1
|
Niu T, Fan T, Wang Y, Gao K, Zhao J, Wang R, Chen X, Xing J, Qiu J, Zou B, Fan S, Zhang S, Wu Q, Yang G, Wang N, Zeng Y, Cao X, Jiang Y, Wang J, Huang H, Yang W, Shi C, Li Z, Wang C. Lactobacillus plantae Expressing Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) Single-Chain Antibody Can Inhibit PRRSV Replication and Change the Intestinal Flora Structure of Piglets. Int J Mol Sci 2025; 26:2257. [PMID: 40076879 PMCID: PMC11901011 DOI: 10.3390/ijms26052257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/11/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an infectious disease that can cause reproductive disorders in sows and affect the breathing of piglets, seriously endangering pig breeding worldwide. In this study, Lactobacillus plantarum NC8 was used as the expression delivery vector of foreign proteins, and a single-chain antibody was designed based on an mAb-PN9cx3 sequence. Three recombinant strains of Lactobacillus plantarum, namely, NC8/pSIP409-pgsA'-PN9cx3-scFV(E), NC8/pSIP409-pgsA'-PN9cx3-HC(E), and NC8/pSIP409-pgsA'-PN9cx3-LC(E), were successfully constructed. In an in vitro test, the viral load of each experimental group was significantly lower than that of the control group (p < 0.01). In the piglet challenge protection test, the percentage of CD3+CD8+T cells in the blood of piglets given complex lactic acid bacteria was significantly increased before and after the challenge (p < 0.01); the body temperature of piglets in this group was normal, the viral load of each organ was reduced, and the obvious pathological changes in each tissue were alleviated. At the same time, the abundance of Bacteroides, Fusobacterium, and other bacteria in the intestinal tracts of the piglets changed, affecting the metabolism of carbohydrates and amino acids and the differentiation of Th1 and Th2 cells. This experiment provides a feasible strategy and method for the design of a PRRSV vaccine.
Collapse
Affiliation(s)
- Tianming Niu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130012, China; (T.N.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130000, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130000, China
| | - Tianqi Fan
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130012, China; (T.N.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130000, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130000, China
| | - Yingjie Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130012, China; (T.N.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130000, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130000, China
| | - Kuipeng Gao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130012, China; (T.N.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130000, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130000, China
| | - Jinhui Zhao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130012, China; (T.N.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130000, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130000, China
| | - Ruyu Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130012, China; (T.N.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130000, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130000, China
| | - Xiaolei Chen
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130012, China; (T.N.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130000, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130000, China
| | - Junhong Xing
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130012, China; (T.N.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130000, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130000, China
| | - Jingjing Qiu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130012, China; (T.N.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130000, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130000, China
| | - Boshi Zou
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130012, China; (T.N.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130000, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130000, China
| | - Shuhui Fan
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130012, China; (T.N.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130000, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130000, China
| | - Shi Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130012, China; (T.N.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130000, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130000, China
| | - Qiong Wu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130012, China; (T.N.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130000, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130000, China
| | - Guilian Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130012, China; (T.N.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130000, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130000, China
| | - Nan Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130012, China; (T.N.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130000, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130000, China
| | - Yan Zeng
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130012, China; (T.N.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130000, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130000, China
| | - Xin Cao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130012, China; (T.N.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130000, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130000, China
| | - Yanlong Jiang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130012, China; (T.N.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130000, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130000, China
| | - Jianzhong Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130012, China; (T.N.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130000, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130000, China
| | - Haibin Huang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130012, China; (T.N.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130000, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130000, China
| | - Wentao Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130012, China; (T.N.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130000, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130000, China
| | - Chunwei Shi
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130012, China; (T.N.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130000, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130000, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130000, China
| | - Zhipeng Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130012, China; (T.N.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130000, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130000, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130000, China
| | - Chunfeng Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130012, China; (T.N.)
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130000, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun 130000, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130000, China
| |
Collapse
|
2
|
Hussein AO, Khalil K, Mohd Zaini NA, Al Atya AK, Aqma WS. Antimicrobial activity of Lactobacillus spp. isolated from fermented foods and their inhibitory effect against foodborne pathogens. PeerJ 2025; 13:e18541. [PMID: 39790459 PMCID: PMC11716013 DOI: 10.7717/peerj.18541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/27/2024] [Indexed: 01/12/2025] Open
Abstract
Lactic acid bacteria (LAB), known for their health benefits, exhibit antimicrobial and antibiofilm properties. This study investigated the cell-free supernatant (CFS) of Lactobacillus spp., particularly L. plantarum KR3, against the common foodborne pathogens S. aureus, E. coli and Salmonella spp. Lactobacillus strains were isolated from cheese, pickles and yoghurt. They were then identified by morphological, physiological and biochemical characteristics and confirmed by 16S rRNA gene sequencing. Culture supernatants from seven lactobacilli isolates showed varying inhibitory activities. Notably, L. plantarum KR3 and L. pentosus had the highest bacteriocin gene counts. L. plantarum KR3 CFS demonstrated significant antibacterial activity, with inhibition zones of 20 ± 0.34 mm for S. aureus, 23 ± 1.64 mm for E. coli, and 17.1 ± 1.70 mm for Salmonella spp. The CFS also exhibited substantial antibiofilm activity, with 59.12 ± 0.03% against S. aureus, 83.50 ± 0.01% against E. coli, and 60. ± 0.04% against Salmonella spp., which were enhanced at the minimum inhibitory concentration (MIC). These results highlighted the potential of L. plantarum KR3 in antimicrobial applications, however, further research is needed to evaluate its viability and functional properties for probiotic use. Additionally, the CFS demonstrated exceptional thermal stability, reinforcing its promise as an antimicrobial agent.
Collapse
Affiliation(s)
- Athraa Oudah Hussein
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- Department of Biology, Faculty of Science, Thi Qar University, Thi Qar, Iraq
| | - Khalida Khalil
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Nurul Aqilah Mohd Zaini
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | | | - Wan Syaidatul Aqma
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
3
|
Du H, Li S, Yao H, Wang N, Zhao R, Meng F. Bacteriocin Mining in Lactiplantibacillus pentosus PCZ4 with Broad-Spectrum Antibacterial Activity and Its Biopreservative Effects on Snakehead Fish. Foods 2024; 13:3863. [PMID: 39682938 DOI: 10.3390/foods13233863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Some lactic acid bacteria (LAB) produce antibacterial substances such as bacteriocins, making them promising candidates for food preservation. In our study, Lactiplantibacillus pentosus PCZ4-a strain with broad-spectrum antibacterial activity-was isolated from traditional fermented kimchi in Sichuan. Whole-genome sequencing of PCZ4 revealed one chromosome and three plasmids. Through BAGEL4 mining, classes IIa and IIb bacteriocin plantaricin S were identified. Additionally, two new antibacterial peptides, Bac1109 and Bac2485, were predicted from scratch by limiting open reading frames. Furthermore, during refrigerated storage of snakehead fish, PCZ4 crude extract reduced the total bacterial count, slowed the increase in TVB-N and pH values, improved the sensory quality of the snakehead, and extended its shelf life by 2 days. Meanwhile, PCZ4 effectively inhibited the growth of artificially contaminated Aeromonas hydrophila in snakehead fish. These findings indicate that Lp. pentosus PCZ4 can produce multiple antibacterial substances with strong potential for food preservation applications.
Collapse
Affiliation(s)
- Hechao Du
- College of Animal Science and Food Engineering, Jinling Institute of Technology, 130 Xiaozhuang Central Village, Nanjing 210046, China
| | - Siyu Li
- College of Animal Science and Food Engineering, Jinling Institute of Technology, 130 Xiaozhuang Central Village, Nanjing 210046, China
| | - Hongliang Yao
- College of Animal Science and Food Engineering, Jinling Institute of Technology, 130 Xiaozhuang Central Village, Nanjing 210046, China
| | - Nannan Wang
- College of Animal Science and Food Engineering, Jinling Institute of Technology, 130 Xiaozhuang Central Village, Nanjing 210046, China
- College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Ruiqiu Zhao
- College of Animal Science and Food Engineering, Jinling Institute of Technology, 130 Xiaozhuang Central Village, Nanjing 210046, China
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Fanqiang Meng
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| |
Collapse
|
4
|
Damodharan K, Palaniyandi SA, Yang SH, Balaji S. Cholesterol-Lowering Activity of Lactiplantibacillus pentosus KS6I1 in High-Cholesterol Diet-Induced Hypercholesterolemic Mice. J Microbiol Biotechnol 2024; 35:e2404029. [PMID: 39809508 PMCID: PMC11813357 DOI: 10.4014/jmb.2409.04029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 01/16/2025]
Abstract
Hypercholesterolemia is a risk factor of coronary heart disease and cholesterol-lowering probiotics are seen as alternative to drugs for the management of this condition. In the present study, we evaluated the cholesterol-lowering activity of Lactiplantibacillus pentosus KS6I1 in high-cholesterol diet-induced hypercholesterolemic mice. The mice were fed with high-cholesterol diet (HCD) and were divided into three groups: HCD group, KS6I1 group (fed with HCD + 200 μl of 1010 CFU/ml L. pentosus KS6I1), and L.ac group (fed with HCD + 200 μl of 1010 CFU/ml L. acidophilus ATCC 43121 as the positive control). Simultaneously, a normal control diet (NCD) group was maintained. After 6 weeks, the low-density lipoprotein (LDL)-cholesterol and total cholesterol levels were significantly reduced in the blood plasma of KS6I1 group mice. Analysis of liver tissue showed a decrease in total cholesterol and LDL-cholesterol and increase in triglyceride levels in KS6I1 compared to those in HCD group. Fecal total cholesterol and total bile acid content was significantly increased in the KS6I1 group than in other groups. Additionally, gene expression analysis showed that LDLR, SREBF2, CYP7A1 genes were significantly upregulated in KS6I1 group compared to the HCD group, while the expression of NPC1L1 gene was significantly reduced in KS6I1 group compared to HCD group. These observations show that the cholesterol-lowering effect of L. pentosus KS6I1 could be attributed to increased excretion of bile acids and cholesterol in the feces of mice. These results indicate that L. pentosus KS6I1 could be developed into a potential probiotic for hypercholesterolemia.
