1
|
Barmettler K, Kelbert L, Horlbog JA, Cernela N, Biggel M, Stephan R. Salmonella in Swiss and Imported Retail Chicken Meat - A Cross-Sectional Study. J Food Prot 2025; 88:100532. [PMID: 40339991 DOI: 10.1016/j.jfp.2025.100532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/29/2025] [Accepted: 05/01/2025] [Indexed: 05/10/2025]
Abstract
Non-typhoidal Salmonella enterica (NTS) are significant foodborne pathogens responsible for many cases of enterocolitis worldwide, with the increasing threat of antimicrobial resistance (AMR) posing a growing public health concern. Salmonella Infantis has emerged as a predominant multidrug-resistant (MDR) serotype, particularly in poultry. This study investigated the Salmonella prevalence in 200 chicken meat samples from Swiss retail stores. Six (3%) samples tested positive; all were imported, and the isolates were all identified as S. Infantis. Whole genome sequencing confirmed the presence of the pESI (plasmid of emerging S. Infantis) megaplasmid, which is associated with enhanced persistence, biofilm formation, and multidrug resistance. Statistical analysis revealed a significant correlation between Salmonella prevalence and imported, unlabeled products. These findings highlight the effectiveness of Swiss control measures in the poultry production but underscore the importance of maintaining consumer awareness to mitigate Salmonella transmission and MDR risks.
Collapse
Affiliation(s)
- Karen Barmettler
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Switzerland.
| | - Lucien Kelbert
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Switzerland
| | - Jule Anna Horlbog
- National Reference Center for Enteropathogenic Bacteria and Listeria (NENT), Zurich, Switzerland
| | - Nicole Cernela
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Switzerland
| | - Michael Biggel
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Switzerland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Switzerland
| |
Collapse
|
2
|
Cawthraw S, Wales A, Guzinski J, Trew J, Ring I, Huby T, Hussaini A, Petrovska L, Martelli F. Salmonella Infantis outbreak on six broiler units in Great Britain: investigation, epidemiology, and control. J Appl Microbiol 2025; 136:lxaf040. [PMID: 39987448 DOI: 10.1093/jambio/lxaf040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/06/2025] [Accepted: 02/20/2025] [Indexed: 02/24/2025]
Abstract
AIMS To describe the analysis, epidemiology, and control of six contemporaneous and linked outbreaks of Salmonella enterica subsp. enterica serovar Infantis on British broiler farms. Salmonella Infantis is a potentially multidrug-resistant foodborne zoonosis and can persistently colonize poultry flocks and farms. METHODS AND RESULTS Routine monitoring initially identified the organism, which was tracked to six farms associated with a single company. Extensive, repeat sampling identified widespread and, in some cases, persistent contamination. Salmonella Infantis was also isolated from three associated processing factories and catching crew equipment, but not from associated hatcheries and feed mills. Whole genome sequencing and resistance phenotyping revealed one strain was present in the processing plants and on five farms. However, on one of those farms, several highly genetically distinct strains were also detected, including one also found in one of the processing plants. The sixth farm had a strain that was genetically unrelated to strains collected from the other premises and which exhibited an extended spectrum beta-lactamase phenotype. Cleaning and disinfection were enhanced, and the organism was eventually cleared from all farms. CONCLUSIONS There were multiple incursions of varied strains, with a possible link to processing factories. Elimination of S. Infantis from premises can be challenging but achievable.
Collapse
Affiliation(s)
- Shaun Cawthraw
- Department of Bacteriology, Animal and Plant Health Agency (APHA-Weybridge), New Haw, Surrey KT15 3NB, United Kingdom
| | - Andrew Wales
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, University of Surrey, Guildford, Surrey GU2 7AL, United Kingdom
| | - Jaromir Guzinski
- Department of Bacteriology, Animal and Plant Health Agency (APHA-Weybridge), New Haw, Surrey KT15 3NB, United Kingdom
| | - Jahcub Trew
- Department of Bacteriology, Animal and Plant Health Agency (APHA-Weybridge), New Haw, Surrey KT15 3NB, United Kingdom
| | - Isaac Ring
- Department of Bacteriology, Animal and Plant Health Agency (APHA-Weybridge), New Haw, Surrey KT15 3NB, United Kingdom
| | - Tom Huby
- Department of Bacteriology, Animal and Plant Health Agency (APHA-Weybridge), New Haw, Surrey KT15 3NB, United Kingdom
| | - Arslan Hussaini
- Department of Bacteriology, Animal and Plant Health Agency (APHA-Weybridge), New Haw, Surrey KT15 3NB, United Kingdom
| | - Liljana Petrovska
- Gastrointestinal Infections & Food Safety (One Health) Division, UK Health Security Agency, London, NW9 5EQ, United Kingdom
| | - Francesca Martelli
- Department of Bacteriology, Animal and Plant Health Agency (APHA-Weybridge), New Haw, Surrey KT15 3NB, United Kingdom
| |
Collapse
|
3
|
Lee SH, Lee OM, Kang SI, Her M, Kang MS, Chae M, Seo MG. Recent Occurrence and Rapid Spread of Multidrug-Resistant Salmonella Infantis in Broiler Flocks in Korea. Foodborne Pathog Dis 2025. [PMID: 40014431 DOI: 10.1089/fpd.2024.0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025] Open
Abstract
Salmonella Infantis has recently been one of the most prevalent serotypes in poultry and has been identified in human salmonellosis cases worldwide. Multidrug-resistant (MDR) Salmonella Infantis has emerged as a significant threat to both poultry production and public health due to its increasing prevalence and global dissemination. We identified the occurrence of an MDR Salmonella Infantis clone in broiler flocks in Korea, and the clone was characterized to explore potential genetic causes for its high prevalence and rapid spread in broiler production. In total, 220 Salmonella strains isolated between 2020 and 2023 from broiler flocks were serotyped, and 50 strains were identified as Salmonella Infantis (22.7%). The isolates were tested for antimicrobial susceptibility, and their genetic characteristics were analyzed using pulsed-field gel electrophoresis (PFGE), multilocus sequence typing, and whole genome sequencing (WGS). Forty-six strains of Salmonella Infantis isolated since 2020 were resistant to at least five antimicrobial families including ampicillin, cephalosporins, chloramphenicol, nalidixic acid, and tetracycline. The strains showed 10 PFGE patterns and a single multilocus sequence type 32. Eight representative MDR strains were analyzed by WGS. Seven of the eight strains carried the plasmid of emerging Salmonella Infantis-like megaplasmids recognized globally in emergent MDR Salmonella Infantis. They had a high prevalence of seven antimicrobial resistance genes, six of which were identified in plasmids. Also, they all share virulence genes, including fimbrial adherence determinants and secretion system components, and showed a clonal relationship to strains from North America, South America, and West Asia, suggesting potential international dissemination routes. To mitigate the risks associated with the rapid spread of MDR Salmonella Infantis in poultry production and its potential impact on human health, this study provides valuable insights into implementing effective control measures to reduce Salmonella in broiler production in Korea. Further highlighting the critical importance of enhanced biosecurity and continuous surveillance.
Collapse
Affiliation(s)
- So-Hee Lee
- Avian Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do, Gimcheon, Korea
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu, Korea
| | - O-Mi Lee
- Avian Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do, Gimcheon, Korea
| | - Sung-Il Kang
- Avian Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do, Gimcheon, Korea
| | - Moon Her
- Avian Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do, Gimcheon, Korea
| | - Min-Su Kang
- Avian Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do, Gimcheon, Korea
| | - Myeongju Chae
- Avian Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do, Gimcheon, Korea
| | - Min-Goo Seo
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu, Korea
| |
Collapse
|
4
|
Gheorghe-Barbu I, Czobor Barbu I, Dragomir RI, Marinaș IC, Stan MS, Pericleanu R, Dumbravă AȘ, Rotaru LI, Paraschiv S, Bănică LM, Pecete I, Oțelea D, Cristea VC, Popa MI, Țânțu MM, Surleac M. Emerging Resistance and Virulence Patterns in Salmonella enterica: Insights into Silver Nanoparticles as an Antimicrobial Strategy. Antibiotics (Basel) 2025; 14:46. [PMID: 39858332 PMCID: PMC11762817 DOI: 10.3390/antibiotics14010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/20/2024] [Accepted: 01/01/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES This study aims to characterize antibiotic resistance (AR) and virulence markers in Salmonella spp. isolated from Romanian outpatients' stool samples. METHODS In 2019, community-acquired Salmonella strains were collected and identified using MALDI-TOF mass spectrometry, antibiotic susceptibility profiles have been determined with the MicroScan system, and soluble virulence factors were evaluated using specific culture media, while biofilm formation was quantified in 96-well plates. Molecular analysis targeted resistance genes for β-lactams (e.g., blaTEM and blaSHV); tetracyclines (e.g., tet(A)); sulphonamides; and quinolones, as well as virulence genes (e.g., invA, spvC, pldA, and held). Whole-genome sequencing (WGS) was performed on 19 selected isolates. A silver nanoparticles (AgNPsol) alternative to conventional antibiotics was tested for effectiveness against multidrug-resistant (MDR) isolates. RESULTS From the total of 309 Salmonella isolates (65.05% from children under 4 years of age) belonging to four subtypes and four serovars, 27.86% showed resistance to at least one antibiotic, most frequently to tetracycline, ampicillin, and piperacillin. The strains frequently expressed haemolysin (67%), aesculinase (65%), and gelatinase (62%). Resistance to trimethoprim-sulfamethoxazole was encoded by the sul1 gene in 44.83% of the strains and to tetracyclines by the tet(A) gene (59.52%). The ESBL genes blaTEM, blaSHV, and blaCTX-M were detected by PCR in 16.18%, 2.91%, and 0.65% of the strains, respectively. Additionally, 98.63% of the strains carried the invA marker, with notable positive associations between blaSHV, qnrB, and sul1 with spvC. CONCLUSIONS The present findings revealed significant patterns in Salmonella isolates, subtypes, serovars, AR, and virulence, emphasising the need for continuous surveillance of Salmonella infections. Additionally, the potential of AgNPs as an alternative treatment option was demonstrated, particularly for paediatric S. enterica infections.
Collapse
Affiliation(s)
- Irina Gheorghe-Barbu
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania; (I.G.-B.); (R.-I.D.); (R.P.); (A.Ș.D.); (L.-I.R.)
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania; (I.C.M.); (M.S.S.); (M.S.)
| | - Ilda Czobor Barbu
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania; (I.G.-B.); (R.-I.D.); (R.P.); (A.Ș.D.); (L.-I.R.)
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania; (I.C.M.); (M.S.S.); (M.S.)
| | - Rareș-Ionuț Dragomir
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania; (I.G.-B.); (R.-I.D.); (R.P.); (A.Ș.D.); (L.-I.R.)
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania; (I.C.M.); (M.S.S.); (M.S.)
| | - Ioana Cristina Marinaș
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania; (I.C.M.); (M.S.S.); (M.S.)
| | - Miruna Silvia Stan
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania; (I.C.M.); (M.S.S.); (M.S.)
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Radu Pericleanu
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania; (I.G.-B.); (R.-I.D.); (R.P.); (A.Ș.D.); (L.-I.R.)
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania; (I.C.M.); (M.S.S.); (M.S.)
| | - Andreea Ștefania Dumbravă
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania; (I.G.-B.); (R.-I.D.); (R.P.); (A.Ș.D.); (L.-I.R.)
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania; (I.C.M.); (M.S.S.); (M.S.)
| | - Liviu-Iulian Rotaru
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania; (I.G.-B.); (R.-I.D.); (R.P.); (A.Ș.D.); (L.-I.R.)
- National Institute for Infectious Diseases Prof. Dr. Matei Bals, 021105 Bucharest, Romania; (S.P.); (L.M.B.); (D.O.)
| | - Simona Paraschiv
- National Institute for Infectious Diseases Prof. Dr. Matei Bals, 021105 Bucharest, Romania; (S.P.); (L.M.B.); (D.O.)
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.C.C.); (M.I.P.)
| | - Leontina Mirela Bănică
- National Institute for Infectious Diseases Prof. Dr. Matei Bals, 021105 Bucharest, Romania; (S.P.); (L.M.B.); (D.O.)
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.C.C.); (M.I.P.)
| | - Ionuț Pecete
- Synevo Central Lab Romania, 021408 Bucharest, Romania;
| | - Dan Oțelea
- National Institute for Infectious Diseases Prof. Dr. Matei Bals, 021105 Bucharest, Romania; (S.P.); (L.M.B.); (D.O.)
| | - Violeta Corina Cristea
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.C.C.); (M.I.P.)
| | - Mircea Ioan Popa
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.C.C.); (M.I.P.)
- Cantacuzino National Medical Military Institute for Research and Development, 050096 Bucharest, Romania
| | - Marilena Monica Țânțu
- National University of Science and Technology Politechnica of Bucharest, 060042 Bucharest, Romania;
- Department of Medical Assistance and Physiotherapy, Faculty of Sciences, Physical Education and Informatics, University of Pitești, 110040 Pitesti, Romania
| | - Marius Surleac
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania; (I.C.M.); (M.S.S.); (M.S.)
- National Institute for Infectious Diseases Prof. Dr. Matei Bals, 021105 Bucharest, Romania; (S.P.); (L.M.B.); (D.O.)
| |
Collapse
|
5
|
Villavicencio F, Albán V, Satán C, Quintana H, Enríquez W, Jaramillo K, Flores F, Arisqueta L. Salmonella enterica Serovar Infantis KPC-2 Producer: First Isolate Reported in Ecuador. Microb Drug Resist 2024; 30:502-508. [PMID: 39642000 DOI: 10.1089/mdr.2024.0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024] Open
Abstract
Antimicrobial resistance is currently considered a public health threat. Carbapenems are antimicrobials for hospital use, and Enterobacterales resistant to these β-lactams have spread alarmingly in recent years, especially those that cause health care-associated infections. The blaKPC gene is considered one of the most important genetic determinants disseminated by plasmids, promoting horizontal gene transfer. This study describes, for the first time in Ecuador, and worldwide, the presence of a blaKPC-2 gene in an isolate of Salmonella enterica serovar Infantis from a clinical sample. Through whole-genome sequencing, we characterized the genetic determinants of antimicrobial resistance in this Salmonella ST-32 strain. Our results showed the presence of several resistance genes, including blaCTX-M-65, and a conjugative plasmid Kpn-WC17-007-03 that may be responsible for the horizontal transference of these resistance mechanisms.
Collapse
Affiliation(s)
- Fernando Villavicencio
- National Reference Center for Antimicrobial Resistance RAM, National Institute for Public Health Research, INSPI, Quito, Ecuador
- Facultad de Medicina Veterinaria y Agronomía, Carrera de Medicina Veterinaria, Universidad UTE, Av. Mariana de Jesús, Quito, Ecuador
- Faculty of Health Sciences, SEK International University of Ecuador, Alberto Einstein and 5ta Transversal, Quito, Ecuador
| | - Viviana Albán
- Institute of Microbiology, San Francisco de Quito University, Cumbayá, Ecuador
| | - Carolina Satán
- National Reference Center for Antimicrobial Resistance RAM, National Institute for Public Health Research, INSPI, Quito, Ecuador
| | | | - Wladimir Enríquez
- National Reference Center for Antimicrobial Resistance RAM, National Institute for Public Health Research, INSPI, Quito, Ecuador
| | - Katherine Jaramillo
- National Reference Center for Antimicrobial Resistance RAM, National Institute for Public Health Research, INSPI, Quito, Ecuador
| | - Francisco Flores
- Departamento de Ciencias de la Vida, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
- Facultad de Ciencias de la Ingeniería e Industrias, Centro de Investigación de Alimentos, Universidad UTE, Av. Mariana de Jesús, Quito, Ecuador
| | - Lino Arisqueta
- Faculty of Health Sciences, SEK International University of Ecuador, Alberto Einstein and 5ta Transversal, Quito, Ecuador
| |
Collapse
|
6
|
Georganas A, Graziosi G, Catelli E, Lupini C. Salmonella enterica Serovar Infantis in Broiler Chickens: A Systematic Review and Meta-Analysis. Animals (Basel) 2024; 14:3453. [PMID: 39682418 DOI: 10.3390/ani14233453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Salmonella enterica subsp. enterica serovar Infantis poses a growing threat to public health, due to its increasing prevalence worldwide and its association with high levels of antimicrobial resistance. Among livestock, S. Infantis is especially isolated from broilers. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, a systematic review was conducted by searching in three databases (Web of Science, Scopus, and PubMed) for English-language studies (1957-2023) that reported the prevalence of S. Infantis in broiler farms. Eligible studies included epidemiological investigations conducted in broiler chickens by sampling the house environment (flock-level prevalence) or the birds (individual-level prevalence). A random-effect model was applied to calculate S. Infantis pooled prevalence estimates with 95% confidence intervals (CIs). Furthermore, to assess between-study heterogeneity, the inconsistency index statistic (I2) was calculated. Among 537 studies retrieved, a total of 9 studies reporting flock-level prevalence of S. Infantis and 4 reporting individual-level prevalence were retained for analysis. The flock-level pooled prevalence was estimated to be 9% (95% CI: 1-26%) and a high between-study heterogeneity was found (I2 = 99%, p < 0.01). Concerning individual-level prevalence, a meta-analysis was not performed due to the scarcity of eligible studies. The data presented underscore the significant occurrence of S. Infantis in broilers at the farm level. By summarizing the existing literature, this work provides useful insights for conducting future surveys of Salmonella spp. in live broiler chickens as a preliminary step for developing more efficient control strategies.
