1
|
Estelle DL, Jacques GE, Issiaka S, Lovett B, Abdoulaye D, Etienne B. Unstable laboratory Wolbachia strain w-Anga is negatively correlated with Plasmodium falciparum in wild malaria vectors. Sci Rep 2025; 15:17732. [PMID: 40404927 PMCID: PMC12098879 DOI: 10.1038/s41598-025-97288-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 04/03/2025] [Indexed: 05/24/2025] Open
Abstract
Spread of insecticides resistance threatens the control of malaria. In this context, biological control using an endosymbiotic bacterium Wolbachia is being explored as a complementary method for its control. However, for optimal use of this bacterium in biocontrol strategies, it is imperative to characterize it. So, Anopheles gambiae complex mosquitoes were collected, morphologically identified, then blood fed and gravid female mosquitoes oviposited individually. After oviposition, the species of parent was molecularly determined, along with their w-Anga infection status. Additionally, we performed 16SrRNA gene sequencing of w-Anga-positive mosquitoes to determine their phylogeny. Finally, we amplified gene encoding the circumsporozoite protein to determinate their Plasmodium falciparum infection status and assessed the stability of w-Anga transmission of positive females and their offspring. From the results obtained, our w-Anga strains cluster with other Wolbachia Supergroup B strains. However, the prevalence of Plasmodium falciparum infection was lower in Wolbachia-infected females (4.59%) than in those uninfected (22.02%). Furthermore, the transmission frequency of this bacterium in infected Anopheles coluzzii females of the F0 generation to F1 offspring was 10.64% and 16.67% from infected females of the F1 generation to F2 offspring. This study results will serve as preliminary data for the possible use of Wolbachia in malaria control.
Collapse
Affiliation(s)
- Dembélé L Estelle
- Institut de Recherche en Sciences de la Santé (IRSS) Direction Régionale de l'Ouest (DRO)/CNRST, Bobo Dioulasso, Burkina Faso
- Centre d'Excellence Africain en Innovations Biotechnologiques pour l'Elimination des Maladies à Transmission Vectorielle (CEA-ITECH/MTV), Université Nazi Boni, Bobo Dioulasso, Burkina Faso
- Université Nazi Boni (UNB), Bobo Dioulasso, Burkina Faso
| | - Gnambani E Jacques
- Institut de Recherche en Sciences de la Santé (IRSS) Direction Régionale de l'Ouest (DRO)/CNRST, Bobo Dioulasso, Burkina Faso
- Institut National de Santé Publique (INSP)/Centre Muraz, Bobo Dioulasso, Burkina Faso
- Université Nazi Boni (UNB), Bobo Dioulasso, Burkina Faso
| | - Saré Issiaka
- Institut de Recherche en Sciences de la Santé (IRSS) Direction Régionale de l'Ouest (DRO)/CNRST, Bobo Dioulasso, Burkina Faso
- Institut National de Santé Publique (INSP)/Centre Muraz, Bobo Dioulasso, Burkina Faso
| | - Brian Lovett
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, NY, USA
| | - Diabaté Abdoulaye
- Institut de Recherche en Sciences de la Santé (IRSS) Direction Régionale de l'Ouest (DRO)/CNRST, Bobo Dioulasso, Burkina Faso.
- Institut National de Santé Publique (INSP)/Centre Muraz, Bobo Dioulasso, Burkina Faso.
- Centre d'Excellence Africain en Innovations Biotechnologiques pour l'Elimination des Maladies à Transmission Vectorielle (CEA-ITECH/MTV), Université Nazi Boni, Bobo Dioulasso, Burkina Faso.
| | - Bilgo Etienne
- Institut de Recherche en Sciences de la Santé (IRSS) Direction Régionale de l'Ouest (DRO)/CNRST, Bobo Dioulasso, Burkina Faso.
- Institut National de Santé Publique (INSP)/Centre Muraz, Bobo Dioulasso, Burkina Faso.
| |
Collapse
|
2
|
Mahillon M, Debonneville C, Groux R, Roquis D, Brodard J, Faoro F, Foissac X, Schumpp O, Dittmer J. From insect endosymbiont to phloem colonizer: comparative genomics unveils the lifestyle transition of phytopathogenic Arsenophonus strains. mSystems 2025; 10:e0149624. [PMID: 40202301 PMCID: PMC12090721 DOI: 10.1128/msystems.01496-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/10/2025] [Indexed: 04/10/2025] Open
Abstract
Bacteria infecting the plant phloem represent a growing threat worldwide. While these organisms often resist in vitro culture, they multiply both in plant sieve elements and hemipteran vectors. Such cross-kingdom parasitic lifestyle has emerged in diverse taxa via distinct ecological routes. In the genus Arsenophonus, the phloem pathogens "Candidatus Arsenophonus phytopathogenicus" (Ap) and "Ca. Phlomobacter fragariae" (Pf) have evolved from insect endosymbionts, but the genetic mechanisms underlying this transition have not been explored. To fill this gap, we obtained the genomes of both strains from insect host metagenomes. The resulting assemblies are highly similar in size and functional repertoire, rich in viral sequences, and closely resemble the genomes of several facultative endosymbiotic Arsenophonus strains of sap-sucking hemipterans. However, a phylogenomic analysis demonstrated distinct origins, as Ap belongs to the "Triatominarum" clade, whereas Pf represents a distant species. We identified a set of orthologs encoded only by Ap and Pf in the genus, including hydrolytic enzymes likely targeting plant substrates. In particular, both bacteria encode putative plant cell wall-degrading enzymes and cysteine peptidases related to xylellain, a papain-like peptidase from Xylella fastidiosa, for which close homologs are found in diverse Pseudomonadota infecting the plant vasculature. In silico predictions and gene expression analyses further support a role during phloem colonization for several of the shared orthologs. We conclude that the double emergence of phytopathogenicity in Arsenophonus may have been mediated by a few horizontal gene transfer events, involving genes acquired from other Pseudomonadota, including phytopathogens. IMPORTANCE We investigate the genetic mechanisms of a transition in bacterial lifestyle. We focus on two phloem pathogens belonging to the genus Arsenophonus: "Candidatus Arsenophonus phytopathogenicus" and "Ca. Phlomobacter fragariae." Both bacteria cause economically significant pathologies, and they have likely emerged among facultative insect endosymbionts. Our genomic analyses show that both strains are highly similar to other strains of the genus associated with sap-sucking hemipterans, suggesting a recent lifestyle shift. Importantly, although the phytopathogenic Arsenophonus strains belong to distant clades, they share a small set of orthologs unique in the genus pangenome. We provide evidence that several of these genes produce hydrolytic enzymes that are secreted and may target plant substrates. The acquisition and exchange of these genes may thus have played a pivotal role in the lifestyle transition of the phytopathogenic Arsenophonus strains.
Collapse
Affiliation(s)
- Mathieu Mahillon
- Research group Virology, Bacteriology and Phytoplasmology, Agroscope, Nyon, Switzerland
| | | | - Raphaël Groux
- Research group Virology, Bacteriology and Phytoplasmology, Agroscope, Nyon, Switzerland
| | - David Roquis
- Haute école du paysage, d'ingénierie et d'architecture de Genève, Geneva, Switzerland
| | - Justine Brodard
- Research group Virology, Bacteriology and Phytoplasmology, Agroscope, Nyon, Switzerland
| | - Franco Faoro
- Dipartimento di Scienze agrarie e ambientali, Università degli Studi di Milano, Milano, Italy
| | - Xavier Foissac
- UMR 1332 Biologie du Fruit et Pathologie, INRAE, Université de Bordeaux, Bordeaux, France
| | - Olivier Schumpp
- Research group Virology, Bacteriology and Phytoplasmology, Agroscope, Nyon, Switzerland
| | - Jessica Dittmer
- Dipartimento di Scienze agrarie e ambientali, Università degli Studi di Milano, Milano, Italy
- UMR 1345, Université d’Angers, Institut Agro, INRAE, IRHS, SFR Quasav, Angers, France
| |
Collapse
|
3
|
Torres-Llamas A, Díaz-Sáez V, Morales-Yuste M, Ibáñez-De Haro P, López-López AE, Corpas-López V, Morillas-Márquez F, Martín-Sánchez J. Assessing Wolbachia circulation in wild populations of phlebotomine sand flies from Spain and Morocco: implications for control of leishmaniasis. Parasit Vectors 2025; 18:155. [PMID: 40287743 PMCID: PMC12032678 DOI: 10.1186/s13071-025-06771-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Vector-borne diseases such as leishmaniasis exert a huge burden of morbidity and mortality that are mainly controlled through vector control. The increasing threat of insecticide-resistant vectors entails incorporating more vector control interventions to eliminate these diseases. Introduction of Wolbachia into wild vector populations has been suggested as a potential vector control measure that would require extensive regional knowledge. The aim of this work is to estimate the prevalence of Wolbachia infection and monitor circulating strains in wild sand fly populations from Spain and Morocco, two countries where leishmaniasis is endemic. METHODS Wolbachia was detected using polymerase chain reaction (PCR). Haplotype diversity was performed by sequencing, and phylogenetic relationships were then established. In silico prediction of the Wolbachia surface protein (WSP) structures was performed. To investigate the relationship between epidemiological variables and the presence of Wolbachia, regression analyses were employed. RESULTS Wolbachia was detected in 45.8% of the specimens tested (319/697), and similar infection rates were found (P = 0.92) in males (46.1%; 94/204) and females (45.6%; 225/493). Differences in infection were detected among Spanish sand fly species (P < 0.001), being higher for Phlebotomus papatasi (35/52) and Phlebotomus perniciosus (239/384). No infected Phlebotomus sergenti specimens were found in Spain, whereas two different Wolbachia haplotypes were detected in P. sergenti sand flies from Morocco. No significant differences were found between sex, species, or capture sites in specimens captured in Morocco (P > 0.05). Five Wolbachia haplotypes distributed in the known A and B supergroups were identified. Structural analysis showed a nine-amino acid insertion in the fourth loop of a Wolbachia haplotype found in P. sergenti specimens from El Borouj (Morocco). CONCLUSIONS We confirmed the circulation of different Wolbachia strains in all sand fly species investigated. All L. infantum proven or suspected vectors shared the same, or a closely related, Wolbachia haplotype. The haplotype bearing the loop insertion was found in the locality undergoing an anthroponotic cutaneous leishmaniasis outbreak. These extracellular loops might have some role in enhancing or inhibiting the development of Leishmania and other pathogens in sand flies. These findings are very promising and highlight the need to further investigate the tripartite interactions between Wolbachia strain, Leishmania species, and sand fly species/lineage.
Collapse
Affiliation(s)
- Andrés Torres-Llamas
- Department of Parasitology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain.
| | - Victoriano Díaz-Sáez
- Department of Parasitology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain
| | - Manuel Morales-Yuste
- Department of Parasitology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain
| | - Patricia Ibáñez-De Haro
- Department of Parasitology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain
| | - Arturo Enrique López-López
- Department of Parasitology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain
| | - Victoriano Corpas-López
- Department of Parasitology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain
| | - Francisco Morillas-Márquez
- Department of Parasitology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain
| | - Joaquina Martín-Sánchez
- Department of Parasitology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain.
| |
Collapse
|
4
|
Alimu A, Gao Y, Liu J, Lu Y. Geographic factors influence communities of symbiotic bacterial communities in Aphis gossypii across China's major cotton regions. Front Microbiol 2025; 16:1569543. [PMID: 40236481 PMCID: PMC11998284 DOI: 10.3389/fmicb.2025.1569543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 03/10/2025] [Indexed: 04/17/2025] Open
Abstract
Introduction Aphids are often infected with diverse bacterial symbionts that enhance their ecological adaptation. While geographic factors significantly influence aphid bacterial communities, research on environmental effects on the cotton aphid Aphis gossypii Glover feeding on cotton plants across China's major cotton-growing regions is limited. Methods This study examined the influence of geographic factors on the endosymbiotic bacterial community and diversity of A. gossypii by analyzing 58 field samples from 24 locations across China's major cotton-growing regions (2021-2022) using 16S rRNA (V3-V4) high-throughput sequencing. Results and discussion Our results demonstrate that geography is an important factor in shaping the endosymbiotic bacterial composition and diversity of A. gossypii. Among China's three major cotton-growing regions, the Yangtze River Basin exhibited the highest bacterial diversity, followed by the Northwestern Inland Region, and then the Yellow River Basin. Acinetobacter, Lactobacillus, Serratia, and Aeromonas were more abundant in the Yangtze River Basin, with positive correlations observed for Acinetobacter, Serratia, and Aeromonas in relation to annual precipitation. In contrast, Candidatus Uzinura, dominant in southern Xinjiang, displayed negative correlations with precipitation and longitude but a positive correlation with altitude, and this report is the first detection of it in A. gossypii. Buchnera was ubiquitous and negatively associated with both precipitation and temperature, while Arsenophonus showed no significant environmental correlations. These findings highlight the distinct influences of geographic factors on A. gossypii endosymbiotic communities across China's major cotton-growing regions, broadening our understanding of aphid-endosymbiont-environment interactions and offering potential avenues for biocontrol strategies.
Collapse
Affiliation(s)
- Abulaiti Alimu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Gao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinping Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanhui Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| |
Collapse
|
5
|
Gladem KB, Rugman-Jones PF, Shelton EK, Hanrahan KS, Bean DW, Rector BG. Sex-ratio distortion in a weed biological control agent, Ceratapion basicorne (Coleoptera: Brentidae), associated with a species of Rickettsia. ENVIRONMENTAL ENTOMOLOGY 2025; 54:109-118. [PMID: 39541572 PMCID: PMC11837339 DOI: 10.1093/ee/nvae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/18/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Many endosymbionts of insects have been shown to manipulate and alter their hosts' reproduction with implications for agriculture, disease transmission, and ecological systems. Less studied are the microbiota of classical biological control agents and the implications of inadvertent endosymbionts in laboratory colonies for field establishment and effects on target pests or nontarget organisms. While native-range field populations of agents may have a low incidence of vertically transmitted endosymbionts, quarantine and laboratory rearing of inbred populations may increase this low prevalence to fixation in relatively few generations. Fixation of detrimental endosymbionts in founding biological control agent populations prior to release may have far-reaching effects. Significant female-biased sex-ratio distortion was found within laboratory populations of the weevil Ceratapion basicorne (Illiger), a classical biological control agent that was recently approved for use against yellow starthistle (Centaurea solstitialis L.). This sex-ratio distortion was observed to be vertically inherited and reversible through antibiotic treatment of the host insect. Molecular diagnostics identified a Rickettsia sp. as the only bacterial endosymbiont present in breeding lines with distorted sex ratios and implicated this as the first reported Rickettsia associated with sex-ratio distortion within the superfamily Curculionoidea.