Collapse
Affiliation(s)
- Karthiyaini Damodharan
- Department of Biotechnology, V.V.Vanniaperumal College for Women, Virudhunagar-626001, Tamil Nadu, India
| | - Sasikumar Arunachalam Palaniyandi
- Department of Biotechnology, Mepco Schlenk Engineering College, Mepco Nagar, Mepco Engineering College Post-626005, Sivakasi, Tamilnadu, India
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam 59626, Republic of Korea.
| | - Seetharaman Balaji
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal- 576104, Karnataka, India
| |
Collapse
|
5
|
Nisar S, Shah AH, Nazir R. The clinical praxis of bacteriocins as natural anti-microbial therapeutics. Arch Microbiol 2024; 206:451. [PMID: 39476181 DOI: 10.1007/s00203-024-04152-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 11/10/2024]
Abstract
In recent decades, the excessive use of antibiotics has resulted in a rise in antimicrobial drug resistance (ADR). Annually, a significant number of human lives are lost due to resistant infectious diseases, leading to around 700,000 deaths, and it is estimated that by 2050, there could be up to 10 million casualties. Apart from their possible application as preservatives in the food sector, bacteriocins are gaining acknowledgment as potential clinical treatments. Not only this, these antimicrobial peptides have revealed in modulating the host immune system producing anti-inflammatory and anti-modulatory responses. At the same time, due to the ever-increasing global threat of antibiotic resistance, bacteriocins have gained attraction among researchers due to their potential clinical applications. Bacteriocins as antimicrobial peptides, represent one of the most important natural defense mechanisms among bacterial species, particularly lactic acid bacteria (LAB), that can fight against infection-causing pathogens. In this review, we are highlighting the potential of bacteriocins as novel therapeutics for inhibiting a wide range of clinically relevant and multi-drug-resistant pathogens (MDR). We also highlight the effectiveness and potential applications of current bacteriocin treatments in combating antimicrobial resistance (AMR), thereby promoting human health.
Collapse
Affiliation(s)
- Safura Nisar
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, 190006, India
| | - Abdul Haseeb Shah
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, 190006, India.
| | - Ruqeya Nazir
- Centre of Research for Development (CORD), School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, 190006, India.
| |
Collapse
|
6
|
Isaac SL, Mohd Hashim A, Faizal Wong FW, Mohamed Akbar MA, Wan Ahmad Kamil WNI. A Review on Bacteriocin Extraction Techniques from Lactic Acid Bacteria. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10384-3. [PMID: 39432230 DOI: 10.1007/s12602-024-10384-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
Lactic acid bacteria (LAB) are widely known for the production of secondary metabolites such as organic acids and other bioactive compounds such as bacteriocins. Finding a broad application in food and healthcare, bacteriocins have received increased attention due to their inherent antimicrobial properties. However, the extraction of bacteriocins is often plagued with low yields due to the complexity of the extraction processes and the diversity of bacteriocins themselves. Here, we review the current knowledge related to bacteriocin extraction on the different extraction techniques for isolating bacteriocins from LAB. The advantages and disadvantages of each technique will also be critically appraised, taking into account factors such as extraction efficiency, scalability and cost-effectiveness. This review aims to guide researchers and professionals in selecting the most suitable approach for bacteriocin extraction from LAB by illuminating the respective advantages and limitations of various extraction techniques.
Collapse
Grants
- 19764 Ministry of Higher Education, Malaysia, through the Fundamental Research Grant Scheme (FRGS/1/2021/STG01/UPM/02/7)
- 19764 Ministry of Higher Education, Malaysia, through the Fundamental Research Grant Scheme (FRGS/1/2021/STG01/UPM/02/7)
- 19764 Ministry of Higher Education, Malaysia, through the Fundamental Research Grant Scheme (FRGS/1/2021/STG01/UPM/02/7)
- 19764 Ministry of Higher Education, Malaysia, through the Fundamental Research Grant Scheme (FRGS/1/2021/STG01/UPM/02/7)
- 19764 Ministry of Higher Education, Malaysia, through the Fundamental Research Grant Scheme (FRGS/1/2021/STG01/UPM/02/7)
Collapse
Affiliation(s)
- Sharleen Livina Isaac
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Amalia Mohd Hashim
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Halal Products Research Institute, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Fadzlie Wong Faizal Wong
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Muhamad Afiq Mohamed Akbar
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Wan Nur Ismah Wan Ahmad Kamil
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
7
|
Rodriguez Jimenez A, Breine A, Whiteway C, Dechamps E, George IF, Van der Henst C. Bactericidal effect of bacteria isolated from the marine sponges Hymeniacidon perlevis and Halichondria panicea against carbapenem-resistant Acinetobacter baumannii. Lett Appl Microbiol 2024; 77:ovae035. [PMID: 38684470 DOI: 10.1093/lambio/ovae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/19/2024] [Accepted: 04/28/2024] [Indexed: 05/02/2024]
Abstract
In this study, we evaluated the antimicrobial activity of bacteria isolated from the marine sponges Hymeniacidon perlevis and Halichondria panicea against seven Acinetobacter baumannii strains, the majority of which were clinically relevant carbapenem-resistant A. baumannii strains. We observed the inhibitory activity of 18 (out of 114) sponge-isolated bacterial strains against all A. baumanii strains using medium-throughput solid agar overlay assays. These inhibitory strains belonged to the genera Lactococcus, Pseudomonas, and Vagococcus. In addition, this antimicrobial activity was validated through a liquid co-cultivation challenge using an inhibitory strain of each genus and a green fluorescent protein-tagged A. baumanii strain. Fluorescence measurements indicated that the growth of A. baumanii was inhibited by the sponge isolates. In addition, the inability of A. baumanii to grow after spreading the co-cultures on solid medium allowed us to characterize the activity of the sponge isolates as bactericidal. In conclusion, this study demonstrates that marine sponges are a reservoir of bacteria that deserves to be tapped for antibiotic discovery against A. baumanii.
Collapse
Affiliation(s)
- Ana Rodriguez Jimenez
- Ecology of Aquatic Systems, Université libre de Bruxelles (ULB), 1050 Brussels, Belgium
- Evolutionary Biology and Ecology, Université libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Anke Breine
- Microbial Resistance and Drug Discovery, VIB-VUB Center for Structural Biology, VIB, Flanders Institute for Biotechnology, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
| | - Clemence Whiteway
- Microbial Resistance and Drug Discovery, VIB-VUB Center for Structural Biology, VIB, Flanders Institute for Biotechnology, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
| | - Etienne Dechamps
- Ecology of Aquatic Systems, Université libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Isabelle F George
- Ecology of Aquatic Systems, Université libre de Bruxelles (ULB), 1050 Brussels, Belgium
- Marine Biology, Université libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Charles Van der Henst
- Microbial Resistance and Drug Discovery, VIB-VUB Center for Structural Biology, VIB, Flanders Institute for Biotechnology, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
| |
Collapse
|
8
|
Xu J, Chen X, Song J, Wang C, Xu W, Tan H, Suo H. Antibacterial activity and mechanism of cell-free supernatants of Lacticaseibacillus paracasei against Propionibacterium acnes. Microb Pathog 2024; 189:106598. [PMID: 38423403 DOI: 10.1016/j.micpath.2024.106598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/30/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
Propionibacterium acnes (P. acnes) is an anaerobic and gram-positive bacterium involved in the pathogenesis and inflammation of acne vulgaris. This study particularly focuses on the antimicrobial effect of Lacticaseibacillus paracasei LPH01 against P. acnes, a bacterium that causes acne vulgaris. Fifty-seven Lactobacillus strains were tested for their ability to inhibit P. acnes growth employing the Oxford Cup and double dilution methods. The cell-free supernatant (CFS) of L. paracasei LPH01 demonstrated a strong inhibitory effect, with an inhibition zone diameter of 24.65 ± 0.27 mm and a minimum inhibitory concentration of 12.5 mg/mL. Among the CFS, the fraction over 10 kDa (CFS-10) revealed the best antibacterial effect. Confocal laser scanning microscopes and flow cytometry showed that CFS-10 could reduce cell metabolic activity and cell viability and destroy the integrity and permeability of the cell membrane. A scanning electron microscope revealed that bacterial cells exhibited obvious morphological and ultrastructural changes, which further confirmed the damage of CFS-10 to the cell membrane and cell wall. Findings demonstrated that CFS-10 inhibited the conversion of triglycerides, decreased the production of free fatty acids, and down-regulated the extracellular expression of the lipase gene. This study provides a theoretical basis for the metabolite of L. paracasei LPH01 as a potential antibiotic alternative in cosmeceutical skincare products.
