1
|
Shi A, Xue J, Liu Y, Wang J, Liu X, Song L, Sun S. Impact of kdpE gene deletion on virulence and environmental resilience in Cronobacter sakazakii. Food Res Int 2025; 210:116362. [PMID: 40306803 DOI: 10.1016/j.foodres.2025.116362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/23/2025] [Accepted: 04/15/2025] [Indexed: 05/02/2025]
Abstract
Cronobacter sakazakii is a Gram-negative, foodborne pathogen associated with severe infections, particularly in infants and immunocompromised individuals. Given its significant public health implications and its remarkable resilience in powdered infant formula, understanding the genetic factors that contribute to its virulence and environmental tolerance is crucial. This study focuses on the kdpE gene in Cronobacter sakazakii, part of a two-component regulatory system known for its role in adaptation to environmental stress. A kdpE knockout mutant of Cronobacter sakazakii was constructed to evaluate its effects on bacterial growth, virulence, biofilm formation, and desiccation tolerance. The results revealed that kdpE deletion reduced bacterial growth and virulence, as evidenced by higher survival rates in rats infected with the ΔkdpE mutant compared to the wild-type strain. Notably, the ΔkdpE mutant showed significant downregulation of proteins involved in carbon metabolism and respiratory activity, while proteomic analysis revealed increased deamidation of proteins related to glycolysis. Furthermore, biofilm formation was significantly impaired in the mutant, although its desiccation tolerance was enhanced, attributed to the upregulation of the molecular chaperone GrpE. These findings suggest that kdpE plays a crucial role in regulating the virulence and environmental adaptability of Cronobacter sakazakii, with implications for understanding its pathogenic mechanisms and developing preventive measures.
Collapse
Affiliation(s)
- Aiying Shi
- WeiFang People's Hospital, Shandong Second Medical University, Weifang, Shandong 261000, China
| | - Juan Xue
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yongshuai Liu
- WeiFang People's Hospital, Shandong Second Medical University, Weifang, Shandong 261000, China
| | - Jianhui Wang
- WeiFang People's Hospital, Shandong Second Medical University, Weifang, Shandong 261000, China
| | - Xiaofei Liu
- WeiFang People's Hospital, Shandong Second Medical University, Weifang, Shandong 261000, China
| | - Lianqiang Song
- WeiFang People's Hospital, Shandong Second Medical University, Weifang, Shandong 261000, China.
| | - Shanming Sun
- WeiFang People's Hospital, Shandong Second Medical University, Weifang, Shandong 261000, China.
| |
Collapse
|
2
|
Chen DD, Zhang LL, Zhang JH, Ban WT, Li Q, Wu JC. Comparative genomic analysis of metal-tolerant bacteria reveals significant differences in metal adaptation strategies. Microbiol Spectr 2025:e0168024. [PMID: 40272196 DOI: 10.1128/spectrum.01680-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 12/18/2024] [Indexed: 04/25/2025] Open
Abstract
Metal-tolerant bacteria have been commercially used in wastewater treatment, bio-fertilizer, and soil remediation, etc. However, the mechanisms underlying their actions are not yet fully understood. We isolated metal-tolerant bacteria from the rhizosphere soil samples with metal-enriched media containing Cu, Fe, or Mn, sequenced and compared the genomes, and analyzed their metal adaptation strategies at genomic levels to better understand their action mechanisms. Totally, 32 metal-tolerant isolates were identified and classified into 12 genera based on phylogenetic analysis. The determination of maximum tolerance concentration and the effect of metal ions on the isolates indicated that Serratia marcescens X1 (CuSO4: 1,000 mg/L, FeSO4: 1,000 mg/L, and MnSO4.4H2O: 2,000 mg/L), Mammaliicoccus sciuri X26 (FeSO4: 600 mg/L and MnSO4.4H2O: 2,000 mg/L), and Rummeliibacillus pycnus X33 (CuSO4: 400 mg/L, FeSO4: 1,000 mg/L, and MnSO4.4H2O: 800 mg/L) showed significant differences in metal tolerance to Cu, Fe, and Mn with other isolates. They possess quite different genomic features that enable them to adapt to various metal ions. S. marcescens X1 possesses abundant genes required for Cu, Fe, and Mn homeostasis. M. sciuri X26 has a number of genes involved in Mn and Zn homeostasis but with no genes responsible for Cu and Ca transport. R. pycnus X33 is rich in Fe, Zn, and Mg transport systems but poor in Cu and Mn transport systems. It is thus inferred that the combined use of them would compensate for their differences and enhance their ability in accumulating a wider range of heavy metals for promoting their applications in industry, agriculture, and ecology. IMPORTANCE Metal-tolerant bacteria have wide applications in environmental, agricultural, and ecological fields, but their action strategies are not yet fully understood. We isolated 32 metal-tolerant bacteria from the rhizosphere soil samples. Among them, Serratia marcescens X1, Mammaliicoccus sciuri X26, and Rummeliibacillus pycnus X33 showed significant differences in metal tolerance to Cu, Fe, and Mn with other isolates. Comparative genomic analysis revealed that they have abundant and different genomic features to adapt to various metal ions. It is thus inferred that the combined use of them would compensate for their differences and enhance their ability to accumulate heavy metal ions, widening their applications in industry, agriculture, and ecology.
Collapse
Affiliation(s)
- Dai Di Chen
- Guangdong Engineering Technology Research Center of Enzyme and Biocatalysis, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Liu Lian Zhang
- Guangdong Engineering Technology Research Center of Enzyme and Biocatalysis, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Jiu Hua Zhang
- Guangdong Engineering Technology Research Center of Enzyme and Biocatalysis, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Wen Ting Ban
- Guangdong Engineering Technology Research Center of Enzyme and Biocatalysis, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingxin Li
- Guangdong Engineering Technology Research Center of Enzyme and Biocatalysis, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Jin Chuan Wu
- Guangdong Engineering Technology Research Center of Enzyme and Biocatalysis, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
3
|
Gong Y, Li X, Wang J, Zhao Y, Meng J, Zhai L. Unveiling Salmonella Derby Survival: Stress Responses to Prolonged Hyperosmotic Stress. Foods 2025; 14:1440. [PMID: 40361524 DOI: 10.3390/foods14091440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 04/17/2025] [Accepted: 04/17/2025] [Indexed: 05/15/2025] Open
Abstract
The traditional marination process enhances food flavor and inhibits microbial growth. However, in hyperosmotic environments, microorganisms can activate stress responses to ensure survival, potentially compromising food safety. This study investigated the osmotolerance mechanisms of Salmonella Derby (S. Derby) by comparing a wild-type strain (S. D-WT) and an osmotolerant strain (S. D-OT) under NaCl-induced hyperosmotic stress. Both strains were subjected to 0.85%, 4%, and 16% NaCl for 0, 8, and 16 days, and their growth behavior, membrane integrity, intracellular osmoprotectant content, and transcription of related genes were evaluated. By day 16, both strains showed a growth delay of approximately 3 h. S. D-OT maintained better membrane integrity and exhibited higher intracellular levels of osmoprotectants (K⁺, trehalose, and proline), which aligned with the upregulation of the transcriptional levels of kdpC, kuP, rpoS, and proU. These findings indicated that S. D-OT achieved improved osmotic stress tolerance by regulating osmoprotectant synthesis and maintaining intracellular homeostasis. In contrast, S. D-WT displayed greater resistance to multiple antibiotics (gentamicin, ciprofloxacin, trimethoprim-sulfamethoxazole, and chloramphenicol) under 4% and 16% NaCl conditions, which may pose a higher food safety risk. Overall, this study provides insights for improving microbial control strategies in preserved foods and mitigating foodborne disease risks.
Collapse
Affiliation(s)
- Yingting Gong
- Food Science and Engineering, Anhui Science and Technology University, Chuzhou 233100, China
- Province Key Laboratory of Functional Agriculture and Functional Food, Anhui Science and Technology University, Chuzhou 239000, China
| | - Xiaoxuan Li
- Food Science and Engineering, Anhui Science and Technology University, Chuzhou 233100, China
- Province Key Laboratory of Functional Agriculture and Functional Food, Anhui Science and Technology University, Chuzhou 239000, China
| | - Junying Wang
- Food Science and Engineering, Anhui Science and Technology University, Chuzhou 233100, China
- Province Key Laboratory of Functional Agriculture and Functional Food, Anhui Science and Technology University, Chuzhou 239000, China
| | - Yanyan Zhao
- Food Science and Engineering, Anhui Science and Technology University, Chuzhou 233100, China
- Province Key Laboratory of Functional Agriculture and Functional Food, Anhui Science and Technology University, Chuzhou 239000, China
| | - Jingnan Meng
- Food Science and Engineering, Anhui Science and Technology University, Chuzhou 233100, China
- Province Key Laboratory of Functional Agriculture and Functional Food, Anhui Science and Technology University, Chuzhou 239000, China
| | - Ligong Zhai
- Food Science and Engineering, Anhui Science and Technology University, Chuzhou 233100, China
- Province Key Laboratory of Functional Agriculture and Functional Food, Anhui Science and Technology University, Chuzhou 239000, China
| |
Collapse
|
4
|
Szuplewska M, Sentkowska D, Lasek R, Decewicz P, Hałucha M, Funk Ł, Chmielowska C, Bartosik D. Genome-wide comparative analysis of clinical and environmental strains of the opportunistic pathogen Paracoccus yeei ( Alphaproteobacteria). Front Microbiol 2024; 15:1483110. [PMID: 39568992 PMCID: PMC11578231 DOI: 10.3389/fmicb.2024.1483110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/14/2024] [Indexed: 11/22/2024] Open
Abstract
Introduction Paracoccus yeei is the first species in the genus Paracoccus to be implicated in opportunistic infections in humans. As a result, P. yeei strains provide a valuable model for exploring how bacteria shift from a saprophytic to a pathogenic lifestyle, as well as for investigating the role of horizontally transferred DNA in this transition. In order to gain deeper insights into the unique characteristics of this bacterium and the molecular mechanisms underlying its opportunistic behavior, a comparative physiological and genomic analysis of P. yeei strains was performed. Results Complete genomic sequences of 7 P. yeei isolates (both clinical and environmental) were obtained and analyzed. All genomes have a multipartite structure comprising numerous extrachromosomal replicons (59 different ECRs in total), including large chromids of the DnaA-like and RepB families. Within the mobile part of the P. yeei genomes (ECRs and transposable elements, TEs), a novel non-autonomous MITE-type element was identified. Detailed genus-wide comparative genomic analysis permitted the identification of P. yeei-specific genes, including several putative virulence determinants. One of these, the URE gene cluster, determines the ureolytic activity of P. yeei strains-a unique feature among Paracoccus spp. This activity is induced by the inclusion of urea in the growth medium and is dependent on the presence of an intact nikR regulatory gene, which presumably regulates expression of nickel (urease cofactor) transporter genes. Discussion This in-depth comparative analysis provides a detailed insight into the structure, composition and properties of P. yeei genomes. Several predicted virulence determinants (including URE gene clusters) were identified within ECRs, indicating an important role for the flexible genome in determining the opportunistic properties of this bacterium.