Collapse
Affiliation(s)
- Alexandros Georganas
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia, BO, Italy
| | - Giulia Graziosi
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia, BO, Italy
| | - Elena Catelli
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia, BO, Italy
| | - Caterina Lupini
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia, BO, Italy
| |
Collapse
|
7
|
Chen R, Yang L, Pajor MS, Wiedmann M, Orsi RH. Salmonella associated with agricultural animals exhibit diverse evolutionary rates and show evidence of recent clonal expansion. mBio 2024; 15:e0191324. [PMID: 39287448 PMCID: PMC11492988 DOI: 10.1128/mbio.01913-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/18/2024] [Indexed: 09/19/2024] Open
Abstract
Most foodborne salmonellosis outbreaks are linked to agricultural animal products with a few serovars accounting for most Salmonella isolated from specific animal products, suggesting an adaptation to the corresponding animal hosts and their respective environments. Here, we utilized whole-genome sequence (WGS) data to analyze the evolution and population genetics of seven serovars frequently isolated from ground beef (Montevideo, Cerro, and Dublin), chicken (Kentucky, Infantis, and Enteritidis), and turkey (Reading) in the United States. In addition, publicly available metadata were used to characterize major clades within each serovar with regard to public health significance. Except for Dublin, all serovars were polyphyletic, comprising 2-6 phylogenetic groups. Further partitioning of the phylogenies identified 25 major clades, including 12 associated with animal or environmental niches. These 12 clades differed in evolutionary parameters (e.g., substitution rates) as well as public health relevant characteristics (e.g., association with human illness, antimicrobial resistance). Overall, our results highlight several critical trends: (i) the Salmonella generation time appears to be more dependent on source than serovar and (ii) all serovars contain clades and sub-clades that are estimated to have emerged after the year 1940 and that are enriched for isolates associated with humans, agricultural animals, antimicrobial resistance (AMR), and/or specific geographical regions. These findings suggest that serotyping alone does not provide enough resolution to differentiate isolates that may have evolved independently, present distinct geographic distribution and host association, and possibly have distinct public health significance. IMPORTANCE Non-typhoidal Salmonella are major foodborne bacterial pathogens estimated to cause more than one million illnesses, thousands of hospitalizations, and hundreds of deaths annually in the United States. More than 70% of Salmonella outbreaks in the United States have been associated with agricultural animals. Certain serovars include persistent strains that have repeatedly contaminated beef, chicken, and turkey, causing outbreaks and sporadic cases over many years. These persistent strains represent a particular challenge to public health, as they are genetically clonal and widespread, making it difficult to differentiate distinct outbreak and contamination events using whole-genome sequence (WGS)-based subtyping methods (e.g., core genome allelic typing). Our results indicate that a phylogenetic approach is needed to investigate persistent strains and suggest that the association between a Salmonella serovar and an agricultural animal is driven by the expansion of clonal subtypes that likely became adapted to specific animals and associated environments.
Collapse
Affiliation(s)
- Ruixi Chen
- Department of Food
Science, Cornell University,
Ithaca, New York, USA
| | - Linghuan Yang
- Department of Food
Science, Cornell University,
Ithaca, New York, USA
| | | | - Martin Wiedmann
- Department of Food
Science, Cornell University,
Ithaca, New York, USA
| | - Renato H. Orsi
- Department of Food
Science, Cornell University,
Ithaca, New York, USA
| |
Collapse
|
8
|
Kang HS, Ali MS, Na SH, Moon BY, Kim JI, Hwang YJ, Yoon SS, Park SC, Lim SK. Nationwide surveillance and characterization of the third-generation cephalosporin-resistant Salmonella enterica serovar infantis isolated from chickens in South Korea between 2010 and 2022. Heliyon 2024; 10:e37124. [PMID: 39319126 PMCID: PMC11419902 DOI: 10.1016/j.heliyon.2024.e37124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/06/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024] Open
Abstract
The occurrence of extended-spectrum β-lactamase (ESBL)/AmpC β-lactamase-producing Salmonella conferring resistance to third-generation cephalosporin has emerged as a global public health concern. In this study, we aimed to investigate the prevalence and molecular characterization of third-generation cephalosporin-resistant Salmonella enterica serovar Infantis. In total, 409 S. Infatis isolates were collected from the feces and carcasses of healthy and diseased food animals, including chickens (n = 348), pigs (n = 48), cattle (n = 8), and ducks (n = 5) between 2010 and 2022 nationwide in South Korea. Among them, 61.9 % (253/409) of S. Infantis strains displayed resistance to ceftiofur, with the most resistant isolates obtained from chickens (98.4 %, 249/253). Moreover, S. Infantis isolates showed high resistance (47.7-67.2 %) to streptomycin, ampicillin, nalidixic acid, sulfisoxazole, chloramphenicol, tetracycline, and trimethoprim/sulfamethoxazole. Additionally, the multidrug resistance (MDR) was significantly greater in the ceftiofur-resistant isolates compared to the ceftiofur-susceptible isolates (p < 0.05). All the ceftiofur-resistant S. Infantis strains produced CTX-M/CMY-2 β-lactamase enzymes, with bla CTX-M-65 comprising the most (98.4 %, 249/253), followed by bla CTX-M-15 (1.2 %, 3/253), and bla CMY-2 (0.4 %, 1/253). The ceftiofur-resistant S. Infantis belonged to 37 different pulsotypes, with X1A1 (26.1 %, 66/253), X1A2 (20.9 %, 53/253), and X5A3 (9.1 %) being the most prevalent, representing a total of 56.1 % (142/253). Furthermore, the S. Infantis sequence type (ST)32 was the most common, accounting for 91.9 % (34/37) of the three distinct STs (ST32, ST16, and ST11) detected across farms located in various provinces nationwide. Most of the bla CMX-M-65 genes (77.5 %, 193/249), all of the bla CTX-M-15 genes (100 %, 3/3), and the bla CMY-2 gene (100 %, 1/1) were transferred to the recipient E. coli RG488 by conjugation. In addition, the majority of the transconjugants (98.9 %, 191/193) containing bla CTX-M-65 genes belong to the IncFIB replicon type, playing an important role in the quick and widespread dissemination of S. Infantis. Thus, ceftiofur-resistant S. Infantis carrying the β-lactamase genes in chickens has the potential to be transmitted to humans.
Collapse
Affiliation(s)
- Hee-Seung Kang
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Md Sekendar Ali
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Seok-Hyeon Na
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Bo-Youn Moon
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Ji-In Kim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Yu-Jeong Hwang
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Soon Seek Yoon
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Seung-Chun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, Institute for Veterinary Biomedical Science, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Suk-Kyung Lim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| |
Collapse
|
9
|
Szmolka A, Lancz ZS, Rapcsák F, Egyed L. Emergence and Comparative Genome Analysis of Salmonella Ohio Strains from Brown Rats, Poultry, and Swine in Hungary. Int J Mol Sci 2024; 25:8820. [PMID: 39201506 PMCID: PMC11354295 DOI: 10.3390/ijms25168820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
Rats are particularly important from an epidemiological point of view, because they are regarded as reservoirs for diverse zoonotic pathogens including enteric bacteria. This study is the first to report the emergence of Salmonella serovar Ohio in brown rats (Rattus norvegicus) and food-producing animals in Hungary. We first reveal the genomic diversity of the strains and their phylogenomic relationships in the context of the international collection of S. Ohio genomes. This pathogen was detected in 4.3% (4/92) of rats, captured from multiple sites in Hungary. A whole-genome-based genotype comparison of S. Ohio, Infantis, Enteritidis, and Typhimurium strains showed that 76.4% (117/153) of the virulence and antimicrobial resistance genes were conserved among these serovars, and none of the genes were specific to S. Ohio. All S. Ohio strains lacked virulence and resistance plasmids. The cgMLST phylogenomic comparison highlighted a close genetic relationship between rat and poultry strains of S. Ohio from Hungary. These strains clustered together with the international S. Ohio genomes from aquatic environments. Overall, this study contributes to our understanding of the epidemiology of Salmonella spp. in brown rats and highlights the importance of monitoring to minimize the public health risk of rodent populations. However, further research is needed to understand the route of infection and evolution of this serovar.
Collapse
Affiliation(s)
- Ama Szmolka
- HUN-REN Veterinary Medical Research Institute, 1143 Budapest, Hungary (L.E.)
| | | | - Fanni Rapcsák
- HUN-REN Veterinary Medical Research Institute, 1143 Budapest, Hungary (L.E.)
| | - László Egyed
- HUN-REN Veterinary Medical Research Institute, 1143 Budapest, Hungary (L.E.)
| |
Collapse
|
10
|
Gruzdev N, Katz C, Yadid I. Curing of a field strain of Salmonella enterica serovar Infantis isolated from poultry from its highly stable pESI like plasmid. J Microbiol Methods 2024; 222:106959. [PMID: 38782300 DOI: 10.1016/j.mimet.2024.106959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/05/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Salmonella enterica serovar Infantis (S. infantis) is an important emerging pathogen, associated with poultry and poultry products and related to an increasing number of human infections in many countries. A concerning trend among S. infantis isolates is the presence of plasmid-mediated multidrug resistance. In many instances, the genes responsible for this resistance are carried on a megaplasmid known as the plasmid of emerging S. infantis (pESI) or pESI like plasmids. Plasmids can be remarkably stable due to the presence of multiple replicons and post-segregational killing systems (PSKs), which contribute to their maintenance within bacterial populations. To enhance our understanding of S. infantis and its multidrug resistance determinants toward the development of new vaccination strategies, we have devised a new method for targeted plasmid curing. This approach effectively overcomes plasmid addiction by leveraging the temporal overproduction of specific antitoxins coupled with the deletion of the partition region. By employing this strategy, we successfully generated a plasmid-free strain from a field isolate derived from S. infantis 119,944. This method provides valuable tools for studying S. infantis and its plasmid-borne multidrug resistance mechanisms and can be easily adopted for plasmid curing from other related bacteria.
Collapse
Affiliation(s)
- Nadya Gruzdev
- Migal-Galilee Research Institute, Kiryat-Shmona 1101602, Israel
| | - Chen Katz
- Migal-Galilee Research Institute, Kiryat-Shmona 1101602, Israel
| | - Itamar Yadid
- Migal-Galilee Research Institute, Kiryat-Shmona 1101602, Israel; Tel-Hai College, Upper Galilee 1220800, Israel.
| |
Collapse
|
11
|
Wiederkehr CM, Alvarez J, Torre-Fuentes L, Crespo-Lopez OI, Calfucura P, Ugarte-Ruiz M, Toledo V, Lurz PWW, Retamal P. Salmonella in Coastal Birds in Chile: Detection of a Multidrug-Resistant S. Infantis Bearing the bla CTX-M-65 Gene in a pESI-Like Megaplasmid in Humboldt Penguins. Transbound Emerg Dis 2024; 2024:1949535. [PMID: 40303178 PMCID: PMC12020390 DOI: 10.1155/2024/1949535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/22/2024] [Accepted: 05/27/2024] [Indexed: 05/02/2025]
Abstract
Salmonella enterica is one of the most important foodborne pathogens worldwide, and the emergence of multidrug resistance (MDR) clones can aggravate its public health importance. Wildlife species may act as reservoirs of these clones, but their role is not well understood. In this study, faecal samples from shorebirds, with a focus on the endangered Humboldt penguin (Spheniscus humboldti), collected from five sites in central Chile with different levels of anthropogenic pressure were analysed to characterize antimicrobial resistant S. enterica serovars. Overall, Salmonella was isolated from 22 of the 595 samples (3.7%), with positivity ranging between 1.6% and 9.5%, depending on the sampling site. Four of the Salmonella isolates were retrieved from Humboldt penguin samples (1.4% positive samples in this species). Serovars Infantis (nine isolates), Typhimurium (six), Goldcoast (four), and Enteritidis, Agona, and Give (one isolate each) were identified. Resistance levels were the highest for sulphamethoxazole (13/21 isolates with a non-wild-type phenotype), ciprofloxacin, tetracycline, and trimethoprim (11/21 each). Whole-genome sequencing performed on eight S. Infantis strains revealed that seven carried the plasmid replicon IncFIB (pN55391), indicating the presence of the pESI-like megaplasmid, harbouring resistance determinants to multiple antimicrobial classes as well as heavy metal, biocides, and virulence-related genes. Furthermore, five S. Infantis isolates that showed an ESBL phenotype carried the bla CTX-M-65 gene, three of which were detected in Humboldt penguin faeces. The finding of an international emerging S. Infantis clone in protected wildlife is of concern to environmental, animal, and public health specialists, supporting initiatives for an active surveillance of resistance and virulence traits in wildlife exposed to anthropogenic areas.
Collapse
Affiliation(s)
- Clara M. Wiederkehr
- VISAVET Health Surveillance CentreUniversidad Complutense de MadridMadridSpain
- Departamento de Sanidad AnimalFacultad de VeterinariaUniversidad Complutense de MadridMadridSpain
| | - Julio Alvarez
- VISAVET Health Surveillance CentreUniversidad Complutense de MadridMadridSpain
- Departamento de Sanidad AnimalFacultad de VeterinariaUniversidad Complutense de MadridMadridSpain
| | - Laura Torre-Fuentes
- VISAVET Health Surveillance CentreUniversidad Complutense de MadridMadridSpain
| | | | - Paulina Calfucura
- Facultad de Ciencias Veterinarias y PecuariasUniversidad de ChileSantiagoChile
| | - Maria Ugarte-Ruiz
- VISAVET Health Surveillance CentreUniversidad Complutense de MadridMadridSpain
| | - Viviana Toledo
- Servicio Agrícola y Ganadero de ChileMinisterio de AgriculturaSantiagoChile
| | - Peter W. W. Lurz
- Royal (Dick) School of Veterinary Studies and the Roslin InstituteUniversity of EdinburghEdinburghScotlandUK
| | - Patricio Retamal
- Facultad de Ciencias Veterinarias y PecuariasUniversidad de ChileSantiagoChile
| |
Collapse
|
12
|
Vilela FP, Rodrigues DDP, Allard MW, Falcão JP. CRISPR and CRISPR-MVLST reveal conserved spacer distribution and high similarity among Salmonella enterica serovar Infantis genomes from Brazil and other countries. Mol Genet Genomics 2024; 299:61. [PMID: 38806731 DOI: 10.1007/s00438-024-02147-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/24/2024] [Indexed: 05/30/2024]
Abstract
Salmonella enterica serovar Infantis (S. Infantis) is a globally distributed non-typhoid serovar infecting humans and food-producing animals. Considering the zoonotic potential and public health importance of this serovar, strategies to characterizing, monitor and control this pathogen are of great importance. This study aimed to determine the genetic relatedness of 80 Brazilian S. Infantis genomes in comparison to 40 non-Brazilian genomes from 14 countries using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-Multi-Locus Virulence Sequence Typing (CRISPR-MVLST). CRISPR spacers were searched using CRISPR-Cas++ and fimH and sseL alleles using BLAST and MEGA X. Results were analyzed using BioNumerics 7.6 in order to obtain similarity dendrograms. A total of 23 CRISPR1 and 11 CRISPR2 alleles formed by 37 and 26 types of spacers, respectively, were detected. MVLST revealed the presence of five fimH and three sseL alleles. CRISPR's similarity dendrogram showed 32 strain subtypes, with an overall similarity ≥ 78.6. The CRISPR-MVLST similarity dendrogram showed 37 subtypes, with an overall similarity ≥ 79.2. In conclusion, S. Infantis strains isolated from diverse sources in Brazil and other countries presented a high genetic similarity according to CRISPR and CRISPR-MVLST, regardless of their source, year, and/or place of isolation. These results suggest that both methods might be useful for molecular typing S. Infantis strains using WGS data.
Collapse
Affiliation(s)
- Felipe Pinheiro Vilela
- Departamento de Análises Clínicas, Toxicológicas E Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP, Av. Do Café, s/n. Bloco S - Sala 41, Ribeirão Preto, SP, 14040-903, Brazil
| | | | - Marc William Allard
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| | - Juliana Pfrimer Falcão
- Departamento de Análises Clínicas, Toxicológicas E Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP, Av. Do Café, s/n. Bloco S - Sala 41, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
13
|
Mattock J, Chattaway MA, Hartman H, Dallman TJ, Smith AM, Keddy K, Petrovska L, Manners EJ, Duze ST, Smouse S, Tau N, Timme R, Baker DJ, Mather AE, Wain J, Langridge GC. A One Health Perspective on Salmonella enterica Serovar Infantis, an Emerging Human Multidrug-Resistant Pathogen. Emerg Infect Dis 2024; 30:701-710. [PMID: 38526070 PMCID: PMC10977846 DOI: 10.3201/eid3004.231031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
Salmonella enterica serovar Infantis presents an ever-increasing threat to public health because of its spread throughout many countries and association with high levels of antimicrobial resistance (AMR). We analyzed whole-genome sequences of 5,284 Salmonella Infantis strains from 74 countries, isolated during 1989-2020 from a wide variety of human, animal, and food sources, to compare genetic phylogeny, AMR determinants, and plasmid presence. The global Salmonella Infantis population structure diverged into 3 clusters: a North American cluster, a European cluster, and a global cluster. The levels of AMR varied by Salmonella Infantis cluster and by isolation source; 73% of poultry isolates were multidrug resistant, compared with 35% of human isolates. This finding correlated with the presence of the pESI megaplasmid; 71% of poultry isolates contained pESI, compared with 32% of human isolates. This study provides key information for public health teams engaged in reducing the spread of this pathogen.
