1
|
Mehmood Khan F, Manohar P, Singh Gondil V, Mehra N, Kayode Oyejobi G, Odiwuor N, Ahmad T, Huang G. The applications of animal models in phage therapy: An update. Hum Vaccin Immunother 2023; 19:2175519. [PMID: 36935353 PMCID: PMC10072079 DOI: 10.1080/21645515.2023.2175519] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
The rapid increase in antibiotic resistance presents a dire situation necessitating the need for alternative therapeutic agents. Among the current alternative therapies, phage therapy (PT) is promising. This review extensively summarizes preclinical PT approaches in various in-vivo models. PT has been evaluated in several recent clinical trials. However, there are still several unanswered concerns due to a lack of appropriate regulation and pharmacokinetic data regarding the application of phages in human therapeutic procedures. In this review, we also presented the current state of PT and considered how animal models can be used to adapt these therapies for humans. The development of realistic solutions to circumvent these constraints is critical for advancing this technology.
Collapse
Affiliation(s)
- Fazal Mehmood Khan
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.,Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China.,Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Prasanth Manohar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Vijay Singh Gondil
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.,Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Nancy Mehra
- Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Greater Kayode Oyejobi
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.,Department of Microbiology, Osun State University, Osogbo, Nigeria.,School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Nelson Odiwuor
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.,International College, University of Chinese Academy of Sciences, Beijing, China.,Microbiology, Sino-Africa Joint Research Centre, Nairobi, Kenya
| | - Tauseef Ahmad
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Guangtao Huang
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Pchelin IM, Tkachev PV, Azarov DV, Gorshkov AN, Drachko DO, Zlatogursky VV, Dmitriev AV, Goncharov AE. A Genome of Temperate Enterococcus Bacteriophage Placed in a Space of Pooled Viral Dark Matter Sequences. Viruses 2023; 15:216. [PMID: 36680256 PMCID: PMC9865981 DOI: 10.3390/v15010216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/14/2023] Open
Abstract
In the human gut, temperate bacteriophages interact with bacteria through predation and horizontal gene transfer. Relying on taxonomic data, metagenomic studies have associated shifts in phage abundance with a number of human diseases. The temperate bacteriophage VEsP-1 with siphovirus morphology was isolated from a sample of river water using Enterococcus faecalis as a host. Starting from the whole genome sequence of VEsP-1, we retrieved related phage genomes in blastp searches of the tail protein and large terminase sequences, and blastn searches of the whole genome sequences, with matches compiled from several different databases, and visualized a part of viral dark matter sequence space. The genome network and phylogenomic analyses resulted in the proposal of a novel genus "Vespunovirus", consisting of temperate, mainly metagenomic phages infecting Enterococcus spp.
Collapse
Affiliation(s)
- Ivan M. Pchelin
- Scientific and Educational Center “Molecular Bases of Interaction of Microorganisms and Human” of the WCRC “Center for Personalized Medicine”, Institute of Experimental Medicine, 197022 Saint Petersburg, Russia
| | - Pavel V. Tkachev
- Scientific and Educational Center “Molecular Bases of Interaction of Microorganisms and Human” of the WCRC “Center for Personalized Medicine”, Institute of Experimental Medicine, 197022 Saint Petersburg, Russia
| | - Daniil V. Azarov
- Scientific and Educational Center “Molecular Bases of Interaction of Microorganisms and Human” of the WCRC “Center for Personalized Medicine”, Institute of Experimental Medicine, 197022 Saint Petersburg, Russia
| | - Andrey N. Gorshkov
- Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation, 197376 Saint Petersburg, Russia
- Laboratory of Pathomorphology, Almazov National Research Centre, 197341 Saint Petersburg, Russia
| | - Daria O. Drachko
- Laboratory of Cellular and Molecular Protistology, Zoological Institute of the Russian Academy of Sciences, 199034 Saint Petersburg, Russia
- Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg State University, 199034 Saint Petersburg, Russia
| | - Vasily V. Zlatogursky
- Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg State University, 199034 Saint Petersburg, Russia
| | - Alexander V. Dmitriev
- Scientific and Educational Center “Molecular Bases of Interaction of Microorganisms and Human” of the WCRC “Center for Personalized Medicine”, Institute of Experimental Medicine, 197022 Saint Petersburg, Russia
| | - Artemiy E. Goncharov
- Scientific and Educational Center “Molecular Bases of Interaction of Microorganisms and Human” of the WCRC “Center for Personalized Medicine”, Institute of Experimental Medicine, 197022 Saint Petersburg, Russia
| |
Collapse
|
3
|
Goulet A, Joos R, Lavelle K, Van Sinderen D, Mahony J, Cambillau C. A structural discovery journey of streptococcal phages adhesion devices by AlphaFold2. Front Mol Biosci 2022; 9:960325. [PMID: 36060267 PMCID: PMC9437275 DOI: 10.3389/fmolb.2022.960325] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/30/2022] [Indexed: 12/04/2022] Open
Abstract
Successful bacteriophage infection starts with specific recognition and adhesion to the host cell surface. Adhesion devices of siphophages infecting Gram-positive bacteria are very diverse and remain, for the majority, poorly understood. These assemblies often comprise long, flexible, and multi-domain proteins, which limits their structural analyses by experimental approaches such as X-ray crystallography and electron microscopy. However, the protein structure prediction program AlphaFold2 is exquisitely adapted to unveil structural and functional details of such molecular machineries. Here, we present structure predictions of whole adhesion devices of five representative siphophages infecting Streptococcus thermophilus, one of the main lactic acid bacteria used in dairy fermentations. The predictions highlight the mosaic nature of these devices that share functional domains for which active sites and residues could be unambiguously identified. Such AlphaFold2 analyses of phage-encoded host adhesion devices should become a standard method to characterize phage-host interaction machineries and to reliably annotate phage genomes.