Collapse
Affiliation(s)
- Magdalena Szuplewska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Dorota Sentkowska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Robert Lasek
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Przemysław Decewicz
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Mateusz Hałucha
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Łukasz Funk
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Cora Chmielowska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Dariusz Bartosik
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
5
|
Quintero-Yanes A, Léger L, Collignon M, Mignon J, Mayard A, Michaux C, Hallez R. Regulation of potassium uptake in Caulobacter crescentus. J Bacteriol 2024; 206:e0010724. [PMID: 39133005 PMCID: PMC11411941 DOI: 10.1128/jb.00107-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/13/2024] [Indexed: 08/13/2024] Open
Abstract
Potassium (K+) is an essential physiological element determining membrane potential, intracellular pH, osmotic/turgor pressure, and protein synthesis in cells. Here, we describe the regulation of potassium uptake systems in the oligotrophic α-proteobacterium Caulobacter crescentus known as a model for asymmetric cell division. We show that C. crescentus can grow in concentrations from the micromolar to the millimolar range by mainly using two K+ transporters to maintain potassium homeostasis, the low-affinity Kup and the high-affinity Kdp uptake systems. When K+ is not limiting, we found that the kup gene is essential while kdp inactivation does not impact the growth. In contrast, kdp becomes critical but not essential and kup dispensable for growth in K+-limited environments. However, in the absence of kdp, mutations in kup were selected to improve growth in K+-depleted conditions, likely by increasing the affinity of Kup for K+. In addition, mutations in the KdpDE two-component system, which regulates kdpABCDE expression, suggest that the inner membrane sensor regulatory component KdpD mainly works as a phosphatase to limit the growth when cells reach late exponential phase. Our data therefore suggest that KdpE is phosphorylated by another non-cognate histidine kinase. On top of this, we determined the KdpE-dependent and independent K+ transcriptome. Together, our work illustrates how an oligotrophic bacterium responds to fluctuation in K+ availability.IMPORTANCEPotassium (K+) is a key metal ion involved in many essential cellular processes. Here, we show that the oligotroph Caulobacter crescentus can support growth at micromolar concentrations of K+ by mainly using two K+ uptake systems, the low-affinity Kup and the high-affinity Kdp. Using genome-wide approaches, we also determined the entire set of genes required for C. crescentus to survive at low K+ concentration as well as the full K+-dependent regulon. Finally, we found that the transcriptional regulation mediated by the KdpDE two-component system is unconventional since unlike Escherichia coli, the inner membrane sensor regulatory component KdpD seems to work rather as a phosphatase on the phosphorylated response regulator KdpE~P.
Collapse
Affiliation(s)
- Alex Quintero-Yanes
- Bacterial Cell cycle & Development (BCcD), Biology of Microorganisms Research Unit (URBM), Namur Research Institute for Life Science (NARILIS), Universite de Namur, Namur, Belgium
| | - Loïc Léger
- Bacterial Cell cycle & Development (BCcD), Biology of Microorganisms Research Unit (URBM), Namur Research Institute for Life Science (NARILIS), Universite de Namur, Namur, Belgium
| | - Madeline Collignon
- Bacterial Cell cycle & Development (BCcD), Biology of Microorganisms Research Unit (URBM), Namur Research Institute for Life Science (NARILIS), Universite de Namur, Namur, Belgium
| | - Julien Mignon
- Laboratoire de Chimie Physique des Biomolécules, UCPTS, Namur Institute of Structured Matter (NISM), Namur Research Institute for Life Sciences (NARILIS), Universite de Namur, Namur, Belgium
| | - Aurélie Mayard
- Bacterial Cell cycle & Development (BCcD), Biology of Microorganisms Research Unit (URBM), Namur Research Institute for Life Science (NARILIS), Universite de Namur, Namur, Belgium
| | - Catherine Michaux
- Laboratoire de Chimie Physique des Biomolécules, UCPTS, Namur Institute of Structured Matter (NISM), Namur Research Institute for Life Sciences (NARILIS), Universite de Namur, Namur, Belgium
| | - Régis Hallez
- Bacterial Cell cycle & Development (BCcD), Biology of Microorganisms Research Unit (URBM), Namur Research Institute for Life Science (NARILIS), Universite de Namur, Namur, Belgium
- WEL Research Institute, University of Namur, Namur, Belgium
| |
Collapse
|
6
|
Gaddy KE, Bensch EM, Cavanagh J, Milton ME. Insights into DNA-binding motifs and mechanisms of Francisella tularensis novicida two-component system response regulator proteins QseB, KdpE, and BfpR. Biochem Biophys Res Commun 2024; 722:150150. [PMID: 38805787 DOI: 10.1016/j.bbrc.2024.150150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
Two component system bacterial response regulators are typically DNA-binding proteins which enable the genetic regulation of many adaptive bacterial behaviors. Despite structural similarity across response regulator families, there is a diverse array of DNA-binding mechanisms. Bacteria usually encode several dozen two-component system response regulators, but Francisella tularensis only encodes three. Due to their simplified response regulatory network, Francisella species are a model for studying the role of response regulator proteins in virulence. Here, we show that Francisella response regulators QseB, KdpE, and BfpR all utilize different DNA-binding mechanisms. Our evidence suggests that QseB follows a simple mechanism whereby it binds a single inverted repeat sequence with a higher affinity upon phosphorylation. This behavior is independent of whether QseB is a positive or negative regulator of the gene as demonstrated by qseB and priM promoter sequences, respectively. Similarly, KdpE binds DNA more tightly upon phosphorylation, but also exhibits a cooperative binding isotherm. While we propose a KdpE binding site, it is possible that KdpE has a complex DNA-binding mechanism potentially involving multiple copies of KdpE being recruited to a promoter region. Finally, we show that BfpR appears to bind a region of its own promoter sequence with a lower affinity upon phosphorylation. Further structural and enzymatic work will need to be performed to deconvolute the KdpE and BfpR binding mechanisms.
Collapse
Affiliation(s)
- Keegan E Gaddy
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Elody M Bensch
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - John Cavanagh
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Morgan E Milton
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
7
|
Zhang C, Zhang R, Yuan J. Potassium-mediated bacterial chemotactic response. eLife 2024; 12:RP91452. [PMID: 38832501 PMCID: PMC11149930 DOI: 10.7554/elife.91452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Bacteria in biofilms secrete potassium ions to attract free swimming cells. However, the basis of chemotaxis to potassium remains poorly understood. Here, using a microfluidic device, we found that Escherichia coli can rapidly accumulate in regions of high potassium concentration on the order of millimoles. Using a bead assay, we measured the dynamic response of individual flagellar motors to stepwise changes in potassium concentration, finding that the response resulted from the chemotaxis signaling pathway. To characterize the chemotactic response to potassium, we measured the dose-response curve and adaptation kinetics via an Förster resonance energy transfer (FRET) assay, finding that the chemotaxis pathway exhibited a sensitive response and fast adaptation to potassium. We further found that the two major chemoreceptors Tar and Tsr respond differently to potassium. Tar receptors exhibit a biphasic response, whereas Tsr receptors respond to potassium as an attractant. These different responses were consistent with the responses of the two receptors to intracellular pH changes. The sensitive response and fast adaptation allow bacteria to sense and localize small changes in potassium concentration. The differential responses of Tar and Tsr receptors to potassium suggest that cells at different growth stages respond differently to potassium and may have different requirements for potassium.
Collapse
Affiliation(s)
- Chi Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of ChinaHefeiChina
| | - Rongjing Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of ChinaHefeiChina
| | - Junhua Yuan
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of ChinaHefeiChina
| |
Collapse
|
8
|
Zhang L, Yuan Y, Li C, Zhang Y, Sun H, Xu R, Liu Y. Biomineralization of phosphorus during anaerobic treatment of distillery wastewaters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171431. [PMID: 38442755 DOI: 10.1016/j.scitotenv.2024.171431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
This study addresses the pressing environmental concerns associated with the rapidly growing distillery industry, which is a significant contributor to wastewater generation. By focusing on the treatment of distillery wastewater using anaerobic digestion, this research explores the potential to convert organic materials into biofuels (methane). Moreover, the study aims to recover both methane and phosphorus from distillery wastewater in a single anaerobic reactor, which represents a novel and unexplored approach. Laboratory-scale experiments were conducted using mesophilic and thermophilic upflow anaerobic sludge blanket reactors. A key aspect of the study involved the implementation of a unique strategy: the mixing of centrate and spent caustic wastewater streams. This approach was intended to enhance treatment performance, manipulate the microbial community structure, and thereby optimizing the overall treatment performance. The integration of the centrate and spent caustic streams yielded remarkable co-benefits, resulting in significant biomethane production and efficient phosphorus precipitation. The study demonstrated a phosphorus removal efficiency of ∼60 % throughout the 130-140 days operation period. The recovery of phosphorus via the reactor sludge offers exciting opportunities for its utilization as a fertilizer or as a raw material within the phosphorus refinery industry. The biomethane produced during the treatment exhibits significant energy potential, estimated at 0.5 GJ/(m3 distillery wastewater).