Collapse
Affiliation(s)
- Kristi B Gladem
- Palisade Insectary, Colorado Department of Agriculture, Palisade, CO, USA
| | | | - Emma K Shelton
- Palisade Insectary, Colorado Department of Agriculture, Palisade, CO, USA
| | - Kelly S Hanrahan
- Palisade Insectary, Colorado Department of Agriculture, Palisade, CO, USA
| | - Dan W Bean
- Palisade Insectary, Colorado Department of Agriculture, Palisade, CO, USA
| | - Brian G Rector
- USDA-ARS, Invasive Species and Pollinator Health Research Unit, Albany, CA 94710, USA
| |
Collapse
|
6
|
Zhang Y, Cai T, Wan H. Mobile Resistance Elements: Symbionts That Modify Insect Host Resistance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3842-3853. [PMID: 39920901 DOI: 10.1021/acs.jafc.4c10828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2025]
Abstract
Mounting evidence indicates that symbionts play a beneficial role through secondary metabolic compounds and various chemical processes in host adaptation to adversity, particularly in herbivorous insects whose survival is severely threatened by insecticides or secondary metabolite stress. Despite extensive research on insect symbionts, the spread of these beneficial symbionts and the correlation with host phenotypes limit our ability to predict and manage the adaptive capabilities of insect populations in changing environments. In this review, we propose the concept of "Mobile Resistance Elements (MRE)" to describe the dynamic and adaptable nature of resistance-related symbionts that can be transmitted between insect hosts. These elements encompass both the symbionts themselves and the associated traits they confer to their hosts, such as enhanced resilience to environmental stressors, toxins, and pathogens. The mobility of these resistance traits, facilitated through various transmission modes─including vertical and horizontal pathways─allows susceptible insect populations to acquire beneficial symbionts and their associated resistance phenotypes. By weaving together the threads of how symbionts shape host adaptability and survival strategies, this concept underscores the potential for symbionts to act as agents of rapid adaptation, enabling pest populations to thrive in changing environments and presenting both challenges and opportunities for pest management strategies.
Collapse
Affiliation(s)
- Yunhua Zhang
- Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, 310030 Hangzhou, Zhejiang Province, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingwei Cai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hu Wan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
7
|
Wu T, Rodrigues AA, Fayle TM, Henry LM. Defensive Symbiont Genotype Distributions Are Linked to Parasitoid Attack Networks. Ecol Lett 2025; 28:e70082. [PMID: 39964074 PMCID: PMC11834374 DOI: 10.1111/ele.70082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/06/2025] [Accepted: 01/16/2025] [Indexed: 02/21/2025]
Abstract
Facultative symbionts are widespread in arthropods and can provide important services such as protection from natural enemies. Yet what shapes associations with defensive symbionts in nature remains unclear. Two hypotheses suggest that interactions with either antagonists or host plants explain the prevalence of symbionts through shared selective pressures or vectors of symbiont transmission. Here we investigate the factors determining similarities in the Hamiltonella defensa symbiosis shared amongst field-collected aphid species. After accounting for host species relatedness, we find that Hamiltonella's genotype distribution aligns with sharing the same parasitoids, rather than host plants, highlighting parasitoids and hosts as key selective agents shaping the symbiosis across aphid species. Our data indicates parasitoid host specificity drives the prevalence of specific aphid-Hamiltonella associations, suggesting defensive symbioses are maintained by the selective pressure imposed by dominant parasitoids and their aphid hosts. These findings underscore the importance of interactions with natural enemies in explaining patterns of defensive symbiosis in nature.
Collapse
Affiliation(s)
- Taoping Wu
- School of Biological and Behavioural SciencesQueen Mary University of LondonLondonUK
| | - Anoushka A. Rodrigues
- School of Biological and Behavioural SciencesQueen Mary University of LondonLondonUK
| | - Tom M. Fayle
- School of Biological and Behavioural SciencesQueen Mary University of LondonLondonUK
- Biology Centre of the Czech Academy of SciencesInstitute of EntomologyCeske BudejoviceCzech Republic
| | - Lee M. Henry
- School of Biological and Behavioural SciencesQueen Mary University of LondonLondonUK
| |
Collapse
|
8
|
Yun JH, Park J, Xi H, Nam S, Lee W, Kim SK. Comprehensive Analysis of the Fourteen Complete Genome Sequences of Buchnera aphidicola Isolated from Aphis Species. J Microbiol Biotechnol 2024; 35:e2409004. [PMID: 39849922 PMCID: PMC11813355 DOI: 10.4014/jmb.2409.09004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 01/25/2025]
Abstract
Endosymbionts are important for insect species as they provide essential substances to the host. Due to the technical advance of NGS technology and de novo assemblers, many endosymbionts bacterial genomes are available now. Here, we analysed fourteen endosymbiont bacterial genomes of Aphis genius, one of notorious pest species. Fourteen genomes displayed the length between 628,098 bp to 634,931 bp; GC ratio was from 24.2 % to 25.6 % with no structural variation found. The nucleotide diversity distribution across the 14 endosymbiont genomes revealed three distinct regions, each separated by varying levels of nucleotide diversity. Intraspecific variations identified from endosymbiont bacterial genomes of the same host species revealed numbers of SNPs ranging from 31 (0.0049%) to 1,652 (0.26%) and those of INDELs ranging from 7 (21 bp; 0.0033%) to 104 (285 bp; 0.0045%). 250 unique SSRs, 28 different common SSR groups, and one different SSR group in two genomes were identified and used as a potential molecular marker to distinguish intraspecific population. Phylogenetic analysis further showed congruence between the endosymbiont bacterial genomes and the host species phylogeny, except Aphis nasturtii, Aphis helianth, and Aphis auranti, which require additional endosymbiont genomes for clarification. This comparative analysis result could serve as a cornerstone for understanding the relationship between host and endosymbiont species from a genomic perspective.
Collapse
Affiliation(s)
- Jin-Ho Yun
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology KRIBB), Daejeon 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science & Technology, Daejeon 34113, Republic of Korea
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | | | - Hong Xi
- Infoboss Inc., Seoul 06088, Republic of Korea
- Infoboss Research Center, Seoul 06088, Republic of Korea
| | - Sangjune Nam
- Agricultral Corporation Jeju Chunji, Jeju 63036, Repulic of Korea
| | - Wonhoon Lee
- Department of Plant Medicine and Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Seong-Ki Kim
- Department of Life science, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
9
|
Favoreto AL, Domingues MM, de Carvalho VR, Ribeiro MF, Zanuncio JC, Wilcken CF. Detection of Arsenophonus in Glycaspis brimblecombei (Hemiptera: Aphalaridae) populations in Brazil. Braz J Microbiol 2024; 55:3075-3079. [PMID: 39042246 PMCID: PMC11711745 DOI: 10.1007/s42770-024-01465-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 07/15/2024] [Indexed: 07/24/2024] Open
Abstract
Eucalyptus is the most intensively managed tree genus in the world. Different factors, including damage by insect pests, affect its growth and productivity. Among these pests is Glycaspis brimblecombei Moore (Hemiptera: Aphalaridae), an exotic insect of Australian origin. The evolutionary success of this insect depends on symbiotic associations with microorganisms. The influence of these microorganisms on insect pests and their natural enemies is important for integrated management tactics. Within this context, this work aimed to detect Arsenophonus in populations of G. brimblecombei in Brazil. Eucalyptus branches infested with G. brimblecombei nymphs were collected in commercial eucalyptus plantations in six Brazilian states. Specimens of this pest were sampled soon after emergence and frozen for molecular analysis. The genomic DNA of G. brimblecombei adults from each population was extracted and used to detect the endosymbiont Arsenophonus by polymerase chain reaction (PCR) employing specific primers that target its 23 S rRNA gene. This endosymbiont was identified in all of the studied G. brimblecombei populations. This is the first report on the association between Arsenophonus and G. brimblecombei in Brazil.
Collapse
Affiliation(s)
- Ana Laura Favoreto
- Departamento de Proteção Vegetal, Faculdade de Ciências Agronômicas, Universidade Estadual Paulista (UNESP), Avenida Universitária, 3780, Botucatu, São Paulo, 18610-034, Brasil
| | - Maurício Magalhães Domingues
- Departamento de Proteção Vegetal, Faculdade de Ciências Agronômicas, Universidade Estadual Paulista (UNESP), Avenida Universitária, 3780, Botucatu, São Paulo, 18610-034, Brasil.
| | - Vanessa Rafaela de Carvalho
- Departamento de Proteção Vegetal, Faculdade de Ciências Agronômicas, Universidade Estadual Paulista (UNESP), Avenida Universitária, 3780, Botucatu, São Paulo, 18610-034, Brasil
| | - Murilo Fonseca Ribeiro
- Departamento de Proteção Vegetal, Faculdade de Ciências Agronômicas, Universidade Estadual Paulista (UNESP), Avenida Universitária, 3780, Botucatu, São Paulo, 18610-034, Brasil
| | - José Cola Zanuncio
- Departamento de Entomologia/BIOAGRO, Universidade Federal de Viçosa, José Cola Zanuncio, Viçosa, 36570-900, Minas Gerais, Brasil
| | - Carlos Frederico Wilcken
- Departamento de Proteção Vegetal, Faculdade de Ciências Agronômicas, Universidade Estadual Paulista (UNESP), Avenida Universitária, 3780, Botucatu, São Paulo, 18610-034, Brasil
| |
Collapse
|
10
|
Vinayagam S, Sekar K, Rajendran D, Meenakshisundaram K, Panigrahi A, Arumugam DK, Bhowmick IP, Sattu K. The genetic composition of Anopheles mosquitoes and the diverse population of gut-microbiota within the Anopheles subpictus and Anopheles vagus mosquitoes in Tamil Nadu, India. Acta Trop 2024; 260:107439. [PMID: 39477048 DOI: 10.1016/j.actatropica.2024.107439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 11/11/2024]
Abstract
In recent days, in tropical and subtropical regions, secondary vectors of Anopheles mosquitoes are becoming more important in transmitting diseases to humans as primary vectors. Various molecular techniques have separated closely related Anopheles subpictus and Anopheles vagus mosquitoes based on their diversity with other mosquito species. Despite their widespread distribution, the An. subpictus and An. vagus mosquitoes, which carry Plasmodium in their salivary glands, were not considered primary malaria vectors in India. An. vagus mosquitoes are zoophilic and physically similar to An. subpictus. We intend to identify An. subpictus and An. vagus mosquito's sister species based on their Interspaced Transcribed Region-2 (ITS2). We isolated the midgut gDNA from each mosquito and used ITS2-PCR and Sanger sequencing to characterize the mosquito species. BioEdit software aligned the sequences, and MEGA7 built a phylogenetic tree from them. According to this study, the information gathered from these mosquito samples fits the An. subpictus species A form and the An. vagus Indian form. Furthermore, gut microbiome plays an important role in providing nutrients, immunity, and food processing, whereas mosquitoes' midgut microbiota changes their hosts and spreads illnesses. So, we used the Illumina sequencer to look at the gut microbiome diversity of An. subpictus and An. vagus mosquitoes using 16S rRNA-based metagenomic sequencing. Both mosquito species had an abundant phylum of Pseudomonadota (Proteobacteria), Bacillota, Bacteroidota, and Actinomycetota in their gut microbiomes. Notably, both mosquito species had the genus Serratia in their gut. In the subpictus midgut, the genus of Haematosprillum bacteria was dominant, whereas in the vagus mosquito, the genus of Salmonella was dominant. Notably, current research has observed the Sodalis spp. Bacterial genus for the first time.
Collapse
Affiliation(s)
- Sathishkumar Vinayagam
- Department of Biotechnology, Periyar University Centre for Postgraduate and Research Studies, Dharmapuri, Tamil Nadu 635 205, India
| | - Kathirvel Sekar
- Department of Biotechnology, Periyar University Centre for Postgraduate and Research Studies, Dharmapuri, Tamil Nadu 635 205, India
| | - Devianjana Rajendran
- Department of Biotechnology, Periyar University Centre for Postgraduate and Research Studies, Dharmapuri, Tamil Nadu 635 205, India
| | | | | | - Dhanush Kumar Arumugam
- Department of Biotechnology, Periyar University Centre for Postgraduate and Research Studies, Dharmapuri, Tamil Nadu 635 205, India
| | - Ipsita Pal Bhowmick
- ICMR-Regional Medical Research Centre North East Region, Dibrugarh, Assam 786010, India
| | - Kamaraj Sattu
- Department of Biotechnology, Periyar University Centre for Postgraduate and Research Studies, Dharmapuri, Tamil Nadu 635 205, India.
| |
Collapse
|
11
|
Valerio F, Martel C, Stefanescu C, van Nouhuys S, Kankare M, Duplouy A. Wolbachia strain diversity in a complex group of sympatric cryptic parasitoid wasp species. BMC Microbiol 2024; 24:319. [PMID: 39223450 PMCID: PMC11368008 DOI: 10.1186/s12866-024-03470-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Maternally-inherited symbionts can induce pre-mating and/or post-mating reproductive isolation between sympatric host lineages, and speciation, by modifying host reproductive phenotypes. The large parasitoid wasp genus Cotesia (Braconidae) includes a diversity of cryptic species, each specialized in parasitizing one to few related Lepidoptera host species. Here, we characterized the infection status of an assemblage of 21 Cotesia species from 15 countries by several microbial symbionts, as a first step toward investigating whether symbionts may provide a barrier to gene flow between these parasitoid host lineages. RESULTS The symbiotic microbes Arsenophonus, Cardinium, Microsporidium and Spiroplasma were not detected in the Cotesia wasps. However, the endosymbiotic bacterium Wolbachia was present in at least eight Cotesia species, and hence we concentrated on it upon screening additional DNA extracts and SRAs from NCBI. Some of the closely related Cotesia species carry similar Wolbachia strains, but most Wolbachia strains showed patterns of horizontal transfer between phylogenetically distant host lineages. CONCLUSIONS The lack of co-phylogenetic signal between Wolbachia and Cotesia suggests that the symbiont and hosts have not coevolved to an extent that would drive species divergence between the Cotesia host lineages. However, as the most common facultative symbiont of Cotesia species, Wolbachia may still function as a key-player in the biology of the parasitoid wasps. Its precise role in the evolution of this complex clade of cryptic species remains to be experimentally investigated.
Collapse
Affiliation(s)
- Federica Valerio
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | | | | | - Saskya van Nouhuys
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, India
| | - Maaria Kankare
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Anne Duplouy
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland.
