1
|
Alkorta I, Garbisu C. Expanding the focus of the One Health concept: links between the Earth-system processes of the planetary boundaries framework and antibiotic resistance. REVIEWS ON ENVIRONMENTAL HEALTH 2025; 40:159-173. [PMID: 38815132 DOI: 10.1515/reveh-2024-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/26/2024] [Indexed: 06/01/2024]
Abstract
The scientific community warns that our impact on planet Earth is so acute that we are crossing several of the planetary boundaries that demarcate the safe operating space for humankind. Besides, there is mounting evidence of serious effects on people's health derived from the ongoing environmental degradation. Regarding human health, the spread of antibiotic resistant bacteria is one of the most critical public health issues worldwide. Relevantly, antibiotic resistance has been claimed to be the quintessential One Health issue. The One Health concept links human, animal, and environmental health, but it is frequently only focused on the risk of zoonotic pathogens to public health or, to a lesser extent, the impact of contaminants on human health, i.e., adverse effects on human health coming from the other two One Health "compartments". It is recurrently claimed that antibiotic resistance must be approached from a One Health perspective, but such statement often only refers to the connection between the use of antibiotics in veterinary practice and the antibiotic resistance crisis, or the impact of contaminants (antibiotics, heavy metals, disinfectants, etc.) on antibiotic resistance. Nonetheless, the nine Earth-system processes considered in the planetary boundaries framework can be directly or indirectly linked to antibiotic resistance. Here, some of the main links between those processes and the dissemination of antibiotic resistance are described. The ultimate goal is to expand the focus of the One Health concept by pointing out the links between critical Earth-system processes and the One Health quintessential issue, i.e., antibiotic resistance.
Collapse
Affiliation(s)
- Itziar Alkorta
- Department of Biochemistry and Molecular Biology, 16402 University of the Basque Country (UPV/EHU) , Bilbao, Spain
| | - Carlos Garbisu
- NEIKER - Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Spain
| |
Collapse
|
2
|
Nikolić I, Čabarkapa I, Pavlić B, Kravić S, Đilas M, Iličić M, Bulut S, Kocić-Tanackov S. Antibacterial and antibiofilm effect of essential oils on staphylococci isolated from cheese - application of the oil mixture in a cheese model. Int J Food Microbiol 2024; 425:110873. [PMID: 39182346 DOI: 10.1016/j.ijfoodmicro.2024.110873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/09/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
The aim of the research was to examine the antimicrobial and antibiofilm effects of angelica, immortelle, laurel, hyssop, and sage plant dust essential oils (EOs) against isolated strains of Staphylococcus spp. from cheeses, in vitro and in the model of white cheese. MALDI-TOF MS analysis confirmed two Staphylococcus aureus strains and two coagulase-negative, identified as S. saprophyticus and S. warneri. All isolates produce biofilm, where the strains of S. aureus showed slightly better adherence. The main component of angelica EO was β-phellandrene (48.19 %), while α-pinene (20.33 %) were dominant in immortelle EO, in hyssop EO cis-pinocamphone (37.25 %), in laurel EO 1,8-cineole (43.15 %) and in sage EO epirosmanol (26.25 %). The sage EO exhibited the strongest antistaphylococcal activity against all isolates. Synergism was also detected in combination of sage with hyssop or laurel EO. Better antibiofilm activity was confirmed for sage EO compared to hyssop EO. The mixture of sage/laurel EOs reduced the total number of staphylococci in the cheese after 4 days. Results indicate that in vitro applied EOs showed significant antistaphylococcal and antibiofilm activity, while the oil mixture reduced the initial total number of staphylococci.
Collapse
Affiliation(s)
- Isidora Nikolić
- Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Ivana Čabarkapa
- Institute of Food Technology, University of Novi Sad, Bulevar cara Lazara 1, 21102 Novi Sad, Serbia
| | - Branimir Pavlić
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21102, Novi Sad, Serbia
| | - Snežana Kravić
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21102, Novi Sad, Serbia
| | - Milan Đilas
- Institute of Public Health of Vojvodina, Centre for Microbiology, Futoška 121, 21000 Novi Sad, Serbia
| | - Mirela Iličić
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21102, Novi Sad, Serbia
| | - Sandra Bulut
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21102, Novi Sad, Serbia
| | - Sunčica Kocić-Tanackov
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21102, Novi Sad, Serbia.
| |
Collapse
|
3
|
Choi H, Raghavan S, Shin J, Kim J, Kim KS. Bioconjugated zinc oxide–quercetin nanocomposite enhances the selectivity and anti-biofilm activity of ZnO nanoparticles against Staphylococcus species. BIOTECHNOL BIOPROC E 2024. [DOI: 10.1007/s12257-024-00136-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 05/14/2025]
|
4
|
Azad MA, Patel R. Practical Guidance for Clinical Microbiology Laboratories: Microbiologic diagnosis of implant-associated infections. Clin Microbiol Rev 2024; 37:e0010423. [PMID: 38506553 PMCID: PMC11237642 DOI: 10.1128/cmr.00104-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
SUMMARYImplant-associated infections (IAIs) pose serious threats to patients and can be associated with significant morbidity and mortality. These infections may be difficult to diagnose due, in part, to biofilm formation on device surfaces, and because even when microbes are found, their clinical significance may be unclear. Despite recent advances in laboratory testing, IAIs remain a diagnostic challenge. From a therapeutic standpoint, many IAIs currently require device removal and prolonged courses of antimicrobial therapy to effect a cure. Therefore, making an accurate diagnosis, defining both the presence of infection and the involved microorganisms, is paramount. The sensitivity of standard microbial culture for IAI diagnosis varies depending on the type of IAI, the specimen analyzed, and the culture technique(s) used. Although IAI-specific culture-based diagnostics have been described, the challenge of culture-negative IAIs remains. Given this, molecular assays, including both nucleic acid amplification tests and next-generation sequencing-based assays, have been used. In this review, an overview of these challenging infections is presented, as well as an approach to their diagnosis from a microbiologic perspective.
Collapse
Affiliation(s)
- Marisa Ann Azad
- Division of Infectious Diseases, Department of Medicine, The Ottawa Hospital, Ottawa, Canada
- Ottawa Hospital Research Institute, Ottawa, Canada
| | - Robin Patel
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
5
|
Stockschläder L, Margaryan D, Omran S, Schomaker M, Greiner A, Trampuz A. Characteristics and Outcome of Vascular Graft Infections: A Risk Factor and Survival Analysis. Open Forum Infect Dis 2024; 11:ofae271. [PMID: 38868303 PMCID: PMC11167665 DOI: 10.1093/ofid/ofae271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 05/10/2024] [Indexed: 06/14/2024] Open
Abstract
Background Vascular graft infection (VGI) is a serious complication after implantation of arterial vascular grafts. Optimal surgical and pathogen-specific antimicrobial treatment regimens for VGI are largely unknown. We evaluated patients with arterial VGI according to onset, location, microbiological and imaging characteristics, and surgical and antimicrobial treatment and performed an outcome evaluation. Methods Consecutive patients with VGI treated in 2 hospitals from 2010 through 2020 were retrospectively analyzed. Uniform definition criteria and standardized outcome evaluation were applied. Logistic regression was used for multiple analysis; survival analysis was performed with Kaplan-Meier analysis and a log-rank test. Results Seventy-eight patients with VGI were included: 30 early-onset cases (<8 weeks after graft implantation) and 48 late-onset cases, involving 49 aortic and 29 peripheral grafts. The median time from initial implantation to diagnosis of VGI was significantly longer in aortic than peripheral VGIs (363 vs 56 days, P = .018). Late-onset VGI (odds ratio [OR], 7.3; P = .005) and the presence of surgical site infection/complication (OR, 8.21; P = .006) were independent risk factors for treatment failure. Surgical site infection/complication was associated with a higher risk for early-onset VGI (OR, 3.13; P = .040). Longer infection-free survival was observed in cases where the infected graft was surgically removed (P = .037). Conclusions This study underlines the importance of timely diagnosis of VGI and preventing surgical site infections/complications at graft implantation. It highlights the complexity of infection eradication, especially for late-onset infections, and the importance of adequate antimicrobial and surgical treatment.
Collapse
Affiliation(s)
- Leonie Stockschläder
- Center for Musculoskeletal Surgery, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Donara Margaryan
- Center for Musculoskeletal Surgery, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Safwan Omran
- Department of Vascular Surgery, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Martin Schomaker
- Department of Vascular Surgery, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Greiner
- Department of Vascular Surgery, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andrej Trampuz
- Center for Musculoskeletal Surgery, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
6
|
Chan YL, Chee CF, Tang SN, Tay ST. Unveilling genetic profiles and correlations of biofilm-associated genes, quorum sensing, and antibiotic resistance in Staphylococcus aureus isolated from a Malaysian Teaching Hospital. Eur J Med Res 2024; 29:246. [PMID: 38649897 PMCID: PMC11036768 DOI: 10.1186/s40001-024-01831-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 04/05/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Staphylococcus aureus is a notorious multidrug resistant pathogen prevalent in healthcare facilities worldwide. Unveiling the mechanisms underlying biofilm formation, quorum sensing and antibiotic resistance can help in developing more effective therapy for S. aureus infection. There is a scarcity of literature addressing the genetic profiles and correlations of biofilm-associated genes, quorum sensing, and antibiotic resistance among S. aureus isolates from Malaysia. METHODS Biofilm and slime production of 68 methicillin-susceptible S. aureus (MSSA) and 54 methicillin-resistant (MRSA) isolates were determined using a a plate-based crystal violet assay and Congo Red agar method, respectively. The minimum inhibitory concentration values against 14 antibiotics were determined using VITEK® AST-GP67 cards and interpreted according to CLSI-M100 guidelines. Genetic profiling of 11 S. aureus biofilm-associated genes and agr/sar quorum sensing genes was performed using single or multiplex polymerase chain reaction (PCR) assays. RESULTS In this study, 75.9% (n = 41) of MRSA and 83.8% (n = 57) of MSSA isolates showed strong biofilm-forming capabilities. Intermediate slime production was detected in approximately 70% of the isolates. Compared to MSSA, significantly higher resistance of clindamycin, erythromycin, and fluoroquinolones was noted among the MRSA isolates. The presence of intracellular adhesion A (icaA) gene was detected in all S. aureus isolates. All MSSA isolates harbored the laminin-binding protein (eno) gene, while all MRSA isolates harbored intracellular adhesion D (icaD), clumping factors A and B (clfA and clfB) genes. The presence of agrI and elastin-binding protein (ebpS) genes was significantly associated with biofilm production in MSSA and MRSA isolates, respectively. In addition, agrI gene was also significantly correlated with oxacillin, cefoxitin, and fluoroquinolone resistance. CONCLUSIONS The high prevalence of biofilm and slime production among MSSA and MRSA isolates correlates well with the detection of a high prevalence of biofilm-associated genes and agr quorum sensing system. A significant association of agrI gene was found with cefoxitin, oxacillin, and fluoroquinolone resistance. A more focused approach targeting biofilm-associated and quorum sensing genes is important in developing new surveillance and treatment strategies against S. aureus biofilm infection.
Collapse
Affiliation(s)
- Yun Li Chan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Chin Fei Chee
- Nanotechnology and Catalysis Research Centre, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Soo Nee Tang
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Sun Tee Tay
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
7
|
Amer MA, Darwish MM, Soliman NS, Amin HM. Resistome, mobilome, and virulome explored in clinical isolates derived from acne patients in Egypt: unveiling unique traits of an emerging coagulase-negative Staphylococcus pathogen. Front Cell Infect Microbiol 2024; 14:1328390. [PMID: 38371297 PMCID: PMC10869526 DOI: 10.3389/fcimb.2024.1328390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/10/2024] [Indexed: 02/20/2024] Open
Abstract
Coagulase-negative staphylococci (CoNS) are a group of gram-positive staphylococcal species that naturally inhabit the healthy human skin and mucosa. The clinical impact of CoNS-associated infections has recently been regarded as a challenge for diagnosis and therapeutic options. CoNS-associated infections are primarily caused by bacterial resistance to antibiotics and biofilm formation. As antibiotics are still the most used treatment, this problem will likely persist in the future. The present study aimed to investigate the resistance and virulence of CoNS recovered from various acne lesions and explore their genetic basis. Skin swab samples were collected from participants with acne and healthy skin. All samples underwent conventional culture for the isolation of CoNS, MALDI-TOF confirmation, antibiotic susceptibility, and biofilm formation testing. A total of 85 CoNS isolates were recovered from the samples and preliminarily identified as Staphylococcus epidermidis. Isolates from the acne group (n = 60) showed the highest rates of resistance to penicillin (73%), cefoxitin (63%), clindamycin (53.3%), and erythromycin (48%), followed by levofloxacin (36.7%) and gentamycin (31.7%). The lowest rates of resistance were observed against tetracycline (28.3%), doxycycline (11.7%), and minocycline (8.3%). CoNS isolated from mild, moderate acne and healthy isolates did not show strong biofilm formation, whereas the isolates from the severe cases of the acne group showed strong biofilm formation (76.6%). Four extensively drug-resistant and strong biofilm-forming staphylococcal isolates recovered from patients with severe acne were selected for whole-genome sequencing (WGS), and their genomes were investigated using bioinformatics tools. Three of the sequenced genomes were identified as S. epidermidis; however, isolate 29AM was identified as Staphylococcus warneri, which is a newly emerging pathogen that is not commonly associated with acne and was not detected by MALDI-TOF. All the sequenced strains were multidrug-resistant and carried multiple resistance genes, including blaZ, mecA, tet(K), erm(C), lnuA, vgaA, dfrC, fusB, fosBx1, norA, and vanT, which were found to be located on plasmids and chromosomes. Virulence features were detected in all genomes in the presence of genes involved in adherence and biofilm formation (icaA, icaB, icaC, sdrG, sdrH, atl, ebh, and ebp). Only the S. warneri isolate 29AM contained immune evasion genes (capB, capC, acpXL, and manA), an anti-phagocytosis gene (cdsA), and other unique features. As a result of their potential pathogenicity and antibiotic resistance, CoNS must be monitored as an emerging pathogen associated with acne infections. To the best of our knowledge, this is the first report to isolate, identify, and correlate S. warneri with severe acne infections among Egyptian patients using WGS and bioinformatic analysis.