Collapse
Affiliation(s)
- Jiahui Xu
- College of Food Science, Southwest University, Chongqing, 400715, PR China
| | - Xiaoyong Chen
- College of Food Science, Southwest University, Chongqing, 400715, PR China; Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing, 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built By Sichuan and Chongqing, Chongqing, 400715, PR China; Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing, 400715, PR China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing, 400715, PR China; Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing, 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built By Sichuan and Chongqing, Chongqing, 400715, PR China; Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing, 400715, PR China
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing, 400715, PR China; Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing, 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built By Sichuan and Chongqing, Chongqing, 400715, PR China; Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing, 400715, PR China
| | - Weiping Xu
- College of Food Science, Southwest University, Chongqing, 400715, PR China
| | - Han Tan
- College of Food Science, Southwest University, Chongqing, 400715, PR China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing, 400715, PR China; Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing, 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built By Sichuan and Chongqing, Chongqing, 400715, PR China; Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
9
|
Xin WG, Li XD, Zhou HY, Li X, Liu WX, Lin LB, Wang F. Isolation, antibacterial characterization, and alternating tangential flow-based preparation of viable cells of Lacticaseibacillus paracasei XLK 401: Potential application in milk preservation. J Dairy Sci 2024; 107:1355-1369. [PMID: 37776999 DOI: 10.3168/jds.2023-23622] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 09/08/2023] [Indexed: 10/02/2023]
Abstract
It is desirable to obtain high levels of viable Lacticaseibacillus paracasei, a widely used food probiotic whose antibacterial activity and potential application in milk remain largely uninvestigated. Here, we isolated and purified the L. paracasei strain XLK 401 from food-grade blueberry ferments and found that it exhibited strong antibacterial activity against both gram-positive and gram-negative foodborne pathogens, including Staphylococcus aureus, Salmonella paratyphi B, Escherichia coli O157, and Shigella flexneri. Then, we applied alternating tangential flow (ATF) technology to produce viable L. paracasei XLK 401 cells and its cell-free supernatant (CFS). Compared with the conventional fed-batch method, 22 h of ATF-based processing markedly increased the number of viable cells of L. paracasei XLK 401 to 12.14 ± 0.13 log cfu/mL. Additionally, the CFS exhibited good thermal stability and pH tolerance, inhibiting biofilm formation in the abovementioned foodborne pathogens. According to liquid chromatography-mass spectrometry analysis, organic acids were the main antibacterial components of XLK 401 CFS, accounting for its inhibition activity. Moreover, the CFS of L. paracasei XLK 401 effectively inhibited the growth of multidrug-resistant gram-positive Staph. aureus and gram-negative E. coli O157 pathogens in milk, and caused a reduction in the pathogenic cell counts by 6 to 7 log cfu/mL compared with untreated control, thus considerably maintaining the safety of milk samples. For the first time to our knowledge, ATF-based technology was employed to obtain viable L. paracasei on a large scale, and its CFS could serve as a broad-spectrum biopreservative for potential application against foodborne pathogens in milk products.
Collapse
Affiliation(s)
- Wei-Gang Xin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Yunnan, Kunming, 650500, China
| | - Xin-Dong Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Yunnan, Kunming, 650500, China
| | - Huan-Yu Zhou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Yunnan, Kunming, 650500, China
| | - Xin Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Yunnan, Kunming, 650500, China
| | - Wei-Xin Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Yunnan, Kunming, 650500, China
| | - Lian-Bing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Yunnan, Kunming, 650500, China.
| | - Feng Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Yunnan, Kunming, 650500, China.
| |
Collapse
|
10
|
Chen SY, Yang RS, Ci BQ, Xin WG, Zhang QL, Lin LB, Wang F. A novel bacteriocin against multiple foodborne pathogens from Lacticaseibacillus rhamnosus isolated from juice ferments: ATF perfusion-based preparation of viable cells, characterization, antibacterial and antibiofilm activity. Curr Res Food Sci 2023; 6:100484. [PMID: 37033741 PMCID: PMC10074539 DOI: 10.1016/j.crfs.2023.100484] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/15/2023] Open
Abstract
Foodborne pathogens and their biofilms pose a risk to human health through food chain. However, the bacteriocin resources combating this threat are still limited. Here, Lacticaseibacillus rhamnosus, one of the most used probiotics in food industry, was prepared on a large scale using alternating tangential flow (ATF) perfusion-based technology. Compared to the conventional fed-batch approach, ATF perfusion remarkably increased the viable cells of L. rhamnosus CLK 101 to 11.93 ± 0.14 log CFU/mL. Based on obtained viable cells, we purified and characterized a novel bacteriocin CLK_01 with a broad spectrum of activity against both Gram-positive and Gram-negative foodborne pathogens. LC-MS/MS analysis revealed that CLK_01 has a molecular mass of 701.49 Da and a hydrophobic amino acid composition of I-K-K-V-T-I. As a novel bacteriocin, CLK_01 showed high thermal stability and acid-base tolerance over 25-121 °C and pH 2-10. It significantly reduced cell viability of bacterial pathogens (p < 0.001), and strongly inhibited their biofilm formation. Scanning electron microscopy demonstrated deformation of pathogenic cells caused by CLK_01, leading to cytoplasmic content leakage and bacterial death. Summarily, we employed ATF perfusion to obtain viable L. rhamnosus, and presented that bacteriocin CLK_01 could serve as a promising biopreservative for controlling foodborne pathogenic bacteria and their biofilms.
Collapse
Affiliation(s)
- Shi-Yu Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Rui-Si Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Bai-Quan Ci
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Wei-Gang Xin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Qi-Lin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, 650500, China
| | - Lian-Bing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, 650500, China
- Corresponding author. Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China.
| | - Feng Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, 650500, China
- Corresponding author. Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China.
| |
Collapse
|
11
|
Isolation, Characterization, and Effect on Biofilm Formation of Bacteriocin Produced by Lactococcus lactis F01 Isolated from Cyprinus carpio and Application for Biopreservation of Fish Sausage. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8437926. [DOI: 10.1155/2022/8437926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/18/2022] [Accepted: 11/03/2022] [Indexed: 11/23/2022]
Abstract
The aim of this work was the screening of bacteriocin-producing LABs isolated from fish, the selection of promising/prominent strain(s), the characterization of the bacteriocin produced, and the evaluation of its potential to be used as biopreservative(s). Amplification and sequencing of the 16S rRNA gene of the bacteriocin-producing strain was performed. Then a partial purification of the produced bacteriocin, using a combination of ammonium sulfate and chloroform-methanol precipitation, was done. Its molecular weight was determined by SDS-PAGE. In addition, the action spectrum, the hemolysis test, and its ability to inhibit biofilm formation were analyzed. A total of 88 isolates of lactic acid bacteria (LAB) including one bacteriocin producer, which was identified as Lactococcus lactis F01, were collected. The bacteriocin was partially purified with an estimated yield of 40%. Regarding the SDS-PAGE profile, the secreted bacteriocin has molecular weight of about 3.5 kDa and was identified as class I bacteriocin. The antimicrobial test showed that the bacteriocin inhibits pathogenic and/or spoilage bacteria, 10 Gram-positive and 16 Gram-negative bacterial species. Moreover, it can inhibit biofilm formation from 1.3% (Escherichia coli) to 63.92% (Pseudomonas aeruginosa ATCC15692) depending on the strain. The hemolytic activity of novel bacteriocin was observed at the concentration of 10 μg/ml of bacteriocin crude extract, which was
. In addition, it exhibited good thermal and pH stability with retained antibacterial activity of 85.25% after treatment at 121°C for 20 min, as well as at a pH range between 2.0 and 10.0. Moreover, this bacteriocin showed the ability to inhibit the growth of bacterial culture load in fish sausage stored at 8°C for 28 days. Considering the results obtained, bacteriocin could be potentially exploited as an alternative to chemical preservatives or as a substitute for antibiotics.