- Department of Biology, Lund University, Lund, Sweden.
| |
Collapse
|
12
|
Hoffmann AA, Cooper BS. Describing endosymbiont-host interactions within the parasitism-mutualism continuum. Ecol Evol 2024; 14:e11705. [PMID: 38975267 PMCID: PMC11224498 DOI: 10.1002/ece3.11705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/09/2024] Open
Abstract
Endosymbionts are widespread in arthropods, living in host cells with effects that extend from parasitic to mutualistic. Newly acquired endosymbionts tend to be parasitic, but vertical transmission favors coevolution toward mutualism, with hosts sometimes developing dependency. Endosymbionts negatively affecting host fitness may still spread by impacting host reproductive traits, referred to as reproductive "manipulation," although costs for hosts are often assumed rather than demonstrated. For cytoplasmic incompatibility (CI) that involves endosymbiont-mediated embryo death, theory predicts directional shifts away from "manipulation" toward reduced CI strength; moreover, CI-causing endosymbionts need to increase host fitness to initially spread. In nature, endosymbiont-host interactions and dynamics are complex, often depending on environmental conditions and evolutionary history. We advocate for capturing this complexity through appropriate datasets, rather than relying on terms like "manipulation." Such imprecision can lead to the misclassification of endosymbionts along the parasitism-mutualism continuum.
Collapse
Affiliation(s)
- Ary A. Hoffmann
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 InstituteUniversity of MelbourneParkvilleVictoriaAustralia
| | - Brandon S. Cooper
- Division of Biological SciencesUniversity of MontanaMissoulaMontanaUSA
| |
Collapse
|
13
|
Grundmann CO, Guzman J, Vilcinskas A, Pupo MT. The insect microbiome is a vast source of bioactive small molecules. Nat Prod Rep 2024; 41:935-967. [PMID: 38411238 DOI: 10.1039/d3np00054k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Covering: September 1964 to June 2023Bacteria and fungi living in symbiosis with insects have been studied over the last sixty years and found to be important sources of bioactive natural products. Not only classic producers of secondary metabolites such as Streptomyces and other members of the phylum Actinobacteria but also numerous bacteria from the phyla Proteobacteria and Firmicutes and an impressive array of fungi (usually pathogenic) serve as the source of a structurally diverse number of small molecules with important biological activities including antimicrobial, cytotoxic, antiparasitic and specific enzyme inhibitors. The insect niche is often the exclusive provider of microbes producing unique types of biologically active compounds such as gerumycins, pederin, dinactin, and formicamycins. However, numerous insects still have not been described taxonomically, and in most cases, the study of their microbiota is completely unexplored. In this review, we present a comprehensive survey of 553 natural products produced by microorganisms isolated from insects by collating and classifying all the data according to the type of compound (rather than the insect or microbial source). The analysis of the correlations among the metadata related to insects, microbial partners, and their produced compounds provides valuable insights into the intricate dynamics between insects and their symbionts as well as the impact of their metabolites on these relationships. Herein, we focus on the chemical structure, biosynthesis, and biological activities of the most relevant compounds.
Collapse
Affiliation(s)
| | - Juan Guzman
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- Institute for Insect Biotechnology, Justus-Liebig-University, Giessen, Germany
| | - Mônica Tallarico Pupo
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
14
|
Huang Z, Wang D, Zhou J, He H, Wei C. Segregation of endosymbionts in complex symbiotic system of cicadas providing novel insights into microbial symbioses and evolutionary dynamics of symbiotic organs in sap-feeding insects. Front Zool 2024; 21:15. [PMID: 38863001 PMCID: PMC11165832 DOI: 10.1186/s12983-024-00536-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 06/03/2024] [Indexed: 06/13/2024] Open
Abstract
The most extraordinary systems of symbiosis in insects are found in the suborder Auchenorrhyncha of Hemiptera, which provide unique perspectives for uncovering complicated insect-microbe symbiosis. We investigated symbionts associated with bacteriomes and fat bodies in six cicada species, and compared transmitted cell number ratio of related symbionts in ovaries among species. We reveal that Sulcia and Hodgkinia or a yeast-like fungal symbiont (YLS) are segregated from other host tissues by the bacteriomes in the nymphal stage, then some of them may migrate to other organs (i.e., fat bodies and ovaries) during host development. Particularly, YLS resides together with Sulcia in the "symbiont ball" of each egg and the bacteriomes of young-instar nymphs, but finally migrates to the fat bodies of adults in the majority of Hodgkinia-free cicadas, whereas it resides in both bacteriome sheath and fat bodies of adults in a few other species. The transmitted Sulcia/YLS or Sulcia/Hodgkinia cell number ratio in ovaries varies significantly among species, which could be related to the distribution and/or lineage splitting of symbiont(s). Rickettsia localizes to the nuclei of bacteriomes and fat bodies in some species, but it was not observed to be transmitted to the ovaries, indicating that this symbiont may be acquired from environments or from father to offspring. The considerable difference in the transovarial transmission process of symbionts suggests that cellular mechanisms underlying the symbiont transmission are complex. Our results may provide novel insights into insect-microbe symbiosis.
Collapse
Affiliation(s)
- Zhi Huang
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, Key Laboratory of Integrated Pest Management On Crops in Northwest Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of National Forestry and Grassland Administration for Control of Forest Biological Disasters in Western China, College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dandan Wang
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, Key Laboratory of Integrated Pest Management On Crops in Northwest Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jinrui Zhou
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, Key Laboratory of Integrated Pest Management On Crops in Northwest Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hong He
- Key Laboratory of National Forestry and Grassland Administration for Control of Forest Biological Disasters in Western China, College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Cong Wei
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, Key Laboratory of Integrated Pest Management On Crops in Northwest Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
15
|
Mulio SÅ, Zwolińska A, Klejdysz T, Prus‐Frankowska M, Michalik A, Kolasa M, Łukasik P. Limited variation in microbial communities across populations of Macrosteles leafhoppers (Hemiptera: Cicadellidae). ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13279. [PMID: 38855918 PMCID: PMC11163331 DOI: 10.1111/1758-2229.13279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/26/2024] [Indexed: 06/11/2024]
Abstract
Microbial symbionts play crucial roles in insect biology, yet their diversity, distribution, and temporal dynamics across host populations remain poorly understood. In this study, we investigated the spatio-temporal distribution of bacterial symbionts within the widely distributed and economically significant leafhopper genus Macrosteles, with a focus on Macrosteles laevis. Using host and symbiont marker gene amplicon sequencing, we explored the intricate relationships between these insects and their microbial partners. Our analysis of the cytochrome oxidase subunit I (COI) gene data revealed several intriguing findings. First, there was no strong genetic differentiation across M. laevis populations, suggesting gene flow among them. Second, we observed significant levels of heteroplasmy, indicating the presence of multiple mitochondrial haplotypes within individuals. Third, parasitoid infections were prevalent, highlighting the complex ecological interactions involving leafhoppers. The 16S rRNA data confirmed the universal presence of ancient nutritional endosymbionts-Sulcia and Nasuia-in M. laevis. Additionally, we found a high prevalence of Arsenophonus, another common symbiont. Interestingly, unlike most previously studied species, M. laevis exhibited only occasional cases of infection with known facultative endosymbionts and other bacteria. Notably, there was no significant variation in symbiont prevalence across different populations or among sampling years within the same population. Comparatively, facultative endosymbionts such as Rickettsia, Wolbachia, Cardinium and Lariskella were more common in other Macrosteles species. These findings underscore the importance of considering both host and symbiont dynamics when studying microbial associations. By simultaneously characterizing host and symbiont marker gene amplicons in large insect collections, we gain valuable insights into the intricate interplay between insects and their microbial partners. Understanding these dynamics contributes to our broader comprehension of host-microbe interactions in natural ecosystems.
Collapse
Affiliation(s)
- Sandra Åhlén Mulio
- Institute of Environmental Sciences, Faculty of BiologyJagiellonian UniversityKrakówPoland
| | - Agnieszka Zwolińska
- Department of Plant Physiology, Faculty of BiologyAdam Mickiewicz UniversityPoznanPoland
| | - Tomasz Klejdysz
- Institute of Plant Protection – National Research InstituteResearch Centre for Registration of AgrochemicalsPoznańPoland
| | - Monika Prus‐Frankowska
- Institute of Environmental Sciences, Faculty of BiologyJagiellonian UniversityKrakówPoland
| | - Anna Michalik
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Faculty of BiologyJagiellonian UniversityKrakówPoland
| | - Michał Kolasa
- Institute of Environmental Sciences, Faculty of BiologyJagiellonian UniversityKrakówPoland
| | - Piotr Łukasik
- Institute of Environmental Sciences, Faculty of BiologyJagiellonian UniversityKrakówPoland
| |
Collapse
|
16
|
Konecka E, Szymkowiak P. Wolbachia supergroup A in Enoplognatha latimana (Araneae: Theridiidae) in Poland as an example of possible horizontal transfer of bacteria. Sci Rep 2024; 14:7486. [PMID: 38553514 PMCID: PMC10980700 DOI: 10.1038/s41598-024-57701-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
Wolbachia (phylum Pseudomonadota, class Alfaproteobacteria, order Rickettsiales, family Ehrlichiaceae) is a maternally inherited bacterial symbiont infecting more than half of arthropod species worldwide and constituting an important force in the evolution, biology, and ecology of invertebrate hosts. Our study contributes to the limited knowledge regarding the presence of intracellular symbiotic bacteria in spiders. Specifically, we investigated the occurrence of Wolbachia infection in the spider species Enoplognatha latimana Hippa and Oksala, 1982 (Araneae: Theridiidae) using a sample collected in north-western Poland. To the best of our knowledge, this is the first report of Wolbachia infection in E. latimana. A phylogeny based on the sequence analysis of multiple genes, including 16S rRNA, coxA, fbpA, ftsZ, gatB, gltA, groEL, hcpA, and wsp revealed that Wolbachia from the spider represented supergroup A and was related to bacterial endosymbionts discovered in other spider hosts, as well as insects of the orders Diptera and Hymenoptera. A sequence unique for Wolbachia supergroup A was detected for the ftsZ gene. The sequences of Wolbachia housekeeping genes have been deposited in publicly available databases and are an important source of molecular data for comparative studies. The etiology of Wolbachia infection in E. latimana is discussed.
Collapse
Affiliation(s)
- Edyta Konecka
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| | - Paweł Szymkowiak
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| |
Collapse
|
17
|
Shi PQ, Wang L, Chen XY, Wang K, Wu QJ, Turlings TCJ, Zhang PJ, Qiu BL. Rickettsia transmission from whitefly to plants benefits herbivore insects but is detrimental to fungal and viral pathogens. mBio 2024; 15:e0244823. [PMID: 38315036 PMCID: PMC10936170 DOI: 10.1128/mbio.02448-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
Bacterial endosymbionts play important roles in the life histories of herbivorous insects by impacting their development, survival, reproduction, and stress tolerance. How endosymbionts may affect the interactions between plants and insect herbivores is still largely unclear. Here, we show that endosymbiotic Rickettsia belli can provide mutual benefits also outside of their hosts when the sap-sucking whitefly Bemisia tabaci transmits them to plants. This transmission facilitates the spread of Rickettsia but is shown to also enhance the performance of the whitefly and co-infesting caterpillars. In contrast, Rickettsia infection enhanced plant resistance to several pathogens. Inside the plants, Rickettsia triggers the expression of salicylic acid-related genes and the two pathogen-resistance genes TGA 2.1 and VRP, whereas they repressed genes of the jasmonic acid pathway. Performance experiments using wild type and mutant tomato plants confirmed that Rickettsia enhances the plants' suitability for insect herbivores but makes them more resistant to fungal and viral pathogens. Our results imply that endosymbiotic Rickettsia of phloem-feeding insects affects plant defenses in a manner that facilitates their spread and transmission. This novel insight into how insects can exploit endosymbionts to manipulate plant defenses also opens possibilities to interfere with their ability to do so as a crop protection strategy. IMPORTANCE Most insects are associated with symbiotic bacteria in nature. These symbionts play important roles in the life histories of herbivorous insects by impacting their development, survival, reproduction as well as stress tolerance. Rickettsia is one important symbiont to the agricultural pest whitefly Bemisia tabaci. Here, for the first time, we revealed that the persistence of Rickettsia symbionts in tomato leaves significantly changed the defense pattern of tomato plants. These changes benefit both sap-feeding and leaf-chewing herbivore insects, such as increasing the fecundity of whitefly adults, enhancing the growth and development of the noctuid Spodoptera litura, but reducing the pathogenicity of Verticillium fungi and TYLCV virus to tomato plants distinctively. Our study unraveled a new horizon for the multiple interaction theories among plant-insect-bacterial symbionts.
Collapse
Affiliation(s)
- Pei-Qiong Shi
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing, China
| | - Lei Wang
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing, China
| | - Xin-Yi Chen
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing, China
| | - Kai Wang
- Department of Computational Medicine and Bioinformatics, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Qing-Jun Wu
- Institute of Vegetables & Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ted C. J. Turlings
- FARCE Laboratory, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Peng-Jun Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Huangzhou, China
| | - Bao-Li Qiu
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing, China
| |
Collapse
|
18
|
Mauck KE, Gebiola M, Percy DM. The Hidden Secrets of Psylloidea: Biology, Behavior, Symbionts, and Ecology. ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:277-302. [PMID: 37738463 DOI: 10.1146/annurev-ento-120120-114738] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Psyllids constitute a diverse group of sap-feeding Sternorrhyncha that were relatively obscure until it was discovered that a handful of species transmit bacterial plant pathogens. Yet the superfamily Psylloidea is much richer than the sum of its crop-associated vectors, with over 4,000 described species exhibiting diverse life histories and host exploitation strategies. A growing body of research is uncovering fascinating insights into psyllid evolution, biology, behavior, and species interactions. This work has revealed commonalities and differences with better-studied Sternorrhyncha, as well as unique evolutionary patterns of lineage divergence and host use. We are also learning how psyllid evolution and foraging ecology underlie life history traits and the roles of psyllids in communities. At finer scales, we are untangling the web of symbionts across the psyllid family tree, linking symbiont and psyllid lineages, and revealing mechanisms underlying reciprocal exchange between symbiont and host. In this review, we synthesize and summarize key advances within these areas with a focus on free-living (nongalling) Psylloidea.