Collapse
Affiliation(s)
- Mai A. Amer
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts, Giza, Egypt
| | - Manal M. Darwish
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts, Giza, Egypt
- Medical Microbiology and Immunology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Noha S. Soliman
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Heba M. Amin
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts, Giza, Egypt
| |
Collapse
|
8
|
Bonincontro G, Scuderi SA, Marino A, Simonetti G. Synergistic Effect of Plant Compounds in Combination with Conventional Antimicrobials against Biofilm of Staphylococcus aureus, Pseudomonas aeruginosa, and Candida spp. Pharmaceuticals (Basel) 2023; 16:1531. [PMID: 38004397 PMCID: PMC10675371 DOI: 10.3390/ph16111531] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Bacterial and fungal biofilm has increased antibiotic resistance and plays an essential role in many persistent diseases. Biofilm-associated chronic infections are difficult to treat and reduce the efficacy of medical devices. This global problem has prompted extensive research to find alternative strategies to fight microbial chronic infections. Plant bioactive metabolites with antibiofilm activity are known to be potential resources to alleviate this problem. The phytochemical screening of some medicinal plants showed different active groups, such as stilbenes, tannins, alkaloids, terpenes, polyphenolics, flavonoids, lignans, quinones, and coumarins. Synergistic effects can be observed in the interaction between plant compounds and conventional drugs. This review analyses and summarises the current knowledge on the synergistic effects of plant metabolites in combination with conventional antimicrobials against biofilms of Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. The synergism of conventional antimicrobials with plant compounds can modify and inhibit the mechanisms of acquired resistance, reduce undesirable effects, and obtain an appropriate therapeutic effect at lower doses. A deeper knowledge of these combinations and of their possible antibiofilm targets is needed to develop next-generation novel antimicrobials and/or improve current antimicrobials to fight drug-resistant infections attributed to biofilm.
Collapse
Affiliation(s)
- Graziana Bonincontro
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro, 5, 00185 Roma, Italy;
| | - Sarah Adriana Scuderi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98100 Messina, Italy;
| | - Andreana Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98100 Messina, Italy;
| | - Giovanna Simonetti
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro, 5, 00185 Roma, Italy;
| |
Collapse
|
9
|
Grønnemose RB, Tornby DR, Riber SS, Hjelmager JS, Riber LPS, Lindholt JS, Andersen TE. An Antibiotic-Loaded Silicone-Hydrogel Interpenetrating Polymer Network for the Prevention of Surgical Site Infections. Gels 2023; 9:826. [PMID: 37888399 PMCID: PMC10606314 DOI: 10.3390/gels9100826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
Surgical site infections (SSIs) are among the most frequent healthcare-associated infections, resulting in high morbidity, mortality, and cost. While correct hygiene measures and prophylactic antibiotics are effective in preventing SSIs, even in modern healthcare settings where recommended guidelines are strictly followed, SSIs persist as a considerable problem that has proven hard to solve. Surgical procedures involving the implantation of foreign bodies are particularly problematic due to the ability of microorganisms to adhere to and colonize the implanted material and form resilient biofilms. In these cases, SSIs may develop even months after implantation and can be difficult to treat once established. Locally applied antibiotics or specifically engineered implant materials with built-in antibiotic-release properties may prevent these complications and, ultimately, require fewer antibiotics compared to those that are systemically administered. In this study, we demonstrated an antimicrobial material concept with intended use in artificial vascular grafts. The material is a silicone-hydrogel interpenetrating polymer network developed earlier for drug-release catheters. In this study, we designed the material for permanent implantation and tested the drug-loading and drug-release properties of the material to prevent the growth of a typical causative pathogen of SSIs, Staphylococcus aureus. The novelty of this study is demonstrated through the antimicrobial properties of the material in vitro after loading it with an advantageous combination, minocycline and rifampicin, which subsequently showed superiority over the state-of-the-art (Propaten) artificial graft material in a large-animal study, using a novel porcine tissue-implantation model.
Collapse
Affiliation(s)
- Rasmus Birkholm Grønnemose
- Department of Clinical Microbiology, Odense University Hospital, 5000 Odense, Denmark; (R.B.G.); (D.R.T.)
- Research Unit of Clinical Microbiology, University of Southern Denmark, 5000 Odense, Denmark;
| | - Ditte Rask Tornby
- Department of Clinical Microbiology, Odense University Hospital, 5000 Odense, Denmark; (R.B.G.); (D.R.T.)
- Research Unit of Clinical Microbiology, University of Southern Denmark, 5000 Odense, Denmark;
| | - Sara Schødt Riber
- Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, 5000 Odense, Denmark; (S.S.R.); (L.P.S.R.); (J.S.L.)
- Research Unit of Cardiothoracic and Vascular Surgery, University of Southern Denmark, 5000 Odense, Denmark
| | - Janni Søvsø Hjelmager
- Research Unit of Clinical Microbiology, University of Southern Denmark, 5000 Odense, Denmark;
| | - Lars Peter Schødt Riber
- Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, 5000 Odense, Denmark; (S.S.R.); (L.P.S.R.); (J.S.L.)
- Research Unit of Cardiothoracic and Vascular Surgery, University of Southern Denmark, 5000 Odense, Denmark
| | - Jes Sanddal Lindholt
- Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, 5000 Odense, Denmark; (S.S.R.); (L.P.S.R.); (J.S.L.)
- Research Unit of Cardiothoracic and Vascular Surgery, University of Southern Denmark, 5000 Odense, Denmark
| | - Thomas Emil Andersen
- Department of Clinical Microbiology, Odense University Hospital, 5000 Odense, Denmark; (R.B.G.); (D.R.T.)
- Research Unit of Clinical Microbiology, University of Southern Denmark, 5000 Odense, Denmark;
| |
Collapse
|
10
|
Arbé-Carton K, Rey-Sogo A, Santos-Fernández N, Altube O, Garbisu C, Arana L, Alkorta I. Development of a high-throughput platform to measure plasmid transfer frequency. Front Cell Infect Microbiol 2023; 13:1269732. [PMID: 37886666 PMCID: PMC10598849 DOI: 10.3389/fcimb.2023.1269732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Antibiotic resistance represents one of the greatest threats to global health. The spread of antibiotic resistance genes among bacteria occurs mostly through horizontal gene transfer via conjugation mediated by plasmids. This process implies a direct contact between a donor and a recipient bacterium which acquires the antibiotic resistance genes encoded by the plasmid and, concomitantly, the capacity to transfer the acquired plasmid to a new recipient. Classical assays for the measurement of plasmid transfer frequency (i.e., conjugation frequency) are often characterized by a high variability and, hence, they require many biological and technical replicates to reduce such variability and the accompanying uncertainty. In addition, classical conjugation assays are commonly tedious and time-consuming because they typically involve counting colonies on a large number of plates for the quantification of donors, recipients, and transconjugants (i.e., the bacteria that have received the genetic material by conjugation). Due to the magnitude of the antibiotic resistance problem, it is critical to develop reliable and rapid methods for the quantification of plasmid transfer frequency that allow the simultaneous analysis of many samples. Here, we present the development of a high-throughput, reliable, quick, easy, and cost-effective method to simultaneously accomplish and measure multiple conjugation events in 96-well plates, in which the quantification of donors, recipients, and transconjugants is estimated from the time required to reach a specific threshold value (OD600 value) in the bacterial growth curves. Our method successfully discriminates different plasmid transfer frequencies, yielding results that are equivalent to those obtained by a classical conjugation assay.
Collapse
Affiliation(s)
- Kepa Arbé-Carton
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Ana Rey-Sogo
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Nagore Santos-Fernández
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Oihane Altube
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Carlos Garbisu
- Department of Conservation of Natural Resources, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Lide Arana
- Department of Applied Chemistry, University of the Basque Country (UPV/EHU), Donostia, Spain
| | - Itziar Alkorta
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| |
Collapse
|
11
|
Tran NN, Morrisette T, Jorgensen SCJ, Orench-Benvenutti JM, Kebriaei R. Current therapies and challenges for the treatment of Staphylococcus aureus biofilm-related infections. Pharmacotherapy 2023; 43:816-832. [PMID: 37133439 DOI: 10.1002/phar.2806] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 05/04/2023]
Abstract
Staphylococcus aureus is a major cause of nosocomial and community-acquired infections and contributes to significant increase in morbidity and mortality especially when associated with medical devices and in biofilm form. Biofilm structure provides a pathway for the enrichment of resistant and persistent phenotypes of S. aureus leading to relapse and recurrence of infection. Minimal diffusion of antibiotics inside biofilm structure leads to heterogeneity and distinct physiological activity. Additionally, horizontal gene transfer between cells in proximity adds to the challenges associated with eradication of biofilms. This narrative review focuses on biofilm-associated infections caused by S. aureus, the impact of environmental conditions on biofilm formation, interactions inside biofilm communities, and the clinical challenges that they present. Conclusively, potential solutions, novel treatment strategies, combination therapies, and reported alternatives are discussed.
Collapse
Affiliation(s)
- Nikki N Tran
- Department of Pharmacy, The Ohio State University Wexner Medical Center - The James Cancer Hospital and Solove Research Institute, Columbus, Ohio, USA
| | - Taylor Morrisette
- Department of Clinical Pharmacy and Outcomes Sciences, Medical University of South Carolina College of Pharmacy, Charleston, South Carolina, USA
- Department of Pharmacy Services, Medical University of South Carolina Shawn Jenkins Children's Hospital, Charleston, South Carolina, USA
| | - Sarah C J Jorgensen
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - José M Orench-Benvenutti
- P3 Research Laboratory, Division of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Razieh Kebriaei
- P3 Research Laboratory, Division of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
12
|
Endres CM, Moreira E, de Freitas AB, Castel APD, Graciano F, Mann MB, Frazzon APG, Mayer FQ, Frazzon J. Evaluation of Enterotoxins and Antimicrobial Resistance in Microorganisms Isolated from Raw Sheep Milk and Cheese: Ensuring the Microbiological Safety of These Products in Southern Brazil. Microorganisms 2023; 11:1618. [PMID: 37375120 DOI: 10.3390/microorganisms11061618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
This study emphasizes the importance of monitoring the microbiological quality of animal products, such as raw sheep's milk and cheese, to ensure food safety. In Brazil, there is currently no legislation governing the quality of sheep's milk and its derivatives. Therefore, this study aimed to evaluate: (i) the hygienic-sanitary quality of raw sheep's milk and cheese produced in southern Brazil; (ii) the presence of enterotoxins and Staphylococcus spp. in these products; and (iii) the susceptibility of the isolated Staphylococcus spp. to antimicrobial drugs and the presence of resistance genes. A total of 35 samples of sheep's milk and cheese were examined. The microbiological quality and presence of enterotoxins were accessed using Petrifilm and VIDAS SET2 methods, respectively. Antimicrobial susceptibility tests were conducted using VITEK 2 equipment and the disc diffusion method. The presence of resistance genes tet(L), sul1, sul2, ermB, tetM, AAC(6)', tetW, and strA were evaluated through PCR. In total, 39 Staphylococcus spp. were obtained. The resistance genes tetM, ermB, strA, tetL, sul1, AAC(6)', and sul2 were detected in 82%, 59%, 36%, 28%, 23%, 3%, and 3% of isolates, respectively. The findings revealed that both raw sheep's milk and cheese contained Staphylococcus spp. that exhibited resistance to antimicrobial drugs and harbored resistance genes. These results underscore the immediate need for specific legislation in Brazil to regulate the production and sale of these products.
Collapse
Affiliation(s)
- Creciana M Endres
- Department of Food Science, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, RS, Brazil
- SENAI/SC University Center, UniSENAI-Campus Blumenau, Blumenau 89036-256, SC, Brazil
| | - Eliana Moreira
- SENAI/SC University Center, UniSENAI-Campus Chapecó, Chapecó 89813-000, SC, Brazil
| | | | | | - Fábio Graciano
- Senior Field Application Specialist-Industry, BioMérieux Brasil SA, Indianópolis 04028-001, SP, Brazil
| | - Michele B Mann
- Department of Microbiology, Immunology and Parasitology, UFRGS, Porto Alegre 90010-150, RS, Brazil
| | - Ana Paula G Frazzon
- Department of Microbiology, Immunology and Parasitology, UFRGS, Porto Alegre 90010-150, RS, Brazil
| | - Fabiana Q Mayer
- Department of Molecular Biology and Biotechnology, UFRGS, Porto Alegre 90010-150, RS, Brazil
| | - Jeverson Frazzon
- Department of Food Science, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, RS, Brazil
| |
Collapse
|
13
|
Al-Trad EI, Chew CH, Che Hamzah AM, Suhaili Z, Rahman NIA, Ismail S, Puah SM, Chua KH, Kwong SM, Yeo CC. The Plasmidomic Landscape of Clinical Methicillin-Resistant Staphylococcus aureus Isolates from Malaysia. Antibiotics (Basel) 2023; 12:antibiotics12040733. [PMID: 37107095 PMCID: PMC10135026 DOI: 10.3390/antibiotics12040733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a priority nosocomial pathogen with plasmids playing a crucial role in its genetic adaptability, particularly in the acquisition and spread of antimicrobial resistance. In this study, the genome sequences of 79 MSRA clinical isolates from Terengganu, Malaysia, (obtained between 2016 and 2020) along with an additional 15 Malaysian MRSA genomes from GenBank were analyzed for their plasmid content. The majority (90%, 85/94) of the Malaysian MRSA isolates harbored 1-4 plasmids each. In total, 189 plasmid sequences were identified ranging in size from 2.3 kb to ca. 58 kb, spanning all seven distinctive plasmid replication initiator (replicase) types. Resistance genes (either to antimicrobials, heavy metals, and/or biocides) were found in 74% (140/189) of these plasmids. Small plasmids (<5 kb) were predominant (63.5%, 120/189) with a RepL replicase plasmid harboring the ermC gene that confers resistance to macrolides, lincosamides, and streptogramin B (MLSB) identified in 63 MRSA isolates. A low carriage of conjugative plasmids was observed (n = 2), but the majority (64.5%, 122/189) of the non-conjugative plasmids have mobilizable potential. The results obtained enabled us to gain a rare view of the plasmidomic landscape of Malaysian MRSA isolates and reinforces their importance in the evolution of this pathogen.
