CNS by substances of abuse, on HIV neuropathogenesis and how this may contribute to neuroinflammation, neuronal insult, and HAND in PLWH with active substance use. Lastly, we will discuss some potential therapies to limit CNS inflammation and damage in HIV-infected substance abusers.
Collapse
Affiliation(s)
- Vanessa Chilunda
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Tina M Calderon
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Pablo Martinez-Aguado
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Joan W Berman
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA.
| |
Collapse
|
21
|
Wang X, Liu J, Zhou L, Ho WZ. Morphine Withdrawal Enhances HIV Infection of Macrophages. Front Immunol 2019; 10:2601. [PMID: 31803178 PMCID: PMC6872497 DOI: 10.3389/fimmu.2019.02601] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/21/2019] [Indexed: 12/29/2022] Open
Abstract
Opioid withdrawal recurs at high rates in opioid use disorder and compromises the immune system. In general, there are two types of opioid withdrawal: abrupt withdrawal (AW) and precipitated withdrawal (PW). In this study, we examined the effect of morphine AW or morphine PW on HIV infection of human blood monocyte-derived macrophages. We observed that both morphine AW and PW enhanced the susceptibility of macrophages to HIV infection. In addition, both AW and PW activated HIV replication in the latently infected myeloid cells (U1 and OM10.1). Investigation of mechanisms responsible for these observations showed that both AW and PW could inhibit the expression of multiple intracellular HIV inhibitory factors, including APOBE3G/F, SAMHD1, MX2, and HIV restriction microRNAs (miR-28, miR-125b, and miR-150) in macrophages. These findings provide additional evidence to support the notion that opioid use compromises the intracellular anti-HIV immunity and facilitates HIV infection and persistence in macrophages.
Collapse
Affiliation(s)
| | | | | | - Wen-Zhe Ho
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
22
|
Han J, Wu Z, McGoogan JM, Mao Y, Tang H, Li J, Zhao Y, Jin C, Detels R, Brookmeyer R, Lima VD, Montaner JSG. Overrepresentation of Injection Drug Use Route of Infection Among Human Immunodeficiency Virus Long-term Nonprogressors: A Nationwide, Retrospective Cohort Study in China, 1989-2016. Open Forum Infect Dis 2019; 6:ofz182. [PMID: 31139671 PMCID: PMC6527089 DOI: 10.1093/ofid/ofz182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/06/2019] [Indexed: 01/13/2023] Open
Abstract
Background Why some persons living with human immunodeficiency virus (HIV) (PLWH) progress quickly and others remain "healthy" for a decade or more without treatment remains a fundamental question of HIV pathology. We aimed to assess the epidemiological characteristics of HIV long-term nonprogressors (LTNPs) based on a cohort of PLWH in China observed between 1989 and 2016. Methods We conducted a nationwide, retrospective cohort study among Chinese PLWH with HIV diagnosed before 1 January 2008. Records were extracted from China's national HIV/AIDS database on 30 June 2016. LTNPs were defined as those with AIDS-free, antiretroviral therapy-naive survival, with CD4 cell counts consistently ≥500/μL for ≥8 years after diagnosis. Prevalence was calculated, characteristics were described, and determinants were assessed by means of logistic regression. Potential sources of bias were also investigated. Results Our cohort included 89 201 participants, of whom 1749 (2.0%) were categorized as LTNPs. The injection drug use (IDU) route of infection was reported by 70.7% of LTNPs, compared with only 37.1% of non-LTNPs. The odds of LTNP status were greater among those infected via IDU (adjusted odds ratio [95% confidence interval], 2.28 [1.94-2.68]) and with HIV diagnosed in settings with large populations of persons who inject drugs (1.75 [1.51-2.02] for detention centers, 1.61 [1.39-1.87] for Yunnan, 1.94 [1.62-2.31] for Guangdong, and 2.90 [2.09-4.02] for Xinjiang). Conclusions Overrepresentation of the IDU route of infection among LTNPs is a surprising finding worthy of further study, and this newly defined cohort may be particularly well suited to exploration of the molecular biological mechanisms underlying HIV long-term nonprogression.