Collapse
Affiliation(s)
- Adeline Goulet
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies et Biotechnologie, CNRS, Aix-Marseille Université, UMR7255, Marseille, France
- *Correspondence: Adeline Goulet, ; Jennifer Mahony, ; Christian Cambillau,
| | - Raphaela Joos
- School of Microbiology, University College Cork, Cork, Ireland
| | - Katherine Lavelle
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Douwe Van Sinderen
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jennifer Mahony
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- *Correspondence: Adeline Goulet, ; Jennifer Mahony, ; Christian Cambillau,
| | - Christian Cambillau
- School of Microbiology, University College Cork, Cork, Ireland
- AlphaGraphix, Formiguères, France
- *Correspondence: Adeline Goulet, ; Jennifer Mahony, ; Christian Cambillau,
| |
Collapse
|
4
|
Streptococcus thermophilus Phages in Whey Derivatives: From Problem to Application in the Dairy Industry. Viruses 2022; 14:v14040810. [PMID: 35458540 PMCID: PMC9030532 DOI: 10.3390/v14040810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023] Open
Abstract
Fifteen samples of whey protein concentrate (WPC) were tested against 37 commercial Streptococcus thermophilus strains to detect infective bacteriophages. Seventy-three diverse phages were isolated from 12 samples, characterized by using DNA restriction patterns and host range analyses. Sixty-two of them were classified as cos, two as pac, and nine as 5093, according to PCR multiplex assays. Phage concentration was greater than 104 PFU/g for 25.3% of isolated phages. Seven phages showed an unusual wide host range, being able to infect a high number of the tested strains. Regarding thermal resistance, pac phages were the most sensitive, followed by cos phages, those classified as 5093 being the most resistant. Treatments at 85 °C for 5 min in TMG buffer were necessary to completely inactivate all phages. Results demonstrated that the use, without control, of these whey derivatives as additives in dairy fermentations could be a threat because of the potential phage infection of starter strains. In this sense, these phages constitute a pool of new isolates used to improve the phage resistance of starter cultures applied today in the fermentative industry.
Collapse
|
5
|
White K, Yu JH, Eraclio G, Dal Bello F, Nauta A, Mahony J, van Sinderen D. Bacteriophage-host interactions as a platform to establish the role of phages in modulating the microbial composition of fermented foods. MICROBIOME RESEARCH REPORTS 2022; 1:3. [PMID: 38089066 PMCID: PMC10714293 DOI: 10.20517/mrr.2021.04] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/23/2021] [Accepted: 12/31/2021] [Indexed: 02/19/2024]
Abstract
Food fermentation relies on the activity of robust starter cultures, which are commonly comprised of lactic acid bacteria such as Lactococcus and Streptococcus thermophilus. While bacteriophage infection represents a persistent threat that may cause slowed or failed fermentations, their beneficial role in fermentations is also being appreciated. In order to develop robust starter cultures, it is important to understand how phages interact with and modulate the compositional landscape of these complex microbial communities. Both culture-dependent and -independent methods have been instrumental in defining individual phage-host interactions of many lactic acid bacteria (LAB). This knowledge needs to be integrated and expanded to obtain a full understanding of the overall complexity of such interactions pertinent to fermented foods through a combination of culturomics, metagenomics, and phageomics. With such knowledge, it is believed that factory-specific detection and monitoring systems may be developed to ensure robust and reliable fermentation practices. In this review, we explore/discuss phage-host interactions of LAB, the role of both virulent and temperate phages on the microbial composition, and the current knowledge of phageomes of fermented foods.
Collapse
Affiliation(s)
- Kelsey White
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
- Authors contributed equally
| | - Jun-Hyeok Yu
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
- Authors contributed equally
| | | | | | - Arjen Nauta
- FrieslandCampina, Amersfoort 3800 BN, The Netherlands
| | - Jennifer Mahony
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Douwe van Sinderen
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| |
Collapse
|
6
|
Nogueira CL, Pires DP, Monteiro R, Santos SB, Carvalho CM. Exploitation of a Klebsiella Bacteriophage Receptor-Binding Protein as a Superior Biorecognition Molecule. ACS Infect Dis 2021; 7:3077-3087. [PMID: 34618422 DOI: 10.1021/acsinfecdis.1c00366] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Klebsiella pneumoniae is a Gram-negative bacterium that has become one of the leading causes of life-threatening healthcare-associated infections (HAIs), including pneumonia and sepsis. Moreover, due to its increasingly antibiotic resistance, K. pneumoniae has been declared a global top priority concern. The problem of K. pneumoniae infections is due, in part, to the inability to detect this pathogen rapidly and accurately and thus to treat patients within the early stages of infections. The success in bacterial detection is greatly dictated by the biorecognition molecule used, with the current diagnostic tools relying on expensive probes often lacking specificity and/or sensitivity. (Bacterio)phage receptor-binding proteins (RBPs) are responsible for the recognition and adsorption of phages to specific bacterial host receptors and thus present high potential as biorecognition molecules. In this study, we report the identification and characterization of a novel RBP from the K. pneumoniae phage KpnM6E1 that presents high specificity against the target bacteria and high sensitivity (80%) to recognize K. pneumoniae strains. Moreover, adsorption studies validated the role of gp86 in the attachment to bacterial receptors, as it highly inhibits (86%) phage adsorption to its Klebsiella host. Overall, in this study, we unravel the role and potential of a novel Klebsiella phage RBP as a powerful tool to be used coupled with analytical techniques or biosensing platforms for the diagnosis of K. pneumoniae infections.