Collapse
|
12
|
Wang G, Zeng H. Antibacterial Effect of Cell-Free Supernatant from Lactobacillus pentosus L-36 against Staphylococcus aureus from Bovine Mastitis. Molecules 2022; 27:7627. [PMID: 36364454 PMCID: PMC9658419 DOI: 10.3390/molecules27217627] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 04/02/2025] Open
Abstract
This study sought to analyze the main antibacterial active components of Lactobacillus pentosus (L. pentosus) L-36 cell-free culture supernatants (CFCS) in inhibiting the growth of Staphylococcus aureus (S. aureus), to explore its physicochemical properties and anti-bacterial mechanism. Firstly, the main antibacterial active substance in L-36 CFCS was peptides, which inferred by adjusting pH and enzyme treatment methods. Secondly, the physicochemical properties of the antibacterial active substances in L-36 CFCS were studied from heat, pH, and metal ions, respectively. It demonstrated good antibacterial activity when heated at 65 °C, 85 °C and 100 °C for 10 and 30 min, indicating that it had strong thermal stability. L-36 CFCS had antibacterial activity when the pH value was 2-6, and the antibacterial active substances became stable with the decrease in pH value. After 10 kinds of metal ions were treated, the antibacterial activity did not change significantly, indicating that it was insensitive to metal ions. Finally, scanning electron microscopy, transmission electron microscopy and fluorescence probe were used to reveal the antibacterial mechanism of S. aureus from the aspects of cell morphology and subcellular structure. The results demonstrated that L-36 CFCS could form 1.4-2.3 nm pores in the cell membrane of S. aureus, which increased the permeability of the bacterial cell membrane, resulting in the depolarization of cell membrane potential and leakage of nucleic acid protein and other cell contents. Meanwhile, a large number of ROS are produced and accumulated in the cells, causing damage to DNA, and with the increase in L-36 CFCS concentration, the effect is enhanced, and finally leads to the death of S. aureus. Our study suggests that the main antibacterial active substances of L-36 CFCS are peptides. L-36 CFCS are thermostable, active under acidic conditions, insensitive to metal ions, and exhibit antibacterial effects by damaging cell membranes, DNA and increasing ROS. Using lactic acid bacteria to inhibit S. aureus provides a theoretical basis for the discovery of new antibacterial substances, and will have great significance in the development of antibiotic substitutes, reducing bacterial resistance and ensuring animal food safety.
Collapse
Affiliation(s)
- Gengchen Wang
- School of Basic Medicine, Youjiang Medical University for Nationalities, Baise 533000, China
- Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production & Construction Corps, College of Life Science and Technology, Tarim University, Alar 843301, China
| | - Hong Zeng
- School of Basic Medicine, Youjiang Medical University for Nationalities, Baise 533000, China
| |
Collapse
|
13
|
Pérez-Rangel M, Valdez-Vazquez I, Martínez-Zavala SA, Casados-Vázquez LE, Bideshi DK, Barboza-Corona JE. Evaluation of inhibitory compounds produced by bacteria isolated from a hydrogen-producing bioreactor during the self-fermentation of wheat straw. J Appl Microbiol 2022; 133:1989-2001. [PMID: 35808847 DOI: 10.1111/jam.15708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 11/28/2022]
Abstract
AIMS The objective of this study was to evaluate the inhibitory activity of compounds secreted by bacteria isolated from a hydrogen-producing bioreactor to understand how these microorganisms interact in this community. METHODS AND RESULTS In vitro inhibitory assays were performed using samples secreted by bacteria subject to different treatments to determine if their inhibitory effect was due to organic acids, non-proteinaceous compounds, or bacteriocin-like inhibitory substances (BLIS). Bacterial isolated were suppressed 43%, 30%, and 27% by neutralized, precipitated, and non-neutralized cell-free supernatants, respectively. Non-hydrogen producers (Non-H2 P) LAB (Lactobacillus plantarum LB1, L. pentosus LB7, Pediococcus acidilactici LB4) and hydrogen producers (H2 P) LAB (Enterococcus faecium F) were inhibited by the production of organic acids, non-proteinaceous compounds, and BLIS. Meanwhile, the obligate anaerobe H2 P (Clostridium beijerinckii B) inhibited by the production of non-proteinaceous compounds and BLIS. The presence of BLIS was confirmed when proteolytic enzymes affected the inhibitory activity of secreted proteins in values ranging from 20 to 42%. The BLIS produced by L. plantarum LB1, P. acidilactici LB4, L. pentosus LB7, and E. faecium F showed molecular masses of ~ 11 kDa, 25 kDa, 20 kDa, and 11 kDa, respectively. CONCLUSIONS It was demonstrated antagonistic interactions between Lactobacillus- Enterococcus, and Pediococcus-Enterococcus species, generated by the secretion of organic acids, non-proteinaceous compounds, and BLIS. SIGNIFICANCE AND IMPACT OF THE STUDY We report the interactions between LAB isolated from hydrogen-producing bioreactors. These interactions might impact the dynamics of the microbial population during hydrogen generation. Our work lays a foundation for strategies that allow controlling bacteria that can affect hydrogen production.
Collapse
Affiliation(s)
- Marisol Pérez-Rangel
- Graduate Program in Biosciences, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca. Irapuato, Guanajuato, México.,Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Idania Valdez-Vazquez
- Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Sheila A Martínez-Zavala
- Graduate Program in Biosciences, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca. Irapuato, Guanajuato, México
| | - Luz E Casados-Vázquez
- Graduate Program in Biosciences, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca. Irapuato, Guanajuato, México.,Food Department, Life Science División, University of Guanajuato Campus Irapuato-Salamanca. Irapuato, Guanajuato, México.,CONACyT-University of Guanajuato
| | - Dennis K Bideshi
- Department of Biological Sciences, California Baptist University, Riverside, California, USA
| | - José E Barboza-Corona
- Graduate Program in Biosciences, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca. Irapuato, Guanajuato, México.,Food Department, Life Science División, University of Guanajuato Campus Irapuato-Salamanca. Irapuato, Guanajuato, México
| |
Collapse
|
14
|
Wang ZH, Chu M, Yin N, Huang W, Liu W, Zhang Z, Liu J, Shi J. Biological chemotaxis-guided self-thermophoretic nanoplatform augments colorectal cancer therapy through autonomous mucus penetration. SCIENCE ADVANCES 2022; 8:eabn3917. [PMID: 35767627 PMCID: PMC9242589 DOI: 10.1126/sciadv.abn3917] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 05/10/2022] [Indexed: 05/28/2023]
Abstract
Oral drug delivery systems have great potential to treat colorectal cancer (CRC). However, the drug delivery efficiency is restricted by limited CRC-related intestine positioning and dense mucus barrier. Here, we present a biological chemotaxis-guided self-thermophoretic nanoplatform that facilitates precise intestinal positioning and autonomous mucus penetration. The nanoplatform introduces asymmetric platinum-sprayed mesoporous silica to achieve autonomous movement in intestinal mucus. Furthermore, inspired by the intense interaction between pathogenic microbes and CRC, the nanoplatform is camouflaged by Staphylococcus aureus membrane to precisely anchor in CRC-related intestine. Owing to 4.3-fold higher biological chemotactic anchoring of CRC-related intestine and 14.6-fold higher autonomous mucus penetration performance, the nanoplatform vastly improves the oral bioavailability of cisplatin, leading to a tumor inhibition rate of 99.1% on orthotopic CRC-bearing mice. Together, the exquisitely designed nanoplatform to overcome multiple physiological barriers provides a new horizon for the development of oral drug delivery systems.