Collapse
Affiliation(s)
- Kerry E Mauck
- Department of Entomology, University of California, Riverside, California, USA; ,
| | - Marco Gebiola
- Department of Entomology, University of California, Riverside, California, USA; ,
| | - Diana M Percy
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada;
| |
Collapse
|
19
|
Chang X, Xue S, Li R, Zhang Y. Episyrphus balteatus symbiont variation across developmental stages, living states, two sexes, and potential horizontal transmission from prey or environment. Front Microbiol 2024; 14:1308393. [PMID: 38249471 PMCID: PMC10797133 DOI: 10.3389/fmicb.2023.1308393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/08/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction Episyrphus balteatus is one representative Syrphidae insect which can provide extensive pollination and pest control services. To date, the symbiont composition and potential acquisition approaches in Syrphidae remain unclear. Methods Herein, we investigated microbiota dynamics across developmental stages, different living states, and two sexes in E. balteatus via full-length 16S rRNA genes sequencing, followed by an attempt to explore the possibility of symbiont transmission from prey Megoura crassicauda to the hoverfly. Results Overall, Proteobacteria and Firmicutes were the dominant bacteria phyla with fluctuating relative abundances across the life stage. Cosenzaea myxofaciens is dominant in adulthood, while Enterococcus silesiacus and Morganella morganii dominate in larvae and pupae of E. balteatus, respectively. Unexpectedly, Serratia symbiotica, one facultative endosymbiont commonly harbored in aphids, was one of the predominant bacteria in larvae of E. balteatus, just behind Enterococcus silesiacus. In addition, S. symbiotica was also surprisingly most dominated in M. crassicauda aphids (92.1% relative abundance), which are significantly higher than Buchnera aphidicola (4.7% relative abundance), the primary obligate symbiont of most aphid species. Approximately 25% mortality was observed among newly emerged adults, of which microbiota was also disordered, similar to normally dying individuals. Sexually biased symbionts and 41 bacteria species with pairwise co-occurrence in E. balteatus and 23 biomarker species for each group were identified eventually. Functional prediction showed symbionts of hoverflies and aphids, both mainly focusing on metabolic pathways. In brief, we comprehensively explored the microbiome in one Syrphidae hoverfly using E. balteatus reared indoors on M. morganii as the model, revealed its dominated symbiont species, identified sexually biased symbionts, and found an aphid facultative endosymbiont inhabited in the hoverfly. We also found that the dominated symbiotic bacteria in M. crassicauda are S. symbiotica other than Buchnera aphidicola. Discussion Taken together, this study provides new valuable resources about symbionts in hoverflies and prey aphids jointly, which will benefit further exploring the potential roles of microbiota in E. balteatus.
Collapse
Affiliation(s)
- Xiao Chang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, China
- School of Biological and Food Engineering, Anyang Institute of Technology, Anyang, China
- Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Inte-grated Utilization, Anyang, Henan, China
- Taihang Mountain Forest Pests Observation and Research Station of Henan Province, Linzhou, China
| | - Shuang Xue
- School of Biological and Food Engineering, Anyang Institute of Technology, Anyang, China
- Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Inte-grated Utilization, Anyang, Henan, China
- Taihang Mountain Forest Pests Observation and Research Station of Henan Province, Linzhou, China
| | - Ruimin Li
- School of Biological and Food Engineering, Anyang Institute of Technology, Anyang, China
- Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Inte-grated Utilization, Anyang, Henan, China
- Taihang Mountain Forest Pests Observation and Research Station of Henan Province, Linzhou, China
| | - Yuanchen Zhang
- School of Biological and Food Engineering, Anyang Institute of Technology, Anyang, China
- Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Inte-grated Utilization, Anyang, Henan, China
- Taihang Mountain Forest Pests Observation and Research Station of Henan Province, Linzhou, China
| |
Collapse
|
20
|
Chalifour BN, Elder LE, Li J. Diversity of gut microbiome in Rocky Mountainsnail across its native range. PLoS One 2023; 18:e0290292. [PMID: 38011083 PMCID: PMC10681204 DOI: 10.1371/journal.pone.0290292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 08/07/2023] [Indexed: 11/29/2023] Open
Abstract
The animal gut microbiome is often a key requirement for host nutrition, digestion, and immunity, and can shift in relation to host geography and environmental factors. However, ecological drivers of microbiome community assembly across large geographic ranges have rarely been examined in invertebrates. Oreohelix strigosa (Rocky Mountainsnail) is a widespread land snail found in heterogeneous environments across the mountainous western United States. It is ideally suited for biogeography studies due to its broad distribution, low migration, and low likelihood of passive transport via other animals. This study aims to uncover large-scale geographic shifts in the composition of O. strigosa gut microbiomes by using 16S rRNA gene sequencing on samples from across its native range. Additionally, we elucidate smaller-scale microbiome variation using samples collected only within Colorado. Results show that gut microbiomes vary significantly across broad geographic ranges. Several possible ecological drivers, including soil and vegetation composition, habitat complexity, habitat type, and human impact, collectively explained 27% of the variation across Coloradan O. strigosa gut microbiomes. Snail gut microbiomes show more similarity to vegetation than soil microbiomes. Gut microbial richness was highest in the rocky habitats and increased significantly in the most disturbed habitats (low complexity, high human impact), potentially indicating signs of dysbiosis in the snails' gut microbiomes. These small-scale environmental factors may be driving changes in O. strigosa gut microbiome composition seen across large-scale geography. This knowledge will also help us better understand how microbial associations influence species survival in diverse environments and aid wildlife conservation efforts.
Collapse
Affiliation(s)
- Bridget N. Chalifour
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Leanne E. Elder
- Museum of Natural History, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Jingchun Li
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, United States of America
- Museum of Natural History, University of Colorado Boulder, Boulder, Colorado, United States of America
| |
Collapse
|
21
|
Du XY, Zhang PF, Gong SR, Liang YS, Huang YH, Li HS, Pang H. Discovery of a novel circulation route of free-living Serratiasymbiotica mediated by predatory ladybird beetles. FEMS Microbiol Ecol 2023; 99:fiad133. [PMID: 37852673 DOI: 10.1093/femsec/fiad133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 10/20/2023] Open
Abstract
Horizontal transmission of bacteria to varied hosts can maintain and even expand microbial niches. We previously found that the aphid gut bacterium Serratia symbiotica strain SsMj can be transmitted to ladybird beetles via predation, but whether the predator is a new host, a reservoir or a dead end of this bacterium is unknown. This study aims to provide a clear picture of SsMj circulation from aphids to plants and predators. We first found that SsMj in aphids and ladybirds was abundantly distributed not only in digestive tracts but also in droppings. We found no evidence for vertical transmission of SsMj to aphid offspring. Instead, we showed that it could be transmitted to conspecific aphids by sharing the same plant or contacting honeydews. The key finding of this study is that SsMj was transmitted from aphids to ladybirds through predation, while ladybirds could also transfer SsMj back to aphids, possibly through feces. Together, this evidence suggests that SsMj is able to survive in the digestive tracts and droppings of insects and to expand its host range with plants and predators as reservoirs.
Collapse
Affiliation(s)
- Xue-Yong Du
- State Key Laboratory of Biocontrol, School of Life Sciences / School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| | - Pei-Fang Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences / School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| | - Sen-Rui Gong
- State Key Laboratory of Biocontrol, School of Life Sciences / School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuan-Sen Liang
- State Key Laboratory of Biocontrol, School of Life Sciences / School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yu-Hao Huang
- State Key Laboratory of Biocontrol, School of Life Sciences / School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| | - Hao-Sen Li
- State Key Laboratory of Biocontrol, School of Life Sciences / School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| | - Hong Pang
- State Key Laboratory of Biocontrol, School of Life Sciences / School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
22
|
Corpuz RL, Bellinger MR, Veillet A, Magnacca KN, Price DK. The Transmission Patterns of the Endosymbiont Wolbachia within the Hawaiian Drosophilidae Adaptive Radiation. Genes (Basel) 2023; 14:1545. [PMID: 37628597 PMCID: PMC10454618 DOI: 10.3390/genes14081545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 08/27/2023] Open
Abstract
The evolution of endosymbionts and their hosts can lead to highly dynamic interactions with varying fitness effects for both the endosymbiont and host species. Wolbachia, a ubiquitous endosymbiont of arthropods and nematodes, can have both beneficial and detrimental effects on host fitness. We documented the occurrence and patterns of transmission of Wolbachia within the Hawaiian Drosophilidae and examined the potential contributions of Wolbachia to the rapid diversification of their hosts. Screens for Wolbachia infections across a minimum of 140 species of Hawaiian Drosophila and Scaptomyza revealed species-level infections of 20.0%, and across all 399 samples, a general infection rate of 10.3%. Among the 44 Wolbachia strains we identified using a modified Wolbachia multi-locus strain typing scheme, 30 (68.18%) belonged to supergroup B, five (11.36%) belonged to supergroup A, and nine (20.45%) had alleles with conflicting supergroup assignments. Co-phylogenetic reconciliation analysis indicated that Wolbachia strain diversity within their endemic Hawaiian Drosophilidae hosts can be explained by vertical (e.g., co-speciation) and horizontal (e.g., host switch) modes of transmission. Results from stochastic character trait mapping suggest that horizontal transmission is associated with the preferred oviposition substrate of the host, but not the host's plant family or island of occurrence. For Hawaiian Drosophilid species of conservation concern, with 13 species listed as endangered and 1 listed as threatened, knowledge of Wolbachia strain types, infection status, and potential for superinfection could assist with conservation breeding programs designed to bolster population sizes, especially when wild populations are supplemented with laboratory-reared, translocated individuals. Future research aimed at improving the understanding of the mechanisms of Wolbachia transmission in nature, their impact on the host, and their role in host species formation may shed light on the influence of Wolbachia as an evolutionary driver, especially in Hawaiian ecosystems.
Collapse
Affiliation(s)
- Renée L. Corpuz
- Department of Biology, Tropical Conservation Biology and Environmental Science, University of Hawaii at Hilo, 200 West Kāwili Street, Hilo, HI 96720, USA (D.K.P.)
| | - M. Renee Bellinger
- Department of Biology, Tropical Conservation Biology and Environmental Science, University of Hawaii at Hilo, 200 West Kāwili Street, Hilo, HI 96720, USA (D.K.P.)
- U.S. Geological Survey, Pacific Island Ecosystems Research Center, P.O. Box 44, Hawaii National Park, HI 96718, USA
| | - Anne Veillet
- Department of Biology, Tropical Conservation Biology and Environmental Science, University of Hawaii at Hilo, 200 West Kāwili Street, Hilo, HI 96720, USA (D.K.P.)
| | - Karl N. Magnacca
- Department of Land and Natural Resources, Division of Forestry & Wildlife, Native Ecosystem Protection and Management, Hawaii Invertebrate Program, 1151 Punchbowl Street Rm. 325, Honolulu, HI 96813, USA;
| | - Donald K. Price
- Department of Biology, Tropical Conservation Biology and Environmental Science, University of Hawaii at Hilo, 200 West Kāwili Street, Hilo, HI 96720, USA (D.K.P.)
- School of Life Sciences, University of Nevada, Las Vegas, NV 89557, USA
| |
Collapse
|
23
|
Roy A, Houot B, Kushwaha S, Anderson P. Impact of transgenerational host switch on gut bacterial assemblage in generalist pest, Spodoptera littoralis (Lepidoptera: Noctuidae). Front Microbiol 2023; 14:1172601. [PMID: 37520373 PMCID: PMC10374326 DOI: 10.3389/fmicb.2023.1172601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/15/2023] [Indexed: 08/01/2023] Open
Abstract
Diet composition is vital in shaping gut microbial assemblage in many insects. Minimal knowledge is available about the influence of transgenerational diet transition on gut microbial community structure and function in polyphagous pests. This study investigated transgenerational diet-induced changes in Spodoptera littoralis larval gut bacteriome using 16S ribosomal sequencing. Our data revealed that 88% of bacterial populations in the S. littoralis larval gut comprise Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes. The first diet transition experiment from an artificial diet (F0) to a plant diet (F1), cabbage and cotton, caused an alteration of bacterial communities in the S. littoralis larval gut. The second transgenerational diet switch, where F1 larvae feed on the same plant in the F2 generation, displayed a significant variation suggesting further restructuring of the microbial communities in the Spodoptera larval gut. F1 larvae were also challenged with the plant diet transition at the F2 generation (cabbage to cotton or cotton to cabbage). After feeding on different plant diets, the microbial assemblage of F2 larvae pointed to considerable differences from other F2 larvae that continued on the same diet. Our results showed that S. littoralis larval gut bacteriome responds rapidly and inexplicably to different diet changes. Further experiments must be conducted to determine the developmental and ecological consequences of such changes. Nevertheless, this study improves our perception of the impact of transgenerational diet switches on the resident gut bacteriome in S. littoralis larvae and could facilitate future research to understand the importance of symbiosis in lepidopteran generalists better.
Collapse
Affiliation(s)
- Amit Roy
- Faculty of Forestry and Wood Sciences, EXTEMIT-K and EVA.4.0 Unit, Czech University of Life Sciences, Suchdol, Czechia
| | - Benjamin Houot
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Sandeep Kushwaha
- Department of Bioinformatics, National Institute of Animal Biotechnology (NIAB), Hyderabad, India
| | - Peter Anderson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
24
|
Gu X, Ross PA, Gill A, Yang Q, Ansermin E, Sharma S, Soleimannejad S, Sharma K, Callahan A, Brown C, Umina PA, Kristensen TN, Hoffmann AA. A rapidly spreading deleterious aphid endosymbiont that uses horizontal as well as vertical transmission. Proc Natl Acad Sci U S A 2023; 120:e2217278120. [PMID: 37094148 PMCID: PMC10161079 DOI: 10.1073/pnas.2217278120] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/23/2023] [Indexed: 04/26/2023] Open
Abstract
Endosymbiotic bacteria that live inside the cells of insects are typically only transmitted maternally and can spread by increasing host fitness and/or modifying reproduction in sexual hosts. Transinfections of Wolbachia endosymbionts are now being used to introduce useful phenotypes into sexual host populations, but there has been limited progress on applications using other endosymbionts and in asexual populations. Here, we develop a unique pathway to application in aphids by transferring the endosymbiont Rickettsiella viridis to the major crop pest Myzus persicae. Rickettsiella infection greatly reduced aphid fecundity, decreased heat tolerance, and modified aphid body color, from light to dark green. Despite inducing host fitness costs, Rickettsiella spread rapidly through caged aphid populations via plant-mediated horizontal transmission. The phenotypic effects of Rickettsiella were sensitive to temperature, with spread only occurring at 19 °C and not 25 °C. Body color modification was also lost at high temperatures despite Rickettsiella maintaining a high density. Rickettsiella shows the potential to spread through natural M. persicae populations by horizontal transmission and subsequent vertical transmission. Establishment of Rickettsiella in natural populations could reduce crop damage by modifying population age structure, reducing population growth and providing context-dependent effects on host fitness. Our results highlight the importance of plant-mediated horizontal transmission and interactions with temperature as drivers of endosymbiont spread in asexual insect populations.