Collapse
Affiliation(s)
| | - Marie Anne Chattaway
- University of East Anglia, Norwich, UK (J. Mattock, E.J. Manners, A.E. Mather, J. Wain)
- UK Health Security Agency, London, UK (M.A. Chattaway, H. Hartman, T.J. Dallman)
- National Institute for Communicable Diseases, Johannesburg, South Africa (A.M. Smith, S. Smouse, N. Tau)
- University of Pretoria, Pretoria, South Africa (K. Keddy)
- Animal and Plant Health Agency, Addlestone, UK (L. Petrovska)
- University of the Witwatersrand, Johannesburg (S.T. Duze)
- US Food and Drug Administration, College Park, Maryland, USA (R. Timme)
- Quadram Institute Bioscience, Norwich (D.J. Baker, A.E. Mather, J. Wain, G.C. Langridge)
| | - Hassan Hartman
- University of East Anglia, Norwich, UK (J. Mattock, E.J. Manners, A.E. Mather, J. Wain)
- UK Health Security Agency, London, UK (M.A. Chattaway, H. Hartman, T.J. Dallman)
- National Institute for Communicable Diseases, Johannesburg, South Africa (A.M. Smith, S. Smouse, N. Tau)
- University of Pretoria, Pretoria, South Africa (K. Keddy)
- Animal and Plant Health Agency, Addlestone, UK (L. Petrovska)
- University of the Witwatersrand, Johannesburg (S.T. Duze)
- US Food and Drug Administration, College Park, Maryland, USA (R. Timme)
- Quadram Institute Bioscience, Norwich (D.J. Baker, A.E. Mather, J. Wain, G.C. Langridge)
| | | | - Anthony M. Smith
- University of East Anglia, Norwich, UK (J. Mattock, E.J. Manners, A.E. Mather, J. Wain)
- UK Health Security Agency, London, UK (M.A. Chattaway, H. Hartman, T.J. Dallman)
- National Institute for Communicable Diseases, Johannesburg, South Africa (A.M. Smith, S. Smouse, N. Tau)
- University of Pretoria, Pretoria, South Africa (K. Keddy)
- Animal and Plant Health Agency, Addlestone, UK (L. Petrovska)
- University of the Witwatersrand, Johannesburg (S.T. Duze)
- US Food and Drug Administration, College Park, Maryland, USA (R. Timme)
- Quadram Institute Bioscience, Norwich (D.J. Baker, A.E. Mather, J. Wain, G.C. Langridge)
| | - Karen Keddy
- University of East Anglia, Norwich, UK (J. Mattock, E.J. Manners, A.E. Mather, J. Wain)
- UK Health Security Agency, London, UK (M.A. Chattaway, H. Hartman, T.J. Dallman)
- National Institute for Communicable Diseases, Johannesburg, South Africa (A.M. Smith, S. Smouse, N. Tau)
- University of Pretoria, Pretoria, South Africa (K. Keddy)
- Animal and Plant Health Agency, Addlestone, UK (L. Petrovska)
- University of the Witwatersrand, Johannesburg (S.T. Duze)
- US Food and Drug Administration, College Park, Maryland, USA (R. Timme)
- Quadram Institute Bioscience, Norwich (D.J. Baker, A.E. Mather, J. Wain, G.C. Langridge)
| | | | | | - Sanelisiwe T. Duze
- University of East Anglia, Norwich, UK (J. Mattock, E.J. Manners, A.E. Mather, J. Wain)
- UK Health Security Agency, London, UK (M.A. Chattaway, H. Hartman, T.J. Dallman)
- National Institute for Communicable Diseases, Johannesburg, South Africa (A.M. Smith, S. Smouse, N. Tau)
- University of Pretoria, Pretoria, South Africa (K. Keddy)
- Animal and Plant Health Agency, Addlestone, UK (L. Petrovska)
- University of the Witwatersrand, Johannesburg (S.T. Duze)
- US Food and Drug Administration, College Park, Maryland, USA (R. Timme)
- Quadram Institute Bioscience, Norwich (D.J. Baker, A.E. Mather, J. Wain, G.C. Langridge)
| | - Shannon Smouse
- University of East Anglia, Norwich, UK (J. Mattock, E.J. Manners, A.E. Mather, J. Wain)
- UK Health Security Agency, London, UK (M.A. Chattaway, H. Hartman, T.J. Dallman)
- National Institute for Communicable Diseases, Johannesburg, South Africa (A.M. Smith, S. Smouse, N. Tau)
- University of Pretoria, Pretoria, South Africa (K. Keddy)
- Animal and Plant Health Agency, Addlestone, UK (L. Petrovska)
- University of the Witwatersrand, Johannesburg (S.T. Duze)
- US Food and Drug Administration, College Park, Maryland, USA (R. Timme)
- Quadram Institute Bioscience, Norwich (D.J. Baker, A.E. Mather, J. Wain, G.C. Langridge)
| | - Nomsa Tau
- University of East Anglia, Norwich, UK (J. Mattock, E.J. Manners, A.E. Mather, J. Wain)
- UK Health Security Agency, London, UK (M.A. Chattaway, H. Hartman, T.J. Dallman)
- National Institute for Communicable Diseases, Johannesburg, South Africa (A.M. Smith, S. Smouse, N. Tau)
- University of Pretoria, Pretoria, South Africa (K. Keddy)
- Animal and Plant Health Agency, Addlestone, UK (L. Petrovska)
- University of the Witwatersrand, Johannesburg (S.T. Duze)
- US Food and Drug Administration, College Park, Maryland, USA (R. Timme)
- Quadram Institute Bioscience, Norwich (D.J. Baker, A.E. Mather, J. Wain, G.C. Langridge)
| | - Ruth Timme
- University of East Anglia, Norwich, UK (J. Mattock, E.J. Manners, A.E. Mather, J. Wain)
- UK Health Security Agency, London, UK (M.A. Chattaway, H. Hartman, T.J. Dallman)
- National Institute for Communicable Diseases, Johannesburg, South Africa (A.M. Smith, S. Smouse, N. Tau)
- University of Pretoria, Pretoria, South Africa (K. Keddy)
- Animal and Plant Health Agency, Addlestone, UK (L. Petrovska)
- University of the Witwatersrand, Johannesburg (S.T. Duze)
- US Food and Drug Administration, College Park, Maryland, USA (R. Timme)
- Quadram Institute Bioscience, Norwich (D.J. Baker, A.E. Mather, J. Wain, G.C. Langridge)
| | - Dave J. Baker
- University of East Anglia, Norwich, UK (J. Mattock, E.J. Manners, A.E. Mather, J. Wain)
- UK Health Security Agency, London, UK (M.A. Chattaway, H. Hartman, T.J. Dallman)
- National Institute for Communicable Diseases, Johannesburg, South Africa (A.M. Smith, S. Smouse, N. Tau)
- University of Pretoria, Pretoria, South Africa (K. Keddy)
- Animal and Plant Health Agency, Addlestone, UK (L. Petrovska)
- University of the Witwatersrand, Johannesburg (S.T. Duze)
- US Food and Drug Administration, College Park, Maryland, USA (R. Timme)
- Quadram Institute Bioscience, Norwich (D.J. Baker, A.E. Mather, J. Wain, G.C. Langridge)
| | - Alison E. Mather
- University of East Anglia, Norwich, UK (J. Mattock, E.J. Manners, A.E. Mather, J. Wain)
- UK Health Security Agency, London, UK (M.A. Chattaway, H. Hartman, T.J. Dallman)
- National Institute for Communicable Diseases, Johannesburg, South Africa (A.M. Smith, S. Smouse, N. Tau)
- University of Pretoria, Pretoria, South Africa (K. Keddy)
- Animal and Plant Health Agency, Addlestone, UK (L. Petrovska)
- University of the Witwatersrand, Johannesburg (S.T. Duze)
- US Food and Drug Administration, College Park, Maryland, USA (R. Timme)
- Quadram Institute Bioscience, Norwich (D.J. Baker, A.E. Mather, J. Wain, G.C. Langridge)
| | - John Wain
- University of East Anglia, Norwich, UK (J. Mattock, E.J. Manners, A.E. Mather, J. Wain)
- UK Health Security Agency, London, UK (M.A. Chattaway, H. Hartman, T.J. Dallman)
- National Institute for Communicable Diseases, Johannesburg, South Africa (A.M. Smith, S. Smouse, N. Tau)
- University of Pretoria, Pretoria, South Africa (K. Keddy)
- Animal and Plant Health Agency, Addlestone, UK (L. Petrovska)
- University of the Witwatersrand, Johannesburg (S.T. Duze)
- US Food and Drug Administration, College Park, Maryland, USA (R. Timme)
- Quadram Institute Bioscience, Norwich (D.J. Baker, A.E. Mather, J. Wain, G.C. Langridge)
| | - Gemma C. Langridge
- University of East Anglia, Norwich, UK (J. Mattock, E.J. Manners, A.E. Mather, J. Wain)
- UK Health Security Agency, London, UK (M.A. Chattaway, H. Hartman, T.J. Dallman)
- National Institute for Communicable Diseases, Johannesburg, South Africa (A.M. Smith, S. Smouse, N. Tau)
- University of Pretoria, Pretoria, South Africa (K. Keddy)
- Animal and Plant Health Agency, Addlestone, UK (L. Petrovska)
- University of the Witwatersrand, Johannesburg (S.T. Duze)
- US Food and Drug Administration, College Park, Maryland, USA (R. Timme)
- Quadram Institute Bioscience, Norwich (D.J. Baker, A.E. Mather, J. Wain, G.C. Langridge)
| |
Collapse
|
14
|
Li C, Tate H, Huang X, Hsu CH, Harrison LB, Zhao S, Fortenberry GZ, Dessai U, McDermott PF, Strain EA. The spread of pESI-mediated extended-spectrum cephalosporin resistance in Salmonella serovars-Infantis, Senftenberg, and Alachua isolated from food animal sources in the United States. PLoS One 2024; 19:e0299354. [PMID: 38483966 PMCID: PMC10939224 DOI: 10.1371/journal.pone.0299354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/08/2024] [Indexed: 03/17/2024] Open
Abstract
The goal of this study is to investigate the origin, prevalence, and evolution of the pESI megaplasmid in Salmonella isolated from animals, foods, and humans. We queried 510,097 Salmonella genomes under the National Center for Biotechnology Information (NCBI) Pathogen Detection (PD) database for the presence of potential sequences containing the pESI plasmid in animal, food, and environmental sources. The presence of the pESI megaplasmid was confirmed by using seven plasmid-specific markers (rdA, pilL, SogS, TrbA, ipf, ipr2 and IncFIB(pN55391)). The plasmid and chromosome phylogeny of these isolates was inferred from single nucleotide polymorphisms (SNPs). Our search resolved six Salmonella clusters carrying the pESI plasmid. Four were emergent Salmonella Infantis clusters, and one each belonged to serovar Senftenberg and Alachua. The Infantis cluster with a pESI plasmid carrying blaCTX-M-65 gene was the biggest of the four emergent Infantis clusters, with over 10,000 isolates. This cluster was first detected in South America and has since spread widely in United States. Over time the composition of pESI in United States has changed with the average number of resistance genes showing a decrease from 9 in 2014 to 5 in 2022, resulting from changes in gene content in two integrons present in the plasmid. A recent and emerging cluster of Senftenberg, which carries the blaCTX-M-65 gene and is primarily associated with turkey sources, was the second largest in the United States. SNP analysis showed that this cluster likely originated in North Carolina with the recent acquisition of the pESI plasmid. A single Alachua isolate from turkey was also found to carry the pESI plasmid containing blaCTX-M-65 gene. The study of the pESI plasmid, its evolution and mechanism of spread can help us in developing appropriate strategies for the prevention and further spread of this multi-drug resistant plasmid in Salmonella in poultry and humans.
Collapse
Affiliation(s)
- Cong Li
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland, United States of America
| | - Heather Tate
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland, United States of America
| | - Xinyang Huang
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, United States of America
- Joint Institute for Food Safety and Applied Nutrition, Center for Food Safety Security Systems, University of Maryland,College Park, Maryland, United States of America
| | - Chih-Hao Hsu
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland, United States of America
| | - Lucas B. Harrison
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland, United States of America
| | - Shaohua Zhao
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland, United States of America
| | - Gamola Z. Fortenberry
- Food Safety and Inspection Service, U.S. Department of Agriculture, Athens, Georgia, United States of America
| | - Uday Dessai
- Food Safety and Inspection Service, U.S. Department of Agriculture, Athens, Georgia, United States of America
| | - Patrick F. McDermott
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland, United States of America
| | - Errol A. Strain
- Center for Food Safety and Applied Nutrition, College Park, Maryland, United States of America
| |
Collapse
|
15
|
Guzinski J, Potter J, Tang Y, Davies R, Teale C, Petrovska L. Geographical and temporal distribution of multidrug-resistant Salmonella Infantis in Europe and the Americas. Front Microbiol 2024; 14:1244533. [PMID: 38414709 PMCID: PMC10896835 DOI: 10.3389/fmicb.2023.1244533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/04/2023] [Indexed: 02/29/2024] Open
Abstract
Recently emerged S. Infantis strains carrying resistance to several commonly used antimicrobials have been reported from different parts of the globe, causing human cases of salmonellosis and with occurrence reported predominantly in broiler chickens. Here, we performed phylogenetic and genetic clustering analyses to describe the population structure of 417 S. Infantis originating from multiple European countries and the Americas collected between 1985 and 2019. Of these, 171 were collected from 56 distinct premises located in England and Wales (E/W) between 2009 and 2019, including isolates linked to incursions of multidrug-resistant (MDR) strains from Europe associated with imported poultry meat. The analysis facilitated the comparison of isolates from different E/W sources with isolates originating from other countries. There was a high degree of congruency between the outputs of different types of population structure analyses revealing that the E/W and central European (Germany, Hungary, and Poland) isolates formed several disparate groups, which were distinct from the cluster relating to the United States (USA) and Ecuador/Peru, but that isolates from Brazil were closely related to the E/W and the central European isolates. Nearly half of the analysed strains/genomes (194/417) harboured the IncFIB(pN55391) replicon typical of the "parasitic" pESI-like megaplasmid found in diverse strains of S. Infantis. The isolates that contained the IncFIB(pN55391) replicon clustered together, despite originating from different parts of the globe. This outcome was corroborated by the time-measured phylogeny, which indicated that the initial acquisition of IncFIB(pN55391) likely occurred in Europe in the late 1980s, with a single introduction of IncFIB(pN55391)-carrying S. Infantis to the Americas several years later. Most of the antimicrobial resistance (AMR) genes were identified in isolates that harboured one or more different plasmids, but based on the short-read assemblies, only a minority of the resistance genes found in these isolates were identified as being associated with the detected plasmids, whereas the hybrid assemblies comprising the short and long reads demonstrated that the majority of the identified AMR genes were associated with IncFIB(pN55391) and other detected plasmid replicon types. This finding underlies the importance of applying appropriate methodologies to investigate associations of AMR genes with bacterial plasmids.
Collapse
Affiliation(s)
- Jaromir Guzinski
- Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
| | - Joshua Potter
- Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
| | - Yue Tang
- Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
| | - Rob Davies
- Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
| | | | | |
Collapse
|
16
|
Bearson SMD, Monson MS, Bearson BL, Whelan SJ, Byrd JA, Burciaga S. Commercial vaccine provides cross-protection by reducing colonization of Salmonella enterica serovars Infantis and Hadar in turkeys. Vaccine 2024; 42:727-731. [PMID: 38220490 DOI: 10.1016/j.vaccine.2023.12.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/16/2024]
Abstract
Human foodborne outbreaks with antibiotic-resistant Salmonella enterica associated with contaminated poultry products have recently involved serogroup C serovars Infantis and Hadar. The current study evaluated a commercially available Salmonella vaccine for cross-protection against Infantis and Hadar serovars in turkeys. The live, attenuated S. Typhimurium (serogroup B) vaccine significantly reduced colonization of intestinal tissues (cecum, cecal tonsils, and cloaca) by serovars Infantis (C1) and Hadar (C2) and significantly limited systemic dissemination to the spleen. S. Infantis, but not S. Hadar, disseminated to bone marrow in non-vaccinated turkeys, but vaccination prevented S. Infantis dissemination to the bone marrow. The S. Infantis challenge strain contained the pESI megaplasmid, and virulence mechanism(s) residing on this plasmid may support dissemination and/or colonization of systemic niches such as myeloid tissue. Collectively, the data indicate that vaccinating turkeys with the serogroup B S. Typhimurium vaccine limited intestinal colonization and systemic dissemination by serogroup C serovars Infantis and Hadar.