Collapse
Affiliation(s)
- Zhi-Hao Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou 450001, China
| | - Mengyu Chu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China
| | - Na Yin
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China
| | - Wanting Huang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China
| | - Wei Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou 450001, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou 450001, China
| | - Junjie Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou 450001, China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou 450001, China
| |
Collapse
|
15
|
Verma DK, Thakur M, Singh S, Tripathy S, Gupta AK, Baranwal D, Patel AR, Shah N, Utama GL, Niamah AK, Chávez-González ML, Gallegos CF, Aguilar CN, Srivastav PP. Bacteriocins as antimicrobial and preservative agents in food: Biosynthesis, separation and application. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101594] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Zhang J, Gu S, Zhang T, Wu Y, Ma J, Zhao L, Li X, Zhang J. Characterization and antibacterial modes of action of bacteriocins from Bacillus coagulans CGMCC 9951 against Listeria monocytogenes. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Jiang YH, Xin WG, Yang LY, Ying JP, Zhao ZS, Lin LB, Li XZ, Zhang QL. A novel bacteriocin against Staphylococcus aureus from Lactobacillus paracasei isolated from Yunnan traditional fermented yogurt: Purification, antibacterial characterization, and antibiofilm activity. J Dairy Sci 2022; 105:2094-2107. [PMID: 35180941 DOI: 10.3168/jds.2021-21126] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/05/2021] [Indexed: 01/05/2023]
Abstract
Staphylococcus aureus and its biofilm have emerged as a significant threat to the safety of dairy products. In recent years, lactic acid bacteria (LAB) bacteriocins have been widely acknowledged as the potential natural antibacterial substance in food biopreservation due to their excellent antibacterial effects. However, few LAB bacteriocins with antibacterial and antibiofilm activity against S. aureus have been reported in dairy products. In the present study, a novel bacteriocin LSX01 of Lactobacillus paracasei LS-6 isolated from a traditional fermented yogurt produced in Yunnan, China, was purified and characterized extensively. The LSX01 possessed a molecular weight of 967.49 Da and an AA sequence of LDQAGISYT. The minimum inhibitory concentration of LSX01 against S. aureus_45 was 16.90 μg/mL, which was close to or lower than the previously reported bacteriocins. The LSX01 exhibited an extensive antimicrobial spectrum against both gram-positive and gram-negative bacteria. Moreover, LSX01 exhibited excellent tolerance to heat and acid-base treatments, and sensitivity to the proteolytic enzymes, such as pepsin and proteinase K. Furthermore, the treatment of S. aureus_45 planktonic cells with LSX01 significantly reduced their metabolic activity and disrupted the cell membrane integrity. Scan electron microscopy results demonstrated that LSX01 induced cytoplasmic content leakage and cell deformation. Additionally, biofilm formation of S. aureus_45 was also significantly inhibited by LSX01. Overall, the results suggested that the novel LAB bacteriocin LSX01 possessed antibacterial activity and antibiofilm activity against S. aureus and, hence, could have potential for improving safety of dairy products.
Collapse
Affiliation(s)
- Yu-Hang Jiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Kunming 650500, China
| | - Wei-Gang Xin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Kunming 650500, China
| | - Lin-Yu Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Kunming 650500, China
| | - Jian-Ping Ying
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Kunming 650500, China
| | - Zi-Shun Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Kunming 650500, China
| | - Lian-Bing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Kunming 650500, China
| | - Xiu-Zhang Li
- State Key Laboratory of Plateau Ecology and Agriculture and Qinghai Academy of Animal and Veterinary Science, Qinghai University, Qinghai Xining 810000, China.
| | - Qi-Lin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Kunming 650500, China.
| |
Collapse
|
18
|
Jiang YH, Xin WG, Zhang QL, Lin LB, Deng XY. A Novel Bacteriocin Against Shigella flexneri From Lactiplantibacillus plantarum Isolated From Tilapia Intestine: Purification, Antibacterial Properties and Antibiofilm Activity. Front Microbiol 2022; 12:779315. [PMID: 35069481 PMCID: PMC8769287 DOI: 10.3389/fmicb.2021.779315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/03/2021] [Indexed: 11/13/2022] Open
Abstract
Few bacteriocins with antibacterial activity against Shigella flexneri have been reported. Here, a novel bacteriocin (LFX01) produced by Lactiplantibacillus plantarum strain LF-8 from the intestine of tilapia was purified and extensively characterized. LFX01 possesses a molecular weight of 1049.56 Da and an amino acid sequence of I-T-G-G-P-A-V-V-H-Q-A. LFX01 significantly inhibited S. flexneri strain 14 (S. flexneri_14) growth. Moreover, it exhibited excellent stability under heat and acid-base stress, and presented sensitivity to a variety of proteases, such as proteinase K, pepsin, and trypsin. The minimum inhibitory concentration (MIC) of LFX01 against S. flexneri_14 was 12.65 μg/mL, which was smaller than that of most of the previously found bacteriocins. Furthermore, LFX01 significantly inhibited (p < 0.05) S. flexneri_14 cells and decreased their cell viability. In addition, LFX01 could significantly (p < 0.05) inhibit biofilm formation of S. flexneri_14. Scanning electron microscopy analysis presented that the cell membrane permeability of S. flexneri_14 was demolished by LFX01, leading to cytoplasmic contents leakage and cell rupture death. In summary, a novel bacteriocin of lactic acid bacteria (LAB) was found, which could effectively control S. flexneri in both planktonic and biofilm states.
Collapse
Affiliation(s)
- Yu-Hang Jiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Wei-Gang Xin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Qi-Lin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Lian-Bing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xian-Yu Deng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
19
|
Xu Z, Yang Q, Zhu Y. Transcriptome analysis reveals the molecular mechanisms of the novel Lactobacillus pentosus pentocin against Bacillus cereus. Food Res Int 2022; 151:110840. [PMID: 34980379 DOI: 10.1016/j.foodres.2021.110840] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/29/2021] [Accepted: 11/27/2021] [Indexed: 12/20/2022]
Abstract
The objective of this study was to investigate the antibacterial effect and mechanism of Lactobacillus pentosus pentocin against Bacillus cereus. The dynamic growth of B. cereus showed that the pentocin had strong antibacterial activity against the strain. The antibacterial mechanism focused on cytomembrane destruction, biofilms formation, DNA replication and protein synthesis of B. cereus. The scanning electron microscopy, transmission electron microscopy and flow cytometry analysis illustrated that the cytomembranes were destroyed, causing the leakage of internal cellular components. Transcriptome sequencing indicated that the genes (KinB, KinC and Spo0B) in two component systems signal pathway were down-regulated, which resulted in the inhibition of the spores and biofilms formation of B. cereus. The phosphorylation and autoinducer-2 import were inhibited by down-regulating the expression levels of LuxS and LsrB genes in quorum sensing signal pathway, which also suppressed biofilms formation of B. cereus. The K+ leakage activated the K+ transport channels by up-relating the genes (KdpA, KdpB and KdpC), promoting the entry of K+ from the extracellular. In addition, the pentocin interfered DNA replication and protein synthesis by regulating the genes associated with DNA replication (dnaX and holB), RNA degradation (cshA, rho, rnj, deaD, rny, dnaK, groEL and hfq) and ribosome function (rpsA, rpsO and rplS). In this article, we provide some novel insights into the molecular mechanism responsible for high antibacterial activity of the L. pentosus pentocin against B. cereus. And the pentocin might be a very promising natural preservative for controlling the B. cereus contaminations in foods.
Collapse
Affiliation(s)
- Zhiqiang Xu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| | - Yinglian Zhu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
20
|
Mörschbächer AP, Granada CE. MAPPING THE WORLDWIDE KNOWLEDGE OF ANTIMICROBIAL SUBSTANCES PRODUCED BY Lactobacillus spp.: A BIBLIOMETRIC ANALYSIS. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Darbandi A, Asadi A, Mahdizade Ari M, Ohadi E, Talebi M, Halaj Zadeh M, Darb Emamie A, Ghanavati R, Kakanj M. Bacteriocins: Properties and potential use as antimicrobials. J Clin Lab Anal 2021; 36:e24093. [PMID: 34851542 PMCID: PMC8761470 DOI: 10.1002/jcla.24093] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/03/2021] [Accepted: 10/24/2021] [Indexed: 12/12/2022] Open
Abstract
A variety of bacteriocins originate from lactic acid bacteria, which have recently been modified by scientists. Many strains of lactic acid bacteria related to food groups could produce bacteriocins or antibacterial proteins highly effective against foodborne pathogens such as Staphylococcus aureus, Pseudomonas fluorescens, P. aeruginosa, Salmonella typhi, Shigella flexneri, Listeria monocytogenes, Escherichia coli O157:H7, and Clostridium botulinum. A wide range of bacteria belonging primarily to the genera Bifidobacterium and Lactobacillus have been characterized with different health‐promoting attributes. Extensive studies and in‐depth understanding of these antimicrobials mechanisms of action could enable scientists to determine their production in specific probiotic lactic acid bacteria, as they are potentially crucial for the final preservation of functional foods or for medicinal applications. In this review study, the structure, classification, mode of operation, safety, and antibacterial properties of bacteriocins as well as their effect on foodborne pathogens and antibiotic‐resistant bacteria were extensively studied.