Collapse
Affiliation(s)
- Xinyue Gu
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Perran A. Ross
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
- Section for Bioscience and Engineering, Department of Chemistry and Bioscience, Aalborg University, Aalborg9220, Denmark
| | - Alex Gill
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Qiong Yang
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Eloïse Ansermin
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Sonia Sharma
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Safieh Soleimannejad
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Kanav Sharma
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Ashley Callahan
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Courtney Brown
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Paul A. Umina
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
- Cesar Australia, Brunswick, VIC 3052, Australia
| | - Torsten N. Kristensen
- Section for Bioscience and Engineering, Department of Chemistry and Bioscience, Aalborg University, Aalborg9220, Denmark
| | - Ary A. Hoffmann
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
- Section for Bioscience and Engineering, Department of Chemistry and Bioscience, Aalborg University, Aalborg9220, Denmark
| |
Collapse
|
25
|
Sanaei E, Albery GF, Yeoh YK, Lin YP, Cook LG, Engelstädter J. Host phylogeny and ecological associations best explain Wolbachia host shifts in scale insects. Mol Ecol 2023; 32:2351-2363. [PMID: 36785954 DOI: 10.1111/mec.16883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/15/2023]
Abstract
Wolbachia are among the most prevalent and widespread endosymbiotic bacteria on Earth. Wolbachia's success in infecting an enormous number of arthropod species is attributed to two features: the range of phenotypes they induce in their hosts, and their ability to switch between host species. Whilst much progress has been made in elucidating their induced phenotypes, our understanding of Wolbachia host-shifting is still very limited: we lack answers to even fundamental questions concerning Wolbachia's routes of transfer and the importance of factors influencing host shifts. Here, we investigate the diversity and host-shift patterns of Wolbachia in scale insects, a group of arthropods with intimate associations with other insects that make them well suited to studying host shifts. Using Illumina multitarget amplicon sequencing of Wolbachia-infected scale insects and their direct associates we determined the identity of all Wolbachia strains. We then fitted a generalized additive mixed model to our data to estimate the influence of host phylogeny and the geographical distribution on Wolbachia strain sharing among scale insect species. The model predicts no significant contribution of host geography but strong effects of host phylogeny, with high rates of Wolbachia sharing among closely related species and a sudden drop-off in sharing with increasing phylogenetic distance. We also detected the same Wolbachia strain in scale insects and several intimately associated species (ants, wasps and flies). This indicates putative host shifts and potential routes of transfers via these associates and highlights the importance of ecological connectivity in Wolbachia host-shifting.
Collapse
Affiliation(s)
- Ehsan Sanaei
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Gregory F Albery
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Yun Kit Yeoh
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Yen-Po Lin
- Department of Plant Medicine, College of Agriculture, National Chiayi University, Chiayi City, Taiwan
| | - Lyn G Cook
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Jan Engelstädter
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
26
|
Endogenous Plasmids and Chromosomal Genome Reduction in the Cardinium Endosymbiont of Dermatophagoides farinae. mSphere 2023; 8:e0007423. [PMID: 36939349 PMCID: PMC10117132 DOI: 10.1128/msphere.00074-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Cardinium bacteria are well known as endosymbionts that infect a wide range of arthropods and can manipulate host reproduction to promote their vertical transmission. As intracellular bacteria, Cardinium species undergo dramatic genome evolution, especially their chromosomal genome reduction. Although Cardinium plasmids have been reported to harbor important genes, the role of these plasmids in the genome evolution is yet to be fully understood. In this study, 2 genomes of Cardinium endosymbiont bacteria in astigmatic mites were de novo assembled, including the complete circular chromosomal genome of Cardinium sp. DF that was constructed in high quality using high-coverage long-read sequencing data. Intriguingly, 2 circular plasmids were assembled in Cardinium sp. DF and were identified to be endogenous for over 10 homologous genes shared with the chromosomal genome. Comparative genomics analysis illustrated an outline of the genome evolution of Cardinium bacteria, and the in-depth analysis of Cardinium sp. DF shed light on the multiple roles of endogenous plasmids in the molecular process of the chromosomal genome reduction. The endogenous plasmids of Cardinium sp. DF not only harbor massive homologous sequences that enable homologous recombination with the chromosome, but also can provide necessary functional proteins when the coding genes decayed in the chromosomal genome. IMPORTANCE As bacterial endosymbionts, Cardinium typically undergoes genome reduction, but the molecular process is still unclear, such as how plasmids get involved in chromosome reduction. Here, we de novo assembled 2 genomes of Cardinium in astigmatic mites, especially the chromosome of Cardinium sp. DF was assembled in a complete circular DNA using high-coverage long-read sequencing data. In the genome assembly of Cardinium sp. DF, 2 circular endogenous plasmids were identified to share at least 10 homologous genes with the chromosomal genome. In the comparative analysis, we identified a range of genes decayed in the chromosomal genome of Cardinium sp. DF but preserved in the 2 plasmids. Taken together with in-depth analyses, our results unveil that the endogenous plasmids harbor homologous sequences of chromosomal genome and can provide a structural basis of homologous recombination. Overall, this study reveals that endogenous plasmids participate in the ongoing chromosomal genome reduction of Cardinium sp. DF.
Collapse
|
27
|
Angst P, Ebert D, Fields PD. Population genetic analysis of the microsporidium Ordospora colligata reveals the role of natural selection and phylogeography on its extremely compact and reduced genome. G3 (BETHESDA, MD.) 2023; 13:jkad017. [PMID: 36655395 PMCID: PMC9997559 DOI: 10.1093/g3journal/jkad017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/02/2023] [Accepted: 01/11/2023] [Indexed: 01/20/2023]
Abstract
The determinants of variation in a species' genome-wide nucleotide diversity include historical, environmental, and stochastic aspects. This diversity can inform us about the species' past and present evolutionary dynamics. In parasites, the mode of transmission and the interactions with the host might supersede the effects of these aspects in shaping parasite genomic diversity. We used genomic samples from 10 populations of the microsporidian parasite Ordospora colligata to investigate present genomic diversity and how it was shaped by evolutionary processes, specifically, the role of phylogeography, co-phylogeography (with the host), natural selection, and transmission mode. Although very closely related microsporidia cause diseases in humans, O. colligata is specific to the freshwater crustacean Daphnia magna and has one of the smallest known eukaryotic genomes. We found an overlapping phylogeography between O. colligata and its host highlighting the long-term, intimate relationship between them. The observed geographic distribution reflects previous findings that O. colligata exhibits adaptations to colder habitats, which differentiates it from other microsporidian gut parasites of D. magna predominantly found in warmer areas. The co-phylogeography allowed us to calibrate the O. colligata phylogeny and thus estimate its mutation rate. We identified several genetic regions under potential selection. Our whole-genome study provides insights into the evolution of one of the most reduced eukaryotic genomes and shows how different processes shape genomic diversity of an obligate parasite.
Collapse
Affiliation(s)
- Pascal Angst
- Department of Environmental Sciences, Zoology, University of Basel, Basel 4051, Switzerland
| | - Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, Basel 4051, Switzerland
| | - Peter D Fields
- Department of Environmental Sciences, Zoology, University of Basel, Basel 4051, Switzerland
| |
Collapse
|
28
|
Šigutová H, Šigut M, Pyszko P, Kostovčík M, Kolařík M, Drozd P. Seasonal Shifts in Bacterial and Fungal Microbiomes of Leaves and Associated Leaf-Mining Larvae Reveal Persistence of Core Taxa Regardless of Diet. Microbiol Spectr 2023; 11:e0316022. [PMID: 36629441 PMCID: PMC9927363 DOI: 10.1128/spectrum.03160-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Microorganisms are key mediators of interactions between insect herbivores and their host plants. Despite a substantial interest in studying various aspects of these interactions, temporal variations in microbiomes of woody plants and their consumers remain understudied. In this study, we investigated shifts in the microbiomes of leaf-mining larvae (Insecta: Lepidoptera) and their host trees over one growing season in a deciduous temperate forest. We used 16S and ITS2 rRNA gene metabarcoding to profile the bacterial and fungal microbiomes of leaves and larvae. We found pronounced shifts in the leaf and larval microbiota composition and richness as the season progressed, and bacteria and fungi showed consistent patterns. The quantitative similarity between leaf and larval microbiota was very low for bacteria (~9%) and decreased throughout the season, whereas fungal similarity increased and was relatively high (~27%). In both leaves and larvae, seasonality, along with host taxonomy, was the most important factor shaping microbial communities. We identified frequently occurring microbial taxa with significant seasonal trends, including those more prevalent in larvae (Streptococcus, Candida sake, Debaryomyces prosopidis, and Neoascochyta europaea), more prevalent in leaves (Erwinia, Seimatosporium quercinum, Curvibasidium cygneicollum, Curtobacterium, Ceramothyrium carniolicum, and Mycosphaerelloides madeirae), and frequent in both leaves and larvae (bacterial strain P3OB-42, Methylobacterium/Methylorubrum, Bacillus, Acinetobacter, Cutibacterium, and Botrytis cinerea). Our results highlight the importance of considering seasonality when studying the interactions between plants, herbivorous insects, and their respective microbiomes, and illustrate a range of microbial taxa persistent in larvae, regardless of their occurrence in the diet. IMPORTANCE Leaf miners are endophagous insect herbivores that feed on plant tissues and develop and live enclosed between the epidermis layers of a single leaf for their entire life cycle. Such close association is a precondition for the evolution of more intimate host-microbe relationships than those found in free-feeding herbivores. Simultaneous comparison of bacterial and fungal microbiomes of leaves and their tightly linked consumers over time represents an interesting study system that could fundamentally contribute to the ongoing debate on the microbial residence of insect gut. Furthermore, leaf miners are ideal model organisms for interpreting the ecological and evolutionary roles of microbiota in host plant specialization. In this study, the larvae harbored specific microbial communities consisting of core microbiome members. Observed patterns suggest that microbes, especially bacteria, may play more important roles in the caterpillar holobiont than generally presumed.
Collapse
Affiliation(s)
- Hana Šigutová
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Martin Šigut
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Petr Pyszko
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Martin Kostovčík
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Miroslav Kolařík
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Pavel Drozd
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
29
|
Distribution of Bacterial Endosymbionts of the Cardinium Clade in Plant-Parasitic Nematodes. Int J Mol Sci 2023; 24:ijms24032905. [PMID: 36769231 PMCID: PMC9918034 DOI: 10.3390/ijms24032905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Bacteria of the genus "Candidatus Cardinium" and related organisms composing the Cardinium clade are intracellular endosymbionts frequently occurring in several arthropod groups, freshwater mussels and plant-parasitic nematodes. Phylogenetic analyses based on two gene sequences (16S rRNA and gyrB) showed that the Cardinium clade comprised at least five groups: A, B, C, D and E. In this study, a screening of 142 samples of plant-parasitic nematodes belonging to 93 species from 12 families and two orders using PCR with specific primers and sequencing, revealed bacteria of Cardinium clade in 14 nematode samples belonging to 12 species of cyst nematodes of the family Heteroderidae. Furthermore, in this study, the genome of the Cardinium cHhum from the hop cyst nematode, Heterodera humuli, was also amplified, sequenced and analyzed. The comparisons of the average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values for the strain Cardinium cHhum with regard to related organisms with available genomes, combined with the data on 16S rRNA and gyrB gene sequence identities, showed that this strain represents a new candidate species within the genus "Candidatus Paenicardinium". The phylogenetic position of endosymbionts of the Cardinium clade detected in nematode hosts was also compared to known representatives of this clade from other metazoans. Phylogenetic reconstructions based on analysis of 16S rRNA, gyrB, sufB, gloEL, fusA, infB genes and genomes and estimates of genetic distances both indicate that the endosymbiont of the root-lesion nematode Pratylenchus penetrans represented a separate lineage and is designated herein as a new group F. The phylogenetic analysis also confirmed that endosymbionts of ostracods represent the novel group G. Evolutionary relationships of bacterial endosymbionts of the Cardinium clade within invertebrates are presented and discussed.
Collapse
|
30
|
Studying Plant-Insect Interactions through the Analyses of the Diversity, Composition, and Functional Inference of Their Bacteriomes. Microorganisms 2022; 11:microorganisms11010040. [PMID: 36677331 PMCID: PMC9863603 DOI: 10.3390/microorganisms11010040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
As with many other trophic interactions, the interchange of microorganisms between plants and their herbivorous insects is unavoidable. To test the hypothesis that the composition and diversity of the insect bacteriome are driven by the bacteriome of the plant, the bacteriomes of both the plant Datura inoxia and its specialist insect Lema daturaphila were characterised using 16S sRNA gene amplicon sequencing. Specifically, the bacteriomes associated with seeds, leaves, eggs, guts, and frass were described and compared. Then, the functions of the most abundant bacterial lineages found in the samples were inferred. Finally, the patterns of co-abundance among both bacteriomes were determined following a multilayer network approach. In accordance with our hypothesis, most genera were shared between plants and insects, but their abundances differed significantly within the samples collected. In the insect tissues, the most abundant genera were Pseudomonas (24.64%) in the eggs, Serratia (88.46%) in the gut, and Pseudomonas (36.27%) in the frass. In contrast, the most abundant ones in the plant were Serratia (40%) in seeds, Serratia (67%) in foliar endophytes, and Hymenobacter (12.85%) in foliar epiphytes. Indeed, PERMANOVA analysis showed that the composition of the bacteriomes was clustered by sample type (F = 9.36, p < 0.001). Functional inferences relevant to the interaction showed that in the plant samples, the category of Biosynthesis of secondary metabolites was significantly abundant (1.4%). In turn, the category of Xenobiotics degradation and metabolism was significantly present (2.5%) in the insect samples. Finally, the phyla Proteobacteria and Actinobacteriota showed a pattern of co-abundance in the insect but not in the plant, suggesting that the co-abundance and not the presence−absence patterns might be more important when studying ecological interactions.
Collapse
|
31
|
Ganesan R, Wierz JC, Kaltenpoth M, Flórez LV. How It All Begins: Bacterial Factors Mediating the Colonization of Invertebrate Hosts by Beneficial Symbionts. Microbiol Mol Biol Rev 2022; 86:e0012621. [PMID: 36301103 PMCID: PMC9769632 DOI: 10.1128/mmbr.00126-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Beneficial associations with bacteria are widespread across animals, spanning a range of symbiont localizations, transmission routes, and functions. While some of these associations have evolved into obligate relationships with permanent symbiont localization within the host, the majority require colonization of every host generation from the environment or via maternal provisions. Across the broad diversity of host species and tissue types that beneficial bacteria can colonize, there are some highly specialized strategies for establishment yet also some common patterns in the molecular basis of colonization. This review focuses on the mechanisms underlying the early stage of beneficial bacterium-invertebrate associations, from initial contact to the establishment of the symbionts in a specific location of the host's body. We first reflect on general selective pressures that can drive the transition from a free-living to a host-associated lifestyle in bacteria. We then cover bacterial molecular factors for colonization in symbioses from both model and nonmodel invertebrate systems where these have been studied, including terrestrial and aquatic host taxa. Finally, we discuss how interactions between multiple colonizing bacteria and priority effects can influence colonization. Taking the bacterial perspective, we emphasize the importance of developing new experimentally tractable systems to derive general insights into the ecological factors and molecular adaptations underlying the origin and establishment of beneficial symbioses in animals.