Collapse
Affiliation(s)
- Lei Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Canada; School of Civil & Environmental Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Yiyang Yuan
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Canada
| | - Chengyuan Li
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Canada
| | - Yingdi Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Canada
| | - Huijuan Sun
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Canada
| | - Rui Xu
- School of Metallurgy and Environment, Central South University, Changsha, China
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Canada; School of Civil & Environmental Engineering, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
9
|
Bagchi S, Sharma AK, Ghosh A, Saha S, Basu J, Kundu M. RegX3-dependent transcriptional activation of kdpDE and repression of rv0500A are linked to potassium homeostasis in Mycobacterium tuberculosis. FEBS J 2024; 291:2242-2259. [PMID: 38414198 DOI: 10.1111/febs.17100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/18/2024] [Accepted: 02/12/2024] [Indexed: 02/29/2024]
Abstract
Ionic homeostasis is essential for the survival and replication of Mycobacterium tuberculosis within its host. Low potassium ion concentrations trigger a transition of M. tuberculosis into dormancy. Our current knowledge of the transcriptional regulation mechanisms governing genes involved in potassium homeostasis remains limited. Potassium transport is regulated by the constitutive Trk system and the inducible Kdp system in M. tuberculosis. The two-component system KdpDE (also known as KdpD/KdpE) activates expression of the kdpFABC operon, encoding the four protein subunits of the Kdp potassium uptake system (KdpFABC). We show that, under potassium deficiency, expression of the two-component system senX3/regX3 is upregulated, and bacterial survival is compromised in a regX3-inactivated mutant, ΔregX3. Electrophoretic mobility shift assays (EMSAs), promoter reporter assays and chromatin immunoprecipitation (ChIP) show that RegX3 binds to the kdpDE promoter and activates it under potassium deficiency, whereas RegX3 (K204A), a DNA binding-deficient mutant, fails to bind to the promoter. Mutation of the RegX3 binding motifs on the kdpDE promoter abrogates RegX3 binding. In addition, EMSAs and ChIP assays show that RegX3 represses Rv0500A, a repressor of kdpFABC, by binding to consensus RegX3 binding motifs on the rv0500A promoter. Our findings provide important insight into two converging pathways regulated by RegX3; one in which it activates an activator of kdpFABC, and the other in which it represses a repressor of kdpFABC, during potassium insufficiency. This culminates in increased expression of the potassium uptake system encoded by kdpFABC, enabling bacterial survival. These results further expand the growing transcriptional network in which RegX3 serves as a central node to enable bacterial survival under stress.
Collapse
Affiliation(s)
- Shreya Bagchi
- Department of Chemical Sciences, Bose Institute, Kolkata, India
| | | | - Abhirupa Ghosh
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | - Sudipto Saha
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | - Joyoti Basu
- Department of Chemical Sciences, Bose Institute, Kolkata, India
| | | |
Collapse
|
10
|
Sultan M, Arya R, Chaurasia AK, Kim KK. Sensor histidine kinases kdpD and aauS regulate biofilm and virulence in Pseudomonas aeruginosa PA14. Front Cell Infect Microbiol 2023; 13:1270667. [PMID: 37881370 PMCID: PMC10595159 DOI: 10.3389/fcimb.2023.1270667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023] Open
Abstract
Pseudomonas aeruginosa is a multidrug-resistant opportunistic human pathogen that utilizes two-component systems (TCSs) to sense pathophysiological signals and coordinate virulence. P. aeruginosa contains 64 sensor histidine kinases (HKs) and 72 response regulators (RRs) that play important roles in metabolism, bacterial physiology, and virulence. However, the role of some TCSs in virulence remains uncharacterized. In this study, we evaluated the virulence potential of some uncharacterized sensor HK and RR knockouts in P. aeruginosa using a Galleria mellonella infection model. Furthermore, we demonstrated that KdpD and AauS HKs regulate virulence by affecting P. aeruginosa biofilm formation and motility. Both ΔkdpD and ΔaauS showed reduced biofilm and motility which were confirmed by restored phenotypes upon complementation. Moreover, ΔkdpD and ΔaauS exhibited increased survival of HeLa cells and G. mellonella during in vivo infection. Altered expression of the transcriptional regulators anR and lasR, along with the virulence genes lasA, pelA, cupA, pqsA, pqsB, pqsC, and pqsD in the mutant strains elucidated the mechanism by which ΔkdpD and ΔaauS affect virulence. These findings confirm that kdpD and aauS play important roles in P. aeruginosa pathogenesis by regulating biofilm formation and motility.
Collapse
Affiliation(s)
- Maria Sultan
- Department of Precision Medicine, Graduate School of Basic Medical Science, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Rekha Arya
- Department of Precision Medicine, Graduate School of Basic Medical Science, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Department of Orthopedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Akhilesh Kumar Chaurasia
- Department of Precision Medicine, Graduate School of Basic Medical Science, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Graduate School of Basic Medical Science, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
11
|
Wang X, Fang C, Wang Y, Shi X, Yu F, Xiong J, Chou SH, He J. Systematic Comparison and Rational Design of Theophylline Riboswitches for Effective Gene Repression. Microbiol Spectr 2023; 11:e0275222. [PMID: 36688639 PMCID: PMC9927458 DOI: 10.1128/spectrum.02752-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Riboswitches are promising regulatory tools in synthetic biology. To date, 25 theophylline riboswitches have been developed for regulation of gene expression in bacteria. However, no one has systematically evaluated their regulatory effects. To promote efficient selection and application of theophylline riboswitches, we examined 25 theophylline riboswitches in Escherichia coli MG1655 and found that they varied widely in terms of activation/repression ratios and expression levels in the absence of theophylline. Of the 20 riboswitches that activate gene expression, only one exhibited a high activation ratio (63.6-fold) and low expression level without theophylline. Furthermore, none of the five riboswitches that repress gene expression were more than 2.0-fold efficient. To obtain an effective repression system, we rationally designed a novel theophylline riboswitch to control a downstream gene or genes by premature transcription termination. This riboswitch allowed theophylline-dependent downregulation of the TurboRFP reporter in a dose- and time-dependent manner. Its performance profile exceeded those of previously described repressive theophylline riboswitches. We then introduced as the second part a RepA tag (protein degradation tag) coding sequence fused at the 5'-terminal end of the turborfp gene, which further reduced protein level, while not reducing the repressive effect of the riboswitch. By combining two tandem theophylline riboswitches with a RepA tag, we constructed a regulatory cassette that represses the expression of the gene(s) of interest at both the transcriptional and posttranslational levels. This regulatory cassette can be used to repress the expression of any gene of interest and represents a crucial step toward harnessing theophylline riboswitches and expanding the synthetic biology toolbox. IMPORTANCE A variety of gene expression regulation tools with significant regulatory effects are essential for the construction of complex gene circuits in synthetic biology. Riboswitches have received wide attention due to their unique biochemical, structural, and genetic properties. Here, we have not only systematically and precisely characterized the regulatory properties of previously developed theophylline riboswitches but also engineered a novel repressive theophylline riboswitch acting at the transcriptional level. By introducing coding sequences of a tandem riboswitch and a RepA protein degradation tag at the 5' end of the reporter gene, we successfully constructed a simple and effective regulatory cassette for gene regulation. Our work provides useful biological components for the construction of synthetic biology gene circuits.
Collapse
Affiliation(s)
- Xun Wang
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Can Fang
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Yifei Wang
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Xinyu Shi
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Fan Yu
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Jin Xiong
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Shan-Ho Chou
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Jin He
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| |
Collapse
|
12
|
Ning H, Liang X, Xie Y, Bai L, Zhang W, Wang L, Kang J, Lu Y, Ma Y, Bai G, Bai Y. c-di-AMP Accumulation Regulates Growth, Metabolism, and Immunogenicity of Mycobacterium smegmatis. Front Microbiol 2022; 13:865045. [PMID: 35685938 PMCID: PMC9171234 DOI: 10.3389/fmicb.2022.865045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Cyclic dimeric adenosine monophosphate (c-di-AMP) is a ubiquitous second messenger of bacteria involved in diverse physiological processes as well as host immune responses. MSMEG_2630 is a c-di-AMP phosphodiesterase (cnpB) of Mycobacterium smegmatis, which is homologous to Mycobacterium tuberculosis Rv2837c. In this study, cnpB-deleted (ΔcnpB), -complemented (ΔcnpB::C), and -overexpressed (ΔcnpB::O) strains of M. smegmatis were constructed to investigate the role of c-di-AMP in regulating mycobacterial physiology and immunogenicity. This study provides more precise evidence that elevated c-di-AMP level resulted in smaller colonies, shorter bacteria length, impaired growth, and inhibition of potassium transporter in M. smegmatis. This is the first study to report that elevated c-di-AMP level could inhibit biofilm formation and induce porphyrin accumulation in M. smegmatis by regulating associated gene expressions, which may have effects on drug resistance and virulence of mycobacterium. Moreover, the cnpB-deleted strain with an elevated c-di-AMP level could induce enhanced Th1 immune responses after M. tuberculosis infection. Further, the pathological changes and the bacteria burden in ΔcnpB group were comparable with the wild-type M. smegmatis group against M. tuberculosis venous infection in the mouse model. Our findings enhanced the understanding of the physiological role of c-di-AMP in mycobacterium, and M. smegmatis cnpB-deleted strain with elevated c-di-AMP level showed the potential for a vaccine against tuberculosis.