Collapse
Affiliation(s)
- Atieh Darbandi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Arezoo Asadi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Elnaz Ohadi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Malihe Talebi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Masoume Halaj Zadeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Darb Emamie
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Maryam Kakanj
- Food and Drug Laboratory Research Center, Food and Drug Administration, MOH&ME, Tehran, Iran
| |
Collapse
|
22
|
Potential Use of Lactic Acid Bacteria with Pathogen Inhibitory Capacity as a Biopreservative Agent for Chorizo. Processes (Basel) 2021. [DOI: 10.3390/pr9091582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The biopreservation of meat products is of great interest due to the demand for products with low or minimal chemical additives. Lactic acid bacteria (LAB) have been used as protective cultures for many centuries. The objective of this work was to characterize 10 native LAB isolated from meat masses with biopreservative potential for meat products. The isolates were subjected to viability tests with different concentrations of NaCl, nitrite, and nitrate salts, pHs, and temperature conditions. Antibiotic resistance and type of lactic acid isomer were tested. In addition, the isolates were tested against seven pathogens, and inhibitory substances were identified by diffusion in agar wells. Finally, two isolates, Lb. plantarum (SB17) and Lb. sakei (SB3) were tested as protective cultures of chorizo in a model. As a result, the viability at different concentrations of NaCl and nitrate and nitrate salts were obtained. pH and temperature exerted a negative effect on the growth of some of the isolates. Pathogens were inhibited mainly by the presence of organic acids; P. aurius was the most susceptible, and S. typhimurium and S. marcescens were the most resistant. The strains SB17 and SB3 had similar effects on chorizo, and time exerted a deleterious effect on microbiological quality and pH. The results indicated that the 10 isolates show promising characteristics for the preservation of cooked meat products, with the strain Lb. plantarum (SB17) being the most promising.
Collapse
|
23
|
Dai M, Li Y, Xu L, Wu D, Zhou Q, Li P, Gu Q. A Novel Bacteriocin From Lactobacillus Pentosus ZFM94 and Its Antibacterial Mode of Action. Front Nutr 2021; 8:710862. [PMID: 34368212 PMCID: PMC8342802 DOI: 10.3389/fnut.2021.710862] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/21/2021] [Indexed: 01/02/2023] Open
Abstract
Bacteriocins are bioactive antimicrobial peptides synthesized in the ribosome of numerous bacteria and released extracellularly. Pentocin ZFM94 produced by Lactobacillus pentosus (L. pentosus) ZFM94, isolated from infant feces with strong antibacterial activity, was purified by ammonium sulfate precipitation, dextran gel chromatography, and reverse-phase high-performance liquid chromatography (RP-HPLC). The molecular mass of the purified bacteriocin was 3,547.74 Da determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Pentocin ZFM94 exhibited broad-spectrum antimicrobial activity against tested Gram-positive and Gram-negative bacteria, and the minimal inhibitory concentrations (MICs) of Micrococcus luteus (M. luteus) 10,209, Staphylococcus aureus (S. aureus) D48, and Escherichia coli (E. coli) DH5α were 1.75, 2.00, and 2.50 μm, respectively. Pentocin ZFM94 was heat-stable (30 min at 80°C) and showed inhibitory activity over a wide pH range (5.00–7.00). It could be degraded by trypsin and pepsin, but not by amylase, lysozyme, lipase, and ribonuclease A. Fluorescence leakage assay showed that pentocin ZFM94 induced disruption of the cell membrane and caused leakage of cellular content. Furthermore, lipid II was not an antibacterial target of pentocin ZFM94. This study laid the foundation for further development and utilization of L. pentosus ZFM94 and its bacteriocin.
Collapse
Affiliation(s)
- Mengdi Dai
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yanran Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Luyao Xu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Danli Wu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Qingqing Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
24
|
Ahmed S, Muhammad T, Zaidi A. Cottage cheese enriched with lactobacilli encapsulated in alginate–chitosan microparticles forestalls perishability and augments probiotic activity. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sadia Ahmed
- National Probiotic Laboratory National Institute for Biotechnology and Genetic Engineering (NIBGE) Jhang Road Faisalabad38000Pakistan
- NIBGE_C, Pakistan Institute of Engineering and Applied Sciences (PIEAS) Lehtrar Road Islamabad45650Pakistan
| | - Tariq Muhammad
- National Probiotic Laboratory National Institute for Biotechnology and Genetic Engineering (NIBGE) Jhang Road Faisalabad38000Pakistan
- NIBGE_C, Pakistan Institute of Engineering and Applied Sciences (PIEAS) Lehtrar Road Islamabad45650Pakistan
| | - Arsalan Zaidi
- National Probiotic Laboratory National Institute for Biotechnology and Genetic Engineering (NIBGE) Jhang Road Faisalabad38000Pakistan
- NIBGE_C, Pakistan Institute of Engineering and Applied Sciences (PIEAS) Lehtrar Road Islamabad45650Pakistan
| |
Collapse
|
25
|
CBP22, a Novel Bacteriocin Isolated from Clostridium butyricum ZJU-F1, Protects against LPS-Induced Intestinal Injury through Maintaining the Tight Junction Complex. Mediators Inflamm 2021; 2021:8032125. [PMID: 34158805 PMCID: PMC8187061 DOI: 10.1155/2021/8032125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/14/2020] [Accepted: 05/10/2021] [Indexed: 12/30/2022] Open
Abstract
A novel bacteriocin secreted by Clostridium butyricum ZJU-F1 was isolated using ammonium sulfate fractionation, cation exchange chromatography, affinity chromatography, and reverse-phase high-performance liquid chromatography (RP-HPLC). The bacteriocin, named CBP22, contained 22 amino acids with the sequence PSAWQITKCAGSIAWALGSGIF. Analysis of its structure and physicochemical properties indicated that CBP22 had a molecular weight of 2264.63 Da and a +1 net charge. CBP22 showed activity against E. col K88, E. coli ATCC25922, and S. aureus ATCC26923. The effects and potential mechanisms of bacteriocin CBP22 on the innate immune response were investigated with a lipopolysaccharide- (LPS-) induced mouse model. The results showed that pretreatment with CBP22 prevented LPS-induced impairment in epithelial tissues and significantly reduced serum levels of IgG, IgA, IgM, TNF-α, and sIgA. Moreover, CBP22 treatment increased the expression of the zonula occludens and reduced permeability as well as apoptosis in the jejunum in LPS-treated mice. In summary, CBP22 inhibits the intestinal injury and prevents the gut barrier dysfunction induced by LPS, suggesting the potential use of CBP22 for treating intestinal damage.
Collapse
|
26
|
Ye P, Wang J, Liu M, Li P, Gu Q. Purification and characterization of a novel bacteriocin from Lactobacillus paracasei ZFM54. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111125] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
27
|
A novel bacteriocin from Lactobacillus salivarius against Staphylococcus aureus: Isolation, purification, identification, antibacterial and antibiofilm activity. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110826] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Mining, heterologous expression, purification and characterization of 14 novel bacteriocins from Lactobacillus rhamnosus LS-8. Int J Biol Macromol 2020; 164:2162-2176. [DOI: 10.1016/j.ijbiomac.2020.08.067] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023]
|
29
|
Lu Y, Aizhan R, Yan H, Li X, Wang X, Yi Y, Shan Y, Liu B, Zhou Y, Lü X. Characterization, modes of action, and application of a novel broad-spectrum bacteriocin BM1300 produced by Lactobacillus crustorum MN047. Braz J Microbiol 2020; 51:2033-2048. [PMID: 32537676 PMCID: PMC7688877 DOI: 10.1007/s42770-020-00311-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 05/28/2020] [Indexed: 10/24/2022] Open
Abstract
Bacteriocins are ribosomally synthesized peptides with antibacterial activity against food-borne pathogenic bacteria that cause spoilage, possessing important potential for use as a natural preservative in the food industry. The novel bacteriocin BM1300 produced by Lactobacillus crustorum MN047 was identified after purification in this study. It displayed broad-spectrum antibacterial activity against some selected Gram-positive and Gram-negative bacteria. The minimum inhibitory concentration (MIC) values of BM1300 against Staphylococcus aureus ATCC 25923 and Escherichia coli ATCC 25922 were 13.4 μg/mL and 6.7 μg/mL, respectively. Moreover, BM1300 showed excellent thermal (between 60 and 120 °C), pH (2-11), and chemical (Tween-40, Tween-80, Triton X-100, and EDTA) stabilities. Time-kill curves revealed that BM1300 exhibited bactericidal activity against S. aureus and E. coli. The scanning and transmission electron microscopy indicated that BM1300 acted by disrupting the cell membrane integrity and increasing cell membrane permeabilization of indicator bacteria. The disruption of cell membrane integrity caused by BM1300 was further demonstrated by the uptake of propidium iodide (PI) and the release of intracellular lactate dehydrogenase (LDH) and nucleic acid and proteins. Moreover, BM1300 affected cell cycle distribution to exert antibacterial activity collaboratively. Meanwhile, BM1300 inhibited the growth of S. aureus and E. coli of beef meat and improved the microbiological quality of beef meat. These findings place BM1300 as a potential biopreservative in the food industry.