Collapse
Affiliation(s)
- Catarina L. Nogueira
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
- Instituto de Engenharia de Sistemas E Computadores─Microsistemas e Nanotecnologias (INESC MN), Rua Alves Redol, 9, 1000-029 Lisbon, Portugal
| | - Diana P. Pires
- Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Rodrigo Monteiro
- Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Sílvio B. Santos
- Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Carla M. Carvalho
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| |
Collapse
|
7
|
Hanemaaijer L, Kelleher P, Neve H, Franz CMAP, de Waal PP, van Peij NNME, van Sinderen D, Mahony J. Biodiversity of Phages Infecting the Dairy Bacterium Streptococcus thermophilus. Microorganisms 2021; 9:microorganisms9091822. [PMID: 34576718 PMCID: PMC8470116 DOI: 10.3390/microorganisms9091822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/26/2022] Open
Abstract
Streptococcus thermophilus-infecting phages represent a major problem in the dairy fermentation industry, particularly in relation to thermophilic production systems. Consequently, numerous studies have been performed relating to the biodiversity of such phages in global dairy operations. In the current review, we provide an overview of the genetic and morphological diversity of these phages and highlight the source and extent of genetic mosaicism among phages infecting this species through comparative proteome analysis of the replication and morphogenesis modules of representative phages. The phylogeny of selected phage-encoded receptor binding proteins (RBPs) was assessed, indicating that in certain cases RBP-encoding genes have been acquired separately to the morphogenesis modules, thus highlighting the adaptability of these phages. This review further highlights the significant advances that have been made in defining emergent genetically diverse groups of these phages, while it additionally summarizes remaining knowledge gaps in this research area.
Collapse
Affiliation(s)
| | - Philip Kelleher
- School of Microbiology and APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Centre of Nutrition and Food, 24103 Kiel, Germany; (H.N.); (C.M.A.P.F.)
| | - Charles M. A. P. Franz
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Centre of Nutrition and Food, 24103 Kiel, Germany; (H.N.); (C.M.A.P.F.)
| | | | | | - Douwe van Sinderen
- School of Microbiology and APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
- Correspondence: (D.v.S.); (J.M.); Tel.: +353-20-4901365 (D.v.S.); +353-21-4902730 (J.M.)
| | - Jennifer Mahony
- School of Microbiology and APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
- Correspondence: (D.v.S.); (J.M.); Tel.: +353-20-4901365 (D.v.S.); +353-21-4902730 (J.M.)
| |
Collapse
|
8
|
Cell Surface Polysaccharides Represent a Common Strategy for Adsorption among Phages Infecting Lactic Acid Bacteria: Lessons from Dairy Lactococci and Streptococci. mSystems 2021; 6:e0064121. [PMID: 34402647 PMCID: PMC8407473 DOI: 10.1128/msystems.00641-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Food fermentations rely on the application of robust bacterial starter cultures, the majority of which are represented by members of the lactic acid bacteria including Lactococcus lactis and Streptococcus thermophilus. Bacteriophage (or phage) proliferation remains one of the most significant threats to the fermentation industry. Therefore, it is imperative to define the phage ecology of fermented foods and to elucidate the mechanisms by which they recognize and bind to their bacterial hosts. Through a combination of functional and comparative genomics and structural analysis of the phage-host interactome, it is now possible to link the genotypes of strains of certain bacterial species to the chemical composition/structure of the associated cell wall polysaccharides (CWPS). In this paper, I discuss how the identification of common host recognition and binding strategies facilitates the development of rational starter culture systems and the implications of these findings in the context of sustainable food production systems.
Collapse
|
9
|
Romero DA, Magill D, Millen A, Horvath P, Fremaux C. Dairy lactococcal and streptococcal phage-host interactions: an industrial perspective in an evolving phage landscape. FEMS Microbiol Rev 2021; 44:909-932. [PMID: 33016324 DOI: 10.1093/femsre/fuaa048] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022] Open
Abstract
Almost a century has elapsed since the discovery of bacteriophages (phages), and 85 years have passed since the emergence of evidence that phages can infect starter cultures, thereby impacting dairy fermentations. Soon afterward, research efforts were undertaken to investigate phage interactions regarding starter strains. Investigations into phage biology and morphology and phage-host relationships have been aimed at mitigating the negative impact phages have on the fermented dairy industry. From the viewpoint of a supplier of dairy starter cultures, this review examines the composition of an industrial phage collection, providing insight into the development of starter strains and cultures and the evolution of phages in the industry. Research advances in the diversity of phages and structural bases for phage-host recognition and an overview of the perpetual arms race between phage virulence and host defense are presented, with a perspective toward the development of improved phage-resistant starter culture systems.
Collapse
Affiliation(s)
- Dennis A Romero
- DuPont Nutrition and Biosciences, 3329 Agriculture Dr., Madison, WI 53716, USA
| | - Damian Magill
- DuPont Nutrition and Biosciences, CS 10010, Dangé-Saint-Romain 86220, France
| | - Anne Millen
- DuPont Nutrition and Biosciences, 3329 Agriculture Dr., Madison, WI 53716, USA
| | - Philippe Horvath
- DuPont Nutrition and Biosciences, CS 10010, Dangé-Saint-Romain 86220, France
| | - Christophe Fremaux
- DuPont Nutrition and Biosciences, CS 10010, Dangé-Saint-Romain 86220, France
| |
Collapse
|
10
|
Gontijo MTP, Vidigal PMP, Lopez MES, Brocchi M. Bacteriophages that infect Gram-negative bacteria as source of signal-arrest-release motif lysins. Res Microbiol 2020; 172:103794. [PMID: 33347948 DOI: 10.1016/j.resmic.2020.103794] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 01/23/2023]
Abstract
Treatment of infections caused by multidrug-resistant (MDR) Gram-negative bacteria is challenging, a potential solution for which is the use of bacteriophage-derived lytic enzymes. However, the exogenous action of bacteriophage lysins against Gram-negative bacteria is hindered due to the presence of an impermeable outer membrane in these bacteria. Nevertheless, recent research has demonstrated that some lysins are capable of permeating the outer membrane of Gram-negative bacteria with the help of signal peptides. In the present study, we investigated the genomes of 309 bacteriophages that infect Gram-negative pathogens of clinical interest in order to determine the evolutionary markers of signal peptide-containing lysins. Complete genomes displayed 265 putative lysins, of which 17 (6.41%) contained signal-arrest-release motifs and 41 (15.47%) contained cleavable signal peptides. There was no apparent relationship between host specificity and lysin diversity. Nevertheless, the evolution of lysin genes might not be independent of the rest of the bacteriophage genome once pan-genome clustering and lysin diversity appear to be correlated. In addition, signal peptide- and signal-arrest-release-containing lysins were monophyletically distributed in the protein cladogram, suggesting that the natural selection of holin-independent lysins is divergent. Our study screened 58 (21.89%) out of 265 potential candidates for in vitro experimentation against MDR bacteria.