Collapse
Affiliation(s)
- Huanhuan Ning
- Department of Microbiology and Pathogen Biology, Air Force Medical University, Xi’an, China
| | - Xuan Liang
- Department of Microbiology and Pathogen Biology, Air Force Medical University, Xi’an, China
- College of Life Sciences, Northwest University, Xi’an, China
| | - Yanling Xie
- Department of Microbiology and Pathogen Biology, Air Force Medical University, Xi’an, China
- School of Life Sciences, Yan’an University, Yan’an, China
| | - Lu Bai
- Department of Microbiology and Pathogen Biology, Air Force Medical University, Xi’an, China
- School of Life Sciences, Yan’an University, Yan’an, China
| | - Wei Zhang
- Department of Pediatrics, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Lifei Wang
- Graduate School, Chang’an University, Xi’an, China
| | - Jian Kang
- Department of Microbiology and Pathogen Biology, Air Force Medical University, Xi’an, China
| | - Yanzhi Lu
- Department of Microbiology and Pathogen Biology, Air Force Medical University, Xi’an, China
| | - Yanling Ma
- College of Life Sciences, Northwest University, Xi’an, China
| | - Guangchun Bai
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
- *Correspondence: Guangchun Bai,
| | - Yinlan Bai
- Department of Microbiology and Pathogen Biology, Air Force Medical University, Xi’an, China
- Yinlan Bai,
| |
Collapse
|
13
|
Zhuang S, Bao Y, Zhang Y, Zhang H, Liu J, Liu H. Antibacterial mechanism of the Asp-Asp-Asp-Tyr peptide. Food Chem X 2022; 13:100229. [PMID: 35499031 PMCID: PMC9039886 DOI: 10.1016/j.fochx.2022.100229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/13/2022] [Accepted: 01/24/2022] [Indexed: 11/06/2022] Open
Abstract
DDDY affects P. aeruginosa membrane transport and amino acid metabolism. DDDY has a stronger effect on POPE than on POPC or POPG membranes. DDDY creates a membrane gap by binding the phospholipid head and hydrophobic tail. DDDY inhibits the growth of food microorganisms inoculated onto chestnut kernels. DDDY is a promising antibacterial for multidrug-resistant gram-negative bacteria.
Previously, we found that ASP-ASP-ASP-TYR (DDDY) from Dendrobium aphyllum has a minimum inhibitory concentration of 36.15 mg/mL against Pseudomonas aeruginosa. Here, we explored the antibacterial mechanism of DDDY and its potential preservation applications. Metabolomic and transcriptomic analyses revealed that DDDY mainly affects genes involved in P. aeruginosa membrane transport and amino acid metabolism pathways. Molecular dynamics simulation revealed that DDDY had a stronger effect on 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine phospholipid membranes than on 1-palmitoyl-2-oleoyl-lecithin or 1-palmitoyl-2-oleoyl phosphatidylglycerol membranes, with high DDDY concentrations displaying stronger efficacy on 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine. Mechanistically, the N-terminal of DDDY first bound to the phospholipid head group, while its C-terminal amino acid residue bound the hydrophobic tail, thereby creating a gap in the membrane when the phospholipids were clustered by hydrogen bonding. Finally, DDDY inhibited the growth of food microorganisms inoculated onto chestnut kernels, suggesting that DDDY is a promising antibacterial agent against multidrug-resistant gram-negative bacteria.
Collapse
|
14
|
Li X, Chen F, Liu X, Xiao J, Andongma BT, Tang Q, Cao X, Chou SH, Galperin MY, He J. Clp protease and antisense RNA jointly regulate the global regulator CarD to mediate mycobacterial starvation response. eLife 2022; 11:73347. [PMID: 35080493 PMCID: PMC8820732 DOI: 10.7554/elife.73347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/25/2022] [Indexed: 12/02/2022] Open
Abstract
Under starvation conditions, bacteria tend to slow down their translation rate by reducing rRNA synthesis, but the way they accomplish that may vary in different bacteria. In Mycobacterium species, transcription of rRNA is activated by the RNA polymerase (RNAP) accessory transcription factor CarD, which interacts directly with RNAP to stabilize the RNAP-promoter open complex formed on rRNA genes. The functions of CarD have been extensively studied, but the mechanisms that control its expression remain obscure. Here, we report that the level of CarD was tightly regulated when mycobacterial cells switched from nutrient-rich to nutrient-deprived conditions. At the translational level, an antisense RNA of carD (AscarD) was induced in a SigF-dependent manner to bind with carD mRNA and inhibit CarD translation, while at the post-translational level, the residual intracellular CarD was quickly degraded by the Clp protease. AscarD thus worked synergistically with Clp protease to decrease the CarD level to help mycobacterial cells cope with the nutritional stress. Altogether, our work elucidates the regulation mode of CarD and delineates a new mechanism for the mycobacterial starvation response, which is important for the adaptation and persistence of mycobacterial pathogens in the host environment.
Collapse
Affiliation(s)
- Xinfeng Li
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fang Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaoyu Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jinfeng Xiao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Binda T Andongma
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qing Tang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaojian Cao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shan-Ho Chou
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - Jin He
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
15
|
Soto DF, Franzetti A, Gómez I, Huovinen P. Functional filtering and random processes affect the assembly of microbial communities of snow algae blooms at Maritime Antarctic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150305. [PMID: 34818790 DOI: 10.1016/j.scitotenv.2021.150305] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/04/2021] [Accepted: 09/08/2021] [Indexed: 05/10/2023]
Abstract
The increasing temperatures at the West Antarctic Peninsula (Maritime Antarctic) could lead to a higher occurrence of snow algal blooms which are ubiquitous events that change the snow coloration, reducing albedo and in turn exacerbating melting. However, there is a limited understanding of snow algae blooms biodiversity, composition, and their functional profiles, especially in one of the world's areas most affected by climate change. In this study we used 16S rRNA and 18S rRNA metabarcoding, and shotgun metagenomics to assess the diversity, composition, and functional potential of the snow algae blooms bacterial and eukaryotic communities at three different sites of Maritime Antarctic, between different colors of the algae blooms and between seasonal and semi-permanent snowfields. We tested the hypothesis that the functional potential of snow algae blooms is conserved despite a changing taxonomic composition. Furthermore, we determined taxonomic co-occurrence patterns of bacteria and eukaryotes and assessed the potential for the exchange of metabolites among bacterial taxa. Here, we tested the prediction that there are co-occurring taxa within snow algae whose biotic interactions are marked by the exchange of metabolites. Our results show that the composition of snow algae blooms vary significantly among sites. For instance, a higher abundance of fungi and protists were detected in Fildes Peninsula compared with Doumer Island and O'Higgins. Likewise, the composition varied between snow colors and snow types. However, the functional potential varied only among sampling sites with a higher abundance of genes involved in tolerance to environmental stress at O'Higgins. Co-occurrence patterns of dominant bacterial genera such as Pedobacter, Polaromonas, Flavobacterium and Hymenobacter were recorded, contrasting the absence of co-occurring patterns displayed by Chlamydomonadales algae with other eukaryotes. Finally, genome-scale metabolic models revealed that bacteria within snow algae blooms likely compete for resources instead of forming cooperative communities.
Collapse
Affiliation(s)
- Daniela F Soto
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Research Centre on Dynamics of High Latitude Marine Ecosystems (IDEAL), Valdivia, Chile.
| | - Andrea Franzetti
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Milan, Italy
| | - Iván Gómez
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Research Centre on Dynamics of High Latitude Marine Ecosystems (IDEAL), Valdivia, Chile
| | - Pirjo Huovinen
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Research Centre on Dynamics of High Latitude Marine Ecosystems (IDEAL), Valdivia, Chile
| |
Collapse
|
16
|
de Araújo HL, Martins BP, Vicente AM, Lorenzetti APR, Koide T, Marques MV. Cold Regulation of Genes Encoding Ion Transport Systems in the Oligotrophic Bacterium Caulobacter crescentus. Microbiol Spectr 2021; 9:e0071021. [PMID: 34479415 PMCID: PMC8552747 DOI: 10.1128/spectrum.00710-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 12/02/2022] Open
Abstract
In this study, we characterize the response of the free-living oligotrophic alphaproteobacterium Caulobacter crescentus to low temperatures by global transcriptomic analysis. Our results showed that 656 genes were upregulated and 619 were downregulated at least 2-fold after a temperature downshift. The identified differentially expressed genes (DEG) belong to several functional categories, notably inorganic ion transport and metabolism, and a subset of these genes had their expression confirmed by reverse transcription quantitative real-time PCR (RT-qPCR). Several genes belonging to the ferric uptake regulator (Fur) regulon were downregulated, indicating that iron homeostasis is relevant for adaptation to cold. Several upregulated genes encode proteins that interact with nucleic acids, particularly RNA: cspA, cspB, and the DEAD box RNA helicases rhlE, dbpA, and rhlB. Moreover, 31 small regulatory RNAs (sRNAs), including the cell cycle-regulated noncoding RNA (ncRNA) CcnA, were upregulated, indicating that posttranscriptional regulation is important for the cold stress response. Interestingly, several genes related to transport were upregulated under cold stress, including three AcrB-like cation/multidrug efflux pumps, the nitrate/nitrite transport system, and the potassium transport genes kdpFABC. Further characterization showed that kdpA is upregulated in a potassium-limited medium and at a low temperature in a SigT-independent way. kdpA mRNA is less stable in rho and rhlE mutant strains, but while the expression is positively regulated by RhlE, it is negatively regulated by Rho. A kdpA-deleted strain was generated, and its viability in response to osmotic, acidic, or cold stresses was determined. The implications of such variation in the gene expression for cold adaptation are discussed. IMPORTANCE Low-temperature stress is an important factor for nucleic acid stability and must be circumvented in order to maintain the basic cell processes, such as transcription and translation. The oligotrophic lifestyle presents further challenges to ensure the proper nutrient uptake and osmotic balance in an environment of slow nutrient flow. Here, we show that in Caulobacter crescentus, the expression of the genes involved in cation transport and homeostasis is altered in response to cold, which could lead to a decrease in iron uptake and an increase in nitrogen and high-affinity potassium transport by the Kdp system. This previously uncharacterized regulation of the Kdp transporter has revealed a new mechanism for adaptation to low temperatures that may be relevant for oligotrophic bacteria.