Collapse
Affiliation(s)
- Jing Han
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zunyou Wu
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Department of Epidemiology, Fielding School of Public Health, University of California-Los Angeles
| | - Jennifer M McGoogan
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yurong Mao
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Houlin Tang
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jian Li
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yan Zhao
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Cong Jin
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Roger Detels
- Department of Epidemiology, Fielding School of Public Health, University of California-Los Angeles
| | - Ron Brookmeyer
- Department of Biostatistics, Fielding School of Public Health, University of California-Los Angeles
| | - Viviane D Lima
- British Columbia Center for Excellence in HIV/AIDS, University of British Columbia, Vancouver, Canada
| | - Julio S G Montaner
- British Columbia Center for Excellence in HIV/AIDS, University of British Columbia, Vancouver, Canada
| |
Collapse
|
23
|
Winhusen T, Feaster DJ, Duan R, Brown JL, Daar ES, Mandler R, Metsch LR. Baseline Cigarette Smoking Status as a Predictor of Virologic Suppression and CD4 Cell Count During One-Year Follow-Up in Substance Users with Uncontrolled HIV Infection. AIDS Behav 2018; 22:2026-2032. [PMID: 29030717 DOI: 10.1007/s10461-017-1928-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cigarette smoking is prevalent in people living with HIV/AIDS (PLHIV) who abuse alcohol and/or illicit substances. This study evaluated whether smoking is predictive of virologic non-suppression (> 200 copies/mL) and low CD4 count (< 200 cells/mm3) during 1-year follow-up in medically hospitalized, substance-using PLHIV recruited for a multi-site trial. Smoking status was assessed with the Heaviness of Smoking Index (HSI). Analyses revealed that, controlling for baseline differences and adherence to antiretroviral therapy, non-smokers (n = 237), compared to smokers scoring in the medium-to-high range on the HSI (n = 386), were significantly more likely to achieve viral suppression (OR 1.50, 95% CI 1.02, 2.20). There was a significant smoking-by-time interaction for CD4 cell count (χ2(1) = 4.08, p < .05), with smokers less likely to have low CD4 count at baseline and 6-month follow-up, but more likely to have low CD4 count at 12-month follow-up. The results suggest that smoking may play a role in immunological functioning in HIV-infected substance users. ClinicalTrials.gov Identifier: NCT01612169.
Collapse
Affiliation(s)
- Theresa Winhusen
- Addiction Sciences Division, Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, 3131 Harvey Avenue, Cincinnati, OH, 45229, USA.
| | - Daniel J Feaster
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Rui Duan
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Jennifer L Brown
- Addiction Sciences Division, Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, 3131 Harvey Avenue, Cincinnati, OH, 45229, USA
| | - Eric S Daar
- Los Angeles Biomedical Research Institute at Harbor, University of California Los Angeles Medical Center, Torrance, CA, USA
| | - Raul Mandler
- Center for the Clinical Trials Network, National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - Lisa R Metsch
- Department of Sociomedical Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
24
|
Marie-Claire C, Jourdaine C, Lépine JP, Bellivier F, Bloch V, Vorspan F. Pharmacoepigenomics of opiates and methadone maintenance treatment: current data and perspectives. Pharmacogenomics 2017; 18:1359-1372. [DOI: 10.2217/pgs-2017-0040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Current treatments of opioid addiction include primarily maintenance medications such as methadone. Chronic exposure to opiate and/or long-lasting maintenance treatment induce modulations of gene expression in brain and peripheral tissues. There is increasing evidence that epigenetic modifications underlie these modulations. This review summarizes published results on opioid-induced epigenetic changes in animal models and in patients. The epigenetic modifications observed with other drugs of abuse often used by opiate abusers are also outlined. Specific methadone maintenance treatment induced epigenetic modifications at different treatment stages may be combined with the ones resulting from patients’ substance use history. Therefore, research comparing groups of addicts with similar history and substances use disorders but contrasting for well-characterized treatment phenotypes should be encouraged.
Collapse
Affiliation(s)
- Cynthia Marie-Claire
- Variabilité de réponse aux psychotropes, INSERMU1144/Faculté de Pharmacie de Paris/Université Paris Descartes/Université ParisDiderot/Université Sorbonne Paris Cité, Paris, France
| | - Clément Jourdaine
- AP-HP, GH Saint-Louis – Lariboisière – F. Widal, Pôle de Psychiatrie et de Médecine Addictologique, 75475 Paris cedex 10, France
| | - Jean-Pierre Lépine
- AP-HP, GH Saint-Louis – Lariboisière – F. Widal, Pôle de Psychiatrie et de Médecine Addictologique, 75475 Paris cedex 10, France
| | - Frank Bellivier
- Variabilité de réponse aux psychotropes, INSERMU1144/Faculté de Pharmacie de Paris/Université Paris Descartes/Université ParisDiderot/Université Sorbonne Paris Cité, Paris, France
- AP-HP, GH Saint-Louis – Lariboisière – F. Widal, Pôle de Psychiatrie et de Médecine Addictologique, 75475 Paris cedex 10, France
| | - Vanessa Bloch
- Variabilité de réponse aux psychotropes, INSERMU1144/Faculté de Pharmacie de Paris/Université Paris Descartes/Université ParisDiderot/Université Sorbonne Paris Cité, Paris, France
| | - Florence Vorspan
- Variabilité de réponse aux psychotropes, INSERMU1144/Faculté de Pharmacie de Paris/Université Paris Descartes/Université ParisDiderot/Université Sorbonne Paris Cité, Paris, France
- AP-HP, GH Saint-Louis – Lariboisière – F. Widal, Pôle de Psychiatrie et de Médecine Addictologique, 75475 Paris cedex 10, France
| |
Collapse
|