Collapse
Affiliation(s)
- Esra'a I Al-Trad
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Malaysia
| | - Ching Hoong Chew
- Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Nerus 21300, Malaysia
| | | | - Zarizal Suhaili
- Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut 22200, Malaysia
| | - Nor Iza A Rahman
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Malaysia
| | - Salwani Ismail
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Malaysia
| | - Suat Moi Puah
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Stephen M Kwong
- Infectious Diseases & Microbiology, School of Medicine, Western Sydney University, Campbelltown 2560, Australia
| | - Chew Chieng Yeo
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Malaysia
| |
Collapse
|
14
|
Srivastava P, Kim Y, Cho H, Kim KS. Synergistic Action between Copper Oxide (CuO) Nanoparticles and Anthraquinone-2-Carboxylic Acid (AQ) against Staphylococcus aureus. JOURNAL OF COMPOSITES SCIENCE 2023; 7:135. [DOI: 10.3390/jcs7040135] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Infections linked to Staphylococcus spp. are difficult to treat with current antibiotic therapy, resulting in increased antibiotic resistance populations. One of the leading strategies to overcome this issue is the novel combination of antibacterial nanoparticles (NPs) and sustainable natural compounds. This study reported the identification of a new synergistic combination of copper oxide (CuO) NPs, a well-known antibacterial agent against Staphylococcus spp., and anthraquinone-2-carboxylic acid (AQ), a plant-derived antimicrobial compound, with a potent and specific fashion in killing Staphylococcus spp. CuO NPs were synthesized using the one-pot coprecipitation method and characterized by using X-ray diffraction and transmission electron microscopy. Further checkerboard analysis showed that CuO NPs and AQ increased the antibacterial activity of individual agents against Staphylococcus aureus among Staphylococcus spp. by four- to eightfold compared to individual materials. Additional mechanistic studies on the synergy revealed that the inhibition of biofilm formation and loss of cytoplasmic volume with cell shrinkage are the major actions of the combination in expressing the phenotype. This study clearly showed that the combination of CuO NPs and AQ would be a novel strategy to eradicate S. aureus infections.
Collapse
Affiliation(s)
- Prakhar Srivastava
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Yongjun Kim
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Hyejin Cho
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Kwang-sun Kim
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
15
|
Zhang MS, Liang SZ, Zhang WG, Chang YJ, Lei Z, Li W, Zhang GL, Gao Y. Field ponding water exacerbates the dissemination of manure-derived antibiotic resistance genes from paddy soil to surrounding waterbodies. Front Microbiol 2023; 14:1135278. [PMID: 37007487 PMCID: PMC10065064 DOI: 10.3389/fmicb.2023.1135278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
Farmlands fertilized with livestock manure-derived amendments have become a hot topic in the dissemination of antibiotic resistance genes (ARGs). Field ponding water connects rice paddies with surrounding water bodies, such as reservoirs, rivers, and lakes. However, there is a knowledge gap in understanding whether and how manure-borne ARGs can be transferred from paddy soil into field ponding water. Our studies suggest that the manure-derived ARGs aadA1, bla1, catA1, cmlA1-01, cmx(A), ermB, mepA and tetPB-01 can easily be transferred into field ponding water from paddy soil. The bacterial phyla Crenarchaeota, Verrucomicrobia, Cyanobacteria, Choloroflexi, Acidobacteria, Firmicutes, Bacteroidetes, and Actinobacteria are potential hosts of ARGs. Opportunistic pathogens detected in both paddy soil and field ponding water showed robust correlations with ARGs. Network co-occurrence analysis showed that mobile genetic elements (MGEs) were strongly correlated with ARGs. Our findings highlight that manure-borne ARGs and antibiotic-resistant bacteria in paddy fields can conveniently disseminate to the surrounding waterbodies through field ponding water, posing a threat to public health. This study provides a new perspective for comprehensively assessing the risk posed by ARGs in paddy ecosystems.
Collapse
Affiliation(s)
- Ming-Sha Zhang
- School of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Si-Zhou Liang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Wei-Guo Zhang
- School of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
- School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
- *Correspondence: Wei-Guo Zhang, ; Ya-Jun Chang,
| | - Ya-Jun Chang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing, China
- *Correspondence: Wei-Guo Zhang, ; Ya-Jun Chang,
| | - Zhongfang Lei
- School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Wen Li
- School of Life Sciences, Nanjing University, Nanjing, China
| | | | - Yan Gao
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
16
|
França A. The Role of Coagulase-Negative Staphylococci Biofilms on Late-Onset Sepsis: Current Challenges and Emerging Diagnostics and Therapies. Antibiotics (Basel) 2023; 12:antibiotics12030554. [PMID: 36978421 PMCID: PMC10044083 DOI: 10.3390/antibiotics12030554] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Infections are one of the most significant complications of neonates, especially those born preterm, with sepsis as one of the principal causes of mortality. Coagulase-negative staphylococci (CoNS), a group of staphylococcal species that naturally inhabit healthy human skin and mucosa, are the most common cause of late-onset sepsis, especially in preterms. One of the risk factors for the development of CoNS infections is the presence of implanted biomedical devices, which are frequently used for medications and/or nutrient delivery, as they serve as a scaffold for biofilm formation. The major concerns related to CoNS infections have to do with the increasing resistance to multiple antibiotics observed among this bacterial group and biofilm cells’ increased tolerance to antibiotics. As such, the treatment of CoNS biofilm-associated infections with antibiotics is increasingly challenging and considering that antibiotics remain the primary form of treatment, this issue will likely persist in upcoming years. For that reason, the development of innovative and efficient therapeutic measures is of utmost importance. This narrative review assesses the current challenges and emerging diagnostic tools and therapies for the treatment of CoNS biofilm-associated infections, with a special focus on late-onset sepsis.
Collapse
Affiliation(s)
- Angela França
- Centre of Biological Engineering, LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- LABBELS—Associate Laboratory in Biotechnology and Bioengineering and Microelectromechanical Systems, Braga and Guimarães, Portugal
| |
Collapse
|
17
|
Pouget C, Chatre C, Lavigne JP, Pantel A, Reynes J, Dunyach-Remy C. Effect of Antibiotic Exposure on Staphylococcus epidermidis Responsible for Catheter-Related Bacteremia. Int J Mol Sci 2023; 24:ijms24021547. [PMID: 36675063 PMCID: PMC9863639 DOI: 10.3390/ijms24021547] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/16/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Coagulase-negative staphylococci (CoNS) and especially Staphylococcus epidermidis are responsible for health care infections, notably in the presence of foreign material (e.g., venous or central-line catheters). Catheter-related bacteremia (CRB) increases health care costs and mortality. The aim of our study was to evaluate the impact of 15 days of antibiotic exposure (ceftobiprole, daptomycin, linezolid and vancomycin) at sub-inhibitory concentration on the resistance, fitness and genome evolution of 36 clinical strains of S. epidermidis responsible for CRB. Resistance was evaluated by antibiogram, the ability to adapt metabolism by the Biofilm Ring test® and the in vivo nematode virulence model. The impact of antibiotic exposure was determined by whole-genome sequencing (WGS) and biofilm formation experiments. We observed that S. epidermidis strains presented a wide variety of virulence potential and biofilm formation. After antibiotic exposure, S. epidermidis strains adapted their fitness with an increase in biofilm formation. Antibiotic exposure also affected genes involved in resistance and was responsible for cross-resistance between vancomycin, daptomycin and ceftobiprole. Our data confirmed that antibiotic exposure modified bacterial pathogenicity and the emergence of resistant bacteria.
Collapse
Affiliation(s)
- Cassandra Pouget
- Department of Microbiology and Hospital Hygiene, Bacterial Virulence and Chronic Infections, INSERM U1047, CHU Nîmes Univiversity Montpellier, CEDEX 09, 30029 Nîmes, France
| | - Clotilde Chatre
- Department of Infectious and Tropical Diseases, CH Perpignan, 66000 Perpignan, France
| | - Jean-Philippe Lavigne
- Department of Microbiology and Hospital Hygiene, Bacterial Virulence and Chronic Infections, INSERM U1047, CHU Nîmes Univiversity Montpellier, CEDEX 09, 30029 Nîmes, France
| | - Alix Pantel
- Department of Microbiology and Hospital Hygiene, Bacterial Virulence and Chronic Infections, INSERM U1047, CHU Nîmes Univiversity Montpellier, CEDEX 09, 30029 Nîmes, France
| | - Jacques Reynes
- Department of Infectious and Tropical Diseases, IRD UMI 233, INSERM U1175, CHU Montpellier, University Montpellier, CEDEX 5, 34295 Montpellier, France
| | - Catherine Dunyach-Remy
- Department of Microbiology and Hospital Hygiene, Bacterial Virulence and Chronic Infections, INSERM U1047, CHU Nîmes Univiversity Montpellier, CEDEX 09, 30029 Nîmes, France
- Correspondence: ; Tel.: +33-4-6668-3202
| |
Collapse
|
18
|
Efimenko A, Ishchenko O, Stepanskyi O, Stepanskyi D. MICROBIOLOGICAL FEATURES OF STAPHYLOCOCCUS ASSOCIATED WITH COMPLICATIONS OF DENTAL IMPLANTATION. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2023; 76:936-943. [PMID: 37326073 DOI: 10.36740/wlek202305107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
OBJECTIVE The aim: To describe microbiological features of the Staphylococcus spp. involved in complications of dental implantation. PATIENTS AND METHODS Materials and methods: The main method was bacteriological. Indentification of the obtained isolates was done using commercially available test kits. Adhesive properties were evaluated using Brillis technique. Biofilm-forming ability was studied according to Christensen et al. Antimicrobial susceptibility testing was done following EUCAST recomendations. RESULTS Results: There were 26 smears taken from the peri-implant area and gingival pockets of 12 patients. We obtained 38 isolates. Most of the patients were positive for Streptococcus spp. - 94% and Staphylococcus spp. - 90%. Among the representatives of Staphylococcus spp., the initial share of clinical isolates was S. aureus (34.21%) with inherent coagulase-positive properties. Coagulase-negative pathogens accounted for 65.79% of Staphylococcus spp., among them S. epidermidis, S. hominis, S. warneri were the main. All obtained isolates had typical properties, but appearance of small colonial variants of S. aureus was also recorded. Antimicrobial susceptibility testing was performed in 100% of cases. Among 13 isolates of S. aureus there were 2 cultures resistant to cefoxitin, i. e. methicillin-resistant by phenotype. Clinical isolates of S. aureus, colonizing peri-implant tissues in infectious-inflammatory complications of dental implantation, also had high adhesive and biofilm-forming properties. Clinical isolates of S. epidermidis an average ability to form biofilms. CONCLUSION Conclusions: There is a prooved direct correlation between biofilm-forming ability and adhesive properties in highly biofilm-forming clinical isolates involved in the occurrence of purulent-inflammatory complications in peri-implant site.
Collapse
|
19
|
Tillander JAN, Rilby K, Svensson Malchau K, Skovbjerg S, Lindberg E, Rolfson O, Trobos M. Treatment of periprosthetic joint infections guided by minimum biofilm eradication concentration (MBEC) in addition to minimum inhibitory concentration (MIC): protocol for a prospective randomised clinical trial. BMJ Open 2022; 12:e058168. [PMID: 36109038 PMCID: PMC9478849 DOI: 10.1136/bmjopen-2021-058168] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
INTRODUCTION Prosthetic joint infections (PJIs) are disastrous complications for patients and costly for healthcare organisations. They may promote bacterial resistance due to the extensive antibiotic use necessary in the PJI treatment. The PJI incidence is estimated to be 1%-3%, but the absolute numbers worldwide are high and increasing as large joint arthroplasties are performed by the millions each year. Current treatment algorithms, based on implant preserving surgery or full revision followed by a semitailored antibiotic regimen for no less than 2-3 months, lead to infection resolution in approximately 60% and 90%, respectively. Antibiotic choice is currently guided by minimum inhibitory concentrations (MICs) of free-living bacteria and not of bacteria in biofilm growth mode. Biofilm assays with relatively rapid output for the determination of minimum biofilm eradication concentrations (MBECs) have previously been developed but their clinical usefulness have not been established. METHODS AND ANALYSIS This single-blinded, two-arm randomised study of hip or knee staphylococcal PJI will evaluate 6-week standard of care (MIC guided), or an alternative antibiotic regimen according to an MBEC-guided-based decision algorithm. Sixty-four patients with a first-time PJI treated according to the debridement, antibiotics, and implant retention principle will be enrolled at a single tertiary orthopaedic centre (Sahlgrenska University Hospital). Patients will receive 14 days of standard parenteral antibiotics before entering the comparative study arms. The primary outcome measurement is the proportion of changes in antimicrobial regimen from first-line treatment dependent on randomisation arm. Secondary endpoints are unresolved infection, how microbial properties including biofilm abilities and emerging antimicrobial resistance correlate to infection outcomes, patient reported outcomes and costs with a 12-month follow-up. ETHICS AND DISSEMINATION Approval is received from the Swedish Ethical Review Authority, no 2020-01471 and the Swedish Medical Products Agency, EudraCT, no 2020-003444-80. TRIAL REGISTRATION NUMBER ClinicalTrials.gov ID: NCT04488458.