Collapse
Affiliation(s)
- Hugo L. de Araújo
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Bianca P. Martins
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Alexandre M. Vicente
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Alan P. R. Lorenzetti
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Tie Koide
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Marilis V. Marques
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
17
|
Cholo MC, Matjokotja MT, Osman AG, Anderson R. Role of the kdpDE Regulatory Operon of Mycobacterium tuberculosis in Modulating Bacterial Growth in vitro. Front Genet 2021; 12:698875. [PMID: 34394188 PMCID: PMC8358298 DOI: 10.3389/fgene.2021.698875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/12/2021] [Indexed: 11/18/2022] Open
Abstract
Bacteria use K+-uptake transporters differentially for adaptation in varying growth conditions. In Mycobacterium tuberculosis, two K+-uptake systems, the Trk comprising the CeoB and CeoC proteins and the Kdp consisting of the two-component system (TCS), KdpDE and KdpFABC, have been characterized, but their selective utilization during bacterial growth has not been completely explored. In the current study, the roles of the M. tuberculosis KdpDE regulatory system alone and in association with the Trk transporters in bacterial growth were investigated by evaluating the growth of M. tuberculosis KdpDE-deletion and KdpDE/Trk (KT)-double knockout mutant strains in planktonic culture under standard growth conditions. The KT-double knockout mutant strain was first constructed using homologous recombination procedures and was evaluated together with the KdpDE-deletion mutant and the wild-type (WT) strains with respect to their rates of growth, K+-uptake efficiencies, and K+-transporter gene expression during planktonic growth. During growth at optimal K+ concentrations and pH levels, selective deletion of the TCS KdpDE (KdpDE-deletion mutant) led to attenuation of bacterial growth and an increase in bacterial K+-uptake efficiency, as well as dysregulated expression of the kdpFABC and trk genes. Deletion of both the KdpDE and the Trk systems (KT-double knockout) also led to severely attenuated bacterial growth, as well as an increase in bacterial K+-uptake efficiency. These results demonstrate that the KdpDE regulatory system plays a key role during bacterial growth by regulating K+ uptake via modulation of the expression and activities of both the KdpFABC and Trk systems and is important for bacterial growth possibly by preventing cytoplasmic K+ overload.
Collapse
Affiliation(s)
- Moloko C Cholo
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Maborwa T Matjokotja
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Ayman G Osman
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
18
|
Kashyap S, Sharma P, Capalash N. Potential genes associated with survival of Acinetobacter baumannii under ciprofloxacin stress. Microbes Infect 2021; 23:104844. [PMID: 34098109 DOI: 10.1016/j.micinf.2021.104844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/14/2021] [Accepted: 05/22/2021] [Indexed: 11/25/2022]
Abstract
Acinetobacter baumannii is an opportunistic pathogen that has acquired resistance to all available drugs. The rise in multi-drug resistance in A. baumannii has been exacerbated by its ability to tolerate antibiotics due to the persister cells, which are phenotypic variants of normal cells that can survive various stress conditions, resulting in chronicity of infection. In the present study we observed that A. baumannii formed persister cells against lethal concentration of ciprofloxacin in exponential phase. The transcriptome of A. baumannii was analyzed after exposure to high concentration of ciprofloxacin (50X MIC) to determine the possible mechanisms of survival. Transcriptome analysis showed differential expression of 146 genes, of which 101 were up-regulated and 45 were down-regulated under ciprofloxacin stress. Differentially expressed genes that might be important for persistence against ciprofloxacin were involved in DNA repair, phenylacetic acid degradation, leucine catabolism, HicAB toxin-antitoxin system and ROS response (iron-sulfur clusters, hemerythrin-like metal binding and Kdp). recA, umuD and ddrR genes involved in SOS response were also up-regulated. Knockout of umuD showed significant decrease in persister cells formation while they were completely eradicated in recA mutant strain. The differentially expressed genes highlighted in the study merit further investigation as therapeutic targets for effective control of A. baumannii infections.
Collapse
Affiliation(s)
- Shruti Kashyap
- Department of Biotechnology, Panjab University, BMS Block-I, Sector-25, Chandigarh, India, 160014
| | - Prince Sharma
- Department of Microbiology, Panjab University, BMS Block-I, Sector-25, Chandigarh, India, 160014
| | - Neena Capalash
- Department of Biotechnology, Panjab University, BMS Block-I, Sector-25, Chandigarh, India, 160014.
| |
Collapse
|
19
|
Chen DD, Fang BZ, Manzoor A, Liu YH, Li L, Mohamad OAA, Shu WS, Li WJ. Revealing the salinity adaptation mechanism in halotolerant bacterium Egicoccus halophilus EGI 80432 T by physiological analysis and comparative transcriptomics. Appl Microbiol Biotechnol 2021; 105:2497-2511. [PMID: 33625547 DOI: 10.1007/s00253-021-11190-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/30/2021] [Accepted: 02/17/2021] [Indexed: 02/02/2023]
Abstract
Egicoccus halophilus EGI 80432T, a halotolerant bacterium isolated from a saline-alkaline soil, belongs to a member of the class Nitriliruptoria, which exhibits high adaptability to salt environments. At present, the detailed knowledge of the salinity adaptation strategies of Nitriliruptoria was limited except for one research by using comparative genomics analysis. Here, we investigated the salinity adaptation mechanism of E. halophilus EGI 80432T by comparative physiological and transcriptomic analyses. The results of physiological analyses showed that trehalose and glutamate were accumulated by salt stress and showed the maximum at moderate salinity condition. Furthermore, the contents of histidine, threonine, proline, and ectoine were increased with increasing salt concentration. We found that both 0% and 9% NaCl conditions resulted in increased expressions of genes involved in carbohydrate and energy metabolisms, but negatively affected the Na+ efflux, iron, and molybdate transport. Moreover, the high salt condition led to enhancement of transcription of genes required for the synthesis of compatible solutes, e.g., glutamate, histidine, threonine, proline, and ectoine, which agree with the results of physiological analyses. The above results revealed that E. halophilus EGI 80432T increased inorganic ions uptake and accumulated trehalose and glutamate in response to moderate salinity condition, while the salinity adaptation strategy was changed from a "salt-in-cytoplasm" strategy to a "compatible solute" strategy under high salinity condition. The findings in this study would promote further studies in salt tolerance molecular mechanism of Nitriliruptoria and provide a theoretical support for E. halophilus EGI 80432T's application in ecological restoration.Key Points• Salt stress affected gene expressions responsible for carbohydrate and energy metabolisms of E. halophilus EGI 8042T.• E. halophilus EGI 80432T significantly accumulated compatible solutes under salt stress.• E. halophilus EGI 80432T adopted a "compatible solute" strategy to withstand high salt stress.
Collapse
Affiliation(s)
- Dai-Di Chen
- Institute of Ecological Science, School of Life Science, South China Normal University, Guangzhou, 510631, People's Republic of China.,State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Bao-Zhu Fang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.,State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Ahmad Manzoor
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Yong-Hong Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Osama Abdalla Abdelshafy Mohamad
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China.,Department of Environmental Protection, Faculty of Environmental Agricultural Sciences, Arish University, Al-Arish, Egypt
| | - Wen-Sheng Shu
- Institute of Ecological Science, School of Life Science, South China Normal University, Guangzhou, 510631, People's Republic of China.
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China. .,State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China.
| |
Collapse
|
20
|
Dutta A, Batish M, Parashar V. Structural basis of KdpD histidine kinase binding to the second messenger c-di-AMP. J Biol Chem 2021; 296:100771. [PMID: 33989637 PMCID: PMC8214093 DOI: 10.1016/j.jbc.2021.100771] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 11/17/2022] Open
Abstract
The KdpDE two-component system regulates potassium homeostasis and virulence in various bacterial species. The KdpD histidine kinases (HK) of this system contain a universal stress protein (USP) domain which binds to the second messenger cyclic-di-adenosine monophosphate (c-di-AMP) for regulating transcriptional output from this two-component system in Firmicutes such as Staphylococcus aureus. However, the structural basis of c-di-AMP specificity within the KdpD-USP domain is not well understood. Here, we resolved a 2.3 Å crystal structure of the S. aureus KdpD-USP domain (USPSa) complexed with c-di-AMP. Binding affinity analyses of USPSa mutants targeting the observed USPSa:c-di-AMP structural interface enabled the identification of the sequence residues that are required for c-di-AMP specificity. Based on the conservation of these residues in other Firmicutes, we identified the binding motif, (A/G/C)XSXSX2N(Y/F), which allowed us to predict c-di-AMP binding in other KdpD HKs. Furthermore, we found that the USPSa domain contains structural features distinct from the canonical standalone USPs that bind ATP as a preferred ligand. These features include inward-facing conformations of its β1-α1 and β4-α4 loops, a short α2 helix, the absence of a triphosphate-binding Walker A motif, and a unique dual phospho-ligand binding mode. It is therefore likely that USPSa-like domains in KdpD HKs represent a novel subfamily of the USPs.