Collapse
Affiliation(s)
- Marco Túlio Pardini Gontijo
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Rua Monteiro Lobato 255, Campinas, São Paulo, 13083-862, Brazil.
| | - Pedro Marcus Pereira Vidigal
- Núcleo de Análise de Biomoléculas (NuBioMol), Universidade Federal de Viçosa (UFV), Vila Gianetti, Casa 21, Campus da UFV, Viçosa, Minas Gerais, 36570-900, Brazil.
| | - Maryoris Elisa Soto Lopez
- Departamento de Ingeniería de Alimentos, Universidad de Córdoba (UNICORDOBA), Carrera 6 77-305, Montería, 230002, Colombia.
| | - Marcelo Brocchi
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Rua Monteiro Lobato 255, Campinas, São Paulo, 13083-862, Brazil.
| |
Collapse
|
11
|
Lavelle K, Goulet A, McDonnell B, Spinelli S, van Sinderen D, Mahony J, Cambillau C. Revisiting the host adhesion determinants of Streptococcus thermophilus siphophages. Microb Biotechnol 2020; 13:1765-1779. [PMID: 32525270 PMCID: PMC7533335 DOI: 10.1111/1751-7915.13593] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/15/2020] [Accepted: 04/22/2020] [Indexed: 11/29/2022] Open
Abstract
Available 3D structures of bacteriophage modules combined with predictive bioinformatic algorithms enabled the identification of adhesion modules in 57 siphophages infecting Streptococcus thermophilus (St). We identified several carbohydrate-binding modules (CBMs) in so-called evolved distal tail (Dit) and tail-associated lysozyme (Tal) proteins of St phage baseplates. We examined the open reading frame (ORF) downstream of the Tal-encoding ORF and uncovered the presence of a putative p2-like receptor-binding protein (RBP). A 21 Å resolution electron microscopy structure of the baseplate of cos-phage STP1 revealed the presence of six elongated electron densities, surrounding the core of the baseplate, that harbour the p2-like RBPs at their tip. To verify the functionality of these modules, we expressed GFP- or mCherry-coupled Tal and putative RBP CBMs and observed by fluorescence microscopy that both modules bind to their corresponding St host, the putative RBP CBM with higher affinity than the Tal-associated one. The large number of CBM functional domains in St phages suggests that they play a contributory role in the infection process, a feature that we previously described in lactococcal phages and beyond, possibly representing a universal feature of the siphophage host-recognition apparatus.
Collapse
Affiliation(s)
| | - Adeline Goulet
- Architecture et Fonction des Macromolécules BiologiquesAix‐Marseille UniversitéCampus de LuminyMarseilleFrance
- Architecture et Fonction des Macromolécules BiologiquesCentre National de la Recherche Scientifique (CNRS)Campus de LuminyMarseilleFrance
| | | | - Silvia Spinelli
- Architecture et Fonction des Macromolécules BiologiquesAix‐Marseille UniversitéCampus de LuminyMarseilleFrance
- Architecture et Fonction des Macromolécules BiologiquesCentre National de la Recherche Scientifique (CNRS)Campus de LuminyMarseilleFrance
| | - Douwe van Sinderen
- School of MicrobiologyUniversity College CorkCorkIreland
- APC Microbiome IrelandUniversity College CorkCorkIreland
| | - Jennifer Mahony
- School of MicrobiologyUniversity College CorkCorkIreland
- APC Microbiome IrelandUniversity College CorkCorkIreland
| | - Christian Cambillau
- School of MicrobiologyUniversity College CorkCorkIreland
- Architecture et Fonction des Macromolécules BiologiquesAix‐Marseille UniversitéCampus de LuminyMarseilleFrance
- Architecture et Fonction des Macromolécules BiologiquesCentre National de la Recherche Scientifique (CNRS)Campus de LuminyMarseilleFrance
| |
Collapse
|
12
|
Abril AG, Carrera M, Böhme K, Barros-Velázquez J, Cañas B, Rama JLR, Villa TG, Calo-Mata P. Characterization of Bacteriophage Peptides of Pathogenic Streptococcus by LC-ESI-MS/MS: Bacteriophage Phylogenomics and Their Relationship to Their Host. Front Microbiol 2020; 11:1241. [PMID: 32582130 PMCID: PMC7296060 DOI: 10.3389/fmicb.2020.01241] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/14/2020] [Indexed: 01/21/2023] Open
Abstract
The present work focuses on LC-ESI-MS/MS (liquid chromatography-electrospray ionization-tandem mass spectrometry) analysis of phage-origin tryptic digestion peptides from mastitis-causing Streptococcus spp. isolated from milk. A total of 2,546 non-redundant peptides belonging to 1,890 proteins were identified and analyzed. Among them, 65 phage-origin peptides were determined as specific Streptococcus spp. peptides. These peptides belong to proteins such as phage repressors, phage endopeptidases, structural phage proteins, and uncharacterized phage proteins. Studies involving bacteriophage phylogeny and the relationship between phages encoding the peptides determined and the bacteria they infect were also performed. The results show how specific peptides are present in closely related phages, and a link exists between bacteriophage phylogeny and the Streptococcus spp. they infect. Moreover, the phage peptide M∗ATNLGQAYVQIM∗PSAK is unique and specific for Streptococcus agalactiae. These results revealed that diagnostic peptides, among others, could be useful for the identification and characterization of mastitis-causing Streptococcus spp., particularly peptides that belong to specific functional proteins, such as phage-origin proteins, because of their specificity to bacterial hosts.