Collapse
Affiliation(s)
- Jonatan A N Tillander
- Department of Infectious Diseases, Sahlgrenska University Hospital, Goteborg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Goteborg, Sweden
| | - Karin Rilby
- Department of Orthopaedics, Sahlgrenska University Hospital, Goteborg, Sweden
| | - Karin Svensson Malchau
- Department of Orthopaedics, Institute of Clinical Sciences, Sahlgrenska University Hospital, Goteborg, Sweden
| | - Susann Skovbjerg
- Department of Clinical Microbiology, Institute of Biomedicine, University of Gothenburg, Goteborg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Goteborg, Sweden
| | - Erika Lindberg
- Department of Clinical Microbiology, Institute of Biomedicine, University of Gothenburg, Goteborg, Sweden
| | - Ola Rolfson
- Department of Orthopaedics, Institute of Clinical Sciences, Sahlgrenska University Hospital, Goteborg, Sweden
| | - Margarita Trobos
- Department of Biomaterials, University of Gothenburg Sahlgrenska Academy, Goteborg, Sweden
| |
Collapse
|
20
|
Sannat C, Hirpurkar SD, Shakya S, Dutta GK, Roy M, Jolhe DK, Singh J, Patyal A, Rawat N, Gade NE, Tripathi SM, Kalim MO. Methanolic extract of Hemidesmus indicus root augments the antibacterial and antibiofilm activity of amoxicillin and clindamycin against methicillin-resistant Staphylococcus aureus of bovine origin. Lett Appl Microbiol 2022; 75:1579-1589. [PMID: 36053759 DOI: 10.1111/lam.13825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 11/27/2022]
Abstract
The present study evaluated the antibacterial and antibiofilm activity of MHIR in combination with amoxicillin and clindamycin against biofilm-forming MRSA isolated from milk samples of mastitic cows. Microdilution susceptibility testing and microtiter plate assays were used to evaluate the in-vitro efficacy of MHIR and antibiotic combinations against MRSA (n=12). Furthermore, in-vitro findings were validated in a murine model. Minimum inhibitory concentration and minimum biofilm inhibitory concentration of amoxicillin and clindamycin in combination with MHIR were significantly (P<0.05) lower than when used alone against MRSA. In terms of antibacterial activity, MHIR showed additive interaction (Fractional inhibitory concentrationindex >0.5-4) with amoxicillin and clindamycin against all the MRSA isolates, whereas MHIR synergizes (Fractional biofilm inhibitory concentrationindex ≤0.5) the antibiofilm activity of amoxicillin and clindamycin against 58.33% and 83.33% of the MRSA isolates, respectively. Amoxicillin/clindamycin in combination with MHIR significantly (P<0.05) reduced disease activity score, and,; bacterial load and Gram-positive spots in kidney and liver of MRSA infected mice. The combined efficacy of MHIR and amoxicillin/clindamycin was comparable to clindamycin alone but superior to amoxicillin alone. Hence, the combination of MHIR with amoxicillin/clindamycin is advocated in the treatment of MRSA-associated infections.
Collapse
Affiliation(s)
- Chandrahas Sannat
- Department of Veterinary Microbiology, College of Veterinary Science & A.H., Anjora, Dau Shri Vasudev Chandrakar Kamdhenu Vishwavidyalaya, Durg, Chhattisgarh, India
| | - S D Hirpurkar
- Department of Veterinary Microbiology, College of Veterinary Science & A.H., Anjora, Dau Shri Vasudev Chandrakar Kamdhenu Vishwavidyalaya, Durg, Chhattisgarh, India
| | - Sanjay Shakya
- Department of Veterinary Public Health, College of Veterinary Science & A.H., Anjora, Dau Shri Vasudev Chandrakar Kamdhenu Vishwavidyalaya, Durg, Chhattisgarh, India
| | - G K Dutta
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Science & A.H., Anjora, Dau Shri Vasudev Chandrakar Kamdhenu Vishwavidyalaya, Durg, Chhattisgarh, India
| | - Manju Roy
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Science & A.H., Anjora, Dau Shri Vasudev Chandrakar Kamdhenu Vishwavidyalaya, Durg, Chhattisgarh, India
| | - D K Jolhe
- Department of Veterinary Pathology, College of Veterinary Science & A.H., Anjora, Dau Shri Vasudev Chandrakar Kamdhenu Vishwavidyalaya, Durg, Chhattisgarh, India
| | - Jasmeet Singh
- Wild life health and forensic, Dau Shri Vasudev Chandrakar Kamdhenu Vishwavidyalaya, Durg, Chhattisgarh, India
| | - Anil Patyal
- Department of Veterinary Public Health, College of Veterinary Science & A.H., Anjora, Dau Shri Vasudev Chandrakar Kamdhenu Vishwavidyalaya, Durg, Chhattisgarh, India
| | - Nidhi Rawat
- Department of Veterinary Microbiology, College of Veterinary Science & A.H., Anjora, Dau Shri Vasudev Chandrakar Kamdhenu Vishwavidyalaya, Durg, Chhattisgarh, India
| | - Nitin E Gade
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Science & A.H., Anjora, Dau Shri Vasudev Chandrakar Kamdhenu Vishwavidyalaya, Durg, Chhattisgarh, India
| | - S M Tripathi
- Department of Veterinary Pharmacology & Toxicology, College of Veterinary Science & A.H., Anjora, Dau Shri Vasudev Chandrakar Kamdhenu Vishwavidyalaya, Durg, Chhattisgarh, India
| | - M O Kalim
- Department of Veterinary Surgery & Radiology, College of Veterinary Science & A.H., Anjora, Dau Shri Vasudev Chandrakar Kamdhenu Vishwavidyalaya, Durg, Chhattisgarh, India
| |
Collapse
|
21
|
Baishya J, Everett JA, Chazin WJ, Rumbaugh KP, Wakeman CA. The Innate Immune Protein Calprotectin Interacts With and Encases Biofilm Communities of Pseudomonas aeruginosa and Staphylococcus aureus. Front Cell Infect Microbiol 2022; 12:898796. [PMID: 35909964 PMCID: PMC9325956 DOI: 10.3389/fcimb.2022.898796] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
Calprotectin is a transition metal chelating protein of the innate immune response known to exert nutritional immunity upon microbial infection. It is abundantly released during inflammation and is therefore found at sites occupied by pathogens such as Pseudomonas aeruginosa and Staphylococcus aureus. The metal limitation induced by this protein has previously been shown to mediate P. aeruginosa and S. aureus co-culture. In addition to the transition metal sequestration role of calprotectin, it has also been shown to have metal-independent antimicrobial activity via direct cell contact. Therefore, we sought to assess the impact of this protein on the biofilm architecture of P. aeruginosa and S. aureus in monomicrobial and polymicrobial culture. The experiments described in this report reveal novel aspects of calprotectin's interaction with biofilm communities of P. aeruginosa and S. aureus discovered using scanning electron microscopy and confocal laser scanning microscopy. Our results indicate that calprotectin can interact with microbial cells by stimulating encapsulation in mesh-like structures. This physical interaction leads to compositional changes in the biofilm extracellular polymeric substance (EPS) in both P. aeruginosa and S. aureus.
Collapse
Affiliation(s)
- Jiwasmika Baishya
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Jake A. Everett
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Walter J. Chazin
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
- Center for Structural Biology, Vanderbilt University, Nashville, TN, United States
| | - Kendra P. Rumbaugh
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Texas Tech University Health Sciences Center Surgery Burn Center of Research Excellence, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Catherine A. Wakeman
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
22
|
Shin J, Naskar A, Ko D, Kim S, Kim KS. Bioconjugated Thymol-Zinc Oxide Nanocomposite as a Selective and Biocompatible Antibacterial Agent against Staphylococcus Species. Int J Mol Sci 2022; 23:6770. [PMID: 35743214 PMCID: PMC9224476 DOI: 10.3390/ijms23126770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
Owing to the rapid spread of antibiotic resistance among Staphylococcus species, effective and low-risk alternatives to antibiotics are being actively searched. Thymol (THO), the most abundant component of the oil extracted from thyme, can be considered as a natural antibacterial alternative. However, the low antibacterial activity and non-selectivity of THO limit its usage as a universal anti-Staphylococcus agent. Herein, we report the bioconjugation of THO with ZnO nanoparticle (ZO), which resulted in the TZ nanocomposite (NC), as a potent and selective antibacterial agent against Staphylococcus species, particularly S. epidermidis. The cell-free supernatant (CFS) of ATCC 25923 cultures was employed for the production of TZ NC. Successful production of TZ NC was confirmed via X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, and ultraviolet-visible (UV-Vis) studies. TZ NC had selective efficacy against Staphylococcus species, with MIC values 2-32-fold lower than THO. The antibacterial mechanisms of TZ NC are proposed to involve membrane rupture, suppression of biofilm formation, and modulation of new cell wall and protein-synthesis-associated cellular pathways. Its biocompatibility against HCT116 cells was also checked. Our findings suggest that the TZ nanocomposite could improve the selectivity and bactericidal activity of THO against target species.
Collapse
Affiliation(s)
- Joonho Shin
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea; (J.S.); (A.N.)
| | - Atanu Naskar
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea; (J.S.); (A.N.)
| | - Dongjoon Ko
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (D.K.); (S.K.)
| | - Semi Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (D.K.); (S.K.)
| | - Kwang-sun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea; (J.S.); (A.N.)
| |
Collapse
|
23
|
Carcione D, Leccese G, Conte G, Rossi E, Intra J, Bonomi A, Sabella S, Moreo M, Landini P, Brilli M, Paroni M. Lack of Direct Correlation between Biofilm Formation and Antimicrobial Resistance in Clinical Staphylococcus epidermidis Isolates from an Italian Hospital. Microorganisms 2022; 10:1163. [PMID: 35744681 PMCID: PMC9230108 DOI: 10.3390/microorganisms10061163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 11/28/2022] Open
Abstract
Staphylococcus epidermidis is an opportunistic pathogen and a frequent cause of nosocomial infections. In this work, we show that, among 51 S. epidermidis isolates from an Italian hospital, only a minority displayed biofilm formation, regardless of their isolation source (peripheral blood, catheter, or skin wounds); however, among the biofilm-producing isolates, those from catheters were the most efficient in biofilm formation. Interestingly, most isolates including strong biofilm producers displayed production levels of PIA (polysaccharide intercellular adhesin), the main S. epidermidis extracellular polysaccharide, similar to reference S. epidermidis strains classified as non-biofilm formers, and much lower than those classified as intermediate or high biofilm formers, possibly suggesting that high levels of PIA production do not confer a particular advantage for clinical isolates. Finally, while for the reference S. epidermidis strains the biofilm production clearly correlated with the decreased sensitivity to antibiotics, in particular, protein synthesis inhibitors, in our clinical isolates, such positive correlation was limited to tetracycline. In contrast, we observed an inverse correlation between biofilm formation and the minimal inhibitory concentrations for levofloxacin and teicoplanin. In addition, in growth conditions favoring PIA production, the biofilm-forming isolates showed increased sensitivity to daptomycin, clindamycin, and erythromycin, with increased tolerance to the trimethoprim/sulfamethoxazole association. The lack of direct correlation between the biofilm production and increased tolerance to antibiotics in S. epidermidis isolates from a clinical setting would suggest, at least for some antimicrobials, the possible existence of a trade-off between the production of biofilm determinants and antibiotic resistance.
Collapse
Affiliation(s)
- Davide Carcione
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
- Department of Laboratory Medicine, IRCCS Centro Cardiologico Monzino, 20138 Milan, Italy; (S.S.); (M.M.)
| | - Gabriella Leccese
- Department of Bioscience, University of Milan, 20133 Milan, Italy; (G.L.); (G.C.); (E.R.); (P.L.)
| | - Gianmarco Conte
- Department of Bioscience, University of Milan, 20133 Milan, Italy; (G.L.); (G.C.); (E.R.); (P.L.)
| | - Elio Rossi
- Department of Bioscience, University of Milan, 20133 Milan, Italy; (G.L.); (G.C.); (E.R.); (P.L.)
| | - Jari Intra
- Clinical Chemistry Laboratory, University of Milano-Bicocca, Azienda Socio Sanitaria Territoriale di Monza ASST-Monza, San Gerardo Hospital, Via Pergolesi 33, 20900 Monza, Italy;
| | - Alice Bonomi
- Unit of Biostatistics, IRCCS Centro Cardiologico Monzino, 20138 Milan, Italy;
| | - Simona Sabella
- Department of Laboratory Medicine, IRCCS Centro Cardiologico Monzino, 20138 Milan, Italy; (S.S.); (M.M.)
| | - Massimo Moreo
- Department of Laboratory Medicine, IRCCS Centro Cardiologico Monzino, 20138 Milan, Italy; (S.S.); (M.M.)
| | - Paolo Landini
- Department of Bioscience, University of Milan, 20133 Milan, Italy; (G.L.); (G.C.); (E.R.); (P.L.)
| | - Matteo Brilli
- Department of Bioscience, University of Milan, 20133 Milan, Italy; (G.L.); (G.C.); (E.R.); (P.L.)
| | - Moira Paroni
- Department of Bioscience, University of Milan, 20133 Milan, Italy; (G.L.); (G.C.); (E.R.); (P.L.)
| |
Collapse
|
24
|
Caldara M, Belgiovine C, Secchi E, Rusconi R. Environmental, Microbiological, and Immunological Features of Bacterial Biofilms Associated with Implanted Medical Devices. Clin Microbiol Rev 2022; 35:e0022120. [PMID: 35044203 PMCID: PMC8768833 DOI: 10.1128/cmr.00221-20] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The spread of biofilms on medical implants represents one of the principal triggers of persistent and chronic infections in clinical settings, and it has been the subject of many studies in the past few years, with most of them focused on prosthetic joint infections. We review here recent works on biofilm formation and microbial colonization on a large variety of indwelling devices, ranging from heart valves and pacemakers to urological and breast implants and from biliary stents and endoscopic tubes to contact lenses and neurosurgical implants. We focus on bacterial abundance and distribution across different devices and body sites and on the role of environmental features, such as the presence of fluid flow and properties of the implant surface, as well as on the interplay between bacterial colonization and the response of the human immune system.