Collapse
Affiliation(s)
- Anirudha Dutta
- Department of Medical and Molecular Sciences, University of Delaware, Newark, Delaware, USA
| | - Mona Batish
- Department of Medical and Molecular Sciences, University of Delaware, Newark, Delaware, USA
| | - Vijay Parashar
- Department of Medical and Molecular Sciences, University of Delaware, Newark, Delaware, USA.
| |
Collapse
|
21
|
Li Z, Zhu L, Yu Z, Liu L, Chou SH, Wang J, He J. 6S-1 RNA Contributes to Sporulation and Parasporal Crystal Formation in Bacillus thuringiensis. Front Microbiol 2020; 11:604458. [PMID: 33324388 PMCID: PMC7726162 DOI: 10.3389/fmicb.2020.604458] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/04/2020] [Indexed: 11/13/2022] Open
Abstract
6S RNA is a kind of high-abundance non-coding RNA that globally regulates bacterial transcription by interacting with RNA polymerase holoenzyme. Through bioinformatics analysis, we found that there are two tandem 6S RNA-encoding genes in the genomes of Bacillus cereus group bacteria. Using Bacillus thuringiensis BMB171 as the starting strain, we have explored the physiological functions of 6S RNAs, and found that the genes ssrSA and ssrSB encoding 6S-1 and 6S-2 RNAs were located in the same operon and are co-transcribed as a precursor that might be processed by specific ribonucleases to form mature 6S-1 and 6S-2 RNAs. We also constructed two single-gene deletion mutant strains ΔssrSA and ΔssrSB and a double-gene deletion mutant strain ΔssrSAB by means of the markerless gene knockout method. Our data show that deletion of 6S-1 RNA inhibited the growth of B. thuringiensis in the stationary phase, leading to lysis of some bacterial cells. Furthermore, deletion of 6S-1 RNA also significantly reduced the spore number and parasporal crystal content. Our work reveals that B. thuringiensis 6S RNA played an important regulatory role in ensuring the sporulation and parasporal crystal formation.
Collapse
Affiliation(s)
- Zhou Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Li Zhu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhaoqing Yu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lu Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shan-Ho Chou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jieping Wang
- Agricultural BioResources Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
22
|
Achromobacter aestuarii sp. nov., Isolated from an Estuary. Curr Microbiol 2020; 78:411-416. [PMID: 33033853 DOI: 10.1007/s00284-020-02231-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 09/29/2020] [Indexed: 10/23/2022]
Abstract
A novel strain KS-M25T was isolated from estuary water in South Korea. Strain KS-M25T was Gram-staining-negative, strictly aerobic, motile rods-shaped bacterium and showed oxidase- and catalase-positive reactions. Growth of strain KS-M25T was observed at 10-25 °C (optimum, 20 °C), at pH 5.5-9.0 (optimum, pH 7.5), and with 0-6.0% (w/v) NaCl (optimum, 1%). Ubiquinone-8 was identified as the sole isoprenoid quinone and the major fatty acids were C16:0, cyclo-C17:0 and sum in feature 3 (comprising C16:1 ω7c and/or C16:1 ω6c). The G+C content values based on genome sequences was 62.3 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain KS-M25T formed a clear cluster within the genus Achromobacter. Strain KS-M25T was most closely related to Achromobacter anxifer LMG 26857T, Achromobacter dolens LMG 26840T, and Achromobacter xylosoxidans NBRC 15126T with 97.8%, 97.8%, and 97.7% 16S rRNA gene sequence similarities, respectively. Based on phenotypic, chemotaxonomic, and phylogenetic analysis, strain KS-M25T represents a novel species of the genes Achromobacter, for which the name Achromobacter aestuarii sp. nov. is proposed. The type strain is KS-M25T (= KACC 21219T = JCM 33329T).
Collapse
|
23
|
McLean TC, Lo R, Tschowri N, Hoskisson PA, Al Bassam MM, Hutchings MI, Som NF. Sensing and responding to diverse extracellular signals: an updated analysis of the sensor kinases and response regulators of Streptomyces species. MICROBIOLOGY-SGM 2020; 165:929-952. [PMID: 31334697 DOI: 10.1099/mic.0.000817] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Streptomyces venezuelae is a Gram-positive, filamentous actinomycete with a complex developmental life cycle. Genomic analysis revealed that S. venezuelae encodes a large number of two-component systems (TCSs): these consist of a membrane-bound sensor kinase (SK) and a cognate response regulator (RR). These proteins act together to detect and respond to diverse extracellular signals. Some of these systems have been shown to regulate antimicrobial biosynthesis in Streptomyces species, making them very attractive to researchers. The ability of S. venezuelae to sporulate in both liquid and solid cultures has made it an increasingly popular model organism in which to study these industrially and medically important bacteria. Bioinformatic analysis identified 58 TCS operons in S. venezuelae with an additional 27 orphan SK and 18 orphan RR genes. A broader approach identified 15 of the 58 encoded TCSs to be highly conserved in 93 Streptomyces species for which high-quality and complete genome sequences are available. This review attempts to unify the current work on TCS in the streptomycetes, with an emphasis on S. venezuelae.
Collapse
Affiliation(s)
- Thomas C McLean
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| | - Rebecca Lo
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| | - Natalia Tschowri
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Paul A Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Mahmoud M Al Bassam
- Department of Paediatrics, Division of Host-Microbe Systems and Therapeutics, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Matthew I Hutchings
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| | - Nicolle F Som
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| |
Collapse
|
24
|
Zhang LL, Huang W, Zhang YY, Fan G, He J, Ren JN, Li Z, Li X, Pan SY. Genomic and Transcriptomic Study for Screening Genes Involved in the Limonene Biotransformation of Penicillium digitatum DSM 62840. Front Microbiol 2020; 11:744. [PMID: 32390984 PMCID: PMC7188761 DOI: 10.3389/fmicb.2020.00744] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/30/2020] [Indexed: 12/21/2022] Open
Abstract
α-Terpineol has been widely used in daily chemical, pharmaceutical, food, and flavor industries due to its pleasant odor with high economic value and pharmacological action. Our previous study showed that Penicillium digitatum DSM 62840 was an efficient biocatalyst for the transformation of limonene to α-terpineol. Thus, it was meaningful to explore the genome features and the gene expression differences of strain DSM 62840 during limonene biotransformation, and the detailed bioconversion pathways. In this study, the functional genes related to limonene bioconversion were investigated using genome and transcriptome sequences analysis. The results showed that the P. digitatum DSM 62840 genome was estimated to be 29.09 Mb and it encoded 9,086 protein-encoding genes. The most annotated genes were associated to some protein metabolism and energy metabolism functions. When the threshold for differentially expressed genes (DEGs) was set at twofold ratio, a total of 4,128, and 4,148 DEGs were identified in P_L_12h (limonene-treated condition) compared with P_0h (blank) and P_12h (limonene-untreated blank), respectively. Among them, the expression levels of genes involved in the biosynthesis of secondary metabolites, energy metabolism and ATP-binding cassette (ABC) transporters were significantly altered during the biotransformation. And the reliability of these results was further confirmed by quantitative real-time polymerase chain reaction (RT-qPCR). Moreover, we found that the enzyme participated in limonene biotransformation was inducible. This enzyme was located in the microsome, and it was inhibited by cytochrome P450 inhibitors. This indicated that the cytochrome P450 may be responsible for the limonene bioconversion. Several differentially expressed cytochrome P450 genes were further identified, such as PDIDSM_85260 and PDIDSM_67430, which were significantly up-regulated with limonene treatment. These genes may be responsible for converting limonene to α-terpineol. Totally, the genomic and transcriptomic data could provide valuable information in the discovery of related-genes which was involved in limonene biotransformation, pathogenicity of fungi, and investigation of metabolites and biological pathways of strain DSM 62840.
Collapse
Affiliation(s)
- Lu-Lu Zhang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wen Huang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ying-Ying Zhang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Gang Fan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jing-Nan Ren
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhi Li
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiao Li
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Si-Yi Pan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
25
|
Tateishi Y, Minato Y, Baughn AD, Ohnishi H, Nishiyama A, Ozeki Y, Matsumoto S. Genome-wide identification of essential genes in Mycobacterium intracellulare by transposon sequencing - Implication for metabolic remodeling. Sci Rep 2020; 10:5449. [PMID: 32214196 PMCID: PMC7096427 DOI: 10.1038/s41598-020-62287-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 03/10/2020] [Indexed: 12/20/2022] Open
Abstract
The global incidence of the human nontuberculous mycobacteria (NTM) disease is rapidly increasing. However, knowledge of gene essentiality under optimal growth conditions and conditions relevant to the natural ecology of NTM, such as hypoxia, is lacking. In this study, we utilized transposon sequencing to comprehensively identify genes essential for growth in Mycobacterium intracellulare. Of 5126 genes of M. intracellulare ATCC13950, 506 genes were identified as essential genes, of which 280 and 158 genes were shared with essential genes of M. tuberculosis and M. marinum, respectively. The shared genes included target genes of existing antituberculous drugs including SQ109, which targets the trehalose monomycolate transporter MmpL3. From 175 genes showing decreased fitness as conditionally essential under hypoxia, preferential carbohydrate metabolism including gluconeogenesis, glyoxylate cycle and succinate production was suggested under hypoxia. Virulence-associated genes including proteasome system and mycothiol redox system were also identified as conditionally essential under hypoxia, which was further supported by the higher effective suppression of bacterial growth under hypoxia compared to aerobic conditions in the presence of these inhibitors. This study has comprehensively identified functions essential for growth of M. intracellulare under conditions relevant to the host environment. These findings provide critical functional genomic information for drug discovery.