Collapse
Affiliation(s)
- Ana G. Abril
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Mónica Carrera
- Department of Food Technology, Spanish National Research Council, Marine Research Institute, Vigo, Spain
| | - Karola Böhme
- Agroalimentary Technological Center of Lugo, Lugo, Spain
| | - Jorge Barros-Velázquez
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences, University of Santiago de Compostela, Lugo, Spain
| | - Benito Cañas
- Department of Analytical Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Jose L. R. Rama
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Tomás G. Villa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Pilar Calo-Mata
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences, University of Santiago de Compostela, Lugo, Spain
| |
Collapse
|
13
|
Kyrkou I, Carstens AB, Ellegaard-Jensen L, Kot W, Zervas A, Djurhuus AM, Neve H, Franz CMAP, Hansen M, Hansen LH. Isolation and characterisation of novel phages infecting Lactobacillus plantarum and proposal of a new genus, "Silenusvirus". Sci Rep 2020; 10:8763. [PMID: 32472049 PMCID: PMC7260188 DOI: 10.1038/s41598-020-65366-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 05/04/2020] [Indexed: 11/10/2022] Open
Abstract
Bacteria of Lactobacillus sp. are very useful to humans. However, the biology and genomic diversity of their (bacterio)phage enemies remains understudied. Knowledge on Lactobacillus phage diversity should broaden to develop efficient phage control strategies. To this end, organic waste samples were screened for phages against two wine-related Lactobacillus plantarum strains. Isolates were shotgun sequenced and compared against the phage database and each other by phylogenetics and comparative genomics. The new isolates had only three distant relatives from the database, but displayed a high overall degree of genomic similarity amongst them. The latter allowed for the use of one isolate as a representative to conduct transmission electron microscopy and structural protein sequencing, and to study phage adsorption and growth kinetics. The microscopy and proteomics tests confirmed the observed diversity of the new isolates and supported their classification to the family Siphoviridae and the proposal of the new phage genus "Silenusvirus".
Collapse
Affiliation(s)
- Ifigeneia Kyrkou
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399C, Roskilde, 4000, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, 2100, Denmark
| | - Alexander Byth Carstens
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399C, Roskilde, 4000, Denmark
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg, 1871, Denmark
| | - Lea Ellegaard-Jensen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399C, Roskilde, 4000, Denmark
| | - Witold Kot
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399C, Roskilde, 4000, Denmark
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg, 1871, Denmark
| | - Athanasios Zervas
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399C, Roskilde, 4000, Denmark
| | - Amaru Miranda Djurhuus
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399C, Roskilde, 4000, Denmark
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg, 1871, Denmark
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Hermann-Weigmann-Straße 1, Kiel, 24103, Germany
| | - Charles M A P Franz
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Hermann-Weigmann-Straße 1, Kiel, 24103, Germany
| | - Martin Hansen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399C, Roskilde, 4000, Denmark
| | - Lars Hestbjerg Hansen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399C, Roskilde, 4000, Denmark.
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg, 1871, Denmark.
| |
Collapse
|
14
|
McDonnell B, Hanemaaijer L, Bottacini F, Kelleher P, Lavelle K, Sadovskaya I, Vinogradov E, Ver Loren van Themaat E, Kouwen T, Mahony J, van Sinderen D. A cell wall-associated polysaccharide is required for bacteriophage adsorption to the Streptococcus thermophilus cell surface. Mol Microbiol 2020; 114:31-45. [PMID: 32073719 DOI: 10.1111/mmi.14494] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 11/29/2022]
Abstract
Streptococcus thermophilus strain ST64987 was exposed to a member of a recently discovered group of S. thermophilus phages (the 987 phage group), generating phage-insensitive mutants, which were then characterized phenotypically and genomically. Decreased phage adsorption was observed in selected bacteriophage-insensitive mutants, and was partnered with a sedimenting phenotype and increased cell chain length or aggregation. Whole genome sequencing of several bacteriophage-insensitive mutants identified mutations located in a gene cluster presumed to be responsible for cell wall polysaccharide production in this strain. Analysis of cell surface-associated glycans by methylation and NMR spectroscopy revealed a complex branched rhamno-polysaccharide in both ST64987 and phage-insensitive mutant BIM3. In addition, a second cell wall-associated polysaccharide of ST64987, composed of hexasaccharide branched repeating units containing galactose and glucose, was absent in the cell wall of mutant BIM3. Genetic complementation of three phage-resistant mutants was shown to restore the carbohydrate and phage resistance profiles of the wild-type strain, establishing the role of this gene cluster in cell wall polysaccharide production and phage adsorption and, thus, infection.