Collapse
Affiliation(s)
- Ramya Ganesan
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Jürgen C. Wierz
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Martin Kaltenpoth
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Laura V. Flórez
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
- Department of Plant and Environmental Sciences, Section for Organismal Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
32
|
Ford SA, Drew GC, King KC. Immune-mediated competition benefits protective microbes over pathogens in a novel host species. Heredity (Edinb) 2022; 129:327-335. [PMID: 36352206 PMCID: PMC9708653 DOI: 10.1038/s41437-022-00569-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022] Open
Abstract
Microbes that protect against infection inhabit hosts across the tree of life. It is unclear whether and how the host immune system may affect the formation of new protective symbioses. We investigated the transcriptomic response of Caenorhabditis elegans following novel interactions with a protective microbe (Enterococcus faecalis) able to defend against infection by pathogenic Staphylococcus aureus. We have previously shown that E. faecalis can directly limit pathogen growth within hosts. In this study, we show that colonisation by protective E. faecalis caused the differential expression of 1,557 genes in pathogen infected hosts, including the upregulation of immune genes such as lysozymes and C-type lectins. The most significantly upregulated host lysozyme gene, lys-7, impacted the competitive abilities of E. faecalis and S. aureus when knocked out. E. faecalis has an increased ability to resist lysozyme activity compared to S. aureus, suggesting that the protective microbe could gain a competitive advantage from this host response. Our finding that protective microbes can benefit from immune-mediated competition after introduction opens up new possibilities for biocontrol design and our understanding of symbiosis evolution. Crosstalk between the host immune response and microbe-mediated protection should favour the continued investment in host immunity and avoid the potentially risky evolution of host dependence.
Collapse
Affiliation(s)
- Suzanne A Ford
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Georgia C Drew
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Kayla C King
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK.
| |
Collapse
|
33
|
Kakizawa S, Hosokawa T, Oguchi K, Miyakoshi K, Fukatsu T. Spiroplasma as facultative bacterial symbionts of stinkbugs. Front Microbiol 2022; 13:1044771. [PMID: 36353457 PMCID: PMC9638005 DOI: 10.3389/fmicb.2022.1044771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/07/2022] [Indexed: 12/05/2022] Open
Abstract
Many insects are associated with facultative symbiotic bacteria, and their infection prevalence provides an important clue to understand the biological impact of such microbial associates. Here we surveyed diverse stinkbugs representing 13 families, 69 genera, 97 species and 468 individuals for Spiroplasma infection. Diagnostic PCR detection revealed that 4 families (30.8%), 7 genera (10.1%), 11 species (11.3%) and 21 individuals (4.5%) were Spiroplasma positive. All the 21 stinkbug samples with Spiroplasma infection were subjected to PCR amplification and sequencing of Spiroplasma’s 16S rRNA gene. Molecular phylogenetic analysis uncovered that the stinkbug-associated Spiroplasma symbionts were placed in three distinct clades in the Spiroplasmataceae, highlighting multiple evolutionary origins of the stinkbug-Spiroplasma associations. The Spiroplasma phylogeny did not reflect the host stinkbug phylogeny, indicating the absence of host-symbiont co-speciation. On the other hand, the Spiroplasma symbionts associated with the same stinkbug family tended to be related to each other, suggesting the possibility of certain levels of host-symbiont specificity and/or ecological symbiont sharing. Amplicon sequencing analysis targeting bacterial 16S rRNA gene, FISH visualization of the symbiotic bacteria, and rearing experiments of the host stinkbugs uncovered that the Spiroplasma symbionts are generally much less abundant in comparison with the primary gut symbiotic bacteria, localized to various tissues and organs at relatively low densities, and vertically transmitted to the offspring. On the basis of these results, we conclude that the Spiroplasma symbionts are, in general, facultative bacterial associates of low infection prevalence that are not essential but rather commensalistic for the host stinkbugs, like the Spiroplasma symbionts of fruit flies and aphids, although their impact on the host phenotypes should be evaluated in future studies.
Collapse
Affiliation(s)
- Shigeyuki Kakizawa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- *Correspondence: Shigeyuki Kakizawa, ; Takema Fukatsu,
| | - Takahiro Hosokawa
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Kohei Oguchi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Misaki Marine Biological Station (MMBS), School of Science, The University of Tokyo, Miura, Japan
| | - Kaori Miyakoshi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Takema Fukatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- *Correspondence: Shigeyuki Kakizawa, ; Takema Fukatsu,
| |
Collapse
|
34
|
Berasategui A, Breitenbach N, García-Lozano M, Pons I, Sailer B, Lanz C, Rodríguez V, Hipp K, Ziemert N, Windsor D, Salem H. The leaf beetle Chelymorpha alternans propagates a plant pathogen in exchange for pupal protection. Curr Biol 2022; 32:4114-4127.e6. [PMID: 35987210 DOI: 10.1016/j.cub.2022.07.065] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 12/14/2022]
Abstract
Many insects rely on microbial protection in the early stages of their development. However, in contrast to symbiont-mediated defense of eggs and young instars, the role of microbes in safeguarding pupae remains relatively unexplored, despite the susceptibility of the immobile stage to antagonistic challenges. Here, we outline the importance of symbiosis in ensuring pupal protection by describing a mutualistic partnership between the ascomycete Fusarium oxysporum and Chelymorpha alternans, a leaf beetle. The symbiont rapidly proliferates at the onset of pupation, extensively and conspicuously coating C. alternans during metamorphosis. The fungus confers defense against predation as symbiont elimination results in reduced pupal survivorship. In exchange, eclosing beetles vector F. oxysporum to their host plants, resulting in a systemic infection. By causing wilt disease, the fungus retained its phytopathogenic capacity in light of its symbiosis with C. alternans. Despite possessing a relatively reduced genome, F. oxysporum encodes metabolic pathways that reflect its dual lifestyle as a plant pathogen and a defensive insect symbiont. These include virulence factors underlying plant colonization, along with mycotoxins that may contribute to the defensive biochemistry of the insect host. Collectively, our findings shed light on a mutualism predicated on pupal protection of an herbivorous beetle in exchange for symbiont dissemination and propagation.
Collapse
Affiliation(s)
- Aileen Berasategui
- Max Planck Institute for Biology, Mutualisms Research Group, Max-Planck-Ring 5, Tübingen 72076, Germany; University of Tübingen, Cluster of Excellence 'Controlling Microbes to Fight Infections', Auf der Morgenstelle 28, Tübingen 72076, Germany.
| | - Noa Breitenbach
- Max Planck Institute for Biology, Mutualisms Research Group, Max-Planck-Ring 5, Tübingen 72076, Germany
| | - Marleny García-Lozano
- Max Planck Institute for Biology, Mutualisms Research Group, Max-Planck-Ring 5, Tübingen 72076, Germany
| | - Inès Pons
- Max Planck Institute for Biology, Mutualisms Research Group, Max-Planck-Ring 5, Tübingen 72076, Germany
| | - Brigitte Sailer
- Max Planck Institute for Biology, Electron Microscopy Facility, Max-Planck-Ring 5, Tübingen 72076, Germany
| | - Christa Lanz
- Max Planck Institute for Biology, Genome Center, Max-Planck-Ring 5, Tübingen 72076, Germany
| | - Viterbo Rodríguez
- Centro Regional Universitario de Veraguas, Centro de Capacitación, Investigación y Monitoreo de la Biodiversidad en Coiba, Calle Décima, vía San Francisco, Santiago 08001, Republic of Panama
| | - Katharina Hipp
- Max Planck Institute for Biology, Electron Microscopy Facility, Max-Planck-Ring 5, Tübingen 72076, Germany
| | - Nadine Ziemert
- University of Tübingen, Cluster of Excellence 'Controlling Microbes to Fight Infections', Auf der Morgenstelle 28, Tübingen 72076, Germany
| | - Donald Windsor
- Smithsonian Tropical Research Institute, Luis Clement Avenue, Bldg. 401 Tupper, Panama City 0843-03092, Republic of Panama
| | - Hassan Salem
- Max Planck Institute for Biology, Mutualisms Research Group, Max-Planck-Ring 5, Tübingen 72076, Germany.
| |
Collapse
|
35
|
Schuler H, Dittmer J, Borruso L, Galli J, Fischnaller S, Anfora G, Rota‐Stabelli O, Weil T, Janik K. Investigating the microbial community of Cacopsylla spp. as potential factor in vector competence of phytoplasma. Environ Microbiol 2022; 24:4771-4786. [PMID: 35876309 PMCID: PMC9804460 DOI: 10.1111/1462-2920.16138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 01/05/2023]
Abstract
Phytoplasmas are obligatory intracellular bacteria that colonize the phloem of many plant species and cause hundreds of plant diseases worldwide. In nature, phytoplasmas are primarily transmitted by hemipteran vectors. While all phloem-feeding insects could in principle transmit phytoplasmas, only a limited number of species have been confirmed as vectors. Knowledge about factors that might determine the vector capacity is currently scarce. Here, we characterized the microbiomes of vector and non-vector species of apple proliferation (AP) phytoplasma 'Candidatus Phytoplasma mali' to investigate their potential role in the vector capacity of the host. We performed high-throughput 16S rRNA metabarcoding of the two principal AP-vectors Cacopsylla picta and Cacopsylla melanoneura and eight Cacopsylla species, which are not AP-vectors but co-occur in apple orchards. The microbiomes of all species are dominated by Carsonella, the primary endosymbiont of psyllids and a second uncharacterized Enterobacteriaceae endosymbiont. Each Cacopsylla species harboured a species-specific phylotype of both symbionts. Moreover, we investigated differences between the microbiomes of AP-vector versus non-vector species and identified the predominant endosymbionts but also Wolbachia and several minor taxa as potential indicator species. Our study highlights the importance of considering the microbiome in future investigations of potential factors influencing host vector competence. We investigated the potential role of symbiotic bacteria in the acquisition and transmission of phytoplasma. By comparing the two main psyillid vector species of Apple proliferation (AP) phytoplasma and eight co-occurring species, which are not able to vector AP-phytoplasma, we found differences in the microbial communities of AP-vector and non-vector species, which appear to be driven by the predominant symbionts in both vector species and Wolbachia and several minor taxa in the non-vector species. In contrast, infection with AP-phytoplasma did not affect microbiome composition in both vector species. Our study provides new insights into the endosymbiont diversity of Cacopsylla spp. and highlights the importance of considering the microbiome when investigating potential factors influencing host vector competence.
Collapse
Affiliation(s)
- Hannes Schuler
- Faculty of Science and TechnologyFree University of Bozen‐BolzanoBozen‐BolzanoItaly,Competence Centre for Plant HealthFree University of Bozen‐BolzanoBozen‐BolzanoItaly
| | - Jessica Dittmer
- Faculty of Science and TechnologyFree University of Bozen‐BolzanoBozen‐BolzanoItaly,Université d'Angers, Institut Agro, INRAE, IRHS, SFR QuasavAngersFrance
| | - Luigimaria Borruso
- Faculty of Science and TechnologyFree University of Bozen‐BolzanoBozen‐BolzanoItaly
| | - Jonas Galli
- Department of Forest and Soil Sciences, BOKUUniversity of Natural Resources and Life Sciences ViennaViennaAustria
| | | | - Gianfranco Anfora
- Research and Innovation CenterFondazione Edmund MachSan Michele all'AdigeItaly,Center Agriculture Food EnvironmentUniversity of TrentoSan Michele all'AdigeItaly
| | - Omar Rota‐Stabelli
- Research and Innovation CenterFondazione Edmund MachSan Michele all'AdigeItaly,Center Agriculture Food EnvironmentUniversity of TrentoSan Michele all'AdigeItaly
| | - Tobias Weil
- Research and Innovation CenterFondazione Edmund MachSan Michele all'AdigeItaly
| | - Katrin Janik
- Center Agriculture Food EnvironmentUniversity of TrentoSan Michele all'AdigeItaly
| |
Collapse
|
36
|
Fungi are more transient than bacteria in caterpillar gut microbiomes. Sci Rep 2022; 12:15552. [PMID: 36114345 PMCID: PMC9481635 DOI: 10.1038/s41598-022-19855-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 09/06/2022] [Indexed: 11/24/2022] Open
Abstract
Despite an increasing number of studies on caterpillar (Insecta: Lepidoptera) gut microbiota, bacteria have been emphasized more than fungi. Therefore, we lack data on whether fungal microbiota is resident or transient and shaped by factors similar to those of bacteria. We sampled nine polyphagous caterpillar species from several tree species at multiple sites to determine the factors shaping leaf and gut bacterial and fungal microbiota as well as the extent to which caterpillars acquire microbiota from their diet. We performed 16S and ITS2 DNA metabarcoding of the leaves and guts to determine the composition and richness of the respective microbiota. While spatial variables shaped the bacterial and fungal microbiota of the leaves, they only affected fungi in the guts, whereas the bacteria were shaped primarily by caterpillar species, with some species harboring more specific bacterial consortia. Leaf and gut microbiota significantly differed; in bacteria, this difference was more pronounced. The quantitative similarity between leaves and guts significantly differed among caterpillar species in bacteria but not fungi, suggesting that some species have more transient bacterial microbiota. Our results suggest the complexity of the factors shaping the gut microbiota, while highlighting interspecific differences in microbiota residency within the same insect functional group.