Collapse
Affiliation(s)
- Marina Caldara
- Interdepartmental Center on Safety, Technologies, and Agri-food Innovation (SITEIA.PARMA), University of Parma, Parma, Italy
| | - Cristina Belgiovine
- IRCCS Humanitas Research Hospital, Rozzano–Milan, Italy
- Scuola di Specializzazione in Microbiologia e Virologia, Università degli Studi di Pavia, Pavia, Italy
| | - Eleonora Secchi
- Institute of Environmental Engineering, ETH Zürich, Zürich, Switzerland
| | - Roberto Rusconi
- IRCCS Humanitas Research Hospital, Rozzano–Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele–Milan, Italy
| |
Collapse
|
25
|
Salisbury AM, Mullin M, Foulkes L, Chen R, Percival SL. Controlled-release iodine foam dressings demonstrate broad-spectrum biofilm management in several in vitro models. Int Wound J 2022; 19:1717-1728. [PMID: 35166016 DOI: 10.1111/iwj.13773] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
Multiple in vitro models were utilised to evaluate the biofilm management capabilities of seven commercially-available wound dressings, varying in composition and antibacterial ingredients, to reduce common aerobic, anaerobic, and multispecies biofilms. The Center for Disease Control bioreactor was used to evaluate single species Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) 24 and 48 hours biofilms, as well as a multispecies biofilm consisting of these two organisms in addition to Enterococcus faecalis (E. faecalis). As wound biofilms often exist in hypoxic wound environments, a direct contact anaerobic model system was used to evaluate efficacy on Bacteroides fragilis (B. fragilis). Biofilm control was evaluated against P. aeruginosa in the drip flow bioreactor model, where a constant flow of proteinaceous media is used to create a more challenging and wound-like model. The results demonstrated that biofilm management capabilities varied amongst wound dressings. Two dressings, a controlled-release iodine foam dressing and a silver nanocrystalline dressing, showed potent >4 log reductions in recovered organisms compared with untreated controls in all biofilm models evaluated. The effectiveness of other dressings to manage bioburden varied between dressing, test organism, and model system. A silver foam dressing showed moderate biofilm control in some models. However, biofilm exposure to methylene blue and gentian violet-containing foam dressings showed negligible log reductions in all in vitro biofilm methods examined. The data outlined in this in vitro study support the use of the iodine foam dressing for wounds with infection and biofilm.
Collapse
Affiliation(s)
- Anne-Marie Salisbury
- Centre of Excellence for Biofilm Science (CEBS), 5D Health Protection Group Ltd., Liverpool, UK
| | - Marc Mullin
- Centre of Excellence for Biofilm Science (CEBS), 5D Health Protection Group Ltd., Liverpool, UK
| | - Lauren Foulkes
- Centre of Excellence for Biofilm Science (CEBS), 5D Health Protection Group Ltd., Liverpool, UK
| | - Rui Chen
- Centre of Excellence for Biofilm Science (CEBS), 5D Health Protection Group Ltd., Liverpool, UK
| | - Steven L Percival
- Centre of Excellence for Biofilm Science (CEBS), 5D Health Protection Group Ltd., Liverpool, UK
| |
Collapse
|
26
|
Role of microalgal metabolites in controlling quorum-sensing-regulated biofilm. Arch Microbiol 2022; 204:163. [PMID: 35119531 DOI: 10.1007/s00203-022-02776-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/02/2022]
Abstract
Bacterial infections are primarily caused due to the formation of biofilms on the surfaces. The formation of bacterial biofilms results in 60-70% of nosocomial infections in hospital-acquired infections for multidrug-resistant bacteria. Quorum-sensing (QS) is the process of cell-cell communications among bacterial cells. The formation and regulation of biofilm-producing signaling molecules, competence for DNA uptake and factors responsible for virulence occur. When the bacterial cell population density increases, auto-inducers bind with QS receptors and induce gene expression. To suppress the expression of the virulence genes, certain antibiotics and small molecules are used against the pathogenic bacteria. Since the microorganisms are becoming resistant to antibiotics, there is a need of new compounds or molecules which can suppress or inhibit the expression or regulation of virulence genes. Microalgae are an important and rich source of bioactive compounds which have the antimicrobial property. Microalgae have various antibacterial metabolites, such as Portoamides (peptides), flavonoids, eicosapentaenoic acid, alkaloids, peptides and many other secondary metabolites. This review focuses on the signaling molecule-regulated QS mechanism, biofilm formation, and microalgae compounds' effects against pathogenic bacteria. Consequently, most of the compounds have made it to the different levels of clinical trials, even some of the compounds are used therapeutically. Despite the promising applications of antibacterial peptides and the importance of searching for new natural sources of antibiotics, limitations persist for their pharmaceutical applications. However, given due research impetus, these marine metabolites might emerge as a new wave of promising drugs.
Collapse
|
27
|
Oliveira F, Rohde H, Vilanova M, Cerca N. Fighting Staphylococcus epidermidis Biofilm-Associated Infections: Can Iron Be the Key to Success? Front Cell Infect Microbiol 2021; 11:798563. [PMID: 34917520 PMCID: PMC8670311 DOI: 10.3389/fcimb.2021.798563] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/11/2021] [Indexed: 12/29/2022] Open
Abstract
Staphylococcus epidermidis is one of the most important commensal microorganisms of human skin and mucosae. However, this bacterial species is also the cause of severe infections in immunocompromised patients, specially associated with the utilization of indwelling medical devices, that often serve as a scaffold for biofilm formation. S. epidermidis strains are often multidrug resistant and its association with biofilm formation makes these infections hard to treat. Their remarkable ability to form biofilms is widely regarded as its major pathogenic determinant. Although a significant amount of knowledge on its biofilm formation mechanisms has been achieved, we still do not understand how the species survives when exposed to the host harsh environment during invasion. A previous RNA-seq study highlighted that iron-metabolism associated genes were the most up-regulated bacterial genes upon contact with human blood, which suggested that iron acquisition plays an important role in S. epidermidis biofilm development and escape from the host innate immune system. In this perspective article, we review the available literature on the role of iron metabolism on S. epidermidis pathogenesis and propose that exploiting its dependence on iron could be pursued as a viable therapeutic alternative.
Collapse
Affiliation(s)
- Fernando Oliveira
- Centre of Biological Engineering, Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Braga, Portugal
| | - Holger Rohde
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Manuel Vilanova
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal
| | - Nuno Cerca
- Centre of Biological Engineering, Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Braga, Portugal
| |
Collapse
|
28
|
Pahlavanzadeh S, Khoshbakht R, Kaboosi H, Moazamian E. Antibiotic resistance and phylogenetic comparison of human, pet animals and raw milk Staphylococcus aureus isolates. Comp Immunol Microbiol Infect Dis 2021; 79:101717. [PMID: 34763201 DOI: 10.1016/j.cimid.2021.101717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 11/27/2022]
Abstract
The present study was conducted to compare the S. aureus isolates from different sources in the basis of resistance phenotypic and genotypic features and phylogenetic differences. Total of 70 S. aureus isolates (including 25 human, 25 raw milk and 20 pet animal isolates) were subjected to the antimicrobial susceptibility testing, polymerase chain reaction (PCR) detection of the resistance genes and DNA fingerprinting using random amplification of polymorphic DNA-PCR (RAPD-PCR) to survey the variability of the isolates. Among 70 S. aureus, 55 (78.5%) isolates were MRSA. The isolates showed the highest antibiotic resistance to methicillin, ampicillin and penicillin (78.5%) and showed the lowest resistance to ciprofloxacin (12.8%). ErmB and tetM resistance genes were present in all isolates and the vanA gene was not detected in any of the isolates. Thirteen distinct clusters were identified in RAPD-PCR fingerprinting. Statistical analysis showed that the isolates without resistance to antibiotics were significantly in associated with raw milk origin (P < 0.05). According to the results of the study, S. aureus strains with pets and raw milk origin are significant sources of antibiotic-resistant isolates such as MRSA. They are also carriers of resistance genes that can be transmit to human isolates and cause drug resistance in human infections. Identifying the source of these infections is possible with a reliable genotyping method such as RAPD-PCR.
Collapse
Affiliation(s)
- Sara Pahlavanzadeh
- Department of Microbiology, College of Science, Agriculture and Modern Technology, Shiraz branch, Islamic Azad University, Shiraz, Iran
| | - Rahem Khoshbakht
- Department of Pathobiology, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran.
| | - Hami Kaboosi
- Department of Microbiology, Faculty of Basic Sciences, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Elham Moazamian
- Department of Microbiology, College of Science, Agriculture and Modern Technology, Shiraz branch, Islamic Azad University, Shiraz, Iran
| |
Collapse
|
29
|
Antibiofilm Efficacy of Polihexanide, Octenidine and Sodium Hypochlorite/Hypochlorous Acid Based Wound Irrigation Solutions against Staphylococcus aureus, Pseudomonas aeruginosa and a Multispecies Biofilm. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1369:53-67. [PMID: 34173213 DOI: 10.1007/5584_2021_645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Infection and the formation of biofilms have been shown to have a significant role in increased inflammation and delayed wound healing. Wound irrigation solutions are used to debride wounds, removing cell debris and infecting microorganisms, therefore preventing infection. The aim of this study was to evaluate a Polihexanide (PHMB) based wound irrigation solution, Octenidine HCl based wound irrigation solution and electrolysed water based wound care solution for antibiofilm efficacy against Staphylococcus aureus, Pseudomonas aeruginosa and a multispecies biofilm in several models to gain a broad understanding of ability. The PHMB based wound irrigation solution demonstrated broad range antibiofilm efficacy against P. aeruginosa, S. aureus and the multispecies biofilm. The Octenidine HCl based wound irrigation solution and the electrolysed water based wound care solution demonstrated potent antibiofilm efficacy against S. aureus and to a lesser extent P. aeruginosa. Overall, less efficacy was observed in the drip flow bioreactor model for all 3 test solutions, which may be attributed to the continuous flow of nutrients during treatment, which may have diluted or washed away the solution. The data presented also highlights the importance of testing antibiofilm activity in a range of biofilm models and against different bacterial strains to get an overall representation of efficacy.
Collapse
|
30
|
Arana L, Gallego L, Alkorta I. Incorporation of Antibiotics into Solid Lipid Nanoparticles: A Promising Approach to Reduce Antibiotic Resistance Emergence. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:nano11051251. [PMID: 34068834 PMCID: PMC8151913 DOI: 10.3390/nano11051251] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023]
Abstract
Antimicrobial resistance is one of the biggest threats to global health as current antibiotics are becoming useless against resistant infectious pathogens. Consequently, new antimicrobial strategies are urgently required. Drug delivery systems represent a potential solution to improve current antibiotic properties and reverse resistance mechanisms. Among different drug delivery systems, solid lipid nanoparticles represent a highly interesting option as they offer many advantages for nontoxic targeted drug delivery. Several publications have demonstrated the capacity of SLNs to significantly improve antibiotic characteristics increasing treatment efficiency. In this review article, antibiotic-loaded solid lipid nanoparticle-related works are analyzed to summarize all information associated with applying these new formulations to tackle the antibiotic resistance problem. The main antimicrobial resistance mechanisms and relevant solid lipid nanoparticle characteristics are presented to later discuss the potential of these nanoparticles to improve current antibiotic treatment characteristics and overcome antimicrobial resistance mechanisms. Moreover, solid lipid nanoparticles also offer new possibilities for other antimicrobial agents that cannot be administrated as free drugs. The advantages and disadvantages of these new formulations are also discussed in this review. Finally, given the progress of the studies carried out to date, future directions are discussed.
Collapse
Affiliation(s)
- Lide Arana
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Unibertsitateko Ibilbidea, 7, 01006 Vitoria-Gasteiz, Spain
- Correspondence:
| | - Lucia Gallego
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Sarriena Auzoa z/g, 48940 Leioa, Bizkaia, Spain;
| | - Itziar Alkorta
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Sarriena Auzoa z/g, 48940 Leioa, Bizkaia, Spain;
| |
Collapse
|
31
|
Garg D, Matai I, Sachdev A. Toward Designing of Anti-infective Hydrogels for Orthopedic Implants: From Lab to Clinic. ACS Biomater Sci Eng 2021; 7:1933-1961. [PMID: 33826312 DOI: 10.1021/acsbiomaterials.0c01408] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
An alarming increase in implant failure incidence due to microbial colonization on the administered orthopedic implants has become a horrifying threat to replacement surgeries and related health concerns. In essence, microbial adhesion and its subsequent biofilm formation, antibiotic resistance, and the host immune system's deficiency are the main culprits. An advanced class of biomaterials termed anti-infective hydrogel implant coatings are evolving to subdue these complications. On this account, this review provides an insight into the significance of anti-infective hydrogels for preventing orthopedic implant associated infections to improve the bone healing process. We briefly discuss the clinical course of implant failure, with a prime focus on orthopedic implants. We identify the different anti-infective coating strategies and hence several anti-infective agents which could be incorporated in the hydrogel matrix. The fundamental design criteria to be considered while fabricating anti-infective hydrogels for orthopedic implants will be discussed. We highlight the different hydrogel coatings based on the origin of the polymers involved in light of their antimicrobial efficacy. We summarize the relevant patents reported in the prevention of implant infections, including orthopedics. Finally, the challenges concerning the clinical translation of the aforesaid hydrogels are described, and considerable solutions for improved clinical practice and better future prospects are proposed.