Collapse
Affiliation(s)
- Brian McDonnell
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Francesca Bottacini
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Philip Kelleher
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Katherine Lavelle
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Irina Sadovskaya
- Équipe BPA, Université du Littoral Côte d'Opale, Institut Régional Charles Violette EA 7394, USC Anses-ULCO, Boulogne-sur-Mer, France
| | - Evgeny Vinogradov
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, ON, Canada
| | | | - Thijs Kouwen
- DSM Biotechnology Center, Delft, the Netherlands
| | - Jennifer Mahony
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Douwe van Sinderen
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
15
|
Naumenko O, Skrypkina I, Zhukova Y, Vakulenko M, Kigel N. Selection and analysis of bacteriophage‐insensitive mutants of
Streptococcus thermophilus
isolated in Ukraine. INT J DAIRY TECHNOL 2019. [DOI: 10.1111/1471-0307.12607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Oksana Naumenko
- Department of Biotechnology Institute of Food Resources National Academy of Agrarian Sciences of Ukraine 4a E. Sverstiuk Str. Kyiv 02002 Ukraine
| | - Inessa Skrypkina
- Laboratory of Biosynthesis of Nucleic Acids Institute of Molecular Biology and Genetics National Academy of Sciences of Ukraine 150 Zabolotnyy Str. Kyiv 03143 Ukraine
| | - Yaroslava Zhukova
- Department of Analytical Research and Foods Quality Institute of Food Resources National Academy of Agrarian Sciences of Ukraine 4a E. Sverstiuk Str. Kyiv 02002 Ukraine
| | - Mykola Vakulenko
- Department of Analytical Research and Foods Quality Institute of Food Resources National Academy of Agrarian Sciences of Ukraine 4a E. Sverstiuk Str. Kyiv 02002 Ukraine
| | - Natalia Kigel
- Department of Biotechnology Institute of Food Resources National Academy of Agrarian Sciences of Ukraine 4a E. Sverstiuk Str. Kyiv 02002 Ukraine
| |
Collapse
|
16
|
Labrie SJ, Mosterd C, Loignon S, Dupuis MÈ, Desjardins P, Rousseau GM, Tremblay DM, Romero DA, Horvath P, Fremaux C, Moineau S. A mutation in the methionine aminopeptidase gene provides phage resistance in Streptococcus thermophilus. Sci Rep 2019; 9:13816. [PMID: 31554834 PMCID: PMC6761271 DOI: 10.1038/s41598-019-49975-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/31/2019] [Indexed: 12/26/2022] Open
Abstract
Streptococcus thermophilus is a lactic acid bacterium widely used by the dairy industry for the manufacture of yogurt and specialty cheeses. It is also a Gram-positive bacterial model to study phage-host interactions. CRISPR-Cas systems are one of the most prevalent phage resistance mechanisms in S. thermophilus. Little information is available about other host factors involved in phage replication in this food-grade streptococcal species. We used the model strain S. thermophilus SMQ-301 and its virulent phage DT1, harboring the anti-CRISPR protein AcrIIA6, to show that a host gene coding for a methionine aminopeptidase (metAP) is necessary for phage DT1 to complete its lytic cycle. A single mutation in metAP provides S. thermophilus SMQ-301 with strong resistance against phage DT1. The mutation impedes a late step of the lytic cycle since phage adsorption, DNA replication, and protein expression were not affected. When the mutated strain was complemented with the wild-type version of the gene, the phage sensitivity phenotype was restored. When this mutation was introduced into other S. thermophilus strains it provided resistance against cos-type (Sfi21dt1virus genus) phages but replication of pac-type (Sfi11virus genus) phages was not affected. The mutation in the gene coding for the MetAP induces amino acid change in a catalytic domain conserved across many bacterial species. Introducing the same mutation in Streptococcus mutans also provided a phage resistance phenotype, suggesting the wide-ranging importance of the host methionine aminopeptidase in phage replication.
Collapse
Affiliation(s)
- Simon J Labrie
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, QC, G1V 0A6, Canada.,Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, QC, G1V 0A6, Canada.,SyntBioLab Inc., 4820-250, rue de la Pascaline, Lévis, G6W 0L9, Canada
| | - Cas Mosterd
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, QC, G1V 0A6, Canada.,Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, QC, G1V 0A6, Canada
| | - Stéphanie Loignon
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, QC, G1V 0A6, Canada.,Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Université Laval, Québec City, QC, G1V 0A6, Canada
| | - Marie-Ève Dupuis
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, QC, G1V 0A6, Canada.,Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, QC, G1V 0A6, Canada
| | - Philippe Desjardins
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, QC, G1V 0A6, Canada
| | - Geneviève M Rousseau
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, QC, G1V 0A6, Canada.,Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, QC, G1V 0A6, Canada
| | - Denise M Tremblay
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, QC, G1V 0A6, Canada.,Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Université Laval, Québec City, QC, G1V 0A6, Canada
| | - Dennis A Romero
- DuPont Nutrition and Biosciences, 3329 Agriculture Dr, Madison, WI, 53716, USA
| | - Philippe Horvath
- DuPont Nutrition and Biosciences, BP10, Dangé-Saint-Romain, 86220, France
| | - Christophe Fremaux
- DuPont Nutrition and Biosciences, BP10, Dangé-Saint-Romain, 86220, France
| | - Sylvain Moineau
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, QC, G1V 0A6, Canada. .,Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, QC, G1V 0A6, Canada. .,Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Université Laval, Québec City, QC, G1V 0A6, Canada.
| |
Collapse
|
17
|
Szymczak P, Rau MH, Monteiro JM, Pinho MG, Filipe SR, Vogensen FK, Zeidan AA, Janzen T. A comparative genomics approach for identifying host-range determinants in Streptococcus thermophilus bacteriophages. Sci Rep 2019; 9:7991. [PMID: 31142793 PMCID: PMC6541646 DOI: 10.1038/s41598-019-44481-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 05/07/2019] [Indexed: 12/17/2022] Open
Abstract
Comparative genomics has proven useful in exploring the biodiversity of phages and understanding phage-host interactions. This knowledge is particularly useful for phages infecting Streptococcus thermophilus, as they constitute a constant threat during dairy fermentations. Here, we explore the genetic diversity of S. thermophilus phages to identify genetic determinants with a signature for host specificity, which could be linked to the bacterial receptor genotype. A comparative genomic analysis was performed on 142 S. thermophilus phage genomes, 55 of which were sequenced in this study. Effectively, 94 phages were assigned to the group cos (DT1), 36 to the group pac (O1205), six to the group 5093, and six to the group 987. The core genome-based phylogeny of phages from the two dominating groups and their receptor binding protein (RBP) phylogeny corresponded to the phage host-range. A role of RBP in host recognition was confirmed by constructing a fluorescent derivative of the RBP of phage CHPC951, followed by studying the binding of the protein to the host strain. Furthermore, the RBP phylogeny of the cos group was found to correlate with the host genotype of the exocellular polysaccharide-encoding operon. These findings provide novel insights towards developing strategies to combat phage infections in dairies.