Collapse
Affiliation(s)
- Shawn M D Bearson
- USDA, ARS, National Animal Disease Center, Food Safety and Enteric Pathogens Research Unit, Ames, IA, United States.
| | - Melissa S Monson
- USDA, ARS, National Animal Disease Center, Food Safety and Enteric Pathogens Research Unit, Ames, IA, United States
| | - Bradley L Bearson
- USDA, ARS, National Laboratory for Agriculture and the Environment, Agroecosystems Management Research Unit, Ames, IA, United States
| | - Samuel J Whelan
- USDA, ARS, National Animal Disease Center, Food Safety and Enteric Pathogens Research Unit, Ames, IA, United States
| | - James A Byrd
- USDA, ARS, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, TX, United States
| | - Selma Burciaga
- USDA, ARS, National Animal Disease Center, Food Safety and Enteric Pathogens Research Unit, Ames, IA, United States
| |
Collapse
|
17
|
Petrin S, Orsini M, Massaro A, Olsen JE, Barco L, Losasso C. Phenotypic and genotypic antimicrobial resistance correlation and plasmid characterization in Salmonella spp. isolates from Italy reveal high heterogeneity among serovars. Front Public Health 2023; 11:1221351. [PMID: 37744490 PMCID: PMC10513437 DOI: 10.3389/fpubh.2023.1221351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/15/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction The spread of antimicrobial resistance among zoonotic pathogens such as Salmonella is a serious health threat, and mobile genetic elements (MGEs) carrying antimicrobial resistance genes favor this phenomenon. In this work, phenotypic antimicrobial resistance to commonly used antimicrobials was studied, and the antimicrobial resistance genes (ARGs) and plasmid replicons associated with the resistances were determined. Methods Eighty-eight Italian Salmonella enterica strains (n = 88), from human, animal and food sources, isolated between 2009 and 2019, were selected to represent serovars with different frequency of isolation in human cases of salmonellosis. The presence of plasmid replicons was also investigated. Results and discussion Resistances to sulphonamides (23.9%), ciprofloxacin (27.3%), ampicillin (29.5%), and tetracycline (32.9%) were the most found phenotypes. ARGs identified in the genomes correlated with the phenotypical results, with blaTEM-1B, sul1, sul2, tetA and tetB genes being frequently identified. Point mutations in gyrA and parC genes were also detected, in addition to many different aminoglycoside-modifying genes, which, however, did not cause phenotypic resistance to aminoglycosides. Many genomes presented plasmid replicons, however, only a limited number of ARGs were predicted to be located on the contigs carrying these replicons. As an expectation of this, multiple ARGs were identified on contigs with IncQ1 plasmid replicon in strains belonging to the monophasic variant of Salmonella Typhimurium. In general, high variability in ARGs and plasmid replicons content was observed among isolates, highlighting a high level of heterogeneity in Salmonella enterica. Irrespective of the serovar., many of the ARGs, especially those associated with critically and highly important antimicrobials for human medicine were located together with plasmid replicons, thus favoring their successful dissemination.
Collapse
Affiliation(s)
- Sara Petrin
- Microbial Ecology and Microrganisms Genomics Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università, Legnaro, Italy
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Massimiliano Orsini
- Microbial Ecology and Microrganisms Genomics Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università, Legnaro, Italy
| | - Andrea Massaro
- Applied Chemistry Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Vicenza, Italy
| | - John E. Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Lisa Barco
- OIE and National Reference Laboratory for Salmonellosis, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università, Legnaro, Italy
| | - Carmen Losasso
- Microbial Ecology and Microrganisms Genomics Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università, Legnaro, Italy
| |
Collapse
|
18
|
Liao YS, Wei HL, Kuo HC, Chen BH, Wang YW, Teng RH, Hong YP, Chang JH, Liang SY, Tsao CS, Chiou CS. Chromosome-Borne CTX-M-65 Extended-Spectrum β-Lactamase-Producing Salmonella enterica Serovar Infantis, Taiwan. Emerg Infect Dis 2023; 29:1634-1637. [PMID: 37486207 PMCID: PMC10370839 DOI: 10.3201/eid2908.230472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023] Open
Abstract
A CTX-M-65‒producing Salmonella enterica serovar Infantis clone, probably originating in Latin America and initially reported in the United States, has emerged in Taiwan. Chicken meat is the most likely primary carrier. Four of the 9 drug resistance genes have integrated into the chromosome: blaCTX-M-65, tet(A), sul1, and aadA1.
Collapse
|
19
|
Castello A, Piraino C, Butera G, Alio V, Cardamone C, Oliveri G, Cascone G, Ciravolo C, Costa A. Prevalence and antimicrobial resistance profiles of Salmonella spp. in poultry meat. Ital J Food Saf 2023; 12:11135. [PMID: 37405148 PMCID: PMC10316271 DOI: 10.4081/ijfs.2023.11135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/07/2023] [Indexed: 07/06/2023] Open
Abstract
The spread of multidrug resistant (MDR) Salmonella strains, along the poultry supply chain, can represent a relevant threat to human health. This study aimed to evaluate the prevalence and antimicrobial resistance of Salmonella spp. isolated from poultry meat for human consumption. Between 2019 and 2021, 145 samples were analyzed according to ISO 6579-1:2017. The strains isolated were identified by using biochemical-enzymatic assays and serotyping, according to the Kauffmann-White-Le Minor scheme. The antibiotic susceptibility tests were determined using the Kirby-Bauer method. Forty Salmonella spp. strains were isolated and serotyping showed Salmonella Infantis to be predominant. 80% of the isolated strains were MDR and identified as S. Infantis. This study confirms the circulation of MDR Salmonella isolated from poultry meat and highlights the predominance of the S. Infantis serovar, which represents an emerging risk factor under the One Health holistic approach.
Collapse
Affiliation(s)
| | | | - Gaspare Butera
- Experimental Zooprophylactic Institute of Sicily A. Mirri, Via Gino Marinuzzi n. 3, 90129, Palermo, Italy. 320 844 1802.
| | | | | | | | | | | | | |
Collapse
|
20
|
Srednik ME, Morningstar-Shaw BR, Hicks JA, Tong C, Mackie TA, Schlater LK. Whole-genome sequencing and phylogenetic analysis capture the emergence of a multi-drug resistant Salmonella enterica serovar Infantis clone from diagnostic animal samples in the United States. Front Microbiol 2023; 14:1166908. [PMID: 37333652 PMCID: PMC10272548 DOI: 10.3389/fmicb.2023.1166908] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/20/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Salmonella enterica is a major cause of foodborne illness in the United States. A multi-drug resistant (MDR) emergent Salmonella Infantis (ESI) with a megaplasmid (pESI) was first identified in Israel and Italy and subsequently reported worldwide. The ESI clone carrying an extended spectrum β-lactamase blaCTX-M-65 on a pESI-like plasmid and a mutation in the gyrA gene has recently been found in the United States in poultry meat. Methods We analyzed the phenotypic and genotypic antimicrobial resistance, genomics and phylogeny of 200 S. infantis isolates from animal diagnostic samples. Results Of these, 33.5% were resistant to at least one antimicrobial and 19.5% were multi-drug resistant (MDR). Eleven isolates from different animal sources were phenotypically and genetically similar to the ESI clone. These isolates had a D87Y mutation in the gyrA gene conferring reduced susceptibility to ciprofloxacin and harbored a combination of 6-10 resistance genes: blaCTX-M-65, aac(3)-IVa, aadA1, aph(4)-Ia, aph(3')-Ia, floR, sul1, dfrA14, tetA, and fosA. These 11 isolates carried class I and class II integrons and three virulence genes: sinH, involved in adhesion and invasion, ybtQ and ybtP, associated with iron transport. These isolates were also closely related to each other (separated by 7 to 27 SNPs) and phylogenetically related to the ESI clone recently found in the U.S. Discussion This dataset captured the emergence of the MDR ESI clone in multiple animal species and the first report of a pESI-like plasmid in isolates from horses in the U.S.
Collapse
Affiliation(s)
- Mariela E. Srednik
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, U.S. Department of Agriculture, Ames, IA, United States
| | - Brenda R. Morningstar-Shaw
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, U.S. Department of Agriculture, Ames, IA, United States
| | - Jessica A. Hicks
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, U.S. Department of Agriculture, Ames, IA, United States
| | - Christopher Tong
- Center for Veterinary Biologics, Animal and Plant Health Inspection Service, U.S. Department of Agriculture, Ames, IA, United States
| | - Tonya A. Mackie
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, U.S. Department of Agriculture, Ames, IA, United States
| | - Linda K. Schlater
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, U.S. Department of Agriculture, Ames, IA, United States
| |
Collapse
|
21
|
European Food Safety Authority (EFSA), European Centre for Disease Prevention and Control (ECDC). The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2020/2021. EFSA J 2023; 21:e07867. [PMID: 36891283 PMCID: PMC9987209 DOI: 10.2903/j.efsa.2023.7867] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Antimicrobial resistance (AMR) data on zoonotic and indicator bacteria from humans, animals and food are collected annually by the EU Member States (MSs) and reporting countries, jointly analysed by EFSA and ECDC and presented in a yearly EU Summary Report. This report provides an overview of the main findings of the 2020-2021 harmonised AMR monitoring in Salmonella spp., Campylobacter jejuni and C. coli in humans and food-producing animals (broilers, laying hens and turkeys, fattening pigs and bovines under 1 year of age) and relevant meat thereof. For animals and meat thereof, indicator E. coli data on the occurrence of AMR and presumptive Extended spectrum β-lactamases (ESBL)-/AmpC β-lactamases (AmpC)-/carbapenemases (CP)-producers, as well as the occurrence of methicillin-resistant Staphylococcus aureus are also analysed. In 2021, MSs submitted for the first time AMR data on E. coli isolates from meat sampled at border control posts. Where available, monitoring data from humans, food-producing animals and meat thereof were combined and compared at the EU level, with emphasis on multidrug resistance, complete susceptibility and combined resistance patterns to selected and critically important antimicrobials, as well as Salmonella and E. coli isolates exhibiting ESBL-/AmpC-/carbapenemase phenotypes. Resistance was frequently found to commonly used antimicrobials in Salmonella spp. and Campylobacter isolates from humans and animals. Combined resistance to critically important antimicrobials was mainly observed at low levels except in some Salmonella serotypes and in C. coli in some countries. The reporting of a number of CP-producing E. coli isolates (harbouring bla OXA-48, bla OXA-181, and bla NDM-5 genes) in pigs, bovines and meat thereof by a limited number of MSs (4) in 2021, requests a thorough follow-up. The temporal trend analyses in both key outcome indicators (rate of complete susceptibility and prevalence of ESBL-/AmpC- producers) showed that encouraging progress have been registered in reducing AMR in food-producing animals in several EU MSs over the last years.
Collapse
|
22
|
Plasmid Composition, Antimicrobial Resistance and Virulence Genes Profiles of Ciprofloxacin- and Third-Generation Cephalosporin-Resistant Foodborne Salmonella enterica Isolates from Russia. Microorganisms 2023; 11:microorganisms11020347. [PMID: 36838312 PMCID: PMC9961839 DOI: 10.3390/microorganisms11020347] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Salmonella enterica is an important foodborne pathogen worldwide. Ciprofloxacin and extended-spectrum cephalosporins are the common first-line antimicrobial drugs for the treatment of salmonellosis, antimicrobial resistance genes for which are mostly transferred via plasmids. The goal of this work was to perform genomic analysis of plasmids from foodborne S. enterica isolates obtained in Russia based on whole-genome sequencing. In the current study, 11 multidrug-resistant samples isolated in 2021 from 8 regions of Russia were selected based on their resistance to ciprofloxacin and third-generation cephalosporins (CIP-3rd). Whole-genome short-read sequencing (WGS) was performed for all isolates; the samples belonged to five different sequence types (ST32, ST469, ST11, ST142, and ST548) which had different profiles of antimicrobial resistance (AMR) and virulence genes. We have performed additional long-read sequencing of four representative S. enterica isolates, which showed that they carried pESI-like megaplasmids of 202-280 kb length harboring extended-spectrum β-lactamase genes, fluoroquinolone, tetracycline, and aminoglycosides resistance genes, as well as several virulence determinants. We believe that the WGS data obtained will greatly facilitate further studies of foodborne S. enterica isolates epidemiology in terms of their self-transmissible plasmid composition that mediated antimicrobial resistance and virulence determinants conferring selective advantages of this important bacterial pathogen.
Collapse
|
23
|
Alba P, Carfora V, Feltrin F, Diaconu EL, Sorbara L, Dell'Aira E, Cerci T, Ianzano A, Donati V, Franco A, Battisti A. Evidence of structural rearrangements in ESBL-positive pESI(like) megaplasmids of S.Infantis. FEMS Microbiol Lett 2023; 370:7049104. [PMID: 36806934 PMCID: PMC9990980 DOI: 10.1093/femsle/fnad014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/19/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023] Open
Abstract
The increasing prevalence of pESI(like)-positive, multidrug-resistant (MDR) S. Infantis in Europe is a cause of major concern. As previously demonstrated, the pESI(like) megaplasmid is not only a carrier of antimicrobial resistant (AMR) genes (at least tet, dfr, and sul genes), but also harbours several virulence and fitness genes, and toxin/antitoxin systems that enhance its persistence in the S. Infantis host. In this study, five prototype pESI(like) plasmids, of either CTX-M-1 or CTX-M-65 ESBL-producing strains, were long-read sequenced using Oxford Nanopore Technology (ONT), and their complete sequences were resolved. Comparison of the structure and gene content of the five sequenced plasmids, and further comparison with previously published pESI(like) sequences, indicated that although the sequence of such pESI(like) 'mosaic' plasmids remains almost identical, their structures appear different and composed of regions inserted or transposed after different events. The results obtained in this study are essential to better understand the plasticity and the evolution of the pESI(like) megaplasmid, and therefore to better address risk management options and policy decisions to fight against AMR and MDR in Salmonella and other food-borne pathogens. Graphical representation of the pESI-like plasmid complete sequence (ID 12037823/11). Block colours indicate the function of the genes: red: repB gene; pink: class I integrons (IntI); yellow; mobile elements; blue: resistance genes; green: toxin/anti-toxin systems; grey: mer operon; light green: genes involve in conjugation.
Collapse
Affiliation(s)
- Patricia Alba
- National Reference Laboratory for Antimicrobial Resistance, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri," General Diagnostics Department, Rome 00178, Italy
| | - Virginia Carfora
- National Reference Laboratory for Antimicrobial Resistance, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri," General Diagnostics Department, Rome 00178, Italy
| | - Fabiola Feltrin
- National Reference Laboratory for Antimicrobial Resistance, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri," General Diagnostics Department, Rome 00178, Italy
| | - Elena Lavinia Diaconu
- National Reference Laboratory for Antimicrobial Resistance, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri," General Diagnostics Department, Rome 00178, Italy
| | - Luigi Sorbara
- National Reference Laboratory for Antimicrobial Resistance, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri," General Diagnostics Department, Rome 00178, Italy
| | - Elena Dell'Aira
- National Reference Laboratory for Antimicrobial Resistance, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri," General Diagnostics Department, Rome 00178, Italy
| | - Tamara Cerci
- National Reference Laboratory for Antimicrobial Resistance, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri," General Diagnostics Department, Rome 00178, Italy
| | - Angela Ianzano
- National Reference Laboratory for Antimicrobial Resistance, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri," General Diagnostics Department, Rome 00178, Italy
| | - Valentina Donati
- National Reference Laboratory for Antimicrobial Resistance, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri," General Diagnostics Department, Rome 00178, Italy
| | - Alessia Franco
- National Reference Laboratory for Antimicrobial Resistance, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri," General Diagnostics Department, Rome 00178, Italy
| | - Antonio Battisti
- National Reference Laboratory for Antimicrobial Resistance, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri," General Diagnostics Department, Rome 00178, Italy
| |
Collapse
|
24
|
Papić B, Kušar D, Mićunović J, Pirš M, Ocepek M, Avberšek J. Clonal Spread of pESI-Positive Multidrug-Resistant ST32 Salmonella enterica Serovar Infantis Isolates among Broilers and Humans in Slovenia. Microbiol Spectr 2022; 10:e0248122. [PMID: 36250854 PMCID: PMC9769575 DOI: 10.1128/spectrum.02481-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/28/2022] [Indexed: 01/06/2023] Open
Abstract
Salmonella enterica subsp. enterica serovar Infantis is the most prevalent serovar found in broilers and broiler meat and is among the top five serovars responsible for human infections in Europe. In 2008, a multidrug-resistant S. Infantis isolate emerged in Israel with a mosaic megaplasmid named pESI, associated with increased virulence, biofilm formation, and multidrug resistance. Since then, S. Infantis clones with pESI-like plasmids have been reported worldwide, replacing pESI-free clones. Here, we typed 161 S. Infantis isolates of poultry (n = 133) and human clinical (n = 28) origin using whole-genome sequencing. The isolates were collected between 2007 and 2021. In addition, we performed PacBio/Illumina sequencing for two representative pESI-like plasmids and compared them with publicly available sequences. All isolates belonged to sequence type 32 (ST32), except for one isolate that represented a novel single-locus variant of ST32. Core genome MLST (cgMLST) analysis revealed 14 clusters of genetically closely related isolates, of which four suggested broiler-to-human transmission of S. Infantis. pESI-like plasmids were present in 148/161 (91.9%) isolates; all were highly similar to the publicly available pESI-like sequences but lacked extended-spectrum beta-lactamase (ESBL) genes. PacBio/Illumina hybrid assembly allowed the reconstruction of two novel complete pESI variants. The present study revealed that the multidrug-resistant, pESI-positive S. Infantis clone became the predominant S. Infantis clone in Slovenian broilers and humans during the last decade. Continued surveillance of resistant S. Infantis clones along the food chain is needed to guide public health efforts. IMPORTANCE Salmonella Infantis clones with pESI-like plasmids harboring several virulence and resistance genes have been reported worldwide. In the present study, we compared the population structure of 161 Salmonella Infantis isolates obtained from humans and broilers in Slovenia from 2007 to 2021. Whole-genome sequencing showed that most human isolates clustered apart from broiler isolates, suggesting an alternative source of infection. Most isolates were multidrug resistant due to the presence of pESI-like plasmids, of which two variants (pS89 and pS19) were fully reconstructed using long-read sequencing. Both exhibited high similarity with the original Israeli pESI plasmid and German p2747 plasmid. The prototype plasmid pS89 harbored the typical pESI-associated resistance genes aadA1, qacEΔ1, sul1, and tet(A), which were absent in the truncated plasmid pS19.