Collapse
Affiliation(s)
- Yoshitaka Tateishi
- Department of Bacteriology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-Dori, Chuo-ku, Niigata, 951-8510, Japan.
| | - Yusuke Minato
- Department of Microbiology and Immunology, University of Minnesota Medical School, 689 23rd Avenue S.E. Microbiology Research Facility, Minneapolis, 55455, MN, USA
| | - Anthony D Baughn
- Department of Microbiology and Immunology, University of Minnesota Medical School, 689 23rd Avenue S.E. Microbiology Research Facility, Minneapolis, 55455, MN, USA
| | - Hiroaki Ohnishi
- Department of Laboratory Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Akihito Nishiyama
- Department of Bacteriology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-Dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Yuriko Ozeki
- Department of Bacteriology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-Dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Sohkichi Matsumoto
- Department of Bacteriology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-Dori, Chuo-ku, Niigata, 951-8510, Japan
| |
Collapse
|
26
|
Baena A, Cabarcas F, Alvarez-Eraso KLF, Isaza JP, Alzate JF, Barrera LF. Differential determinants of virulence in two Mycobacterium tuberculosis Colombian clinical isolates of the LAM09 family. Virulence 2020; 10:695-710. [PMID: 31291814 PMCID: PMC6650194 DOI: 10.1080/21505594.2019.1642045] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The heterogeneity of the clinical outcome of Mycobacterium tuberculosis (Mtb) infection may be due in part to different strategies used by circulating strains to cause disease. This heterogeneity is one of the main limitations to eradicate tuberculosis disease. In this study, we have compared the transcriptional response of two closely related Colombian clinical isolates (UT127 and UT205) of the LAM family under two axenic media conditions. These clinical isolates are phenotypically different at the level of cell death, cytokine production, growth kinetics upon in vitro infection of human tissue macrophages, and membrane vesicle secretion upon culture in synthetic medium. Using RNA-seq, we have identified different pathways that account for two different strategies to cope with the stressful condition of a carbon-poor media such as Sauton’s. We showed that the clinical isolate UT205 focus mainly in the activation of virulence systems such as the ESX-1, synthesis of diacyl-trehalose, polyacyl-trehalose, and sulfolipids, while UT127 concentrates its efforts mainly in the survival mode by the activation of the DNA replication, cell division, and lipid biosynthesis. This is an example of two Mtb isolates that belong to the same family and lineage, and even though they have a very similar genome, its transcriptional regulation showed important differences. This results in summary highlight the necessity to reach a better understanding of the heterogeneity in the behavior of these circulating Mtb strains which may help us to design better treatments and vaccines and to identify new targets for drugs.
Collapse
Affiliation(s)
- Andres Baena
- a Grupo de Inmunología Celular e Inmunogenética (GICIG), Facultad de Medicina, Universidad de Antioquia , Medellín , Colombia.,b Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia , Medellín , Colombia
| | - Felipe Cabarcas
- c Centro Nacional de Secuenciación Genómica (CNSG), Facultad de Medicina, Universidad de Antioquia , Medellín , Colombia.,d Grupo SISTEMIC, Ingeniería Electrónica, Facultad de Ingeniería, Universidad de Antioquia , Medellín , Colombia
| | - Karen L F Alvarez-Eraso
- a Grupo de Inmunología Celular e Inmunogenética (GICIG), Facultad de Medicina, Universidad de Antioquia , Medellín , Colombia
| | - Juan Pablo Isaza
- c Centro Nacional de Secuenciación Genómica (CNSG), Facultad de Medicina, Universidad de Antioquia , Medellín , Colombia
| | - Juan F Alzate
- b Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia , Medellín , Colombia.,c Centro Nacional de Secuenciación Genómica (CNSG), Facultad de Medicina, Universidad de Antioquia , Medellín , Colombia.,e Grupo de Parasitología, Facultad de Medicina, Universidad de Antioquia , Medellín , Colombia
| | - Luis F Barrera
- a Grupo de Inmunología Celular e Inmunogenética (GICIG), Facultad de Medicina, Universidad de Antioquia , Medellín , Colombia.,f Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia , Medellín , Colombia
| |
Collapse
|
27
|
Mi Z, Cheng J, Zhao P, Tian P, Tan T. Improved Production of Pyrroloquinoline Quinone by Simultaneous Augmentation of Its Synthesis Gene Expression and Glucose Metabolism in Klebsiella pneumoniae. Curr Microbiol 2020; 77:1174-1183. [PMID: 32080751 DOI: 10.1007/s00284-020-01918-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 02/10/2020] [Indexed: 10/25/2022]
Abstract
Klebsiella pneumoniae can naturally synthesize pyrroloquinoline quinone (PQQ), but current low yield restricts its commercialization. Here, we reported that PQQ production can be improved by simultaneously intensifying PQQ gene expression and glucose metabolism. Firstly, tandem repetitive tac promoters were constructed to overexpress PQQ synthesis genes. Results showed that when three repeats of tac promoter were recruited to overexpress PQQ synthesis genes, the recombinant strain generated 1.5-fold PQQ relative to the strain recruiting only one tac promoter. Quantitative real-time PCR (qRT-PCR) revealed the increased transcription levels of PQQ synthesis genes. Next, fermentation parameters were optimized to augment the glucose direct oxidation pathway (GDOP) mediated by PQQ-dependent glucose dehydrogenase (PQQ-GDH). Results demonstrated that the cultivation conditions of sufficient glucose (≥ 32 g/L), low pH (5.8), and limited potassium (0.7 nmol/L) significantly promoted the biosynthesis of gluconic acid, 2-ketogluconic acid, and PQQ. In optimum shake flask fermentation conditions, the K. pneumoniae strain overexpressing PQQ synthesis genes under three repeats of tac promoter generated 363.3 nmol/L of PQQ, which was 2.6-fold of that in original culture conditions. In bioreactor cultivation, this strain produced 2371.7 nmol/L of PQQ. To our knowledge, this is the highest PQQ titer reported so far using K. pneumoniae as a host strain. Overall, simultaneous intensification of pqq gene expression and glucose metabolism is effective to improve PQQ production.
Collapse
Affiliation(s)
- Zhiwei Mi
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Jingchao Cheng
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Peng Zhao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Pingfang Tian
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Tianwei Tan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| |
Collapse
|
28
|
Liu X, Wang C, Yan B, Lyu L, Takiff HE, Gao Q. The potassium transporter KdpA affects persister formation by regulating ATP levels in Mycobacterium marinum. Emerg Microbes Infect 2020; 9:129-139. [PMID: 31913766 PMCID: PMC6968386 DOI: 10.1080/22221751.2019.1710090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mycobacterial persistence mechanisms remain to be fully characterized. Screening a transposon insertion library of Mycobacterium marinum identified kdpA, whose inactivation reduced the fraction of persisters after exposure to rifampicin. kdpA encodes a transmembrane protein that is part of the Kdp-ATPase, an ATP-dependent high-affinity potassium (K+) transport system. We found that kdpA is induced under low K+ conditions and is required for pH homeostasis and growth in media with low concentrations of K+. The inactivation of the Kdp system in a kdpA insertion mutant caused hyperpolarization of the cross-membrane potential, increased proton motive force (PMF) and elevated levels of intracellular ATP. The KdpA mutant phenotype could be complemented with a functional kdpA gene or supplementation with high K+ concentrations. Taken together, our results suggest that the Kdp system is required for ATP homeostasis and persister formation. The results also confirm that ATP-mediated regulation of persister formation is a general mechanism in bacteria, and suggest that K+ transporters could play a role in the regulation of ATP levels and persistence. These findings could have implications for the development of new drugs that could either target persisters or reduce their presence.
Collapse
Affiliation(s)
- Xiaofan Liu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College and Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| | - Chuan Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College and Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| | - Bo Yan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| | - Liangdong Lyu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College and Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| | - Howard E Takiff
- Integrated Mycobacterial Pathogenomics Unit, Institut Pasteur, Paris, France
| | - Qian Gao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College and Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
29
|
Zheng C, Yu Z, Du C, Gong Y, Yin W, Li X, Li Z, Römling U, Chou SH, He J. 2-Methylcitrate cycle: a well-regulated controller of Bacillus sporulation. Environ Microbiol 2019; 22:1125-1140. [PMID: 31858668 DOI: 10.1111/1462-2920.14901] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/26/2019] [Accepted: 12/16/2019] [Indexed: 12/23/2022]
Abstract
Bacillus thuringiensis is the most widely used eco-friendly biopesticide, containing two primary determinants of biocontrol, endospore and insecticidal crystal proteins (ICPs). The 2-methylcitrate cycle is a widespread carbon metabolic pathway playing a crucial role in channelling propionyl-CoA, but with poorly understood metabolic regulatory mechanisms. Here, we dissect the transcriptional regulation of the 2-methylcitrate cycle operon prpCDB and report its unprecedented role in controlling the sporulation process of B. thuringiensis. We found that the transcriptional activity of the prp operon encoding the three critical enzymes PrpC, PrpD, and PrpB in the 2-methylcitrate cycle was negatively regulated by the two global transcription factors CcpA and AbrB, while positively regulated by the LysR family regulator CcpC, which jointly account for the fact that the 2-methylcitrate cycle is specifically and highly active in the stationary phase of growth. We also found that the prpD mutant accumulated 2-methylcitrate, the intermediate metabolite of the 2-methylcitrate cycle, which delayed and inhibited sporulation at the early stage. Thus, our results not only revealed sophisticated transcriptional regulatory mechanisms for the metabolic 2-methylcitrate cycle but also identified 2-methylcitrate as a novel regulator of sporulation in B. thuringiensis.