Collapse
Affiliation(s)
- Paula Szymczak
- Bacterial Physiology, R&D, Chr. Hansen A/S, 2970, Hørsholm, Denmark
- Department of Food Science, University of Copenhagen, 1958, Frederiksberg, Denmark
| | - Martin Holm Rau
- Bacterial Physiology, R&D, Chr. Hansen A/S, 2970, Hørsholm, Denmark
| | - João M Monteiro
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| | - Mariana G Pinho
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| | - Sérgio Raposo Filipe
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
- Laboratory of Bacterial Cell Surfaces and Pathogenesis, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| | - Finn Kvist Vogensen
- Department of Food Science, University of Copenhagen, 1958, Frederiksberg, Denmark
| | - Ahmad A Zeidan
- Bacterial Physiology, R&D, Chr. Hansen A/S, 2970, Hørsholm, Denmark
| | - Thomas Janzen
- Bacterial Physiology, R&D, Chr. Hansen A/S, 2970, Hørsholm, Denmark.
| |
Collapse
|
18
|
Szymczak P, Vogensen FK, Janzen T. Novel isolates of Streptococcus thermophilus bacteriophages from group 5093 identified with an improved multiplex PCR typing method. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2018.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Cell Wall Glycans Mediate Recognition of the Dairy Bacterium Streptococcus thermophilus by Bacteriophages. Appl Environ Microbiol 2018; 84:AEM.01847-18. [PMID: 30242010 PMCID: PMC6238053 DOI: 10.1128/aem.01847-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/14/2018] [Indexed: 01/21/2023] Open
Abstract
Streptococcus thermophilus is widely used in starter cultures for cheese and yoghurt production. During dairy fermentations, infections of bacteria with bacteriophages result in acidification failures and a lower quality of the final products. An understanding of the molecular factors involved in phage-host interactions, in particular, the phage receptors in dairy bacteria, is a crucial step for developing better strategies to prevent phage infections in dairy plants. Receptors on the cell surfaces of bacterial hosts are essential during the infection cycle of bacteriophages. To date, the phage receptors of the industrial relevant dairy starter bacterium Streptococcus thermophilus remain elusive. Thus, we set out to identify cell surface structures that are involved in host recognition by dairy streptococcal phages. Five industrial S. thermophilus strains sensitive to different phages (pac type, cos type, and the new type 987), were selected to generate spontaneous bacteriophage-insensitive mutants (BIMs). Of these, approximately 50% were deselected as clustered regularly interspaced short palindromic repeat (CRISPR) mutants, while the other pool was further characterized to identify receptor mutants. On the basis of genome sequencing data, phage resistance in putative receptor mutants was attributed to nucleotide changes in genes encoding glycan biosynthetic pathways. Superresolution structured illumination microscopy was used to visualize the interactions between S. thermophilus and its phages. The phages were either regularly distributed along the cells or located at division sites of the cells. The cell wall structures mediating the latter type of phage adherence were further analyzed via phenotypic and biochemical assays. Altogether, our data suggested that phage adsorption to S. thermophilus is mediated by glycans associated with the bacterial cell surface. Specifically, the pac-type phage CHPC951 adsorbed to polysaccharides anchored to peptidoglycan, while the 987-type phage CHPC926 recognized exocellular polysaccharides associated with the cell surface. IMPORTANCEStreptococcus thermophilus is widely used in starter cultures for cheese and yoghurt production. During dairy fermentations, infections of bacteria with bacteriophages result in acidification failures and a lower quality of the final products. An understanding of the molecular factors involved in phage-host interactions, in particular, the phage receptors in dairy bacteria, is a crucial step for developing better strategies to prevent phage infections in dairy plants.
Collapse
|
20
|
Biodiversity of Streptococcus thermophilus Phages in Global Dairy Fermentations. Viruses 2018; 10:v10100577. [PMID: 30360457 PMCID: PMC6213268 DOI: 10.3390/v10100577] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 12/26/2022] Open
Abstract
Streptococcus thermophilus strains are among the most widely employed starter cultures in dairy fermentations, second only to those of Lactococcus lactis. The extensive application of this species provides considerable opportunity for the proliferation of its infecting (bacterio)phages. Until recently, dairy streptococcal phages were classified into two groups (cos and pac groups), while more recently, two additional groups have been identified (5093 and 987 groups). This highlights the requirement for consistent monitoring of phage populations in the industry. Here, we report a survey of 35 samples of whey derived from 27 dairy fermentation facilities in ten countries against a panel of S. thermophilus strains. This culminated in the identification of 172 plaque isolates, which were characterized by multiplex PCR, restriction fragment length polymorphism analysis, and host range profiling. Based on this characterisation, 39 distinct isolates representing all four phage groups were selected for genome sequencing. Genetic diversity was observed among the cos isolates and correlations between receptor binding protein phylogeny and host range were also clear within this phage group. The 987 phages isolated within this study shared high levels of sequence similarity, yet displayed reduced levels of similarity to those identified in previous studies, indicating that they are subject to ongoing genetic diversification.
Collapse
|
21
|
Hynes AP, Rousseau GM, Agudelo D, Goulet A, Amigues B, Loehr J, Romero DA, Fremaux C, Horvath P, Doyon Y, Cambillau C, Moineau S. Widespread anti-CRISPR proteins in virulent bacteriophages inhibit a range of Cas9 proteins. Nat Commun 2018; 9:2919. [PMID: 30046034 PMCID: PMC6060171 DOI: 10.1038/s41467-018-05092-w] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/13/2018] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas systems are bacterial anti-viral systems, and bacterial viruses (bacteriophages, phages) can carry anti-CRISPR (Acr) proteins to evade that immunity. Acrs can also fine-tune the activity of CRISPR-based genome-editing tools. While Acrs are prevalent in phages capable of lying dormant in a CRISPR-carrying host, their orthologs have been observed only infrequently in virulent phages. Here we identify AcrIIA6, an Acr encoded in 33% of virulent Streptococcus thermophilus phage genomes. The X-ray structure of AcrIIA6 displays some features unique to this Acr family. We compare the activity of AcrIIA6 to those of other Acrs, including AcrIIA5 (also from S. thermophilus phages), and characterize their effectiveness against a range of CRISPR-Cas systems. Finally, we demonstrate that both Acr families from S. thermophilus phages inhibit Cas9-mediated genome editing of human cells.