Collapse
Affiliation(s)
- Bojan Papić
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Darja Kušar
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jasna Mićunović
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Mateja Pirš
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Matjaž Ocepek
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jana Avberšek
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
25
|
Dos Santos AMP, Panzenhagen P, Ferrari RG, Conte-Junior CA. Large-scale genomic analysis reveals the pESI-like megaplasmid presence in Salmonella Agona, Muenchen, Schwarzengrund, and Senftenberg. Food Microbiol 2022; 108:104112. [PMID: 36088119 DOI: 10.1016/j.fm.2022.104112] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 08/01/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022]
Abstract
Salmonella spp. remains one of the main pathogens causing diarrhea in humans worldwide. Lately, Salmonella Infantis has become endemic in several European, American, and Asian countries, presenting a multi-drug resistance profile and increased virulence. Various studies have attributed the high endemicity of Salmonella Infantis to pESI (plasmid to Emergent Salmonella Infantis). The ease of Salmonella to acquire pESI is of concern to health authorities and the food production chain. We searched for the presence of pESI in Salmonella genomes from the NCBI to understand the distribution of pESI worldwide and predict the main serovars and sequence types associated with the plasmid. We identified the pESI backbone, virulence, and resistance genes among Salmonella spp. isolated from 45 countries on five continents. We found the pESI-like structure in four different serovars: S. Muenchen, S. Schwarzengrund, S. Agona and S. Senftenberg. The pESI markers were also identified in 24 different sequence types. Most of the analyzed genomes were isolated from poultry, especially broiler and chicken. These results confirm the high dissemination of pESI-like megaplasmid among Salmonella Infantis worldwide and its ability to infect different serovars, as well as placing poultry production as the most favorable environment for pESI dissemination. Therefore, further studies are needed to prevent the spread of pESI to humans and the food chain.
Collapse
Affiliation(s)
- Anamaria M P Dos Santos
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil; Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Pedro Panzenhagen
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil; Graduate Program in Veterinary Hygiene (PGHIGVET), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói, RJ, 24230-340, Brazil.
| | - Rafaela G Ferrari
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil; Department of Animal Science, College for Agricultural Sciences, Federal University of Paraiba (CCA/UFPB), Areia, PB, Brazil
| | - Carlos A Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil; Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil; Graduate Program in Veterinary Hygiene (PGHIGVET), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói, RJ, 24230-340, Brazil; Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, 21040-900, Brazil; Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil
| |
Collapse
|
26
|
Physiological Characteristics of Putative Enterobacteria Associated with Meat and Fish Available in Southern Brazilian Retail Markets: Antimicrobial Susceptibility, Toxic Metal Tolerance and Expression of Efflux Pumps. Antibiotics (Basel) 2022; 11:antibiotics11121677. [PMID: 36551334 PMCID: PMC9774923 DOI: 10.3390/antibiotics11121677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Multidrug-resistant (MDR) mesophilic facultatively anaerobic Gram-negative rods are a public health issue and their spread from animal-source foods to humans is of concern worldwide. Hence, the aim of this study was to examine the antibiotic susceptibility patterns and physiological aspects of such rods, including their tolerance to toxic metals and the screening of efflux pumps expressing isolates among enterobacteria isolated from meat (chicken, beef and pork) and fish samples acquired from retail establishments in a Brazilian urban Centre of over 2,300,000 inhabitants. The study revealed that 62.9% of isolated bacteria were resistant to at least one antimicrobial, of which 32.3% and 8.1% were resistant to one and two of the tested drugs, respectively. A resistance of up to six antimicrobials was also observed (0.9%). Out of the total amount, 22.7% were classified as MDR. Chicken was the meat that harbored most MDR isolates, and fish harbored the least. It was not possible to distinguish the different types of meat or fish considering the resistance patterns. The MDR isolates showed a higher tolerance to mercury and cadmium salts and the increased activity of the efflux mechanisms compared to other susceptible or resistant strains. In One Health. the perspective occurrence of putative MDR bacteria in fresh meat and fish draws attention to the antimicrobial resistance phenomenon in an open environment.
Collapse
|
27
|
Mattock J, Smith AM, Keddy KH, Manners EJ, Duze ST, Smouse S, Tau N, Baker D, Chattaway MA, Mather AE, Wain J, Langridge GC. Genetic characterization of Salmonella Infantis from South Africa, 2004-2016. Access Microbiol 2022; 4:acmi000371. [PMID: 36003217 PMCID: PMC9394735 DOI: 10.1099/acmi.0.000371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/14/2022] [Indexed: 11/26/2022] Open
Abstract
Salmonella Infantis is presenting an increasing risk to public health. Of particular concern are the reports of pESI, a multidrug resistance (MDR) encoding megaplasmid, in isolates from multiple countries, but little is known about its presence or diversity in South Africa. Whole genome sequences of 387 S. Infantis isolates from South Africa (2004-2020) were analysed for genetic phylogeny, recombination frequency, antimicrobial resistance (AMR) determinants, plasmid presence and overall gene content. The population structure of South African S. Infantis was substantially different to S. Infantis reported elsewhere; only two thirds of isolates belonged to eBG31, while the remainder were identified as eBG297, a much rarer group globally. Significantly higher levels of recombination were observed in the eBG297 isolates, which was associated with the presence of prophages. The majority of isolates were putatively susceptible to antimicrobials (335/387) and lacked any plasmids (311/387); the megaplasmid pESI was present in just one isolate. A larger proportion of eBG31 isolates, 19% (49/263), contained at least one AMR determinant, compared to eBG297 at 2% (3/124). Comparison of the pan-genomes of isolates from either eBG identified 943 genes significantly associated with eBG, with 43 found exclusively in eBG31 isolates and 34 in eBG297 isolates. This, along with the single nucleotide polymorphism distance and difference in resistance profiles, suggests that eBG31 and eBG297 isolates occupy different niches within South Africa. If antibiotic-resistant S. Infantis emerges in South Africa, probably through the spread of the pESI plasmid, treatment of this infection would be compromised.
Collapse
Affiliation(s)
- Jennifer Mattock
- Norwich Medical School, University of East Anglia, Norwich, UK
- Present address: The Roslin Institute, University of Edinburgh, UK
| | - Anthony M. Smith
- Centre for Enteric Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | | | - Emma J. Manners
- Norwich Medical School, University of East Anglia, Norwich, UK
- Present address: European Molecular Biology Laboratory, European Bioinformatics Institute, UK
| | - Sanelisiwe T. Duze
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Shannon Smouse
- Centre for Enteric Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Nomsa Tau
- Centre for Enteric Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - David Baker
- Microbes in the Food Chain, Quadram Institute Bioscience, Norwich, UK
| | - Marie Anne Chattaway
- Gastrointestinal Bacteriology Reference Unit, United Kingdom Health Security Agency, London, UK
| | - Alison E. Mather
- Microbes in the Food Chain, Quadram Institute Bioscience, Norwich, UK
- Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK
| | - John Wain
- Norwich Medical School, University of East Anglia, Norwich, UK
- Microbes in the Food Chain, Quadram Institute Bioscience, Norwich, UK
| | | |
Collapse
|
28
|
Bonilla-Caballero MA, Lozano-Puentes MP, Ospina MA, Varón-López M. First report of multidrug-resistant Salmonella Infantis in broiler litter in Tolima, Colombia. Vet World 2022; 15:1557-1565. [PMID: 35993060 PMCID: PMC9375208 DOI: 10.14202/vetworld.2022.1557-1565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 05/12/2022] [Indexed: 11/23/2022] Open
Abstract
Background and Aim: Salmonella has been identified as one of the most widely distributed zoonotic pathogens in broiler litter. Multidrug-resistant strains have been isolated from salmonellosis outbreaks, compromising the success of their treatment. This study aimed to isolate and identify Salmonella spp. serovars in healthy broiler litter in Tolima (Colombia), determine their resistance to different antimicrobials, and detect genes associated with b-lactam resistance that could be useful to control Salmonella spp. in poultry. Materials and Methods: In total, 45 broiler litter samples were collected. Salmonella spp. was isolated and identified using selective and differential culture media and biochemical tests. Molecular confirmation of the pathogen was performed with the invA gene and serotyping by Kauffman–White scheme. Antimicrobial susceptibility to 15 antibiotics was determined by Kirby–Bauer method. In cefotaxime-resistant strains, blaCTX-M-F, blaCTX-M-1, blaCMY, and blaTEM genes were evaluated by polymerase chain reaction (PCR). Results: In total, 817 presumptive strains were obtained from xylose lysine deoxycholate and SalmonellaShigella agars and subcultured on xylose-lysine-tergitol 4 and MacConkey agars, from which 150 strains were isolated; 29 of these strains were presumptive for Salmonella spp. after performing biochemical tests and 16 were confirmed by PCR as Salmonella Infantis (15) and Gallinarum (1). All strains were found to be multiresistant to antibiotics, showing three different profiles and isolates resistant to cefotaxime, and the blaCTX-M gene was detected. Conclusion: This is the first study to isolate S. Infantis from broiler litter in Colombia. All isolates exhibited resistance to the evaluated antimicrobials, suggesting the misuse of antimicrobials in small- and medium-sized poultry farms. The presence of Salmonella enterica serovar Infantis is a public health problem. Thus, regular monitoring of poultry litter is recommended, as these bacteria can be transmitted to humans through animal products or contaminated environments.
Collapse
Affiliation(s)
- Mayra A. Bonilla-Caballero
- Department of Biology, Research Group on Plant and Microbial Biotechnology - GEBIUT, Faculty of Sciences, University of Tolima, PO Box 730006299, Ibagué, Colombia
| | - María P. Lozano-Puentes
- Department of Biology, Research Group on Plant and Microbial Biotechnology - GEBIUT, Faculty of Sciences, University of Tolima, PO Box 730006299, Ibagué, Colombia
| | - María A. Ospina
- Department of Biology, Research Group on Plant and Microbial Biotechnology - GEBIUT, Faculty of Sciences, University of Tolima, PO Box 730006299, Ibagué, Colombia
| | - Maryeimy Varón-López
- Department of Biology, Research Group on Plant and Microbial Biotechnology - GEBIUT, Faculty of Sciences, University of Tolima, PO Box 730006299, Ibagué, Colombia
| |
Collapse
|
29
|
Vázquez X, Fernández J, Rodríguez-Lozano J, Calvo J, Rodicio R, Rodicio MR. Genomic Analysis of Two MDR Isolates of Salmonella enterica Serovar Infantis from a Spanish Hospital Bearing the blaCTX-M-65 Gene with or without fosA3 in pESI-like Plasmids. Antibiotics (Basel) 2022; 11:786. [PMID: 35740192 PMCID: PMC9219668 DOI: 10.3390/antibiotics11060786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/02/2022] [Accepted: 06/05/2022] [Indexed: 02/04/2023] Open
Abstract
Salmonella enterica serovar Infantis (S. Infantis) is a broiler-associated pathogen which ranks in the fourth position as a cause of human salmonellosis in the European Union. Here, we report a comparative genomic analysis of two clinical S. Infantis isolates recovered in Spain from children who just returned from Peru. The isolates were selected on the basis of resistance to cefotaxime, one of the antibiotics of choice for treatment of S. enterica infections. Antimicrobial susceptibility testing demonstrated that they were resistant to eight classes of antimicrobial agents: penicillins, cephalosporins, phenicols, aminoglycosides, tetracyclines, inhibitors of folate synthesis, (fluoro)quinolones and nitrofurans, and one of them was also resistant to fosfomycin. As shown by whole-genome sequence analysis, each isolate carried a pESI-like megaplasmid of ca. 300 kb harboring multiple resistance genes [blaCTX-M-65, aph(4)-Ia, aac(3)-IVa, aph(3')-Ia, floR, dfrA14, sul1, tet(A), aadA1 ± fosA3], as well as genes for resistance to heavy metals and disinfectants (mer, ars and qacEΔ1). These genes were distributed in two complex regions, separated by DNA belonging to the plasmid backbone, and associated with a wealth of transposable elements. The two isolates had a D87Y amino acid substitution in the GyrA protein, and truncated variants of the nitroreductase genes nfsA and nsfB, accounting for chromosomally encoded resistances to nalidixic acid and nitrofurantoin, respectively. The two S. Infantis isolates were assigned to sequence type ST32 by in silico multilocus sequence typing (MLST). Phylogenetic analysis revealed that they were closely related, differing only by 12 SNPs, although they were recovered from different children two years apart. They were also genetically similar to blaCTX-M-65-positive ± fosA3 isolates obtained from humans and along the poultry production chain in the USA, South America, as well as from humans in several European countries, usually associated with a travel history to America. However, this is the first time that the S. Infantis blaCTX-M-65 ± fosA3 MDR clone has been reported in Spain.
Collapse
Affiliation(s)
- Xenia Vázquez
- Área de Microbiología, Departamento de Biología Funcional, Universidad de Oviedo (UO), 33006 Oviedo, Spain;
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (J.F.); (R.R.)
| | - Javier Fernández
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (J.F.); (R.R.)
- Servicio de Microbiología, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
- Research & Innovation, Artificial Intelligence and Statistical Department, Pragmatech AI Solutions, 33003 Oviedo, Spain
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias, 20029 Madrid, Spain
| | - Jesús Rodríguez-Lozano
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla (IDIVAL), 39008 Santander, Spain; (J.R.-L.); (J.C.)
| | - Jorge Calvo
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla (IDIVAL), 39008 Santander, Spain; (J.R.-L.); (J.C.)
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rosaura Rodicio
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (J.F.); (R.R.)
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo (UO), 33006 Oviedo, Spain
| | - M. Rosario Rodicio
- Área de Microbiología, Departamento de Biología Funcional, Universidad de Oviedo (UO), 33006 Oviedo, Spain;
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (J.F.); (R.R.)
| |
Collapse
|
30
|
Yin X, Dudley EG, Pinto CN, M'ikanatha NM. Fluoroquinolone sales in food animals and quinolone resistance in non-typhoidal Salmonella from retail meats: United States, 2009-2018. J Glob Antimicrob Resist 2022; 29:163-167. [PMID: 35288333 DOI: 10.1016/j.jgar.2022.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVES Antimicrobial-resistant non-typhoidal Salmonella (NTS) infections are associated with worse health outcomes compared to antimicrobial-susceptible infections. Misuse of antimicrobials in food animals can amplify the emergence of antimicrobial resistance. The objective of this study was to examine the association between fluoroquinolone sales in food animals and the prevalence of quinolone-resistant NTS isolated from retail meats. METHODS We reviewed data for 4318 NTS isolates from retail meat samples collected from 2009 to 2018 through the FDA National Antimicrobial Resistance Monitoring System programs. The Pearson's correlation was used to examine the correlation between the prevalence of quinolone-resistant NTS and standardised fluoroquinolone sales. RESULTS After adjusting for the increase in beef and pork production, fluoroquinolone sales increased by 41.67% from 2013 to 2018. The prevalence of quinolone-resistant NTS from retail ground beef increased from 5% in 2014 to 11% in 2018. The increase of quinolone-resistant isolates in retail meats since 2016 was mostly related to Salmonella Infantis and Salmonella enteritidis. CONCLUSION One Health integrated surveillance for NTS isolates from food of animal origin and human sources is necessary to elucidate trends in resistance to critical drugs. The study also underscores the need for judicious use of antimicrobials in agricultural settings.
Collapse
Affiliation(s)
- Xin Yin
- Public Health Sciences Department, Penn State College of Medicine, Hershey, Pennsylvania
| | - Edward G Dudley
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania
| | - Casey N Pinto
- Public Health Sciences Department, Penn State College of Medicine, Hershey, Pennsylvania
| | | |
Collapse
|
31
|
Di Marcantonio L, Romantini R, Marotta F, Chiaverini A, Zilli K, Abass A, Di Giannatale E, Garofolo G, Janowicz A. The Current Landscape of Antibiotic Resistance of Salmonella Infantis in Italy: The Expansion of Extended-Spectrum Beta-Lactamase Producers on a Local Scale. Front Microbiol 2022; 13:812481. [PMID: 35418960 PMCID: PMC8996230 DOI: 10.3389/fmicb.2022.812481] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Salmonella enterica serovar Infantis is one of the five main causes of human salmonellosis in the European Union (EU) and in recent years, has been increasingly reported to carry multiple antimicrobial resistance determinants, including extended-spectrum beta-lactamase (ESBL) genes. In our study, we used WGS-based tools to characterize S. Infantis strains circulating in the Abruzzo and Molise regions of Italy between 2017 and 2020 and compared this local dataset to the S. Infantis population present in Italy over the last two decades. Phylogenetic analyses demonstrated that the majority of strains isolated from poultry and turkeys from Abruzzo and Molise were closely related and belonged to one of the two main genetic clusters present in Italy, which were grouped predominantly as ESBL-producing strains that harbored pESI-like plasmid. We showed that 60% of the local strains carried multiple antibiotic resistance genes, including ESBL gene blaCTX–M–1 as well as aadA1, dfrA1, dfrA14, sul1, and tet(A) genes present on the pESI-like megaplasmid. The analysis of strains from Abruzzo and Molise and the publicly available Italian S. Infantis sequences revealed a dramatic increase in the number of identified AMR genes in the strains isolated after 2011. Moreover, the number of strains resistant to five or more antibiotic classes increased from 20–80% in the last decade likely due to the acquisition of the megaplasmid. The persistence of the ESBL-producing and the multidrug-resistant (MDR) clone of S. Infantis in poultry populations in Italy and in Europe requires rapid and efficient intervention strategies to prevent further expansion of the clone.