Collapse
Affiliation(s)
- Yingying Lu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Rakhmanova Aizhan
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Hong Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Xin Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Yanglei Yi
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Yuanyuan Shan
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Bianfang Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Yuan Zhou
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi Province, China.
| |
Collapse
|
30
|
Yan H, Aizhan R, Lu YY, Li X, Wang X, Yi YL, Shan YY, Liu BF, Zhou Y, Lü X. A novel bacteriocin BM1029: physicochemical characterization, antibacterial modes and application. J Appl Microbiol 2020; 130:755-768. [PMID: 32749036 DOI: 10.1111/jam.14809] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 06/15/2020] [Accepted: 07/22/2020] [Indexed: 12/28/2022]
Abstract
AIM Bacteriocins with antimicrobial activity are considered as potential natural bio-preservatives to control the growth of food spoilage bacteria. The aim of this work was to characterize a novel bacteriocin BM1029 discovered from Lactobacillus crustorum MN047 and evaluate its antibacterial mechanism. METHODS AND RESULTS Bacteriocin BM1029 was purified by cation-exchange chromatography and reversed-phase chromatography. Antibacterial activity assay showed that BM1029 is antagonistic against both Gram-positive and Gram-negative bacteria. Furthermore, it was found that BM1029 showed low haemolysis with high stability to the pretreatment with different temperatures, pH and surfactants. Moreover electron microscopy and flow cytometry suggested that BM1029 inhibit indicator strains by damaging the cell envelope integrity. Cell cycle assay suggested that BM1029 arrested cell cycle in R-phase. CONCLUSION The novel bacteriocin BM1029 showed high bactericidal activity against Escherichia coli and Staphylococcus aureus through a cell envelope-associated mechanism. SIGNIFICANCE AND IMPACT OF THE STUDY Application of BM1029 inhibited the growth of indicator strains on beef meat storage at 4°C suggesting that this bacteriocin is promising to be used as a novel preservative in food processing and preservation.
Collapse
Affiliation(s)
- H Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
| | - R Aizhan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Y Y Lu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
| | - X Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
| | - X Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Y L Yi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Y Y Shan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
| | - B F Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Y Zhou
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
| | - X Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
| |
Collapse
|
31
|
Angelopoulou A, Warda AK, O'Connor PM, Stockdale SR, Shkoporov AN, Field D, Draper LA, Stanton C, Hill C, Ross RP. Diverse Bacteriocins Produced by Strains From the Human Milk Microbiota. Front Microbiol 2020; 11:788. [PMID: 32508758 PMCID: PMC7248182 DOI: 10.3389/fmicb.2020.00788] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/02/2020] [Indexed: 12/16/2022] Open
Abstract
Microbial colonization of the infant gut is a convoluted process dependent on numerous contributing factors, including age, mode of delivery and diet among others that has lifelong implication for human health. Breast milk also contains a microbiome which acts as a source of colonizing bacteria for the infant. Here, we demonstrate that human milk harbors a wide diversity of bacteriocin-producing strains with the potential to compete among the developing gut microbiota of the infant. We screened 37 human milk samples and found isolates with antimicrobial activity and distinct cross-immunity profiles. From these isolates, we detected 73 putative gene clusters for bacteriocins of all known sub-classes, including 16 novel prepeptides. More specifically, we detected two novel lantibiotics, four sactibiotics and three class IIa bacteriocins with an unusual modification of the pediocin box that is composed of YDNGI instead of the highly conserved motif YGNGV. Moreover, we identified a novel class IIb bacteriocin, four novel class IIc and two class IId bacteriocins. In conclusion, human milk contains a variety of bacteriocin-producing strains which may provide them a competitive advantage in the colonization of the infant gut and suggests that the milk microbiota is a source of antimicrobial potential.
Collapse
Affiliation(s)
- Angeliki Angelopoulou
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Alicja K Warda
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Paula M O'Connor
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | | | | | - Des Field
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | - Colin Hill
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - R Paul Ross
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| |
Collapse
|
32
|
Lei S, Zhao R, Sun J, Ran J, Ruan X, Zhu Y. Partial purification and characterization of a broad-spectrum bacteriocin produced by a Lactobacillus plantarum zrx03 isolated from infant's feces. Food Sci Nutr 2020; 8:2214-2222. [PMID: 32405378 PMCID: PMC7215221 DOI: 10.1002/fsn3.1428] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/03/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022] Open
Abstract
Lactobacillus plantarum zrx03 was a bacteriocin-producing strain isolated from infant's feces. The fermentation supernatant produced by this strain could strongly inhibit Escherichia coli JM109 ATCC 67387, Staphylococcus aureus ATCC 25923, and Listeria monocytogenes CICC 21633, in which the diameter of inhibition zone was 12.83 ± 0.62 mm, 15.08 ± 0.31 mm, 6.75 ± 0.20 mm, respectively, compared with lactic acid bacteria N1, N2, M13, M21, M31, and M37. According to amplification of 16S rRNA gene and identification of phylogenetic tree, this strain had a 1,450 bp sequence and 100% identity to the L. plantarum strain. Based on the influence of different protease treatments, such as pepsin, trypsin, papain, and proteinase K on the antimicrobial activity, this antimicrobial substance was considered to be a natural protein. Using bacteriocin produced by this strain as study object of this experiment, it had been extracted from ammonium sulfate precipitation and different organic solvents. The results showed that ethyl acetate was selected as the optimal solution to crude extraction of bacteriocin after comparing ammonium sulfate precipitation method and organic solvent extraction method, such as n-butanol, n-hexane, dichloromethane, trichloromethane, in which the diameter of the inhibition zones was above 28 mm. Results also showed the inhibition spectrum of the obtained bacteriocin had a broad spectrum of inhibition which could inhibit Gram-positive, Gram-negative, yeast. Especially, it could effectively inhibit S. aureus ATCC 25923, Bacillus subtilis CICC 10002, Bacillus anthracis CICC 20443, E. coli JM109 ATCC 67387, and Salmonella CMCC 541, and the zone diameter of inhibition has reached more than 28 mm. Moreover, it had a good thermal stability which antibacterial activity was retained 70.58% after treatment at 121°C for 30 min, and pH-stability was between pH 2.0-9.0. These results suggested bacteriocin produced by L. plantarum zrx03 had potential application prospects in food preservation.
Collapse
Affiliation(s)
- Shuang Lei
- School of Food Science Henan Institute of Science and Technology Xinxiang China
| | - Ruixiang Zhao
- School of Food Science Henan Institute of Science and Technology Xinxiang China
| | - Junliang Sun
- School of Food Science Henan Institute of Science and Technology Xinxiang China
| | - Junjian Ran
- School of Food Science Henan Institute of Science and Technology Xinxiang China
| | - Xiaoli Ruan
- School of Food Science Henan Institute of Science and Technology Xinxiang China
| | - Yang Zhu
- Wageningen University and Research Centre Wageningen The Netherlands
| |
Collapse
|
33
|
Purification and partial characterization of a novel bacteriocin produced by bacteriocinogenic Lactobacillus fermentum BZ532 isolated from Chinese fermented cereal beverage (Bozai). Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109113] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Alonso VPP, Harada AMM, Kabuki DY. Competitive and/or Cooperative Interactions of Listeria monocytogenes With Bacillus cereus in Dual-Species Biofilm Formation. Front Microbiol 2020; 11:177. [PMID: 32184763 PMCID: PMC7058548 DOI: 10.3389/fmicb.2020.00177] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/24/2020] [Indexed: 12/12/2022] Open
Abstract
Microorganisms in dairy industries can form monospecies, dual-species, or multispecies biofilms, showing cooperative or competitive behaviors, which might contribute to the reduction of efficiency of cleaning and sanitization processes and eventually turn into a potential source of contamination. This study proposes to evaluate the behavior of Listeria monocytogenes in monospecies biofilms, cocultured with Bacillus cereus. The isolates were of dairy origin, and the selection occurred after studies of competition among species. The biofilm formations on AISI 304 stainless steel at 25°C in a stationary culture were analyzed to observe the cooperative or competitive interactions among species, as well as the effect of pre-adhered cells. Biofilm formation assays were performed in four experiments: Experiment 1: in the presence of strains of antagonistic substance producer B. cereus (+); Experiment 2: extract of the antagonistic substance of B. cereus; Experiment 3: pre-adhered cells of B. cereus; and Experiment 4: pre-adhered cells of L. monocytogenes. Subsequently, cooperative behavior was observed by scanning electron microscopy. The L. monocytogenes monospecies biofilm counts of greater than 5 log colony-forming units (CFU)/cm2 were also observed in dual-species biofilms in the presence of B. cereus (non-producers of antagonist substance), showing cooperative behavior between species. However, in the presence of antagonistic substance produced by B. cereus, the counts were lower, 1.39 and 1.70 log CFU/cm2 (p > 0.05), indicating that the antagonistic substance contributes to competitive interactions. These data are relevant for the development of new studies to control L. monocytogenes in the dairy industry.