Collapse
Affiliation(s)
- Deepa Garg
- Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh-160030, India.,Academy of Scientific and Innovative Research, CSIR-CSIO, Chandigarh-160030, India
| | - Ishita Matai
- Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh-160030, India.,Academy of Scientific and Innovative Research, CSIR-CSIO, Chandigarh-160030, India
| | - Abhay Sachdev
- Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh-160030, India.,Academy of Scientific and Innovative Research, CSIR-CSIO, Chandigarh-160030, India
| |
Collapse
|
32
|
Park S, Ronholm J. Staphylococcus aureus in Agriculture: Lessons in Evolution from a Multispecies Pathogen. Clin Microbiol Rev 2021; 34:e00182-20. [PMID: 33568553 PMCID: PMC7950364 DOI: 10.1128/cmr.00182-20] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus is a formidable bacterial pathogen that is responsible for infections in humans and various species of wild, companion, and agricultural animals. The ability of S. aureus to move between humans and livestock is due to specific characteristics of this bacterium as well as modern agricultural practices. Pathoadaptive clonal lineages of S. aureus have emerged and caused significant economic losses in the agricultural sector. While humans appear to be a primary reservoir for S. aureus, the continued expansion of the livestock industry, globalization, and ubiquitous use of antibiotics has increased the dissemination of pathoadaptive S. aureus in this environment. This review comprehensively summarizes the available literature on the epidemiology, pathophysiology, genomics, antibiotic resistance (ABR), and clinical manifestations of S. aureus infections in domesticated livestock. The availability of S. aureus whole-genome sequence data has provided insight into the mechanisms of host adaptation and host specificity. Several lineages of S. aureus are specifically adapted to a narrow host range on a short evolutionary time scale. However, on a longer evolutionary time scale, host-specific S. aureus has jumped the species barrier between livestock and humans in both directions several times. S. aureus illustrates how close contact between humans and animals in high-density environments can drive evolution. The use of antibiotics in agriculture also drives the emergence of antibiotic-resistant strains, making the possible emergence of human-adapted ABR strains from agricultural practices concerning. Addressing the concerns of ABR S. aureus, without negatively affecting agricultural productivity, is a challenging priority.
Collapse
Affiliation(s)
- Soyoun Park
- Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Jennifer Ronholm
- Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
33
|
Abstract
Biofilms are aggregates formed as a protective survival state by microorganisms to adapt to the environment and can be resistant to antimicrobial agents and host immune responses due to chemical or physical diffusion barriers, modified nutrient environments, suppression of the growth rate within biofilms, and the genetic adaptation of cells within biofilms. With the widespread use of medical devices, medical device-associated biofilms continue to pose a serious threat to human health, and these biofilms have become the most important source of nosocomial infections. However, traditional antimicrobial agents cannot completely eliminate medical device-associated biofilms. New strategies for the treatment of these biofilms and targeting biofilm infections are urgently required. Several novel approaches have been developed and identified as effective and promising treatments. In this review, we briefly summarize the challenges associated with the treatment of medical device-associated biofilm infections and highlight the latest promising approaches aimed at preventing or eradicating these biofilms.
Collapse
|
34
|
Salisbury AM, Mullin M, Foulkes L, Chen R, Percival SL. The Ability of a Concentrated Surfactant Gel to Reduce an Aerobic, Anaerobic and Multispecies Bacterial Biofilm In Vitro. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1323:149-157. [PMID: 33433854 DOI: 10.1007/5584_2020_609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Biofilm formation in wounds can lead to increased inflammation, infection and delayed wound healing. Additionally, biofilms show increased recalcitrance to antimicrobials compared to their planktonic counterparts making them difficult to manage and treat. Biofilms are frequently polymicrobial, consisting of aerobic and anaerobic bacteria, as well as fungi and yeasts. The aim of this study was to evaluate the effects of a concentrated surfactant gel with antibacterial preservative agents (CSG) against wound relevant opportunistic pathogens, including an aerobic biofilm, anaerobic biofilm and multispecies biofilm. The CSG was added to a 48 h anaerobic biofilm of Bacteroides fragilis, a 24 h multispecies biofilm of Acinetobacter baumannii, Staphylococcus aureus and Staphylococcus epidermidis and a 24 h biofilm of Pseudomonas aeruginosa grown in an in vitro wound relevant environment. Following a contact time of 24 h with the CSG, the bacterial cell density of the biofilms was reduced by 2-4 log in comparison to an untreated control. The results demonstrate the ability of the CSG to disrupt wound relevant biofilms and support the use of the CSG in the clinic to treat wounds caused by biofilm related infections.
Collapse
Affiliation(s)
- Anne-Marie Salisbury
- 5D Health Protection Group Ltd, Centre of Excellence in Biofilm Science (CEBS), Liverpool, UK.
| | - Marc Mullin
- 5D Health Protection Group Ltd, Centre of Excellence in Biofilm Science (CEBS), Liverpool, UK
| | - Lauren Foulkes
- 5D Health Protection Group Ltd, Centre of Excellence in Biofilm Science (CEBS), Liverpool, UK
| | - Rui Chen
- 5D Health Protection Group Ltd, Centre of Excellence in Biofilm Science (CEBS), Liverpool, UK
| | - Steven L Percival
- 5D Health Protection Group Ltd, Centre of Excellence in Biofilm Science (CEBS), Liverpool, UK
| |
Collapse
|
35
|
Torres G, Vargas K, Cuesta-Astroz Y, Reyes-Vélez J, Olivera-Angel M. Phenotypic Characterization and Whole Genome Analysis of a Strong Biofilm-Forming Staphylococcus aureus Strain Associated With Subclinical Bovine Mastitis in Colombia. Front Vet Sci 2020; 7:530. [PMID: 33102540 PMCID: PMC7500091 DOI: 10.3389/fvets.2020.00530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/08/2020] [Indexed: 11/17/2022] Open
Abstract
Staphylococcus aureus represent a serious threat to public health due to food safety, antibiotic resistance, and the potential zoonotic transmission of strains between dairy cattle and humans. Biofilm formation by S. aureus results in chronicity of the infections which confers protection against the immune response and antibiotics. Likewise, biofilm allows the exchange of mobile genetic material among different strains through microbial interactions inside the matrix. In Colombia, where S. aureus continues to be one of the main pathogens isolated from bovine intramammary infections and where milking by hand is highly frequent, there are knowledge gaps on the zoonotic potential of the strains. Therefore, the aim of this work was to characterize genotypically and phenotypically the S. aureus Sa1FB strain with strong biofilm production and to perform genomic and phenotypic comparisons with other relevant S. aureus strains (native and references strains). These results show a highly productive strain of biofilm and a low ability of cell invasion compared to the other two native strains. In addition, high genomic similarity between S. aureus Sa1FB and the reference strains was observed, despite of the differences reported at the clinical level. However, Sa1FB exhibited special features in terms of mobile genetic elements, highlighting its ability to accept foreign genetic material. Indeed, this could increase mutation, pathogenesis, and adaptability to new hosts, representing a risk for people in contact with the milk obtained from animals infected with these strains. These results present the relevance of surveillance for early detection of emergent clones with zoonotic potential, which reduces the risk of occupational exposure and their spread in the community.
Collapse
Affiliation(s)
- Giovanny Torres
- Biogenesis Research Group, Department of Agricultural Sciences, University of Antioquia, Medellín, Colombia.,Colombian Institute of Tropical Medicine-CES University, Medellín, Colombia
| | - Karen Vargas
- Biogenesis Research Group, Department of Agricultural Sciences, University of Antioquia, Medellín, Colombia
| | | | - Julián Reyes-Vélez
- Biogenesis Research Group, Department of Agricultural Sciences, University of Antioquia, Medellín, Colombia
| | - Martha Olivera-Angel
- Biogenesis Research Group, Department of Agricultural Sciences, University of Antioquia, Medellín, Colombia
| |
Collapse
|
36
|
Schilcher K, Horswill AR. Staphylococcal Biofilm Development: Structure, Regulation, and Treatment Strategies. Microbiol Mol Biol Rev 2020; 84:e00026-19. [PMID: 32792334 PMCID: PMC7430342 DOI: 10.1128/mmbr.00026-19] [Citation(s) in RCA: 372] [Impact Index Per Article: 74.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In many natural and clinical settings, bacteria are associated with some type of biotic or abiotic surface that enables them to form biofilms, a multicellular lifestyle with bacteria embedded in an extracellular matrix. Staphylococcus aureus and Staphylococcus epidermidis, the most frequent causes of biofilm-associated infections on indwelling medical devices, can switch between an existence as single free-floating cells and multicellular biofilms. During biofilm formation, cells first attach to a surface and then multiply to form microcolonies. They subsequently produce the extracellular matrix, a hallmark of biofilm formation, which consists of polysaccharides, proteins, and extracellular DNA. After biofilm maturation into three-dimensional structures, the biofilm community undergoes a disassembly process that leads to the dissemination of staphylococcal cells. As biofilms are dynamic and complex biological systems, staphylococci have evolved a vast network of regulatory mechanisms to modify and fine-tune biofilm development upon changes in environmental conditions. Thus, biofilm formation is used as a strategy for survival and persistence in the human host and can serve as a reservoir for spreading to new infection sites. Moreover, staphylococcal biofilms provide enhanced resilience toward antibiotics and the immune response and impose remarkable therapeutic challenges in clinics worldwide. This review provides an overview and an updated perspective on staphylococcal biofilms, describing the characteristic features of biofilm formation, the structural and functional properties of the biofilm matrix, and the most important mechanisms involved in the regulation of staphylococcal biofilm formation. Finally, we highlight promising strategies and technologies, including multitargeted or combinational therapies, to eradicate staphylococcal biofilms.
Collapse
Affiliation(s)
- Katrin Schilcher
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Veterans Affairs Eastern Colorado Health Care System, Denver, Colorado, USA
| |
Collapse
|
37
|
Schilcher K, Horswill AR. Staphylococcal Biofilm Development: Structure, Regulation, and Treatment Strategies. Microbiol Mol Biol Rev 2020. [PMID: 32792334 DOI: 10.1128/mmbr.00026-19/asset/e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
In many natural and clinical settings, bacteria are associated with some type of biotic or abiotic surface that enables them to form biofilms, a multicellular lifestyle with bacteria embedded in an extracellular matrix. Staphylococcus aureus and Staphylococcus epidermidis, the most frequent causes of biofilm-associated infections on indwelling medical devices, can switch between an existence as single free-floating cells and multicellular biofilms. During biofilm formation, cells first attach to a surface and then multiply to form microcolonies. They subsequently produce the extracellular matrix, a hallmark of biofilm formation, which consists of polysaccharides, proteins, and extracellular DNA. After biofilm maturation into three-dimensional structures, the biofilm community undergoes a disassembly process that leads to the dissemination of staphylococcal cells. As biofilms are dynamic and complex biological systems, staphylococci have evolved a vast network of regulatory mechanisms to modify and fine-tune biofilm development upon changes in environmental conditions. Thus, biofilm formation is used as a strategy for survival and persistence in the human host and can serve as a reservoir for spreading to new infection sites. Moreover, staphylococcal biofilms provide enhanced resilience toward antibiotics and the immune response and impose remarkable therapeutic challenges in clinics worldwide. This review provides an overview and an updated perspective on staphylococcal biofilms, describing the characteristic features of biofilm formation, the structural and functional properties of the biofilm matrix, and the most important mechanisms involved in the regulation of staphylococcal biofilm formation. Finally, we highlight promising strategies and technologies, including multitargeted or combinational therapies, to eradicate staphylococcal biofilms.