Collapse
Affiliation(s)
- Lisa Di Marcantonio
- Bacteriology and Diary Production Hygiene Department, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale," Teramo, Italy
| | - Romina Romantini
- Bacteriology and Diary Production Hygiene Department, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale," Teramo, Italy
| | - Francesca Marotta
- Bacteriology and Diary Production Hygiene Department, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale," Teramo, Italy
| | - Alexandra Chiaverini
- Hygiene in Food Technology and Animal Feeds, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale," Teramo, Italy
| | - Katiuscia Zilli
- Bacteriology and Diary Production Hygiene Department, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale," Teramo, Italy
| | - Anna Abass
- Bacteriology and Diary Production Hygiene Department, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale," Teramo, Italy
| | - Elisabetta Di Giannatale
- Bacteriology and Diary Production Hygiene Department, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale," Teramo, Italy
| | - Giuliano Garofolo
- Bacteriology and Diary Production Hygiene Department, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale," Teramo, Italy
| | - Anna Janowicz
- Bacteriology and Diary Production Hygiene Department, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale," Teramo, Italy
| |
Collapse
|
32
|
Lee KY, Atwill ER, Pitesky M, Huang A, Lavelle K, Rickard M, Shafii M, Hung-Fan M, Li X. Antimicrobial Resistance Profiles of Non-typhoidal Salmonella From Retail Meat Products in California, 2018. Front Microbiol 2022; 13:835699. [PMID: 35369434 PMCID: PMC8966841 DOI: 10.3389/fmicb.2022.835699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/10/2022] [Indexed: 12/31/2022] Open
Abstract
Non-typhoidal Salmonella remains a leading cause of foodborne illness in the United States, with food animal products serving as a key conduit for transmission. The emergence of antimicrobial resistance (AMR) poses an additional public health concern warranting better understanding of its epidemiology. In this study, 958 retail meat samples collected from January to December 2018 in California were tested for Salmonella. From multivariable logistic regression, there was a 6.47 (90% CI 2.29–18.27), 3.81 (90% CI 1.29–11.27), and 3.12 (90% CI 1.03–9.45) higher odds of contamination in samples purchased in the fall, spring, and summer than in winter months, respectively, and a 3.70 (90% CI 1.05–13.07) higher odds in ground turkey compared to pork samples. Fourteen distinct serotypes and 17 multilocus sequence types were identified among the 43 isolates recovered, with S. Kentucky (25.58%), S. Reading (18.60%), S. Infantis (11.63%), and S. Typhimurium (9.30%) comprising the top serotypes. High prevalence of resistance was observed in retail chicken isolates for streptomycin (12/23, 52.17%) and tetracycline (12/23, 52.17%), in ground turkey isolates for ampicillin (8/15, 53.34%), and in ground beef isolates for nalidixic acid (2/3, 66.67%). Fourteen (32.56%) were susceptible to all antimicrobials tested, 11 (25.58%) were resistant to one drug, and 12 (27.91%) were resistant to two drugs. The remaining six isolates (13.95%) were multidrug-resistant (MDR, ≥3 drug classes) S. Infantis (n = 4), S. Reading (n = 1), and S. Kentucky (n = 1). Whole-genome sequencing (WGS) identified 16 AMR genes and 17 plasmid replicons, including blaCTX–M–65 encoding ceftriaxone resistance and a D87Y mutation in gyrA conferring resistance to nalidixic acid and reduced susceptibility to ciprofloxacin. The IncFIB(pN55391) replicon previously identified in connection to the worldwide dissemination of pESI-like mega plasmid carriage in an emerged S. Infantis clone was detected in four of the six MDR isolates. Genotypes from WGS showed high concordance with phenotype with overall sensitivity and specificity of 95.31% and 100%, respectively. This study provides insight into the AMR profiles of a diversity of Salmonella serotypes isolated from retail meat products in California and highlights the value of routine retail food surveillance for the detection and characterization of AMR in foodborne pathogens.
Collapse
Affiliation(s)
- Katie Yen Lee
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States.,Western Institute for Food Safety and Security, University of California, Davis, Davis, CA, United States
| | - Edward Robert Atwill
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Maurice Pitesky
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Anny Huang
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Kurtis Lavelle
- Western Institute for Food Safety and Security, University of California, Davis, Davis, CA, United States
| | - Maribel Rickard
- Contra Costa County Public Health Laboratory, Martinez, CA, United States
| | - Marzieh Shafii
- Contra Costa County Public Health Laboratory, Martinez, CA, United States
| | - Melody Hung-Fan
- Contra Costa County Public Health Laboratory, Martinez, CA, United States
| | - Xunde Li
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States.,Western Institute for Food Safety and Security, University of California, Davis, Davis, CA, United States
| |
Collapse
|
33
|
Molecular Characterization of Salmonella Detected along the Broiler Production Chain in Trinidad and Tobago. Microorganisms 2022; 10:microorganisms10030570. [PMID: 35336145 PMCID: PMC8955423 DOI: 10.3390/microorganisms10030570] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 02/04/2023] Open
Abstract
This cross-sectional study determined the serovars, antimicrobial resistance genes, and virulence factors of Salmonella isolated from hatcheries, broiler farms, processing plants, and retail outlets in Trinidad and Tobago. Salmonella in silico serotyping detected 23 different serovars where Kentucky 20.5% (30/146), Javiana 19.2% (28/146), Infantis 13.7% (20/146), and Albany 8.9% (13/146) were the predominant serovars. There was a 76.0% (111/146) agreement between serotyping results using traditional conventional methods and whole-genome sequencing (WGS) in in silico analysis. In silico identification of antimicrobial resistance genes conferring resistance to aminoglycosides, cephalosporins, peptides, sulfonamides, and antiseptics were detected. Multidrug resistance (MDR) was detected in 6.8% (10/146) of the isolates of which 100% originated from broiler farms. Overall, virulence factors associated with secretion systems and fimbrial adherence determinants accounted for 69.3% (3091/4463), and 29.2% (1302/4463) counts, respectively. Ten of 20 isolates of serovar Infantis (50.0%) showed MDR and contained the blaCTX-M-65 gene. This is the first molecular characterization of Salmonella isolates detected along the entire broiler production continuum in the Caribbean region using WGS. The availability of these genomes will help future source tracking during epidemiological investigations associated with Salmonella foodborne outbreaks in the region and worldwide.
Collapse
|
34
|
Sáenz L, Guzmán M, Vidal S, Caruffo M, Siel D, Zayas C, Paredes R, Valenzuela C, Hidalgo H, Pérez O, Lapierre L. Efficacy of Multivalent, Cochleate-Based Vaccine against Salmonella Infantis, S. Enteritidis and S. Typhimurium in Laying Hens. Vaccines (Basel) 2022; 10:vaccines10020226. [PMID: 35214684 PMCID: PMC8879397 DOI: 10.3390/vaccines10020226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/30/2021] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Salmonella enterica is an important foodborne pathogen. Commercial poultry are the main reservoirs of Salmonella enterica, leading to the contamination of food and outbreaks in humans. The vaccination of chickens is one of the most important strategies to reduce the number of Salmonella in poultry farms. Unfortunately, commercial vaccines have not been fully effective in controlling the spread and do not contain all the Salmonella serovars that circulate on farms. In this study, we evaluate a new, cochleate-based, trivalent injectable vaccine against S. Enteritidis, S. Typhimurium and S. Infantis, describing the vaccine security, capacity to induce specific anti-Salmonella serovar IgY and the gene expression of immune markers related to CD4 and CD8 T-cell-mediated immunity. Efficacy was evaluated through oral challenges performed separately for each Salmonella serotype. The efficacy and safety of the trivalent vaccine was proven under controlled conditions. The vaccine has no local or systemic reactions or adverse effects on poultry performance related to the vaccine. The vaccine provided significantly increased serum IgY titer levels, significantly reduced Salmonella CFU/g present in the cecum and an increased CD4+/CD8+ ratio in vaccinated animals when challenged with S. Infantis, S. Enteritidis and S. Typhimurium. These results indicate that this new trivalent vaccine does not generate adverse effects in poultry and produces an increase in neutralizing antibodies against the three Salmonella serovars.
Collapse
Affiliation(s)
- Leonardo Sáenz
- Faculty of Veterinary Sciences, Universidad de Chile, Santiago 8820808, Chile; (L.S.); (M.G.); (S.V.); (M.C.); (D.S.); (C.Z.); (C.V.); (H.H.)
| | - Miguel Guzmán
- Faculty of Veterinary Sciences, Universidad de Chile, Santiago 8820808, Chile; (L.S.); (M.G.); (S.V.); (M.C.); (D.S.); (C.Z.); (C.V.); (H.H.)
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, NIAVA, Facultad de Medicina Veterinaria y Agronomía, Campus Maipú–Sede Santiago, Universidad de las Américas, Santiago 9251454, Chile
| | - Sonia Vidal
- Faculty of Veterinary Sciences, Universidad de Chile, Santiago 8820808, Chile; (L.S.); (M.G.); (S.V.); (M.C.); (D.S.); (C.Z.); (C.V.); (H.H.)
| | - Mario Caruffo
- Faculty of Veterinary Sciences, Universidad de Chile, Santiago 8820808, Chile; (L.S.); (M.G.); (S.V.); (M.C.); (D.S.); (C.Z.); (C.V.); (H.H.)
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Santo Tomás, Santiago 8370003, Chile
| | - Daniela Siel
- Faculty of Veterinary Sciences, Universidad de Chile, Santiago 8820808, Chile; (L.S.); (M.G.); (S.V.); (M.C.); (D.S.); (C.Z.); (C.V.); (H.H.)
| | - Caridad Zayas
- Faculty of Veterinary Sciences, Universidad de Chile, Santiago 8820808, Chile; (L.S.); (M.G.); (S.V.); (M.C.); (D.S.); (C.Z.); (C.V.); (H.H.)
| | - Rodolfo Paredes
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370035, Chile;
| | - Carolina Valenzuela
- Faculty of Veterinary Sciences, Universidad de Chile, Santiago 8820808, Chile; (L.S.); (M.G.); (S.V.); (M.C.); (D.S.); (C.Z.); (C.V.); (H.H.)
| | - Héctor Hidalgo
- Faculty of Veterinary Sciences, Universidad de Chile, Santiago 8820808, Chile; (L.S.); (M.G.); (S.V.); (M.C.); (D.S.); (C.Z.); (C.V.); (H.H.)
| | - Oliver Pérez
- Instituto de Ciencias Básicas Y Preclínicas “Victoria de Girón”, Universidad de Ciencias Médicas de La Habana, Havana 10600, Cuba;
| | - Lisette Lapierre
- Faculty of Veterinary Sciences, Universidad de Chile, Santiago 8820808, Chile; (L.S.); (M.G.); (S.V.); (M.C.); (D.S.); (C.Z.); (C.V.); (H.H.)
- Lisette Lapierre, Faculty of Veterinary Sciences, University of Chile, Santiago 8820808, Chile
- Correspondence:
| |
Collapse
|
35
|
Pavlova AS, Egorova A, Krutova N, Saenko S, Mikhaylova Y, Guseva A, Chebotar IV, Podkolzin A, Kuleshov K, Akimkin V. The prevalence and characterization of ESBL-producing strains of Salmonella enterica circulating in the territory of the Russian Federation (2016–2020). CLINICAL MICROBIOLOGY AND ANTIMICROBIAL CHEMOTHERAPY 2022. [DOI: 10.36488/cmac.2022.3.236-247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Objective.
To analyze frequency and identify genetic determinants of resistance of non-typhoid Salmonella (NTS) producing extended-spectrum β-lactamase (ESBL) isolated in the Russian Federation over the period 2016 to 2020.
Materials and Methods.
Salmonella isolates, suspected to ESBL production, were collected by the All-Russia Reference Center of Salmonellosis during the national Salmonellosis surveillance program. Phenotypic resistance was determined by the broth microdilution method using G-I and G-II Mikrolatest®SensiLaTest MIC plates and by the double-disk synergy test. Whole genome sequencing was performed on the NextSeq platform (Illumina, USA), with subsequent de novo genome assembly (SPAdes 3.15.4), identification of plasmid types (MOB-suite v3.0.0), and identification of resistance genes (AMRFinderPlus v3.10.40).
Results.
Out of 1792 NTS isolates, 22 strains contained bla-genes of molecular classes A and D (blaTEM, blaCTX-M, blaSHV, blaOXA), one strain – AmpC (blaCMY-2) and three strains – combination ESBL of class A and AmpC (blaTEM, blaCMY-2, blaDHA). The frequency of occurrence of ESBL-producing Salmonella is 1.3%, AmpC – 0.2%. Additionally, strains were resistant to other non-β-lactam antibiotics. Six different types of plasmids were identified (IncI, IncFIB, IncC, IncHI2A, IncL/M and IncX1) in studied isolates. It was possible for 17 strains to identify location of resistance genes in plasmids of a certain type.
Conclusions.
The frequency of occurrence of Salmonella strains producing ESBL and AmpC was 1.45%, which were found in sporadic cases of human diseases, as well as food and environmental objects were sources of isolation. The fact of detection of such strains among various NTC serotypes and a wide range of sources of isolation confirms the relevance of monitoring antimicrobial resistance of Salmonella strains in the future.
Collapse
Affiliation(s)
| | - A.E. Egorova
- Central Research Institute of Epidemiology (Moscow, Russia)
| | - N.E. Krutova
- Central Research Institute of Epidemiology (Moscow, Russia)
| | - S.S. Saenko
- Central Research Institute of Epidemiology (Moscow, Russia)
| | | | - A.N. Guseva
- Central Research Institute of Epidemiology (Moscow, Russia)
| | - Igor V. Chebotar
- Pirogov Russian National Research Medical University (Moscow, Russia)
| | - A.T. Podkolzin
- Central Research Institute of Epidemiology (Moscow, Russia)
| | - K.V. Kuleshov
- Central Research Institute of Epidemiology (Moscow, Russia)
| | - V.G. Akimkin
- Central Research Institute of Epidemiology (Moscow, Russia)
| |
Collapse
|
36
|
Egorova A, Mikhaylova Y, Saenko S, Tyumentseva M, Tyumentsev A, Karbyshev K, Chernyshkov A, Manzeniuk I, Akimkin V, Shelenkov A. Comparative Whole-Genome Analysis of Russian Foodborne Multidrug-Resistant Salmonella Infantis Isolates. Microorganisms 2021; 10:89. [PMID: 35056538 PMCID: PMC8781764 DOI: 10.3390/microorganisms10010089] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 12/19/2022] Open
Abstract
Non-typhoidal Salmonella infections remain a significant public health problem worldwide. In this study, we present the first detailed genomic analysis report based on short-read (Illumina) whole-genome sequencing (WGS) of 45 multidrug-resistant (MDR) Salmonella enterica subsp. enterica serotype Infantis isolates from poultry and meat product samples obtained in Russia during 2018-2020, and long-read (MinION) WGS of five more representative isolates. We sought to determine whether foodborne S. Infantis have acquired new characteristics, traits, and dynamics in MDR growth in recent years. All sequenced isolates belonged to the sequence type ST32 and more than the half of isolates was characterized by six similar antimicrobial susceptibility profiles, most of which corresponded well with the antimicrobial resistance determinants to aminoglycosides, sulphonamides, tetracycline, and chloramphenicol revealed in silico. Some of the isolates were characterized by the presence of several types of plasmids simultaneously. Plasmid typing using WGS revealed Col440I, ColpVC, ColRNAI, IncFIB, IncFII, IncX1, IncHI2, IncHI2A, and IncN replicons. The identified virulence genes for 45 whole genomes of S. Infantis were similar and included 129 genes encoding structural components of the cell, factors responsible for successful invasion of the host, and secreted products. These data will be a valuable contribution to further comparative genomics of S. Infantis circulating in Russia, as well as to epidemiological surveillance of foodborne Salmonella isolates and investigations of Salmonella outbreaks.
Collapse
Affiliation(s)
- Anna Egorova
- Central Research Institute of Epidemiology, Novogireevskaya str., 3a, 111123 Moscow, Russia; (Y.M.); (S.S.); (M.T.); (A.T.); (K.K.); (A.C.); (I.M.); (V.A.); (A.S.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ruiz J, Flores-Paredes W, Luque N, Albornoz R, Rojas N, Espinoza M, Pons MJ. Retrospective analysis of the emergence of antibiotic-resistant Salmonella enterica infections in a level IV hospital from Lima, Peru. Trop Doct 2021; 52:68-73. [PMID: 34918604 DOI: 10.1177/00494755211060990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study retrospectively analysed the emergence of multidrug-resistant Salmonella enterica in a level IV hospital in Lima, Peru. A total of 64 S. enterica from January 2009 to June 2010 (Period 1, 24 isolates) and January 2012 to December 2014 (Period 2, 40 isolates) were included. Some 25 were from non-hospitalized and 39 from hospitalized patients. Antimicrobial susceptibility to 15 antimicrobial agents was established by automated methods. Most of the isolates were from blood (46.9%), urine (21.9%) and faeces (14.1%). There was a reduction in blood isolates in Period 2, while all the faecal isolates were from this period. In Period 1, only 3/24 (12.5%) isolates showed antibiotic resistance, whereas 25/39 isolates (64.1%) from Period 2 were antibiotic-resistant, with multidrug-resistant and extensively drug-resistant rates of 17.9% and 20.5%, respectively. Multidrug-resistant/extensively drug-resistant Salmonella isolates were introduced in the hospital in 2013, with Salmonella recovered from faeces from non-hospitalized patients suggested an increase in community-acquired multidrug-resistant/extensively drug-resistant Salmonella infections.