Collapse
|
37
|
Sawadogo SP, Kabore DA, Tibiri EB, Hughes A, Gnankine O, Quek S, Diabaté A, Ranson H, Hughes GL, Dabiré RK. Lack of robust evidence for a Wolbachia infection in Anopheles gambiae from Burkina Faso. MEDICAL AND VETERINARY ENTOMOLOGY 2022; 36:301-308. [PMID: 35876244 PMCID: PMC10053554 DOI: 10.1111/mve.12601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/06/2022] [Indexed: 05/11/2023]
Abstract
The endosymbiont Wolbachia can have major effects on the reproductive fitness, and vectorial capacity of host insects and may provide new avenues to control mosquito-borne pathogens. Anopheles gambiae s.l is the major vector of malaria in Africa but the use of Wolbachia in this species has been limited by challenges in establishing stable transinfected lines and uncertainty around native infections. High frequencies of infection of Wolbachia have been previously reported in An. gambiae collected from the Valle du Kou region of Burkina Faso in 2011 and 2014. Here, we re-evaluated the occurrence of Wolbachia in natural samples, collected from Valle du Kou over a 12-year time span, and in addition, expanded sampling to other sites in Burkina Faso. Our results showed that, in contrast to earlier reports, Wolbachia is present at an extremely low prevalence in natural population of An. gambiae. From 5341 samples analysed, only 29 were positive for Wolbachia by nested PCR representing 0.54% of prevalence. No positive samples were found with regular PCR. Phylogenetic analysis of 16S rRNA gene amplicons clustered across supergroup B, with some having similarity to sequences previously found in Anopheles from Burkina Faso. However, we cannot discount the possibility that the amplicon positive samples we detected were due to environmental contamination or were false positives. Regardless, the lack of a prominent native infection in An. gambiae s.l. is encouraging for applications utilizing Wolbachia transinfected mosquitoes for malaria control.
Collapse
Affiliation(s)
- Simon P. Sawadogo
- Département de Biologie Médicale et Santé Publique, Institut de Recherche en Sciences de la SantéBobo‐DioulassoBurkina Faso
| | - Didier A. Kabore
- Département de Biologie Médicale et Santé Publique, Institut de Recherche en Sciences de la SantéBobo‐DioulassoBurkina Faso
| | - Ezechiel B. Tibiri
- Département de Virologie et de Biotechnologies Végétales, Institut de l'Environnement et de Recherches Agricoles (INERA)OuagadougouBurkina Faso
| | - Angela Hughes
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
| | - Olivier Gnankine
- Département de Biologie et de Physiologie Animales, Université Joseph K‐ZerboOuagadougouBurkina Faso
| | - Shannon Quek
- Departments of Vector Biology and Tropical Disease Biology, Center for Neglected Tropical DiseaseLiverpool School of Tropical MedicineLiverpoolUK
| | - Abdoulaye Diabaté
- Département de Biologie Médicale et Santé Publique, Institut de Recherche en Sciences de la SantéBobo‐DioulassoBurkina Faso
| | - Hilary Ranson
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
| | - Grant L. Hughes
- Departments of Vector Biology and Tropical Disease Biology, Center for Neglected Tropical DiseaseLiverpool School of Tropical MedicineLiverpoolUK
| | - Roch K. Dabiré
- Département de Biologie Médicale et Santé Publique, Institut de Recherche en Sciences de la SantéBobo‐DioulassoBurkina Faso
| |
Collapse
|
38
|
Twort VG, Blande D, Duplouy A. One's trash is someone else's treasure: sequence read archives from Lepidoptera genomes provide material for genome reconstruction of their endosymbionts. BMC Microbiol 2022; 22:209. [PMID: 36042402 PMCID: PMC9426245 DOI: 10.1186/s12866-022-02602-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Maternally inherited bacterial symbionts are extremely widespread in insects. They owe their success to their ability to promote their own transmission through various manipulations of their hosts' life-histories. Many symbionts however very often go undetected. Consequently, we have only a restricted idea of the true symbiont diversity in insects, which may hinder our understanding of even bigger questions in the field such as the evolution or establishment of symbiosis. RESULTS In this study, we screened publicly available Lepidoptera genomic material for two of the most common insect endosymbionts, namely Wolbachia and Spiroplasma, in 1904 entries, encompassing 106 distinct species. We compared the performance of two screening software, Kraken2 and MetaPhlAn2, to identify the bacterial infections and using a baiting approach we reconstruct endosymbiont genome assemblies. Of the 106 species screened, 20 (19%) and nine (8.5%) were found to be infected with either Wolbachia or Spiroplasma, respectively. Construction of partial symbiotic genomes and phylogenetic analyses suggested the Wolbachia strains from the supergroup B were the most prevalent type of symbionts, while Spiroplasma infections were scarce in the Lepidoptera species screened here. CONCLUSIONS Our results indicate that many of the host-symbiont associations remain largely unexplored, with the majority of associations we identify never being recorded before. This highlights the usefulness of public databases to explore the hidden diversity of symbiotic entities, allowing the development of hypotheses regarding host-symbiont associations. The ever-expanding genomic databases provide a diverse databank from which one can characterize and explore the true diversity of symbiotic entities.
Collapse
Affiliation(s)
- Victoria G Twort
- Finnish Natural History Museum, LUOMUS, The University of Helsinki, Helsinki, Finland.
| | - Daniel Blande
- Organismal and Evolutionary Biology, The University of Helsinki, Helsinki, Finland
| | - Anne Duplouy
- Organismal and Evolutionary Biology, The University of Helsinki, Helsinki, Finland
| |
Collapse
|
39
|
Formisano G, Iodice L, Cascone P, Sacco A, Quarto R, Cavalieri V, Bosco D, Guerrieri E, Giorgini M. Wolbachia infection and genetic diversity of Italian populations of Philaenus spumarius, the main vector of Xylella fastidiosa in Europe. PLoS One 2022; 17:e0272028. [PMID: 36037217 PMCID: PMC9423658 DOI: 10.1371/journal.pone.0272028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/13/2022] [Indexed: 11/26/2022] Open
Abstract
Philaenus spumarius is a cosmopolitan species that has become a major threat to European agriculture being recognized as the main vector of the introduced plant pathogen Xylella fastidiosa, the agent of the “olive quick decline syndrome”, a disease which is devastating olive orchards in southern Italy. Wolbachia are bacterial symbionts of many insects, frequently as reproductive parasites, sometime by establishing mutualistic relationships, able to spread within host populations. Philaenus spumarius harbors Wolbachia, but the role played by this symbiont is unknown and data on the infection prevalence within host populations are limited. Here, the Wolbachia infection rate was analyzed in relation to the geographic distribution and the genetic diversity of the Italian populations of P. spumarius. Analysis of the COI gene sequences revealed a geographically structured distribution of the three main mitochondrial lineages of P. spumarius. Wolbachia was detected in half of the populations sampled in northern Italy where most individuals belonged to the western-Mediterranean lineage. All populations sampled in southern and central Italy, where the individuals of the eastern-Mediterranean lineage were largely prevalent, were uninfected. Individuals of the north-eastern lineage were found only in populations from the Alps in the northernmost part of Italy, at high altitudes. In this area, Wolbachia infection reached the highest prevalence, with no difference between north-eastern and western-Mediterranean lineage. Analysis of molecular diversity of COI sequences suggested no significant effect of Wolbachia on population genetics of P. spumarius. Using the MLST approach, six new Wolbachia sequence types were identified. Using FISH, Wolbachia were observed within the host’s reproductive tissues and salivary glands. Results obtained led us to discuss the role of Wolbachia in P. spumarius, the factors influencing the geographic distribution of the infection, and the exploitation of Wolbachia for the control of the vector insect to reduce the spread of X. fastidiosa.
Collapse
Affiliation(s)
- Giorgio Formisano
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Portici, Italy
| | - Luigi Iodice
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Portici, Italy
| | - Pasquale Cascone
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Portici, Italy
| | - Adriana Sacco
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Portici, Italy
| | - Roberta Quarto
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Portici, Italy
| | - Vincenzo Cavalieri
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Domenico Bosco
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Grugliasco, Italy
| | - Emilio Guerrieri
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Portici, Italy
| | - Massimo Giorgini
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Portici, Italy
- * E-mail:
| |
Collapse
|
40
|
Bisschop K, Kortenbosch HH, van Eldijk TJB, Mallon CA, Salles JF, Bonte D, Etienne RS. Microbiome Heritability and Its Role in Adaptation of Hosts to Novel Resources. Front Microbiol 2022; 13:703183. [PMID: 35865927 PMCID: PMC9296072 DOI: 10.3389/fmicb.2022.703183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/06/2022] [Indexed: 12/12/2022] Open
Abstract
Microbiomes are involved in most vital processes, such as immune response, detoxification, and digestion and are thereby elementary to organismal functioning and ultimately the host’s fitness. In turn, the microbiome may be influenced by the host and by the host’s environment. To understand microbiome dynamics during the process of adaptation to new resources, we performed an evolutionary experiment with the two-spotted spider mite, Tetranychus urticae. We generated genetically depleted strains of the two-spotted spider mite and reared them on their ancestral host plant and two novel host plants for approximately 12 generations. The use of genetically depleted strains reduced the magnitude of genetic adaptation of the spider mite host to the new resource and, hence, allowed for better detection of signals of adaptation via the microbiome. During the course of adaptation, we tested spider mite performance (number of eggs laid and longevity) and characterized the bacterial component of its microbiome (16S rRNA gene sequencing) to determine: (1) whether the bacterial communities were shaped by mite ancestry or plant environment and (2) whether the spider mites’ performance and microbiome composition were related. We found that spider mite performance on the novel host plants was clearly correlated with microbiome composition. Because our results show that only little of the total variation in the microbiome can be explained by the properties of the host (spider mite) and the environment (plant species) we studied, we argue that the bacterial community within hosts could be valuable for understanding a species’ performance on multiple resources.
Collapse
Affiliation(s)
- Karen Bisschop
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, Ghent, Belgium
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
- Laboratory of Aquatic Biology, Department of Biology, KU Leuven, Kortrijk, Belgium
- *Correspondence: Karen Bisschop,
| | - Hylke H. Kortenbosch
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Timo J. B. van Eldijk
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Cyrus A. Mallon
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Joana F. Salles
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Dries Bonte
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, Ghent, Belgium
| | - Rampal S. Etienne
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| |
Collapse
|
41
|
Chalifour BN, Elder LE, Li J. Gut microbiome of century-old snail specimens stable across time in preservation. MICROBIOME 2022; 10:99. [PMID: 35765039 PMCID: PMC9241308 DOI: 10.1186/s40168-022-01286-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/21/2022] [Indexed: 05/10/2023]
Abstract
BACKGROUND Museum biological specimens provide a unique means of gathering ecological information that spans wide temporal ranges. Museum specimens can also provide information on the microbial communities that persist within the host specimen. Together, these provide researchers valuable opportunities to study long-term trends and mechanisms of microbial community change. The effects of decades-long museum preservation on host-microbial communities have not been systematically assessed. The University of Colorado's Museum of Natural History has densely sampled Oreohelix strigosa (Rocky Mountainsnail) for the past century; many are preserved in ethanol, which provides an excellent opportunity to explore how the microbiome changes across time in preservation. RESULTS We used 16S rRNA (ribosomal ribonucleic acid) gene amplicon sequencing to examine Oreohelix strigosa gut microbiomes from museum specimens across a 98-year range, as well as within short-term preservation treatments collected in 2018. Treatment groups included samples extracted fresh, without preservation; samples starved prior to extraction; and samples preserved for 1 month, 6 months, and 9 months. General microbiome composition was similar across all years. Sample groups belonging to specific years, or specific short-term treatments, showed unique associations with select bacterial taxa. Collection year was not a significant predictor of microbial richness, though unpreserved short-term treatments showed significantly higher richness than preserved treatments. While the year was a significant factor in microbiome composition, it did not explain much of the variation across samples. The location was a significant driver of community composition and explained more of the variability. CONCLUSIONS This study is the first to examine animal host-associated microbiome change across a period of nearly one century. Generally, geographic location was a greater factor in shaping gut microbiome composition, rather than a year collected. Consistent patterns across this temporal range indicate that historic specimens can answer many ecological questions surrounding the host-associated microbiome. Video Abstract.
Collapse
Affiliation(s)
- Bridget N. Chalifour
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, 1900 Pleasant Street, 334 UCB, Boulder, CO 80309 USA
| | - Leanne E. Elder
- Museum of Natural History, University of Colorado Boulder, 265 UCB, Boulder, CO 80309 USA
- New Zealand Arthropod Collection, Manaaki Whenua Landcare Research, 231 Morrin Road St. Johns, Auckland, NZ 1072 New Zealand
| | - Jingchun Li
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, 1900 Pleasant Street, 334 UCB, Boulder, CO 80309 USA
- Museum of Natural History, University of Colorado Boulder, 265 UCB, Boulder, CO 80309 USA
| |
Collapse
|
42
|
Sinha DK, Gupta A, Padmakumari AP, Bentur JS, Nair S. Infestation of Rice by Gall Midge Influences Density and Diversity of Pseudomonas and Wolbachia in the Host Plant Microbiome. Curr Genomics 2022; 23:126-136. [PMID: 36778977 PMCID: PMC9878839 DOI: 10.2174/1389202923666220401101604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/16/2022] [Accepted: 02/28/2022] [Indexed: 11/22/2022] Open
Abstract
Background: The virulence of phytophagous insects is predominantly determined by their ability to evade or suppress host defense for their survival. The rice gall midge (GM, Orseolia oryzae), a monophagous pest of rice, elicits a host defense similar to the one elicited upon pathogen attack. This could be due to the GM feeding behaviour, wherein the GM endosymbionts are transferred to the host plant via oral secretions, and as a result, the host mounts an appropriate defense response(s) (i.e., up-regulation of the salicylic acid pathway) against these endosymbionts. Methods: The current study aimed to analyze the microbiome present at the feeding site of GM maggots to determine the exchange of bacterial species between GM and its host and to elucidate their role in rice-GM interaction using a next-generation sequencing approach. Results: Our results revealed differential representation of the phylum Proteobacteria in the GM-infested and -uninfested rice tissues. Furthermore, analysis of the species diversity of Pseudomonas and Wolbachia supergroups at the feeding sites indicated the exchange of bacterial species between GM and its host upon infestation. Conclusion: As rice-GM microbial associations remain relatively unstudied, these findings not only add to our current understanding of microbe-assisted insect-plant interactions but also provide valuable insights into how these bacteria drive insect-plant coevolution. Moreover, to the best of our knowledge, this is the first report analyzing the microbiome of a host plant (rice) at the feeding site of its insect pest (GM).