Collapse
Affiliation(s)
- Cao Zheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.,Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan, Hubei, 432000, People's Republic of China
| | - Zhaoqing Yu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Cuiying Du
- Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan, Hubei, 432000, People's Republic of China
| | - Yujing Gong
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Wen Yin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Xinfeng Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Zhou Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Shan-Ho Chou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| |
Collapse
|
30
|
Comparative genomics analysis of Nitriliruptoria reveals the genomic differences and salt adaptation strategies. Extremophiles 2019; 24:249-264. [PMID: 31820112 DOI: 10.1007/s00792-019-01150-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/25/2019] [Indexed: 12/22/2022]
Abstract
The group Nitriliruptoria, recently classified as a separate class of phylum Actinobacteria, has five members at present, which belong to halophilic or halotolerant Actinobacteria. Here, we sequenced the genomes of Egicoccus halophilus EGI 80432T and Egibacter rhizosphaerae EGI 80759T, and performed a comparative genomics approach to analyze the genomic differences and salt adaptation mechanisms in Nitriliruptoria. Phylogenetic analysis suggested that Euzebya tangerina F10T has a closer phylogenetic relationship to Euzebya rosea DSW09T, while genomic analysis revealed highest genomic similarity with Nitriliruptor alkaliphilus ANL-iso2T and E. halophilus EGI 80432T. Genomic differences of Nitriliruptoria were mainly observed in genome size, gene contents, and the amounts of gene in per functional categories. Furthermore, our analysis also revealed that Nitriliruptoria possess similar synthesis systems of solutes, such as trehalose, glutamine, glutamate, and proline. On the other hand, each member of Nitriliruptoria species possesses specific mechanisms, K+ influx and efflux, betaine and ectoine synthesis, and compatible solutes transport to survive in various high-salt environments.
Collapse
|
31
|
|
32
|
Wang X, Cai X, Ma H, Yin W, Zhu L, Li X, Lim HM, Chou SH, He J. A c-di-AMP riboswitch controlling kdpFABC operon transcription regulates the potassium transporter system in Bacillus thuringiensis. Commun Biol 2019; 2:151. [PMID: 31044176 PMCID: PMC6488665 DOI: 10.1038/s42003-019-0414-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/28/2019] [Indexed: 11/09/2022] Open
Abstract
The intracellular K+ level in bacteria is strictly controlled by K+ uptake and efflux systems. Among these, KdpFABC is a high-affinity K+ transporter system that is generally activated by the KdpDE two-component system in response to K+ limitation stress. However, the regulatory mechanism remains obscure in bacteria lacking the kdpDE genes. Here we report that the transcription of a kdpFABC operon is distinctively regulated by a cyclic diadenylate monophosphate (c-di-AMP) riboswitch located at the 5'-untranslated region of kdp transcript, and binding of c-di-AMP to the riboswitch promotes its intrinsic termination that blocks the kdpFABC transcription. Further, the intracellular c-di-AMP concentration was found to decrease under the K+ limitation stress, leading to transcriptional read-through over the terminator to allow kdpFABC expression. This regulatory element is found predominantly in the Bacillus cereus group and correlate well with the K+ and c-di-AMP homeostasis that affects a variety of crucial cellular functions.
Collapse
Affiliation(s)
- Xun Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 PR China
| | - Xia Cai
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 PR China
| | - Hongdan Ma
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 PR China
| | - Wen Yin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 PR China
| | - Li Zhu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 PR China
| | - Xinfeng Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 PR China
| | - Heon M. Lim
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, 305-764 Republic of Korea
| | - Shan-Ho Chou
- Institute of Biochemistry and Agricultural Biotechnology Center, National Chung Hsing University, Taichung, 40227 Taiwan
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 PR China
| |
Collapse
|
33
|
Yang RL, Deng CY, Wei JW, He W, Li AN, Qian W. A Large-Scale Mutational Analysis of Two-Component Signaling Systems of Lonsdalea quercina Revealed that KdpD-KdpE Regulates Bacterial Virulence Against Host Poplar Trees. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:724-736. [PMID: 29424663 DOI: 10.1094/mpmi-10-17-0248-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Poplar, which is a dominant species in plant communities distributed in the northern hemisphere, is commonly used as a model plant in forestry studies. Poplar production can be inhibited by infections caused by bacteria, including Lonsdalea quercina subsp. populi, which is a gram-negative bacterium responsible for bark canker disease. However, the molecular basis of the pathogenesis remains uncharacterized. In this study, we annotated the two-component signal transduction systems (TCSs) encoded by the L. quercina subsp. populi N-5-1 genome and identified 18 putative histidine kinases and 24 response regulators. A large-scale mutational analysis revealed that 19 TCS genes regulated bacterial virulence against poplar trees. Additionally, the deletion of kdpE or overexpression of kdpD resulted in almost complete loss of bacterial virulence. We observed that kdpE and kdpD formed a bi-cistronic operon. KdpD exhibited autokinase activity and could bind to KdpE (Kd = 5.73 ± 0.64 μM). Furthermore, KdpE is an OmpR family response regulator. A chromatin immunoprecipitation sequencing analysis revealed that KdpE binds to an imperfect palindromic sequence within the promoters of 44 genes, including stress response genes Lqp0434, Lqp3037, and Lqp3270. A comprehensive analysis of TCS functions may help to characterize the regulation of poplar bark canker disease.
Collapse
Affiliation(s)
- Ruo-Lan Yang
- 1 The College of Forestry, Beijing Forestry University, Beijing 100083, China
- 2 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; and
| | - Chao-Ying Deng
- 2 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; and
| | - Jin-Wei Wei
- 2 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; and
- 3 School of Biological Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei He
- 1 The College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Ai-Ning Li
- 1 The College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Wei Qian
- 2 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; and
| |
Collapse
|
34
|
The fight for invincibility: Environmental stress response mechanisms and Aeromonas hydrophila. Microb Pathog 2018; 116:135-145. [PMID: 29355702 DOI: 10.1016/j.micpath.2018.01.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 01/15/2018] [Accepted: 01/15/2018] [Indexed: 12/11/2022]
Abstract
Aeromonas hydrophila is a freshwater-dwelling zoonotic bacterium that has economic importance in aquaculture. In the past decade, Aeromonas hydrophila has become increasingly important because of its emergence as a food-borne zoonotic pathogen that is resistant to different treatment regimes. Being an aquatic bacterium, Aeromonas hydrophila is frequently subjected to several stressful environmental conditions, including changes in temperature, acidic pH and starvation that challenge its survival. To cope with these stressful conditions, like every cell, A. hydrophila possesses stress response mechanisms, such as alternative sigma factors, two-component systems, heat shock proteins, cold shock proteins, and acid tolerance response systems that eventually lead the fittest to survive. Moreover, the establishment of genetic variations among the strains related to environmental stress is also of great concern. This review presents the understandings based on inter-strain variations and stress response behavior of A. hydrophila that are important to control the increasing outbreaks of this bacterium in both human populations and aquaculture.
Collapse
|
35
|
Li X, Mei H, Chen F, Tang Q, Yu Z, Cao X, Andongma BT, Chou SH, He J. Transcriptome Landscape of Mycobacterium smegmatis. Front Microbiol 2017; 8:2505. [PMID: 29326668 PMCID: PMC5741613 DOI: 10.3389/fmicb.2017.02505] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/01/2017] [Indexed: 11/13/2022] Open
Abstract
The non-pathogenic bacterium Mycobacterium smegmatis mc2155 has been widely used as a model organism in mycobacterial research, yet a detailed study about its transcription landscape remains to be established. Here we report the transcriptome, expression profiles and transcriptional structures through growth-phase-dependent RNA sequencing (RNA-seq) as well as other related experiments. We found: (1) 2,139 transcriptional start sites (TSSs) in the genome-wide scale, of which eight samples were randomly selected and further verified by 5′-RACE; (2) 2,233 independent monocistronic or polycistronic mRNAs in the transcriptome within the operon/sub-operon structures which are classified into five groups; (3) 47.50% (1016/2139) genes were transcribed into leaderless mRNAs, with the TSSs of 41.3% (883/2139) mRNAs overlapping with the first base of the annotated start codon. Initial amino acids of MSMEG_4921 and MSMEG_6422 proteins were identified by Edman degradation, indicating the presence of distinctive widespread leaderless features in M. smegmatis mc2155. (4) 150 genes with potentially wrong structural annotation, of which 124 proposed genes have been corrected; (5) eight highly active promoters, with their activities further determined by β-galactosidase assays. These data integrated the transcriptional landscape to genome information of model organism mc2155 and lay a solid foundation for further works in Mycobacterium.
Collapse
Affiliation(s)
- Xinfeng Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Han Mei
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fang Chen
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qing Tang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhaoqing Yu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaojian Cao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Binda T Andongma
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shan-Ho Chou
- Institute of Biochemistry and NCHU Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
36
|
Dani P, Ujaoney AK, Apte SK, Basu B. Regulation of potassium dependent ATPase (kdp) operon of Deinococcus radiodurans. PLoS One 2017; 12:e0188998. [PMID: 29206865 PMCID: PMC5716572 DOI: 10.1371/journal.pone.0188998] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/16/2017] [Indexed: 11/19/2022] Open
Abstract
The genome of D. radiodurans harbors genes for structural and regulatory proteins of Kdp ATPase, in an operon pattern, on Mega plasmid 1. Organization of its two-component regulatory genes is unique. Here we demonstrate that both, the structural as well as regulatory components of the kdp operon of D. radiodurans are expressed quickly as the cells experience potassium limitation but are not expressed upon increase in osmolarity. The cognate DNA binding response regulator (RR) effects the expression of kdp operon during potassium deficiency through specific interaction with the kdp promoter. Deletion of the gene encoding RR protein renders the mutant D. radiodurans (ΔRR) unable to express kdp operon under potassium limitation. The ΔRR D. radiodurans displays no growth defect when grown on rich media or when exposed to oxidative or heat stress but shows reduced growth following gamma irradiation. The study elucidates the functional and regulatory aspects of the novel kdp operon of this extremophile, for the first time.
Collapse
Affiliation(s)
- Pratiksha Dani
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Aman Kumar Ujaoney
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - Shree Kumar Apte
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - Bhakti Basu
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
- * E-mail:
| |
Collapse
|