Collapse
Affiliation(s)
- Joaquim Ruiz
- Laboratorio de Genética Molecular y Bioquímica, 187071Universidad Científica del Sur, Lima, Peru
| | | | - Nestor Luque
- Escuela de Medicina Humana, Facultad de Ciencias de la Salud, 33218Universidad Peruana Union (UPeU), Lima, Peru
| | - Roger Albornoz
- Escuela de Medicina Humana, Facultad de Ciencias de la Salud, 33218Universidad Peruana Union (UPeU), Lima, Peru
| | | | | | - Maria J Pons
- Laboratorio de Genética Molecular y Bioquímica, 187071Universidad Científica del Sur, Lima, Peru
| |
Collapse
|
38
|
M’ikanatha NM, Yin X, Boktor SW, Dettinger LA, Tewari D. Integrated Surveillance for Antimicrobial Resistance in Salmonella From Clinical and Retail Meat Sources Reveals Genetically Related Isolates Harboring Quinolone- and Ceftriaxone-Resistant Determinants. Open Forum Infect Dis 2021; 8:ofab213. [PMID: 34409121 PMCID: PMC8364758 DOI: 10.1093/ofid/ofab213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/22/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Antimicrobial resistance in foodborne pathogens, including nontyphoidal Salmonella (NTS), is a public health concern. Pennsylvania conducts integrated surveillance for antimicrobial resistance in NTS from human and animal sources. METHODS During 2015-2017, clinical laboratories submitted 4478 NTS isolates from humans and 96 isolates were found in 2520 retail meat samples. One hundred nine clinical isolates that shared pulsed-field gel electrophoresis patterns with meat isolates and all strains from meat samples were tested for susceptibility to antimicrobial agents. Six clinical and 96 NTS isolates from meat sources (total 102) were analyzed by whole-genome sequencing (WGS). RESULTS Twenty-eight (25.7%) of the 109 clinical NTS and 21 (21.9%) of strains from meat sources had resistance to ≥3 antimicrobial drug classes (multidrug resistance). Sixteen of the 102 (15.7%) isolates analyzed by WGS had resistance mechanisms that confer resistance to expanded-spectrum cephalosporins, such as ceftriaxone. We identified bla CTX-M-65 in 2 S. Infantis isolates from clinical and 3 S. Infantis isolates from meat sources. These 5 bla CTX-M-65-positive S. Infantis strains carried ≥5 additional resistance genes plus a D87Y mutation in gyrA that encodes fluoroquinolone resistance. WGS showed that isolates from patients and meat samples were within ≤10 and ≤5 alleles for S. Infantis and S. Reading, respectively. CONCLUSIONS A significant proportion of NTS isolates from human and animal sources were multidrug resistant and 16% had genetic mechanisms that confer resistant to ceftriaxone. These results emphasize need for integrated surveillance in healthcare and agricultural settings.
Collapse
Affiliation(s)
- Nkuchia M M’ikanatha
- Division of Infectious Disease Epidemiology, Pennsylvania Department of Health, Harrisburg, Pennsylvania, USA
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Xin Yin
- Division of Infectious Disease Epidemiology, Pennsylvania Department of Health, Harrisburg, Pennsylvania, USA
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Sameh W Boktor
- Division of Infectious Disease Epidemiology, Pennsylvania Department of Health, Harrisburg, Pennsylvania, USA
| | - Lisa A Dettinger
- Bureau of Laboratories, Pennsylvania Department of Health, Exton, Pennsylvania, USA
| | - Deepanker Tewari
- Pennsylvania Veterinary Laboratory, Harrisburg, Pennsylvania, USA
| |
Collapse
|
39
|
Mughini-Gras L, van Hoek AHAM, Cuperus T, Dam-Deisz C, van Overbeek W, van den Beld M, Wit B, Rapallini M, Wullings B, Franz E, van der Giessen J, Dierikx C, Opsteegh M. Prevalence, risk factors and genetic traits of Salmonella Infantis in Dutch broiler flocks. Vet Microbiol 2021; 258:109120. [PMID: 34020175 DOI: 10.1016/j.vetmic.2021.109120] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/13/2021] [Indexed: 11/26/2022]
Abstract
Salmonella Infantis is a poultry-adapted Salmonella enterica serovar that is increasingly reported in broilers and is also regularly identified among human salmonellosis cases. An emerging S. Infantis mega-plasmid (pESI), carrying fitness, virulence and antimicrobial resistance genes, is also increasingly found. We investigated the prevalence, genetic characteristics and risk factors for (pESI-carrying) S. Infantis in broilers. Faecal samples from 379 broiler flocks (in 198 farms with ≥3000 birds) in the Netherlands were tested. A questionnaire about farm characteristics was also administered. Sampling was performed in July 2018-May 2019, three weeks before slaughter. Fourteen flocks (in 10 farms) were S. Infantis-positive, resulting in a 3.7 % flock-level and 5.1 % farm-level prevalence. Based on multi-locus sequence typing (MLST), all isolates belonged to sequence type 32. All but one isolate carried a pESI-like mega-plasmid. Core-genome MLST showed considerable heterogeneity among the isolates, even within the same farm, with a few small clusters detected. The typical pESI-borne multi-resistance pattern to aminoglycosides, sulphonamide and tetracycline (93 %), as well as trimethoprim (71 %), was found. Additionally, resistance to (fluoro)quinolones based on gyrA gene mutations was detected. S. Infantis was found more often in flocks using salinomycin as coccidiostat, where flock thinning was applied or litter quality was poor, whereas employing external cleaning companies, wheat in feed, and vaccination against infectious bronchitis, were protective. Suggestive evidence for vertical transmission from hatcheries was found. A heterogeneous (pESI-carrying) S. Infantis population has established itself in Dutch broiler flocks, calling for further monitoring of its spread and a comprehensive appraisal of control options.
Collapse
Affiliation(s)
- Lapo Mughini-Gras
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands.
| | - Angela H A M van Hoek
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Tryntsje Cuperus
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Cecile Dam-Deisz
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Wendy van Overbeek
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Maaike van den Beld
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Ben Wit
- Netherlands Food and Consumer Product Safety Authority (NVWA), Utrecht, the Netherlands
| | - Michel Rapallini
- Wageningen Food Safety Research (WFSR), Wageningen, the Netherlands
| | - Bart Wullings
- Wageningen Food Safety Research (WFSR), Wageningen, the Netherlands
| | - Eelco Franz
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Joke van der Giessen
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Wageningen Bioveterinary Research (WBVR), Lelystad, the Netherlands
| | - Cindy Dierikx
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Marieke Opsteegh
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| |
Collapse
|
40
|
Avidov R, Varma VS, Saadi I, Hanan A, Lublin A, Saldinger SS, Chen Y, Laor Y. Factors Influencing the Persistence of Salmonella Infantis in Broiler Litter During Composting and Stabilization Processes and Following Soil Incorporation. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.645721] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Broiler litter (BL), a by-product of broiler meat production, is frequently contaminated with Salmonella and other zoonotic pathogens. To ensure the safety of crop production chains and limit pathogen spread in the environment, a pre-treatment is desired before further agricultural utilization. The objective of this study was to characterize the effect of physico-chemical properties on Salmonella persistence in BL during composting and stabilization and following soil incorporation, toward optimization of the inactivation process. Thirty-six combinations of temperature (30, 40, 50, and 60°C), water content (40, 55, and 70%; w/w), and initial pH (6, 7, and 8.5) were employed in static lab vessels to study the persistence of Salmonella enterica serovar Infantis (S. Infantis; a multidrug-resistant strain) during incubation of artificially-inoculated BL. The effect of aeration was investigated in a composting simulator, with controlled heating and flow conditions. Temperature was found to be the main factor significantly influencing Salmonella decay rates, while water content and initial pH had a secondary level of influence with significant effects mainly at 30 and 40°C. Controlled simulations showed faster decay of Salmonella under anaerobic conditions at mesophilic temperatures (<45°C) and no effect of NH3 emissions. Re-wetting the BL at mesophilic temperatures resulted in Salmonella burst, and led to a higher tolerance of the pathogen at increased temperatures. Based on the decay rates measured under all temperature, water content, and pH conditions, it was estimated that the time required to achieve a 7 log10 reduction in Salmonella concentration, ranges between 13.7–27.2, 6.5–15.6, 1.2–4.7, and 1.3–1.5 days for 30, 40, 50, and 60°C, respectively. Inactivation of BL indigenous microbial population by autoclaving or addition of antibiotics to which the S. Infantis is resistant, resulted in augmentation of Salmonella multiplication. This suggests the presence of microbial antagonists in the BL, which inhibit the growth of the pathogen. Finally, Salmonella persisted over 90 days at 30°C in a Vertisol soil amended with inoculated BL, presumably due to reduced antagonistic activity compared to the BL alone. These findings are valuable for risk assessments and the formulation of guidelines for safe utilization of BL in agriculture.
Collapse
|
41
|
European Food Safety Authority, European Centre for Disease Prevention and Control. The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2018/2019. EFSA J 2021; 19:e06490. [PMID: 33868492 PMCID: PMC8040295 DOI: 10.2903/j.efsa.2021.6490] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Data on antimicrobial resistance (AMR) in zoonotic and indicator bacteria from humans, animals and food are collected annually by the EU Member States (MSs), jointly analysed by the EFSA and the ECDC and reported in a yearly EU Summary Report. The annual monitoring of AMR in animals and food within the EU is targeted at selected animal species corresponding to the reporting year. The 2018 monitoring specifically focussed on poultry and their derived carcases/meat, while the monitoring performed in 2019 specifically focused on pigs and calves under 1 year of age, as well as their derived carcases/meat. Monitoring and reporting of AMR in 2018/2019 included data regarding Salmonella, Campylobacter and indicator Escherichia coli isolates, as well as data obtained from the specific monitoring of presumptive ESBL-/AmpC-/carbapenemase-producing E. coli isolates. Additionally, some MSs reported voluntary data on the occurrence of meticillin-resistant Staphylococcus aureus in animals and food, with some countries also providing data on antimicrobial susceptibility. This report provides an overview of the main findings of the 2018/2019 harmonised AMR monitoring in the main food-producing animal populations monitored, in related carcase/meat samples and in humans. Where available, data monitoring obtained from pigs, calves, broilers, laying hens and turkeys, as well as from carcase/meat samples and humans were combined and compared at the EU level, with particular emphasis on multidrug resistance, complete susceptibility and combined resistance patterns to critically important antimicrobials, as well as Salmonella and E. coli isolates possessing ESBL-/AmpC-/carbapenemase phenotypes. The outcome indicators for AMR in food-producing animals such as complete susceptibility to the harmonised panel of antimicrobials in E. coli and the prevalence of ESBL-/AmpC-producing E. coli have been also specifically analysed over the period 2015-2019.
Collapse
|
42
|
Szmolka A, Wami H, Dobrindt U. Comparative Genomics of Emerging Lineages and Mobile Resistomes of Contemporary Broiler Strains of Salmonella Infantis and E. coli. Front Microbiol 2021; 12:642125. [PMID: 33717039 PMCID: PMC7947892 DOI: 10.3389/fmicb.2021.642125] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/03/2021] [Indexed: 01/06/2023] Open
Abstract
Introduction Commensal and pathogenic strains of multidrug-resistant (MDR) Escherichia coli and non-typhoid strains of Salmonella represent a growing foodborne threat from foods of poultry origin. MDR strains of Salmonella Infantis and E. coli are frequently isolated from broiler chicks and the simultaneous presence of these two enteric bacterial species would potentially allow the exchange of mobile resistance determinants. Objectives In order to understand possible genomic relations and to obtain a first insight into the potential interplay of resistance genes between enteric bacteria, we compared genomic diversity and mobile resistomes of S. Infantis and E. coli from broiler sources. Results The core genome MLST analysis of 56 S. Infantis and 90 E. coli contemporary strains revealed a high genomic heterogeneity of broiler E. coli. It also allowed the first insight into the genomic diversity of the MDR clone B2 of S. Infantis, which is endemic in Hungary. We also identified new MDR lineages for S. Infantis (ST7081 and ST7082) and for E. coli (ST8702 and ST10088). Comparative analysis of antibiotic resistance genes and plasmid types revealed a relatively narrow interface between the mobile resistomes of E. coli and S. Infantis. The mobile resistance genes tet(A), aadA1, and sul1 were identified at an overall high prevalence in both species. This gene association is characteristic to the plasmid pSI54/04 of the epidemic clone B2 of S. Infantis. Simultaneous presence of these genes and of IncI plasmids of the same subtype in cohabitant caecal strains of E. coli and S. Infantis suggests an important role of these plasmid families in a possible interplay of resistance genes between S. Infantis and E. coli in broilers. Conclusion This is the first comparative genomic analysis of contemporary broiler strains of S. Infantis and E. coli. The diversity of mobile resistomes suggests that commensal E. coli could be potential reservoirs of resistance for S. Infantis, but so far only a few plasmid types and mobile resistance genes could be considered as potentially exchangeable between these two species. Among these, IncI1 plasmids could make the greatest contribution to the microevolution and genetic interaction between E. coli and S. Infantis.
Collapse
Affiliation(s)
- Ama Szmolka
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Budapest, Hungary
| | - Haleluya Wami
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Ulrich Dobrindt
- Institute of Hygiene, University of Münster, Münster, Germany
| |
Collapse
|
43
|
Ramirez-Hernandez A, Carrascal-Camacho AK, Varón-García A, Brashears MM, Sanchez-Plata MX. Genotypic Characterization of Antimicrobial Resistant Salmonella spp. Strains from Three Poultry Processing Plants in Colombia. Foods 2021; 10:foods10030491. [PMID: 33668959 PMCID: PMC7996530 DOI: 10.3390/foods10030491] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
The poultry industry in Colombia has implemented several changes and measures in chicken processing to improve sanitary operations and control pathogens’ prevalence. However, there is no official in-plant microbial profile reference data currently available throughout the processing value chains. Hence, this research aimed to study the microbial profiles and the antimicrobial resistance of Salmonella isolates in three plants. In total, 300 samples were collected in seven processing sites. Prevalence of Salmonella spp. and levels of Enterobacteriaceae were assessed. Additionally, whole-genome sequencing was conducted to characterize the isolated strains genotypically. Overall, the prevalence of Salmonella spp. in each establishment was 77%, 58% and 80% for plant A, B, and C. The mean levels of Enterobacteriaceae in the chicken rinsates were 5.03, 5.74, and 6.41 log CFU/mL for plant A, B, and C. Significant reductions were identified in the counts of post-chilling rinsate samples; however, increased levels were found in chicken parts. There were six distinct Salmonella spp. clusters with the predominant sequence types ST32 and ST28. The serotypes Infantis (54%) and Paratyphi B (25%) were the most commonly identified within the processing plants with a high abundance of antimicrobial resistance genes.
Collapse
Affiliation(s)
- Alejandra Ramirez-Hernandez
- Animal and Food Sciences Department, Texas Tech University, Lubbock, TX 79409, USA; (M.M.B.); (M.X.S.-P.)
- Correspondence: ; Tel.: +1-402-304-5727
| | - Ana K. Carrascal-Camacho
- Microbiology Department, Environmental and Industrial Biotechnology Group, Pontificia Universidad Javeriana, Bogota 110231, Colombia;
| | | | - Mindy M. Brashears
- Animal and Food Sciences Department, Texas Tech University, Lubbock, TX 79409, USA; (M.M.B.); (M.X.S.-P.)
| | - Marcos X. Sanchez-Plata
- Animal and Food Sciences Department, Texas Tech University, Lubbock, TX 79409, USA; (M.M.B.); (M.X.S.-P.)
| |
Collapse
|
44
|
Shang K, Wei B, Cha SY, Zhang JF, Park JY, Lee YJ, Jang HK, Kang M. The Occurrence of Antimicrobial-Resistant Salmonella enterica in Hatcheries and Dissemination in an Integrated Broiler Chicken Operation in Korea. Animals (Basel) 2021; 11:E154. [PMID: 33440890 PMCID: PMC7827806 DOI: 10.3390/ani11010154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/19/2020] [Accepted: 01/07/2021] [Indexed: 11/16/2022] Open
Abstract
Positive identification rates of Salmonella enterica in hatcheries and upstream breeder farms were 16.4% (36/220) and 3.0% (6/200), respectively. Among the Salmonella serovars identified in the hatcheries, S. enterica ser. Albany (17/36, 47.2%) was the most prevalent, followed by the serovars S. enterica ser. Montevideo (11/36, 30.6%) and S. enterica ser. Senftenberg (5/36, 13.9%), which were also predominant. Thirty-six isolates showed resistance to at least one antimicrobial tested, of which 52.8% (n = 19) were multidrug resistant (MDR). Thirty-three isolates (enrofloxacin, MIC ≥ 0.25) showed point mutations in the gyrA and parC genes. One isolate, S. enterica ser. Virchow, carrying the blaCTX-M-15 gene from the breeder farm was ceftiofur resistant. Pulsed-field gel electrophoresis (PFGE) showed that 52.0% S. enterica ser. Montevideo and 29.6% S. enterica ser. Albany isolates sourced from the downstream of hatcheries along the broiler chicken supply chain carried the same PFGE types as those of the hatcheries. Thus, the hatcheries showed a high prevalence of Salmonella isolates with high antimicrobial resistance and no susceptible isolate. The AMR isolates from hatcheries originating from breeder farms could disseminate to the final retail market along the broiler chicken supply chain. The emergence of AMR Salmonella in hatcheries may be due to the horizontal spread of resistant isolates. Therefore, Salmonella control in hatcheries, particularly its horizontal transmission, is important.