Collapse
Affiliation(s)
| | | | - Dirce Yorika Kabuki
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| |
Collapse
|
35
|
Hutahaean AJN, Silalahi J, Suryanto D, Satria D. Characterisation of Lactic Acid Bacteria from Dengke Naniura of Common Carp ( Cyprinus carpio) with α-Glucosidase Inhibitory Activity. Open Access Maced J Med Sci 2019; 7:3794-3798. [PMID: 32127978 PMCID: PMC7048331 DOI: 10.3889/oamjms.2019.506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND: Fermented foods were favourable because of its properties in enhancing the shelf life, safety, function, sensory and nutrition. There are many fermented foods tested in vitro as an α-glucosidase enzyme inhibitor. Dengke naniura is one of Indonesia’s traditional food made using fermentation. AIM: To identify lactic acid bacteria (LAB) strains in dengke naniura and its properties in inhibiting the α-glucosidase enzyme. METHODS: The carp were sacrificed, and soaked with rough lemon for 6 hours then spices added to it for another 1 hour. Then the isolation of LAB conducted using a serial dilution of the samples. The selected isolates of the LAB were then characterised by its morphology under the microscope, gram staining, growth at 15°C and 45°C and biochemical identification. The isolates were then tested for its inhibiting properties against the α-glucosidase enzyme. RESULTS: The isolates (DL-109 and DL-107) were a gram-positive, nonspore-forming and non-motile rod. The Physiological and biochemical properties of the isolates confirm its LAB properties. On the test against α-glucosidase enzyme activity inhibition, isolate DL-109 LAB (4) showed dominant activity with very low IC50 compared to Acarbose (IC50 = 128.06 ppm) and DL-107 (46.32 ppm) while at the lowest dosage of 25 µg/ml DL-109 showed activity as much as 54.76%. CONCLUSION: These findings concluded that the isolates were LAB by its properties and can be used for lowering blood glucose in term of inhibition of the α-glucosidase enzyme.
Collapse
Affiliation(s)
| | - Jansen Silalahi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Dwi Suryanto
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Denny Satria
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia
| |
Collapse
|
36
|
Wang ZH, Liu JM, Li CY, Wang D, Lv H, Lv SW, Zhao N, Ma H, Wang S. Bacterial Biofilm Bioinspired Persistent Luminescence Nanoparticles with Gut-Oriented Drug Delivery for Colorectal Cancer Imaging and Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:36409-36419. [PMID: 31525949 DOI: 10.1021/acsami.9b12853] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Colorectal cancer (CRC) is now one of the leading causes of cancer incidence and mortality. Although nanomaterial-based drug delivery has been used for the treatment of colorectal cancer, inferior targeting ability of existing nanocarriers leads to inefficient treatment and side effects. Moreover, the majority of intravenously administered nanomaterials aggregate into the reticuloendothelial system, leaving a certain hidden risk to human health. All those problems gave great demands for further construction of well-performed and biocompatible nanomaterials for in vivo theranostics. In the present work, from a biomimetic point of view, Lactobacillus reuteri biofilm (LRM) was coated on the surface of trackable zinc gallogermanate (ZGGO) near-infrared persistent luminescence mesoporous silica to create the bacteria bioinspired nanoparticles (ZGGO@SiO2@LRM), which hold the inherent capability of withstanding the digestion of gastric acid and targeted release 5-FU to colorectum. Through the background-free persistent luminescence bioimaging of ZGGO, the coating of LRM facilitated the localization of ZGGO@SiO2@LRM to the tumor area of colorectum for more than 24 h after intragastric administration. Furthermore, ZGGO@SiO2@LRM hardly entered the blood, which avoided possible damage to immune organs such as the liver and spleen. In vivo chemotherapy experiment demonstrated the number of tumors per mouse in ZGGO@SiO2@LRM group decreased by one-half compared with the 5-FU group (P < 0.001). To sum up, this LRM bioinspired nanoparticles could tolerate the digestion of gastric acid, avoid aggregation by the immune system, favor gut-oriented drug delivery, and targeted release oral 5-FU into colorectum for more than 24 h, which may give new application prospects for targeted delivery of oral drugs into the colorectum.
Collapse
Affiliation(s)
- Zhi-Hao Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine , Nankai University , Tianjin 300071 , China
| | - Jing-Min Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine , Nankai University , Tianjin 300071 , China
| | - Chun-Yang Li
- Tianjin Key Laboratory of Food Science and Health, School of Medicine , Nankai University , Tianjin 300071 , China
| | - Di Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine , Nankai University , Tianjin 300071 , China
| | - Huan Lv
- Tianjin Key Laboratory of Food Science and Health, School of Medicine , Nankai University , Tianjin 300071 , China
| | - Shi-Wen Lv
- Tianjin Key Laboratory of Food Science and Health, School of Medicine , Nankai University , Tianjin 300071 , China
| | - Ning Zhao
- Tianjin Key Laboratory of Food Science and Health, School of Medicine , Nankai University , Tianjin 300071 , China
| | - Hui Ma
- Tianjin Key Laboratory of Food Science and Health, School of Medicine , Nankai University , Tianjin 300071 , China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine , Nankai University , Tianjin 300071 , China
| |
Collapse
|
37
|
Yuan L, Sadiq FA, Burmølle M, Liu T, He G. Insights into Bacterial Milk Spoilage with Particular Emphasis on the Roles of Heat-Stable Enzymes, Biofilms, and Quorum Sensing. J Food Prot 2018; 81:1651-1660. [PMID: 30207500 DOI: 10.4315/0362-028x.jfp-18-094] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Milk spoilage caused by psychrotrophic bacteria and their heat-stable enzymes is a serious challenge for the dairy industry. In many studies, spoilage has been explored based on the simplistic view of undesirable enzymes produced by planktonic cells. Recently, biofilms and quorum sensing (QS) have been suggested as important factors in the deterioration of milk, which opens new avenues for investigation of the processes and challenges. Production and heat stability of enzymes are enhanced in biofilms, mainly because of inherent differences in physiological states and protective shielding by extracellular polymeric substances. QS plays a key role in modulating expression of hydrolytic enzymes and biofilm formation. To date, few studies have been conducted to investigate the complex interplays of enzyme production, biofilm formation, and QS. This review provides novel insights into milk spoilage with particular emphasis on the roles of biofilms and QS and summarizes potential effective strategies for controlling the spoilage of milk.
Collapse
Affiliation(s)
- Lei Yuan
- 1 College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Faizan A Sadiq
- 1 College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Mette Burmølle
- 2 Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Tongjie Liu
- 1 College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Guoqing He
- 1 College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| |
Collapse
|
38
|
Wayah SB, Philip K. Characterization, yield optimization, scale up and biopreservative potential of fermencin SA715, a novel bacteriocin from Lactobacillus fermentum GA715 of goat milk origin. Microb Cell Fact 2018; 17:125. [PMID: 30103750 PMCID: PMC6090665 DOI: 10.1186/s12934-018-0972-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 08/03/2018] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Emergence of antibiotic resistance and growing consumer trend towards foods containing biopreservatives stimulated the search for alternative antimicrobials. This research is aimed at characterizing, investigating the mechanism of action, scale up optimization and evaluating the biopreservative potential of a bacteriocin from Lactobacillus fermentum. RESULTS Fermencin SA715 is a novel, broad-spectrum, non-pore-forming and cell wall-associated bacteriocin isolated from L. fermentum GA715 of goat milk origin. A combination of hydrophobic interaction chromatography, solid-phase extraction and reversed-phase HPLC was necessary for purification of the bacteriocin to homogeneity. It has a molecular weight of 1792.537 Da as revealed by MALDI-TOF mass spectrometry. Fermencin SA715 is potent at micromolar concentration, possesses high thermal and pH stability and inactivated by proteolytic enzymes thereby revealing its proteinaceous nature. Biomass accumulation and production of fermencin SA715 was optimum in a newly synthesized growth medium. Fermencin SA715 did not occur in the absence of manganese(II) sulphate. Tween 80, ascorbic acid, sodium citrate and magnesium sulphate enhanced the production of fermencin SA715. Sucrose is the preferred carbon source for growth and bacteriocin production. Sodium chloride concentration higher than 1% suppressed growth and production of fermencin SA715. Optimum bacteriocin production occurred at 37 °C and pH 6-7. Scale up of fermencin SA715 production involved batch fermentation in a bioreactor at a constant pH of 6.5 which resulted in enhanced production. Fermencin SA715 doubled the shelf life and improved the microbiological safety of fresh banana. Bacteriocin application followed by refrigeration tripled the shell life of banana. CONCLUSIONS This study reveals the huge potential of fermencin SA715 as a future biopreservative for bananas and reveals other interesting characteristics which can be exploited in the preservation of other foods. Furthermore insights on the factors influencing the production of fermencin SA715 have been revealed and optimized condition for its production has been established facilitating future commercial production.
Collapse
Affiliation(s)
- Samson Baranzan Wayah
- Microbiology Division, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- Department of Biochemistry, Faculty of Science, Kaduna State University, Kaduna, Nigeria
| | - Koshy Philip
- Microbiology Division, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|