Collapse
Affiliation(s)
| | - Ayushi Gupta
- These authors contributed equally in this manuscript.
| | | | | | - Suresh Nair
- Address correspondence to this author at the Plant-Insect Interaction Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India; Tel: 91-11-26741242; Fax: 91-11-26742316; E-mail:
| |
Collapse
|
43
|
Withers AJ, Rice A, de Boer J, Donkersley P, Pearson AJ, Chipabika G, Karangwa P, Uzayisenga B, Mensah BA, Mensah SA, Nkunika POY, Kachigamba D, Smith JA, Jones CM, Wilson K. The distribution of covert microbial natural enemies of a globally invasive crop pest, fall armyworm, in Africa: Enemy release and spillover events. J Anim Ecol 2022; 91:1826-1841. [PMID: 35678697 PMCID: PMC9544759 DOI: 10.1111/1365-2656.13760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 05/16/2022] [Indexed: 12/03/2022]
Abstract
Invasive species pose a significant threat to biodiversity and agriculture world‐wide. Natural enemies play an important part in controlling pest populations, yet we understand very little about the presence and prevalence of natural enemies during the early invasion stages. Microbial natural enemies of fall armyworm Spodoptera frugiperda are known in its native region, however, they have not yet been identified in Africa where fall armyworm has been an invasive crop pest since 2016. Larval samples were screened from Malawi, Rwanda, Kenya, Zambia, Sudan and Ghana for the presence of four different microbial natural enemies; two nucleopolyhedroviruses, Spodoptera frugiperda NPV (SfMNPV) and Spodoptera exempta NPV (SpexNPV); the fungal pathogen Metarhizium rileyi; and the bacterium Wolbachia. This study aimed to identify which microbial pathogens are present in invasive fall armyworm, and determine the geographical, meteorological and temporal variables that influence prevalence. Within 3 years of arrival, fall armyworm was exposed to all four microbial natural enemies. SfMNPV probably arrived with fall armyworm from the Americas, but this is the first putative evidence of host spillover from Spodoptera exempta (African armyworm) to fall armyworm for the endemic pathogen SpexNPV and for Wolbachia. It is also the first confirmed incidence of M. rileyi infecting fall armyworm in Africa. Natural enemies were localised, with variation being observed both nationally and temporally. The prevalence of SfMNPV (the most common natural enemy) was predominantly explained by variables associated with the weather; declining with increasing rainfall and increasing with temperature. However, virus prevalence also increased as the growing season progressed. The infection of an invasive species with a natural enemy from its native range and novel pathogens specific to its new range has important consequences for understanding the population ecology of invasive species and insect–pathogen interactions. Additionally, while it is widely known that temporal and geographic factors affect insect populations, this study reveals that these are important in understanding the distribution of microbial natural enemies associated with invasive pests during the early stages of invasion, and provide baseline data for future studies.
Collapse
Affiliation(s)
- Amy J Withers
- Lancaster Environment Centre, Lancaster University, Lancaster, UK.,Rothamsted Research, Harpenden, UK
| | - Annabel Rice
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | | | | | | | | | - Patrick Karangwa
- Rwanda Agriculture and Animal Resources Development Board, Rubona, Rwanda
| | | | | | | | | | | | | | - Christopher M Jones
- Liverpool School of Tropical Medicine, Liverpool, UK.,Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Kenneth Wilson
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| |
Collapse
|
44
|
Strunov A, Schmidt K, Kapun M, Miller WJ. Restriction of Wolbachia Bacteria in Early Embryogenesis of Neotropical Drosophila Species via Endoplasmic Reticulum-Mediated Autophagy. mBio 2022; 13:e0386321. [PMID: 35357208 PMCID: PMC9040723 DOI: 10.1128/mbio.03863-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/03/2022] [Indexed: 01/20/2023] Open
Abstract
Wolbachia are maternally transmitted intracellular bacteria that are not only restricted to the reproductive organs but also found in various somatic tissues of their native hosts. The abundance of the endosymbiont in the soma, usually a dead end for vertically transmitted bacteria, causes a multitude of effects on life history traits of their hosts, which are still not well understood. Thus, deciphering the host-symbiont interactions on a cellular level throughout a host's life cycle is of great importance to understand their homeostatic nature, persistence, and spreading success. Using fluorescent and transmission electron microscopy, we conducted a comprehensive analysis of Wolbachia tropism in soma and germ line of six Drosophila species at the intracellular level during host development. Our data uncovered diagnostic patterns of infections to embryonic primordial germ cells and to particular cells of the soma in three different neotropical Drosophila species that have apparently evolved independently. We further found that restricted patterns of Wolbachia tropism are determined in early embryogenesis via selective autophagy, and their spatially restricted infection patterns are preserved in adult flies. We observed tight interactions of Wolbachia with membranes of the endoplasmic reticulum, which might play a scaffolding role for autophagosome formation and subsequent elimination of the endosymbiont. Finally, by analyzing D. simulans lines transinfected with nonnative Wolbachia, we uncovered that the host genetic background regulates tissue tropism of infection. Our data demonstrate a novel and peculiar mechanism to limit and spatially restrict bacterial infection in the soma during a very early stage of host development. IMPORTANCE All organisms are living in close and intimate interactions with microbes that cause conflicts but also cooperation between both unequal genetic partners due to their different innate interests of primarily enhancing their own fitness. However, stable symbioses often result in homeostatic interaction, named mutualism, by balancing costs and benefits, where both partners profit. Mechanisms that have evolved to balance and stably maintain homeostasis in mutualistic relationships are still quite understudied; one strategy is to "domesticate" potentially beneficial symbionts by actively controlling their replication rate below a critical and, hence, costly threshold, and/or to spatially and temporally restrict their localization in the host organism, which, in the latter case, in its most extreme form, is the formation of a specialized housing organ for the microbe (bacteriome). However, questions remain: how do these mutualistic associations become established in their first place, and what are the mechanisms for symbiont control and restriction in their early stages? Here, we have uncovered an unprecedented symbiont control mechanism in neotropical Drosophila species during early embryogenesis. The fruit fly evolved selective autophagy to restrict and control the proliferation of its intracellular endosymbiont Wolbachia in a defined subset of the stem cells as soon as the host's zygotic genome is activated.
Collapse
Affiliation(s)
- Anton Strunov
- Center for Anatomy and Cell Biology, Department of Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Katy Schmidt
- Center for Anatomy and Cell Biology, Department of Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Martin Kapun
- Center for Anatomy and Cell Biology, Department of Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
- Central Research Laboratories, Natural History Museum Vienna, Vienna, Austria
| | - Wolfgang J. Miller
- Center for Anatomy and Cell Biology, Department of Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
45
|
Quek S, Cerdeira L, Jeffries CL, Tomlinson S, Walker T, Hughes GL, Heinz E. Wolbachia endosymbionts in two Anopheles species indicates independent acquisitions and lack of prophage elements. Microb Genom 2022; 8. [PMID: 35446252 PMCID: PMC9453072 DOI: 10.1099/mgen.0.000805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wolbachia is a genus of obligate bacterial endosymbionts that infect a diverse range of arthropod species as well as filarial nematodes, with its single described species, Wolbachia pipientis, divided into several ‘supergroups’ based on multilocus sequence typing. Wolbachia strains in mosquitoes have been shown to inhibit the transmission of human pathogens, including Plasmodium malaria parasites and arboviruses. Despite their large host range, Wolbachia strains within the major malaria vectors of the Anopheles gambiae and Anopheles funestus complexes appear at low density, established solely on PCR-based methods. Questions have been raised as to whether this represents a true endosymbiotic relationship. However, recent definitive evidence for two distinct, high-density strains of supergroup B Wolbachia within Anopheles demeilloni and Anopheles moucheti has opened exciting possibilities to explore naturally occurring Wolbachia endosymbionts in Anopheles for biocontrol strategies to block Plasmodium transmission. Here, we utilize genomic analyses to demonstrate that both Wolbachia strains have retained all key metabolic and transport pathways despite their smaller genome size, with this reduction potentially attributable to degenerated prophage regions. Even with this reduction, we confirmed the presence of cytoplasmic incompatibility (CI) factor genes within both strains, with wAnD maintaining intact copies of these genes while the cifB gene was interrupted in wAnM, so functional analysis is required to determine whether wAnM can induce CI. Additionally, phylogenetic analysis indicates that these Wolbachia strains may have been introduced into these two Anopheles species via horizontal transmission events, rather than by ancestral acquisition and subsequent loss events in the Anopheles gambiae species complex. These are the first Wolbachia genomes, to our knowledge, that enable us to study the relationship between natural strain Plasmodium malaria parasites and their anopheline hosts.
Collapse
Affiliation(s)
- Shannon Quek
- Department of Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Louise Cerdeira
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Claire L Jeffries
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Sean Tomlinson
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Thomas Walker
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Grant L Hughes
- Department of Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, UK.,Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Eva Heinz
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK.,Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
46
|
Henry Y, Brechbühler E, Vorburger C. Gated Communities: Inter- and Intraspecific Diversity of Endosymbionts Across Four Sympatric Aphid Species. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.816184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aphids have evolved tight relationships with heritable endosymbionts, i.e., bacteria hosted within their tissues. Besides the primary endosymbiont Buchnera aphidicola, aphids host many facultative secondary endosymbionts with functions they may or may not benefit from. The different phenologies, lifestyles, and natural enemies of aphid species are predicted to favor the selection for distinct endosymbiont assemblages, as well as the emergence of intra-specific genetic diversity in the symbiotic bacteria. In this study, we (1) investigated the diversity of endosymbionts associated with four species from the genus Aphis in the field, and (2) we characterized the genetic diversity of Hamiltonella defensa, an endosymbiont that protects aphids against parasitoid wasps. We observed strong differences in the composition of endosymbiont communities among the four aphid species. H. defensa was clearly the dominant symbiont, although its abundance in each species varied from 25 to 96%. Using a multilocus sequence-typing approach, we found limited strain diversity in H. defensa. Each aphid species harbored two major strains, and none appeared shared between species. Symbiont phylogenies can thus help to understand the (seemingly limited) mobility of endosymbionts in aphid communities and the selection forces driving strain diversification.
Collapse
|
47
|
Busck MM, Lund MB, Bird TL, Bechsgaard JS, Bilde T, Schramm A. Temporal and spatial microbiome dynamics across natural populations of the social spider Stegodyphus dumicola. FEMS Microbiol Ecol 2022; 98:6526868. [PMID: 35147190 DOI: 10.1093/femsec/fiac015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/07/2022] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Host symbiont interactions may form obligatory or facultative associations that are context dependent. Long-term studies on microbiome composition from wild populations should assess the temporal and spatial dynamics of host-microbe associations. We characterized the temporal and spatial variation in the bacterial microbiome composition in six populations of the social spider Stegodyphus dumicola for 2.5 years, using 16S rRNA gene amplicon sequencing of whole spiders. Individuals within a nest exhibit highly similar microbiomes, which remain stable over several generations and are not predictably affected by seasonal variation in temperature or humidity. This stability in nest microbiome is likely due to social transmission, whereas drift-like processes during new nest foundations explain variation in host microbiomes between nests. This is supported by the lack of obligate symbionts (i.e. no symbionts are present in all spider individuals). Quantitative PCR analyses showed that the bacterial load of individual spiders is stable in healthy nests but can increase dramatically in perishing nests. These increases are not driven by specific bacterial taxa but likely caused by loss of host immune control under deteriorating conditions. Spider nests show an annual survival rate of approximately 45%, but nest death is not correlated to microbiome composition, and the bacteria found in S. dumicola are not considered to be high virulence pathogens.
Collapse
Affiliation(s)
- Mette M Busck
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Marie B Lund
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Tharina L Bird
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology (BIUST), Botswana.,Section for Genetics, Ecology and Evolution, Department of Biology, Aarhus University, Aarhus, Denmark.,General Entomology, Ditsong National Museum of Natural History, Pretoria, South Africa.,Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Jesper S Bechsgaard
- Section for Genetics, Ecology and Evolution, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Trine Bilde
- Section for Genetics, Ecology and Evolution, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Andreas Schramm
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
48
|
Hodson CN, Jaron KS, Gerbi S, Ross L. Gene-rich germline-restricted chromosomes in black-winged fungus gnats evolved through hybridization. PLoS Biol 2022; 20:e3001559. [PMID: 35213540 PMCID: PMC8906591 DOI: 10.1371/journal.pbio.3001559] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 03/09/2022] [Accepted: 01/28/2022] [Indexed: 12/20/2022] Open
Abstract
Germline-restricted DNA has evolved in diverse animal taxa and is found in several vertebrate clades, nematodes, and flies. In these lineages, either portions of chromosomes or entire chromosomes are eliminated from somatic cells early in development, restricting portions of the genome to the germline. Little is known about why germline-restricted DNA has evolved, especially in flies, in which 3 diverse families, Chironomidae, Cecidomyiidae, and Sciaridae, carry germline-restricted chromosomes (GRCs). We conducted a genomic analysis of GRCs in the fungus gnat Bradysia (Sciara) coprophila (Diptera: Sciaridae), which has 2 large germline-restricted "L" chromosomes. We sequenced and assembled the genome of B. coprophila and used differences in sequence coverage and k-mer frequency between somatic and germline tissues to identify GRC sequence and compare it to the other chromosomes in the genome. We found that the GRCs in B. coprophila are large, gene rich, and have many genes with divergent homologs on other chromosomes in the genome. We also found that 2 divergent GRCs exist in the population we sequenced. GRC genes are more similar in sequence to genes from another Dipteran family (Cecidomyiidae) than to homologous genes from Sciaridae. This unexpected finding suggests that these chromosomes likely arose in Sciaridae through hybridization with a related lineage. These results provide a foundation from which to answer many questions about the evolution of GRCs in Sciaridae, such as how this hybridization event resulted in GRCs and what features on these chromosomes cause them to be restricted to the germline.
Collapse
Affiliation(s)
- Christina N. Hodson
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Kamil S. Jaron
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Susan Gerbi
- Division of Biology and Medicine, Brown University, Providence, Rhode Island, United States of America
| | - Laura Ross
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
49
|
Konecka E. Fifty shades of bacterial endosymbionts and some of them still remain a mystery: Wolbachia and Cardinium in oribatid mites (Acari: Oribatida). J Invertebr Pathol 2022; 189:107733. [DOI: 10.1016/j.jip.2022.107733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 11/28/2022]
|
50
|
Vorburger C. Defensive Symbionts and the Evolution of Parasitoid Host Specialization. ANNUAL REVIEW OF ENTOMOLOGY 2022; 67:329-346. [PMID: 34614366 DOI: 10.1146/annurev-ento-072621-062042] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Insect host-parasitoid interactions abound in nature and are characterized by a high degree of host specialization. In addition to their behavioral and immune defenses, many host species rely on heritable bacterial endosymbionts for defense against parasitoids. Studies on aphids and flies show that resistance conferred by symbionts can be very strong and highly specific, possibly as a result of variation in symbiont-produced toxins. I argue that defensive symbionts are therefore an important source of diversifying selection, promoting the evolution of host specialization by parasitoids. This is likely to affect the structure of host-parasitoid food webs. I consider potential changes in terms of food web complexity, although the nature of these effects will also be influenced by whether maternally transmitted symbionts have some capacity for lateral transfer. This is discussed in the light of available evidence for horizontal transmission routes. Finally, I propose that defensive mutualisms other than microbial endosymbionts may also exert diversifying selection on insect parasitoids.
Collapse
Affiliation(s)
- Christoph Vorburger
- Department of Aquatic Ecology, Eawag, 8600 Dübendorf, Switzerland;
- Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|