Collapse
Grants
- 119059-2 Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry(IPET) through Animal Disease Management Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs(MAFRA)
- 716002-7 Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry(IPET) through Agriculture, Food and Rural Affairs Convergence Technologies Program for Educating Creative Global Leader, funded by Ministry of Agriculture, Food an
- 320005-4 Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry(IPET) through Agriculture, Food and Rural Affairs Convergence Technologies Program for Educating Creative Global Leader, funded by Ministry of Agriculture, Food an
- 2017R1D1A1B03030883 Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education
Collapse
Affiliation(s)
- Ke Shang
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Jeonbuk National University, Iksan 54596, Korea; (K.S.); (B.W.); (S.-Y.C.); (J.-F.Z.); (J.-Y.P.); (Y.-J.L.)
| | - Bai Wei
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Jeonbuk National University, Iksan 54596, Korea; (K.S.); (B.W.); (S.-Y.C.); (J.-F.Z.); (J.-Y.P.); (Y.-J.L.)
| | - Se-Yeoun Cha
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Jeonbuk National University, Iksan 54596, Korea; (K.S.); (B.W.); (S.-Y.C.); (J.-F.Z.); (J.-Y.P.); (Y.-J.L.)
| | - Jun-Feng Zhang
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Jeonbuk National University, Iksan 54596, Korea; (K.S.); (B.W.); (S.-Y.C.); (J.-F.Z.); (J.-Y.P.); (Y.-J.L.)
| | - Jong-Yeol Park
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Jeonbuk National University, Iksan 54596, Korea; (K.S.); (B.W.); (S.-Y.C.); (J.-F.Z.); (J.-Y.P.); (Y.-J.L.)
| | - Yea-Jin Lee
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Jeonbuk National University, Iksan 54596, Korea; (K.S.); (B.W.); (S.-Y.C.); (J.-F.Z.); (J.-Y.P.); (Y.-J.L.)
| | - Hyung-Kwan Jang
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Jeonbuk National University, Iksan 54596, Korea; (K.S.); (B.W.); (S.-Y.C.); (J.-F.Z.); (J.-Y.P.); (Y.-J.L.)
- Bio Disease Control (BIOD) Co., Ltd., Iksan 54596, Korea
| | - Min Kang
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Jeonbuk National University, Iksan 54596, Korea; (K.S.); (B.W.); (S.-Y.C.); (J.-F.Z.); (J.-Y.P.); (Y.-J.L.)
- Bio Disease Control (BIOD) Co., Ltd., Iksan 54596, Korea
| |
Collapse
|
45
|
Carriage and Gene Content Variability of the pESI-Like Plasmid Associated with Salmonella Infantis Recently Established in United States Poultry Production. Genes (Basel) 2020; 11:genes11121516. [PMID: 33352984 PMCID: PMC7766811 DOI: 10.3390/genes11121516] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 01/05/2023] Open
Abstract
Salmonella Infantis carrying extended spectrum β-lactamase blaCTX-M-65 on a pESI-like megaplasmid has recently emerged in United States poultry. In order to determine the carriage rate and gene content variability of this plasmid in U.S. Salmonella Infantis, whole genome sequences of Salmonella isolates from humans and animals in the U.S. and internationally containing the pESI-like plasmid were analyzed. The U.S. Department of Agriculture Food Safety and Inspection Service (FSIS) identified 654 product sampling isolates containing pESI-like plasmids through hazard analysis and critical control point (HACCP) verification testing in 2017 and 2018. The Centers for Disease Control and Prevention identified 55 isolates with pESI-like plasmids in 2016–2018 through the National Antimicrobial Resistance Monitoring System. Approximately 49% of pESI-like plasmids from FSIS verification isolates and 71% from CDC NARMS contained blaCTX-M-65. Pan-plasmid genome analysis was also performed. All plasmids contained traN and more than 95% contained 172 other conserved genes; 61% contained blaCTX-M-65. In a hierarchical clustering analysis, some plasmids from U.S. animal sources clustered together and some plasmids from South America clustered together, possibly indicating multiple plasmid lineages. However, most plasmids contained similar genes regardless of origin. Carriage of the pESI-like plasmid in U.S. appears to be limited to Salmonella Infantis and carriage rates increased from 2017 to 2018.
Collapse
|
46
|
Genomic Characteristics of Colistin-Resistant Salmonella enterica subsp. enterica Serovar Infantis from Poultry Farms in the Republic of Serbia. Antibiotics (Basel) 2020; 9:antibiotics9120886. [PMID: 33321688 PMCID: PMC7762970 DOI: 10.3390/antibiotics9120886] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 11/17/2022] Open
Abstract
The antimicrobial susceptibility testing was conducted on 174 single isolates from poultry farms in Serbia and it was determined that seven Salmonella spp. were multidrug resistant. Sixteen serotypes were detected, but only serotype Infantis confirmed reduced susceptibility to colistin. Seven colistin resistant Salmonella Infantis were studied in detail using the WGS approach. Three sequence types were identified corresponding to different epizootiology region. The isolate from the Province of Vojvodina 3842 and isolates from Jagodina (92 and 821) are represented by the sequence type ST413 and ST11, respectively. Four isolates from Kraljevo are ST32, a common S. Infantis sequence type in humans, poultry and food. The fosfomycin resistance gene fosA7 in isolate 3842 and the vgaA gene in isolate 8418/2948 encoding resistance to pleuromutilins were reported for the first time in serovar Infantis. The changes in relative expression of the phoP/Q, mgrB and pmrA/B genes were detected. Single nucleotide polymorphisms of the pmrB gene, including transitions Val164Gly or Val164Met, and Arg92Pro are described. Analyses of quinolone resistance determining region revealed substitutions Ser83Tyr in GyrA protein and Thr57Ser and Ser80Arg in ParC protein. Based on WGS data, there are two major clusters among analyzed Salmonella Infantis isolates from central Serbia.
Collapse
|
47
|
Zurfluh K, Treier A, Schmitt K, Stephan R. Mobile fosfomycin resistance genes in Enterobacteriaceae-An increasing threat. Microbiologyopen 2020; 9:e1135. [PMID: 33128341 PMCID: PMC7755807 DOI: 10.1002/mbo3.1135] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/25/2020] [Accepted: 10/12/2020] [Indexed: 01/01/2023] Open
Abstract
Antimicrobial resistance is one of the major threats to the health and welfare of both humans and animals. The shortage of new antimicrobial agents has led to the re-evaluation of old antibiotics such as fosfomycin as a potential regimen for treating multidrug-resistant bacteria especially extended-spectrum-beta-lactamase- and carbapenemase-producing Enterobacteriaceae. Fosfomycin is a broad-spectrum bactericidal antibiotic that inhibits the initial step of the cell wall biosynthesis. Fosfomycin resistance can occur due to mutation in the drug uptake system or by the acquisition of fosfomycin-modifying enzymes. In this review, we focus on mobile fosfomycin-resistant genes encoding glutathione-S-transferase which are mainly responsible for fosfomycin resistance in Enterobacteriaceae, that is, fosA and its subtypes, fosC2, and the recently described fosL1-L2. We summarized the proposed origins of the different resistance determinants and highlighted the different plasmid types which are attributed to the dissemination of fosfomycin-modifying enzymes. Thereby, IncF and IncN plasmids play a predominant role. The detection of mobile fosfomycin-resistant genes in Enterobacteriaceae has increased in recent years. Similar to the situation in (East) Asia, the most frequently detected fosfomycin-resistant gene in Europe is fosA3. Mobile fosfomycin-resistant genes have been detected in isolates of human, animal, food, and environmental origin which leads to a growing concern regarding the risk of spread of such bacteria, especially Escherichia coli and Salmonella, at the human-animal-environment interface.
Collapse
Affiliation(s)
- Katrin Zurfluh
- Institute for Food Safety and HygieneVetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Andrea Treier
- Institute for Food Safety and HygieneVetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Kira Schmitt
- Institute for Food Safety and HygieneVetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Roger Stephan
- Institute for Food Safety and HygieneVetsuisse FacultyUniversity of ZurichZurichSwitzerland
| |
Collapse
|
48
|
Parvin MS, Hasan MM, Ali MY, Chowdhury EH, Rahman MT, Islam MT. Prevalence and Multidrug Resistance Pattern of Salmonella Carrying Extended-Spectrum β-Lactamase in Frozen Chicken Meat in Bangladesh. J Food Prot 2020; 83:2107-2121. [PMID: 32663273 DOI: 10.4315/jfp-20-172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/14/2020] [Indexed: 12/27/2022]
Abstract
ABSTRACT Salmonella is an important foodborne pathogen that causes public health problems globally, and the increase of antimicrobial resistance in Salmonella has intensified the problem. Chicken meat is an important reservoir and disseminator of Salmonella to humans. This study aimed at estimating the burden of Salmonella carrying extended-spectrum β-lactamase (ESBL) and their antimicrobial resistance pattern in 113 domestic frozen chicken meat samples purchased from supershops available in five divisional megacities of Bangladesh. The study also focused on the determination of β-lactamase-, and plasmid-mediated quinolone resistance-encoding genes. All samples were analyzed for the presence of Salmonella using selective media and PCR assay. Antimicrobial susceptibility test was done by disk diffusion test, and ESBL screening was performed by double-disk synergy tests. Resistance genes were detected using multiplex PCR. Of samples, 65.5% were positive for Salmonella spp., and, of these, 58.1% isolates were ESBL producers. All the isolates were multidrug resistant (MDR): 40.5% were resistant to both three to five and six to eight antimicrobial classes; 17.6% were resistant to 9 to 11 classes, and 1.4% isolates to 12 to 15 classes. The highest rates of resistance were observed against oxytetracycline (100%), followed by trimethoprim-sulfamethoxazole (89.2%), tetracycline (86.5%), nalidixic acid (83.8%), amoxicillin (74.3%), and pefloxacin (70.3%). Notably, 48.6% of isolates demonstrated resistance to imipenem. One (1.4%) isolate was possibly extensively drug resistant. All the isolates were positive for the blaTEM gene, 2.7% were positive for blaCTX-M-1, and 20.3% for blaNDM-1. The prevalence of qnrA and qnrS genes was 4.1 and 6.8%, respectively. This study shows that ESBL-producing Salmonella are widespread in frozen chicken meat in Bangladesh, which puts greater responsibility on food processors and policy makers to ensure food safety. HIGHLIGHTS
Collapse
Affiliation(s)
- Mst Sonia Parvin
- Population Medicine and AMR Laboratory, Department of Medicine, Farmgate, Dhaka-1215, Bangladesh
| | - Md Mehedi Hasan
- Population Medicine and AMR Laboratory, Department of Medicine, Farmgate, Dhaka-1215, Bangladesh
| | - Md Yamin Ali
- Population Medicine and AMR Laboratory, Department of Medicine, Farmgate, Dhaka-1215, Bangladesh.,Department of Livestock Services, Farmgate, Dhaka-1215, Bangladesh
| | | | - Md Tanvir Rahman
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Md Taohidul Islam
- Population Medicine and AMR Laboratory, Department of Medicine, Farmgate, Dhaka-1215, Bangladesh
| |
Collapse
|
49
|
Donoso A, Paredes N, Retamal P. Detection of Antimicrobial Resistant Salmonella enterica Strains in Larval and Adult Forms of Lesser Mealworm ( Alphitobius diaperinus) From Industrial Poultry Farms. Front Vet Sci 2020; 7:577848. [PMID: 33195584 PMCID: PMC7581672 DOI: 10.3389/fvets.2020.577848] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/01/2020] [Indexed: 11/13/2022] Open
Abstract
The lesser mealworms (Alphitobius diaperinus) constitute a common cosmopolitan pest in poultry flocks and may colonize the litter in adult and larval forms. Previous studies have documented their potential as carriers of enteric pathogens. In this context, S. enterica constitutes a prioritized zoonotic agent in the poultry industry due to the sanitary risks and economic losses associated with its presence. The aim of this study is to describe the presence of S. enterica strains in larval and adult forms of A. diaperinus collected from poultry litter belonging to industrial farms located in the central zone of Chile. A total of 403 specimens (203 adults and 200 larvae) were sampled from three farms and 25 flocks. For bacteriological isolation, beetles were processed to differentiate external and internal contamination. Then, isolates were serotyped according to the Kauffman-White scheme and antimicrobial resistance phenotypes were determined using the disk diffusion method. Gene sequences from the megaplasmid pESI were identified through a PCR based test. These procedures led to the detection of 15 S. enterica isolates, belonging to serotypes Infantis (14) and Livingstone (1), from both adults (6) and larval (9) specimens, with a similar external (7) and internal (8) distribution. Furthermore, all S. Infantis isolates showed antimicrobial resistance and evidence of megaplasmid pESI carriage, with all possessing multidrug-resistant phenotypes. Our results confirm that A. diaperinus constitutes a potential reservoir of zoonotic Salmonella strains of sanitary and economic concern for the industry and for public health.
Collapse
Affiliation(s)
- Alvaro Donoso
- Laboratorio de Enfermedades Infecciosas, Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Natalia Paredes
- Laboratorio de Enfermedades Infecciosas, Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Patricio Retamal
- Laboratorio de Enfermedades Infecciosas, Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
50
|
Proietti PC, Stefanetti V, Musa L, Zicavo A, Dionisi AM, Bellucci S, Mensa AL, Menchetti L, Branciari R, Ortenzi R, Franciosini MP. Genetic Profiles and Antimicrobial Resistance Patterns of Salmonella Infantis Strains Isolated in Italy in the Food Chain of Broiler Meat Production. Antibiotics (Basel) 2020; 9:antibiotics9110814. [PMID: 33207568 PMCID: PMC7696838 DOI: 10.3390/antibiotics9110814] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/13/2020] [Accepted: 11/14/2020] [Indexed: 01/30/2023] Open
Abstract
This work aimed to evaluate the antimicrobial susceptibility of 87 Salmonella Infantis strains isolated in Italy from 2016 to 2019 along the food chain of broiler meat production and in humans and to determine the genetic profiles of the strains in order to establish a possible correlation with the antimicrobial pattern. All isolates were tested by the disk diffusion method to evaluate antimicrobial susceptibility toward sixteen antimicrobials, and the broth microdilution method was used to confirm extended spectrum β-lactamase (ESBL) production. PCR and pulsed field gel electrophoresis (PFGE) were applied to characterize ESBL-encoding and AmpC β-lactamase genes and to analyze the S. Infantis strains genetic profiles respectively. S. Infantis isolates showed high prevalence of resistance, in particular toward nalidixic acid (97.7%), tetracycline (96.5%), sulphamethoxazole/trimethoprim (91%) and cefepime (72.4%). The 80.5% of isolates were ESBL, cefotaxime-resistant, carrying the blaCTX-M1 gene. The most prevalent PFGE profile was XbaI.0126 (35.6%). The remaining strains had a genetic homology from 81% to 97% with the XbaI.0126 profile. The strains belonging to these profiles were isolated from different matrices collected along the broiler food chain independently on the year and from the region and there was no correlation between the PFGE profiles and resistance patterns. We found two ESBL-producing S. Infantis strains with the same XbaI.2621 profile isolated from humans and from poultry feces, not yet reported in Italy. Our findings confirmed the diffusion of ESBL-multi drug resistant (MDR) S. Infantis along the broiler food chain and in humans and underlined the importance of continuous monitoring to control and to reduce the prevalence of this bacterium, applying a global One Health approach.
Collapse
Affiliation(s)
- Patrizia Casagrande Proietti
- Department of Veterinary Medicine, Via S. Costanzo 4, 06126 Perugia, Italy; (V.S.); (L.M.); (S.B.); (A.L.M.); (R.B.); (M.P.F.)
- Correspondence:
| | - Valentina Stefanetti
- Department of Veterinary Medicine, Via S. Costanzo 4, 06126 Perugia, Italy; (V.S.); (L.M.); (S.B.); (A.L.M.); (R.B.); (M.P.F.)
| | - Laura Musa
- Department of Veterinary Medicine, Via S. Costanzo 4, 06126 Perugia, Italy; (V.S.); (L.M.); (S.B.); (A.L.M.); (R.B.); (M.P.F.)
| | - Alessia Zicavo
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via G. Salvemini, 1, 06126 Perugia, Italy; (A.Z.); (R.O.)
| | - Anna Maria Dionisi
- Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Roma, Italy;
| | - Sara Bellucci
- Department of Veterinary Medicine, Via S. Costanzo 4, 06126 Perugia, Italy; (V.S.); (L.M.); (S.B.); (A.L.M.); (R.B.); (M.P.F.)
| | - Agnese La Mensa
- Department of Veterinary Medicine, Via S. Costanzo 4, 06126 Perugia, Italy; (V.S.); (L.M.); (S.B.); (A.L.M.); (R.B.); (M.P.F.)
| | - Laura Menchetti
- Department of Agricultural and Food Sciences, Viale Fanin 42, 40127 Bologna, Italy;
| | - Raffaella Branciari
- Department of Veterinary Medicine, Via S. Costanzo 4, 06126 Perugia, Italy; (V.S.); (L.M.); (S.B.); (A.L.M.); (R.B.); (M.P.F.)
| | - Roberta Ortenzi
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via G. Salvemini, 1, 06126 Perugia, Italy; (A.Z.); (R.O.)
| | - Maria Pia Franciosini
- Department of Veterinary Medicine, Via S. Costanzo 4, 06126 Perugia, Italy; (V.S.); (L.M.); (S.B.); (A.L.M.); (R.B.); (M.P.F.)
| |
Collapse
|