Collapse
Affiliation(s)
- Katrin Schilcher
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Veterans Affairs Eastern Colorado Health Care System, Denver, Colorado, USA
| |
Collapse
|
38
|
Álvarez-Rodríguez I, Arana L, Ugarte-Uribe B, Gómez-Rubio E, Martín-Santamaría S, Garbisu C, Alkorta I. Type IV Coupling Proteins as Potential Targets to Control the Dissemination of Antibiotic Resistance. Front Mol Biosci 2020; 7:201. [PMID: 32903459 PMCID: PMC7434980 DOI: 10.3389/fmolb.2020.00201] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022] Open
Abstract
The increase of infections caused by multidrug-resistant bacteria, together with the loss of effectiveness of currently available antibiotics, represents one of the most serious threats to public health worldwide. The loss of human lives and the economic costs associated to the problem of the dissemination of antibiotic resistance require immediate action. Bacteria, known by their great genetic plasticity, are capable not only of mutating their genes to adapt to disturbances and environmental changes but also of acquiring new genes that allow them to survive in hostile environments, such as in the presence of antibiotics. One of the major mechanisms responsible for the horizontal acquisition of new genes (e.g., antibiotic resistance genes) is bacterial conjugation, a process mediated by mobile genetic elements such as conjugative plasmids and integrative conjugative elements. Conjugative plasmids harboring antibiotic resistance genes can be transferred from a donor to a recipient bacterium in a process that requires physical contact. After conjugation, the recipient bacterium not only harbors the antibiotic resistance genes but it can also transfer the acquired plasmid to other bacteria, thus contributing to the spread of antibiotic resistance. Conjugative plasmids have genes that encode all the proteins necessary for the conjugation to take place, such as the type IV coupling proteins (T4CPs) present in all conjugative plasmids. Type VI coupling proteins constitute a heterogeneous family of hexameric ATPases that use energy from the ATP hydrolysis for plasmid transfer. Taking into account their essential role in bacterial conjugation, T4CPs are attractive targets for the inhibition of bacterial conjugation and, concomitantly, the limitation of antibiotic resistance dissemination. This review aims to compile present knowledge on T4CPs as a starting point for delving into their molecular structure and functioning in future studies. Likewise, the scientific literature on bacterial conjugation inhibitors has been reviewed here, in an attempt to elucidate the possibility of designing T4CP-inhibitors as a potential solution to the dissemination of multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Itxaso Álvarez-Rodríguez
- Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain
| | - Lide Arana
- Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain
| | - Begoña Ugarte-Uribe
- Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain
| | - Elena Gómez-Rubio
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CIB-CSIC, Madrid, Spain
| | - Sonsoles Martín-Santamaría
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CIB-CSIC, Madrid, Spain
| | - Carlos Garbisu
- Department of Conservation of Natural Resources, Soil Microbial Ecology Group, NEIKER - Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Parque Cient fico y Tecnológico de Bizkaia, Derio, Spain
| | - Itziar Alkorta
- Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain
| |
Collapse
|
39
|
Hleba L, Hlebová M, Kováčik A, Šmehýl P, Hricáková N, Petrová J, Shariati MA, Čuboň J. Escherichia coli as a carrier of tetracyclines and penicillins resistance in wild pheasant ( Phasianus colchicus). JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:1201-1209. [PMID: 32539543 DOI: 10.1080/10934529.2020.1777050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/24/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
Wild animals like pheasant seem to be a good source of information about human activities. Therefore, the wild pheasants and relative stable appendix microcenosis were selected for antibiotic resistance testing. Penicillin resistance by MALDI-TOF Mass Spectrometry and tetracyclines resistance by genetic methods using specific primers were tested. Differences between tetracycline and penicillin resistance were detected. Results showed high prevalence of resistant Escherichia coli isolated from wild pheasant appendix. E. coli isolated from wild pheasant appendix carried plasmids for penicillins and tetracyclines resistance where they were responsible for enzymatic degradation of penicillin and carried genes for regulating efflux pumps for tetracyclines. Results showed that tetracyclines and penicillins resistance is widespread between wild pheasants with a carrier as Escherichia coli isolated from relative stable microcenosis of appendix.
Collapse
Affiliation(s)
- Lukáš Hleba
- Faculty of biotechnology and food sciences, Department of microbiology, Slovak University of Agriculture, Nitra, Slovakia
| | - Miroslava Hlebová
- Department of Biology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, Trnava, Slovakia
| | - Anton Kováčik
- Faculty of biotechnology and food sciences, Department of animal physiology, Slovak University of Agriculture, Nitra, Slovakia
| | - Peter Šmehýl
- Faculty of agrobiology and food resources, Department of poultry science and farm animal husbandry, Slovak university of agriculture, Nitra, Slovakia
| | - Nikola Hricáková
- Faculty of biotechnology and food sciences, Department of microbiology, Slovak University of Agriculture, Nitra, Slovakia
| | - Jana Petrová
- Faculty of biotechnology and food sciences, Department of microbiology, Slovak University of Agriculture, Nitra, Slovakia
| | - Mohammad Ali Shariati
- All-Russian Research Institute of Phytopathology of Federal Agency of Scientific Organizations of Russia, Moscow, Russia
| | - Juraj Čuboň
- Faculty of biotechnology and food sciences, Department of Technology and Quality of Animal Products, Slovak University of Agriculture, Nitra, Slovakia
| |
Collapse
|
40
|
Andrade-Oliveira AL, Rossi CC, Souza-Silva T, Giambiagi-deMarval M. Staphylococcus nepalensis, a commensal of the oral microbiota of domestic cats, is a reservoir of transferrable antimicrobial resistance. MICROBIOLOGY-SGM 2020; 166:727-734. [PMID: 32520697 DOI: 10.1099/mic.0.000940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Staphylococcus nepalensis is a commensal bacterium from the oral microbiota of domestic cats, with a still obscure clinical importance. In this work, we analysed the ability of feline strains of S. nepalensis to transfer antimicrobial resistance genes to Staphylococcus aureus isolated from humans through plasmids. To this end, we first analysed all publicly available genomes from cat staphylococci using computational methods to build a pan-resistome. Genes that encode resistance to erythromycin, gentamicin, mupirocin and tetracycline, common to human and cat staphylococci and previously described to be located in mobile genetic elements, were chosen for the next analyses. We studied 15 strains of S. nepalensis, which were shown to be genetically different by GTG5-PCR. As observed by disc diffusion, resistance to tetracycline was widespread (80 %), followed by resistance to erythromycin (40 %), gentamicin (27 %) and mupirocin (7 %). The strains were positive for several antimicrobial resistance genes and more than half of them harboured plasmids. The loss of plasmids and resistance genes in some strains were induced by stress with SDS. Through conjugation experiments, we observed that these plasmids can be transferred to S. aureus, thus increasing its potential to resist drug therapy. Our findings show that S. nepalensis, an underestimated inhabitant of the cat microbiota, can be a reservoir of antimicrobial resistance genes for S. aureus and, like many other staphylococci, be an overlooked and silent threat to their animal hosts and humans living with them.
Collapse
Affiliation(s)
- Ana Luisa Andrade-Oliveira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ciro César Rossi
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thaysa Souza-Silva
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcia Giambiagi-deMarval
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
41
|
Michalik M, Samet A, Podbielska-Kubera A, Savini V, Międzobrodzki J, Kosecka-Strojek M. Coagulase-negative staphylococci (CoNS) as a significant etiological factor of laryngological infections: a review. Ann Clin Microbiol Antimicrob 2020; 19:26. [PMID: 32498711 PMCID: PMC7271473 DOI: 10.1186/s12941-020-00367-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/25/2020] [Indexed: 12/18/2022] Open
Abstract
This review article shows that coagulase-negative staphylococci (CoNS) are widely responsible for laryngological diseases. General characteristics of CoNS infections are shown in the introduction, and the pathogenicity in terms of virulence determinants, biofilm formation and genetic regulation mechanisms of these bacteria is presented in the first part of the paper to better display the virulence potential of staphylococci. The PubMed search keywords were as follows: CoNS and: nares infections, nasal polyps, rhinosinusitis, necrosing sinusitis, periprosthetic joint infection, pharyngitis, osteomyelitis of skull and neck bones, tonsillitis and recurrent tonsillitis. A list of laryngological infections and those related to skull and neck bones was presented with descriptions of the following diseases: rhinosinusitis, necrotizing sinusitis, nasal polyps, nares and nasal skin infections, periprosthetic joint infections, osteomyelitis, pharyngitis, and tonsillitis. Species identification and diagnostic problems challenging for diagnosticians are presented. Concluding remarks regarding the presence of CoNS in humans and their distribution, particularly under the effect of facilitating factors, are mentioned.
Collapse
Affiliation(s)
| | | | | | - Vincenzo Savini
- Clinical Microbiology and Virology, Spirito Santo Hospital, Pescara, PE, Italy
| | - Jacek Międzobrodzki
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Maja Kosecka-Strojek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
42
|
Virulence Characteristics of mecA-Positive Multidrug-Resistant Clinical Coagulase-Negative Staphylococci. Microorganisms 2020; 8:microorganisms8050659. [PMID: 32369929 PMCID: PMC7284987 DOI: 10.3390/microorganisms8050659] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 12/15/2022] Open
Abstract
Coagulase-negative staphylococci (CoNS) are an important group of opportunistic pathogenic microorganisms that cause infections in hospital settings and are generally resistant to many antimicrobial agents. We report on phenotypic and genotypic virulence characteristics of a select group of clinical, mecA-positive (encoding penicillin-binding protein 2a) CoNS isolates. All CoNS were resistant to two or more antimicrobials with S. epidermidis strain 214EP, showing resistance to fifteen of the sixteen antimicrobial agents tested. Aminoglycoside-resistance genes were the ones most commonly detected. The presence of megaplasmids containing both horizontal gene transfer and antimicrobial resistance genetic determinants indicates that CoNS may disseminate antibiotic resistance to other bacteria. Staphylococcus sciuri species produced six virulence enzymes, including a DNase, gelatinase, lipase, phosphatase, and protease that are suspected to degrade tissues into nutrients for bacterial growth and contribute to the pathogenicity of CoNS. The PCR assay for the detection of biofilm-associated genes found the eno (encoding laminin-binding protein) gene in all isolates. Measurement of their biofilm-forming ability and Spearman’s rank correlation coefficient analyses revealed that the results of crystal violet (CV) and extracellular polymeric substances (EPS) assays were significantly correlated (ρ = 0.9153, P = 3.612e-12). The presence of virulence factors, biofilm-formation capability, extracellular enzymes, multidrug resistance, and gene transfer markers in mecA-positive CoNS clinical strains used in this study makes them powerful opportunistic pathogens. The study also warrants a careful evaluation of nosocomial infections caused by CoNS and may be useful in studying the mechanism of virulence and factors associated with their pathogenicity in vivo and developing effective strategies for mitigation.
Collapse
|
43
|
Silva KCS, Silva LOS, Silva GAA, Borges CL, Novaes E, Paccez JD, Fontes W, Giambiagi-deMarval M, Soares CMDA, Parente-Rocha JA. Staphylococcus saprophyticus Proteomic Analyses Elucidate Differences in the Protein Repertories among Clinical Strains Related to Virulence and Persistence. Pathogens 2020; 9:pathogens9010069. [PMID: 31963821 PMCID: PMC7169411 DOI: 10.3390/pathogens9010069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus saprophyticus is a Gram-positive and coagulase negative cocci that composes the skin microbiota and can act as an opportunistic agent causing urinary tract infections, being more frequent in sexually active young women. The ability of a pathogen to cause infection in the host is associated to its ability to adhere to host cells and to survive host immune defenses. In this work, we presented the comparative proteomic profile of three S. saprophyticus strains. It was possible to characterize differences in the proteome content, specially related to expression of virulence factors. We compiled this data and previous data and we detected one strain (9325) possessing higher production and secretion of proteins related to virulence. Our results show that phenotypic, genotypic, and proteomic differences reflect in the ability to survive during interaction with host cells, since the 9325 strain presented a higher survival rate after macrophage interaction. In counterpart, the 7108 strain that possesses lower content of proteins related to virulence presented higher ability to form biofilm suggesting that this strain can be better adapted to persist in the host and in the environment. Our work describes, for the first time, proteomic flexibility among S. saprophyticus strains, reflecting in virulence and persistence.
Collapse
Affiliation(s)
- Karla Christina Sousa Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia-GO 74690-900, Brazil; (K.C.S.S.); (L.O.S.S.); (G.A.A.S.); (C.L.B.); (J.D.P.); (C.M.d.A.S.)
| | - Lana O’Hara Souza Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia-GO 74690-900, Brazil; (K.C.S.S.); (L.O.S.S.); (G.A.A.S.); (C.L.B.); (J.D.P.); (C.M.d.A.S.)
| | - Guilherme Algusto Alves Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia-GO 74690-900, Brazil; (K.C.S.S.); (L.O.S.S.); (G.A.A.S.); (C.L.B.); (J.D.P.); (C.M.d.A.S.)
| | - Clayton Luiz Borges
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia-GO 74690-900, Brazil; (K.C.S.S.); (L.O.S.S.); (G.A.A.S.); (C.L.B.); (J.D.P.); (C.M.d.A.S.)
| | - Evandro Novaes
- Departamento de Biologia, Universidade Federal de Lavras, Lavras 37200-900, Brazil;
| | - Juliano Domiraci Paccez
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia-GO 74690-900, Brazil; (K.C.S.S.); (L.O.S.S.); (G.A.A.S.); (C.L.B.); (J.D.P.); (C.M.d.A.S.)
| | - Wagner Fontes
- Laboratório de Química de Proteínas, Instituto de Biologia, Universidade de Brasília, UnB-Brasilia 70910-900, Brazil;
| | - Marcia Giambiagi-deMarval
- Laboratório de Microbiologia Molecular, Instituto de Microbiologia Prof. Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ 21941-902, Brazil;
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia-GO 74690-900, Brazil; (K.C.S.S.); (L.O.S.S.); (G.A.A.S.); (C.L.B.); (J.D.P.); (C.M.d.A.S.)
| | - Juliana Alves Parente-Rocha
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia-GO 74690-900, Brazil; (K.C.S.S.); (L.O.S.S.); (G.A.A.S.); (C.L.B.); (J.D.P.); (C.M.d.A.S.)
- Correspondence:
| |
Collapse
|
44
|
Torres G, Vargas K, Cuesta-Astroz Y, Reyes-Vélez J, Olivera-Angel M. Phenotypic Characterization and Whole Genome Analysis of a Strong Biofilm-Forming Staphylococcus aureus Strain Associated With Subclinical Bovine Mastitis in Colombia. Front Vet Sci 2020. [PMID: 33102540 DOI: 10.3389/fvets.2020.00530/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
Staphylococcus aureus represent a serious threat to public health due to food safety, antibiotic resistance, and the potential zoonotic transmission of strains between dairy cattle and humans. Biofilm formation by S. aureus results in chronicity of the infections which confers protection against the immune response and antibiotics. Likewise, biofilm allows the exchange of mobile genetic material among different strains through microbial interactions inside the matrix. In Colombia, where S. aureus continues to be one of the main pathogens isolated from bovine intramammary infections and where milking by hand is highly frequent, there are knowledge gaps on the zoonotic potential of the strains. Therefore, the aim of this work was to characterize genotypically and phenotypically the S. aureus Sa1FB strain with strong biofilm production and to perform genomic and phenotypic comparisons with other relevant S. aureus strains (native and references strains). These results show a highly productive strain of biofilm and a low ability of cell invasion compared to the other two native strains. In addition, high genomic similarity between S. aureus Sa1FB and the reference strains was observed, despite of the differences reported at the clinical level. However, Sa1FB exhibited special features in terms of mobile genetic elements, highlighting its ability to accept foreign genetic material. Indeed, this could increase mutation, pathogenesis, and adaptability to new hosts, representing a risk for people in contact with the milk obtained from animals infected with these strains. These results present the relevance of surveillance for early detection of emergent clones with zoonotic potential, which reduces the risk of occupational exposure and their spread in the community.