Collapse
Affiliation(s)
- Alexander P Hynes
- Département de biochimie, de microbiologie, et de bioinformatique, Faculté des sciences et de génie, Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, QC, G1V 0A6, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University. Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Geneviève M Rousseau
- Département de biochimie, de microbiologie, et de bioinformatique, Faculté des sciences et de génie, Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, QC, G1V 0A6, Canada
| | - Daniel Agudelo
- Centre Hospitalier Universitaire de Québec Research Center, Université Laval, Québec City, QC, G1V 4G2, Canada
| | - Adeline Goulet
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, Case 932, 13288, Marseille Cedex 09, France
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS), Campus de Luminy, Case 932, 13288, Marseille Cedex 09, France
| | - Beatrice Amigues
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, Case 932, 13288, Marseille Cedex 09, France
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS), Campus de Luminy, Case 932, 13288, Marseille Cedex 09, France
| | - Jeremy Loehr
- Centre Hospitalier Universitaire de Québec Research Center, Université Laval, Québec City, QC, G1V 4G2, Canada
| | - Dennis A Romero
- DuPont Nutrition and Health, 3329 Agriculture Dr, Madison, WI, 53716, USA
| | | | - Philippe Horvath
- DuPont Nutrition and Health, BP 10, 86220, Dangé-Saint-Romain, France
| | - Yannick Doyon
- Centre Hospitalier Universitaire de Québec Research Center, Université Laval, Québec City, QC, G1V 4G2, Canada
| | - Christian Cambillau
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, Case 932, 13288, Marseille Cedex 09, France
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS), Campus de Luminy, Case 932, 13288, Marseille Cedex 09, France
| | - Sylvain Moineau
- Département de biochimie, de microbiologie, et de bioinformatique, Faculté des sciences et de génie, Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, QC, G1V 0A6, Canada.
- Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Université Laval, Québec City, QC, G1V 0A6, Canada.
| |
Collapse
|
22
|
Abstract
Phages of Streptococcus thermophilus present a major threat to the production of many fermented dairy products. To date, only a few studies have assessed the biodiversity of S. thermophilus phages in dairy fermentations. In order to develop strategies to limit phage predation in this important industrial environment, it is imperative that such studies are undertaken and that phage-host interactions of this species are better defined. The present study investigated the biodiversity and evolution of phages within an Irish dairy fermentation facility over an 11-year period. This resulted in the isolation of 17 genetically distinct phages, all of which belong to the so-called cos group. The evolution of phages within the factory appears to be influenced by phages from other dairy plants introduced into the factory for whey protein powder production. Modular exchange, primarily within the regions encoding lysogeny and replication functions, was the major observation among the phages isolated between 2006 and 2016. Furthermore, the genotype of the first isolate in 2006 was observed continuously across the following decade, highlighting the ability of these phages to prevail in the factory setting for extended periods of time. The proteins responsible for host recognition were analyzed, and carbohydrate-binding domains (CBDs) were identified in the distal tail (Dit), the baseplate proteins, and the Tail-associated lysin (Tal) variable regions (VR1 and VR2) of many isolates. This supports the notion that S. thermophilus phages recognize a carbohydrate receptor on the cell surface of their host.IMPORTANCE Dairy fermentations are consistently threatened by the presence of bacterial viruses (bacteriophages or phages), which may lead to a reduction in acidification rates or even complete loss of the fermentate. These phages may persist in factories for long periods of time. The objective of the current study was to monitor the progression of phages infecting the dairy bacterium Streptococcus thermophilus over a period of 11 years in an Irish dairy plant so as to understand how these phages evolve. A focused analysis of the genomic region that encodes host recognition functions highlighted that the associated proteins harbor a variety of carbohydrate-binding domains, which corroborates the notion that phages of S. thermophilus recognize carbohydrate receptors at the initial stages of the phage cycle.
Collapse
|
23
|
McDonnell B, Mahony J, Hanemaaijer L, Kouwen TRHM, van Sinderen D. Generation of Bacteriophage-Insensitive Mutants of Streptococcus thermophilus via an Antisense RNA CRISPR-Cas Silencing Approach. Appl Environ Microbiol 2018; 84:e01733-17. [PMID: 29180373 PMCID: PMC5795082 DOI: 10.1128/aem.01733-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/20/2017] [Indexed: 12/26/2022] Open
Abstract
Predation of starter lactic acid bacteria such as Streptococcus thermophilus by bacteriophages is a persistent and costly problem in the dairy industry. CRISPR-mediated bacteriophage insensitive mutants (BIMs), while straightforward to generate and verify, can quickly be overcome by mutant phages. The aim of this study was to develop a tool allowing the generation of derivatives of commercial S. thermophilus strains which are resistant to phage attack through a non-CRISPR-mediated mechanism, with the objective of generating BIMs exhibiting stable resistance against a range of isolated lytic S. thermophilus phages. To achieve this, standard BIM generation was complemented by the use of the wild-type (WT) strain which had been transformed with an antisense mRNA-generating plasmid (targeting a crucial CRISPR-associated [cas] gene) in order to facilitate the generation of non-CRISPR-mediated BIMs. Phage sensitivity assays suggest that non-CRISPR-mediated BIMs exhibit some advantages compared to CRISPR-mediated BIMs derived from the same strain.IMPORTANCE The outlined approach reveals the presence of a powerful host-imposed barrier for phage infection in S. thermophilus Considering the detrimental economic consequences of phage infection in the dairy processing environment, the developed methodology has widespread applications, particularly where other methods may not be practical or effective in obtaining robust, phage-tolerant S. thermophilus starter strains.
Collapse
Affiliation(s)
- Brian McDonnell
- School of Microbiology & APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Jennifer Mahony
- School of Microbiology & APC Microbiome Institute, University College Cork, Cork, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | | | | | - Douwe van Sinderen
- School of Microbiology & APC Microbiome Institute, University College Cork, Cork, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|