Collapse
Affiliation(s)
- Giovanny Torres
- Biogenesis Research Group, Department of Agricultural Sciences, University of Antioquia, Medellín, Colombia
- Colombian Institute of Tropical Medicine-CES University, Medellín, Colombia
| | - Karen Vargas
- Biogenesis Research Group, Department of Agricultural Sciences, University of Antioquia, Medellín, Colombia
| | | | - Julián Reyes-Vélez
- Biogenesis Research Group, Department of Agricultural Sciences, University of Antioquia, Medellín, Colombia
| | - Martha Olivera-Angel
- Biogenesis Research Group, Department of Agricultural Sciences, University of Antioquia, Medellín, Colombia
| |
Collapse
|
45
|
Lee S, Hwang J, Kim J, Lee J, Kim HC, Rhim H, Han JI. Biofilm production of coagulase-negative staphylococci isolated from rescued wild animals in the Republic of Korea. Acta Vet Scand 2019; 61:50. [PMID: 31651349 PMCID: PMC6814046 DOI: 10.1186/s13028-019-0485-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 10/17/2019] [Indexed: 12/16/2022] Open
Abstract
Biofilm production is a well-known causative factor of catheter- and medical device-related sepsis. Its high prevalence in coagulase-negative staphylococci (CoNS) has recently been reported. Information on biofilm production in CoNS isolated from wild animals is lacking. Herein, we studied the biofilm formation capabilities of CoNS isolated from rescued wild animals in the Republic of Korea. Swab samples were collected from the conjunctiva, nasal cavity, perianal area, and rectum for mammals while the sampling was done from the conjunctiva, oral mucosa, pericloacal area, and cloaca for birds. Isolation of CoNS was based on morphological and biochemical analyses along with molecular typing. Biofilm production was analyzed using 96-well plate based quantitative adherence assays. The studies demonstrated that CoNS of mammalian origin have higher biofilm-producing ability (70.4%) than the isolates from birds (62.5%). In particular, all methicillin-resistant (MR) CoNS isolated from mammals were capable of biofilm formation while only 63.3% of MR CoNS isolated from birds could produce biofilms. The MR CoNS isolated from mammals also had a significantly higher ability to form biofilms (100%) than methicillin susceptible CoNS (60.0%) than those isolates from birds. The findings show that wild animals may act as reservoirs as well as possible transmitters of biofilm-mediated antibiotic resistant genes.
Collapse
|
46
|
Pei M, Zhang B, He Y, Su J, Gin K, Lev O, Shen G, Hu S. State of the art of tertiary treatment technologies for controlling antibiotic resistance in wastewater treatment plants. ENVIRONMENT INTERNATIONAL 2019; 131:105026. [PMID: 31351383 DOI: 10.1016/j.envint.2019.105026] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/15/2019] [Accepted: 07/15/2019] [Indexed: 05/27/2023]
Abstract
Antibiotic resistance genes (ARGs) have been considered as emerging contaminants of concern nowadays. There are no special technologies designed to directly remove ARGs in wastewater treatment plants (WWTPs). In order to reduce the risk of ARGs, it is vital to understand the efficiency of advanced treatment technologies in removing antibiotic resistance genes in WWTPs. This review highlights the application and efficiency of tertiary treatment technologies on the elimination of ARGs, s, based on an understanding of their occurrence and fate in WWTPs. These technologies include chemical-based processes such as chlorination, ozonation, ultraviolet, and advanced oxidation technology, as well as physical separation processes, biological processes such as constructed wetland and membrane bioreactor, and soil aquifer treatment. The merits, limitations and ameliorative measures of these processes are discussed, with the view to optimizing future treatment strategies and identifying new research directions.
Collapse
Affiliation(s)
- Mengke Pei
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bo Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianqiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Karina Gin
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Ovadia Lev
- The Casali Center and the Institute of Chemistry and The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel
| | - Genxiang Shen
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Shuangqing Hu
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| |
Collapse
|
47
|
Salisbury AM, Mullin M, Chen R, Percival SL. Efficacy of Poloxamer-Based Wound Dressings on Acinetobacter baumanni Biofilms. Adv Wound Care (New Rochelle) 2019; 8:463-468. [PMID: 31456903 DOI: 10.1089/wound.2018.0854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/15/2019] [Indexed: 12/17/2022] Open
Abstract
Objective: This study evaluated the antimicrobial and antibiofilm activity of a concentrated surfactant gel preserved with antimicrobials and a concentrated surfactant gel with 1% silver sulfadiazine (SSD) against 12 clinical strains of Acinetobacter baumannii and the type strain A. baumannii ATCC 19606. Approach: The biofilm-forming potential of the A. baumannii isolates was investigated using a crystal violet assay and classifying the isolates as "non-adherent," "weak," "moderate," or "strong" biofilm formers. The antimicrobial activity was determined using the zone of inhibition (ZOI) method. The antibiofilm activity was evaluated against A. baumannii ATCC 19606 using the Center for Disease Control bioreactor model. Results: A. baumannii readily forms biofilms with 8 out of the 12 clinical isolates being classified as strong biofilm formers (OD570 > 0.4). The concentrated surfactant gel with 1% SSD demonstrated antimicrobial activity against all isolates with a ZOI of 7.2-14 mm. Antibiofilm activity against a 24 h biofilm of A. baumannii ATCC 19606 was found, with a ≥7 log decrease in bacterial cell density following 24 h treatment with the concentrated surfactant gel with 1% SSD. The concentrated surfactant gel preserved with antimicrobials also showed some biofilm disruption with ∼3 log decrease in bacterial cell density being found. Innovation: The concentrated surfactant gel with 1% SSD used in this study showed antimicrobial and antibiofilm activity against A. baumannii. Conclusion: The concentrated surfactant gel with 1% SSD used in this study showed efficacy against A. baumannii, a common cause of wound infections, and should be considered for treatment of wounds infected with A. baumannii in health care settings.
Collapse
Affiliation(s)
- Anne-Marie Salisbury
- 5D Health Protection Group Ltd., Centre of Excellence in Biofilm Science, Liverpool Bio-Innovation Hub, Liverpool, United Kingdom
| | - Marc Mullin
- 5D Health Protection Group Ltd., Centre of Excellence in Biofilm Science, Liverpool Bio-Innovation Hub, Liverpool, United Kingdom
| | - Rui Chen
- 5D Health Protection Group Ltd., Centre of Excellence in Biofilm Science, Liverpool Bio-Innovation Hub, Liverpool, United Kingdom
| | - Steven L. Percival
- 5D Health Protection Group Ltd., Centre of Excellence in Biofilm Science, Liverpool Bio-Innovation Hub, Liverpool, United Kingdom
| |
Collapse
|
48
|
Pain M, Hjerde E, Klingenberg C, Cavanagh JP. Comparative Genomic Analysis of Staphylococcus haemolyticus Reveals Key to Hospital Adaptation and Pathogenicity. Front Microbiol 2019; 10:2096. [PMID: 31552006 PMCID: PMC6747052 DOI: 10.3389/fmicb.2019.02096] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/26/2019] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus haemolyticus is a skin commensal gaining increased attention as an emerging pathogen of nosocomial infections. However, knowledge about the transition from a commensal to an invasive lifestyle remains sparse and there is a paucity of studies comparing pathogenicity traits between commensal and clinical isolates. In this study, we used a pan-genomic approach to identify factors important for infection and hospital adaptation by exploring the genomic variability of 123 clinical isolates and 46 commensal S. haemolyticus isolates. Phylogenetic reconstruction grouped the 169 isolates into six clades with a distinct distribution of clinical and commensal isolates in the different clades. Phenotypically, multi-drug antibiotic resistance was detected in 108/123 (88%) of the clinical isolates and 5/46 (11%) of the commensal isolates (p < 0.05). In the clinical isolates, we commonly identified a homolog of the serine-rich repeat glycoproteins sraP. Additionally, three novel capsular polysaccharide operons were detected, with a potential role in S. haemolyticus virulence. Clinical S. haemolyticus isolates showed specific signatures associated with successful hospital adaption. Biofilm forming S. haemolyticus isolates that are resistant to oxacillin (mecA) and aminoglycosides (aacA-aphD) are most likely invasive isolates whereas absence of these traits strongly indicates a commensal isolate. We conclude that our data show a clear segregation of isolates of commensal origin, and specific genetic signatures distinguishing the clinical isolates from the commensal isolates. The widespread use of antimicrobial agents has probably promoted the development of successful hospital adapted clones of S. haemolyticus clones through acquisition of mobile genetic elements or beneficial point mutations and rearrangements in surface associated genes.
Collapse
Affiliation(s)
- Maria Pain
- Pediatric Infections Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Erik Hjerde
- Department of Chemistry, Norstruct, UiT The Arcic University of Norway, Tromsø, Norway
| | - Claus Klingenberg
- Pediatric Infections Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway.,Department of Paediatrics, University Hospital of North Norway, Tromsø, Norway
| | - Jorunn Pauline Cavanagh
- Pediatric Infections Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway.,Department of Paediatrics, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
49
|
Phylogenetic and Molecular Profile of Staphylococcus aureus Isolated from Bloodstream Infections in Northeast Brazil. Microorganisms 2019; 7:microorganisms7070210. [PMID: 31336623 PMCID: PMC6680844 DOI: 10.3390/microorganisms7070210] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 12/16/2022] Open
Abstract
Staphylococcus aureus is a notorious human pathogen associated with serious nosocomial and community-acquired infections, such as pneumonia, meningitis, endocarditis, toxic shock syndrome, and sepsis, among others. The objective of this study was to investigate the molecular profile, antimicrobial resistance, and clonal diversity of S. aureus isolated from the bloodstream. The determination of the minimum inhibitory concentration (MIC) of the antimicrobial was performed by an automated method. The presence of several virulence and resistance genes was evaluated by PCR. In addition, multilocus sequence typing (MLST) was used to analyze the clonal diversity of S. aureus. A high resistance to oxacillin (78%), clindamycin (78%), erythromycin (70%), ciprofloxacin (61%), and gentamicin (52%) was observed among the isolates. In most of them, the following virulence genes were detected: hlb (83%), ebpS (61%), icaA (57%), fnbpA (17%), and clfA (13%). Only one isolate carried the pvl gene. MLST analysis identified five new sequence types (STs): 5429, 5430, 5431, 5432, and 5433, as well as another seven-ST5, ST97, ST398, ST101, ST30, ST461, and ST2779-among the remaining strains. These seven STs and the four new STs are clustered in four clonal complexes: CC1, CC2, CC7, and CC17. Phylogenetic analysis showed the genetic relationship of the five new ST strains with another 18 strains. Altogether, these analyses indicate the horizontal transfer acquisition of virulence factor genes and multidrug resistance.
Collapse
|
50
|
Bukowski M, Piwowarczyk R, Madry A, Zagorski-Przybylo R, Hydzik M, Wladyka B. Prevalence of Antibiotic and Heavy Metal Resistance Determinants and Virulence-Related Genetic Elements in Plasmids of Staphylococcus aureus. Front Microbiol 2019; 10:805. [PMID: 31068910 PMCID: PMC6491766 DOI: 10.3389/fmicb.2019.00805] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/29/2019] [Indexed: 12/16/2022] Open
Abstract
The use of antibiotics on a mass scale, particularly in farming, and their release into the environment has led to a rapid emergence of resistant bacteria. Once emerged, resistance determinants are spread by horizontal gene transfer among strains of the same as well as disparate bacterial species. Their accumulation in free-living as well as livestock and community-associated strains results in the widespread multiple-drug resistance among clinically relevant species posing an increasingly pressing problem in healthcare. One of these clinically relevant species is Staphylococcus aureus, a common cause of hospital and community outbreaks. Among the rich diversity of mobile genetic elements regularly occurring in S. aureus such as phages, pathogenicity islands, and staphylococcal cassette chromosomes, plasmids are the major mean for dissemination of resistance determinants and virulence factors. Unfortunately, a vast number of whole-genome sequencing projects does not aim for complete sequence determination, which results in a disproportionately low number of known complete plasmid sequences. To address this problem we determined complete plasmid sequences derived from 18 poultry S. aureus strains and analyzed the prevalence of antibiotic and heavy metal resistance determinants, genes of virulence factors, as well as genetic elements relevant for their maintenance. Some of the plasmids have been reported before and are being found in clinical isolates of strains typical for humans or human ones of livestock origin. This shows that livestock-associated staphylococci are a significant reservoir of resistance determinants and virulence factors. Nevertheless, nearly half of the plasmids were unknown to date. In this group we found a potentially mobilizable plasmid pPA3 being a unique example of accumulation of resistance determinants and virulence factors likely stabilized by a presence of a toxin–antitoxin system.
Collapse
Affiliation(s)
- Michal Bukowski
- Department of Analytical Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Rafal Piwowarczyk
- Department of Analytical Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Anna Madry
- Department of Analytical Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Rafal Zagorski-Przybylo
- Department of Analytical Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Marcin Hydzik
- Department of Analytical Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Benedykt Wladyka
- Department of Analytical Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|