1
|
Decsi K, Ahmed M, Abdul-Hamid D, Tóth Z. The Role of Salicylic Acid in Activating Plant Stress Responses-Results of the Past Decade and Future Perspectives. Int J Mol Sci 2025; 26:4447. [PMID: 40362684 PMCID: PMC12072644 DOI: 10.3390/ijms26094447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/23/2025] [Accepted: 05/01/2025] [Indexed: 05/15/2025] Open
Abstract
Salicylic acid (SA) is one of the most commonly used natural plant protection compounds, considered one of the most effective in mitigating the damage caused by abiotic and biotic stressors. The current review article summarizes the most significant achievements in stress management over the past ten years. We also provide insights into new perspectives on the use of salicylic acid. The article summarizes the role of SA in signaling, its effects on biotic, abiotic and oxidative stress, evaluates the possibilities of its use in combination with other active compounds, and presents the promising application opportunities offered by new techniques that may become available in the coming decades.
Collapse
Affiliation(s)
- Kincső Decsi
- Institute of Agronomy, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary;
| | - Mostafa Ahmed
- Festetics Doctoral School, Institute of Agronomy, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary
- Department of Agricultural Biochemistry, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Donia Abdul-Hamid
- Heavy Metals Department, Central Laboratory for the Analysis of Pesticides and Heavy Metals in Food (QCAP), Dokki, Cairo 12311, Egypt;
| | - Zoltán Tóth
- Institute of Agronomy, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary;
| |
Collapse
|
2
|
Obaid WA, Madany MMY, Waznah MS, Sonbol H, Aloufi AS, Korany SM, Reyad AM, Ahmed ES, Selim S, AbdElgawad H. Modulation of plant carbon and nitrogen metabolism by novel actinobacteria Rhodospirillum sp. to combat galaxolide toxicity in barley and maize plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109403. [PMID: 39884151 DOI: 10.1016/j.plaphy.2024.109403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/18/2024] [Accepted: 12/11/2024] [Indexed: 02/01/2025]
Abstract
The phytotoxic effect of cosmetics such as galaxolide (HHCB) has been investigated, however, their metabolic basis of this impact is still obscure. Thus, we investigated the effect of HHCB on the biomass accumulation, photosynthesis, primary and secondary metabolites in two species from different functional groups i.e., barley (C3) and maize (C4). In addition, the metabolic bases of HHCB stress mitigating impact of the bioactive Rhodospirillum sp. JY3 were investigated. HHCB toxicity on plant growth and physiology was significantly reduced in PGPB treated plants. At metabolism level, sugars levels and metabolic enzymes (e.g., invertase, sucrose synthase, starch synthase) were increased. Consequentially, this provided a route for organic, amino and fatty acids biosynthesis. PGPB further mitigated the phytotoxic impact of HHCB upon the levels of organic acids (e.g., oxalic, citric, succinic, malic and isobutyric acids), amino acids, particularly proline, in addition to unsaturated fatty acids. Furthermore, plant growth-promoting bacteria (PGPB) treatment reduced HHCB toxicity through increasing antioxidant metabolites (e.g., polyamines and anthocyanin), their precursors (e.g., phenylalanine, naringenin, cinnamic and coumaric acids) and their related biosynthetic enzymes such as chalcone synthase and cinnamate-4-hydroxylase. Overall, this study, for the first time, significantly contributes to quenching the environmental hazards and maintaining agriculture sustainability using eco-friendly tools.
Collapse
Affiliation(s)
- Wael A Obaid
- Biology Department, College of Science, Taibah University, Al-Madinah Al-Munwarah, Saudi Arabia
| | - Mahmoud M Y Madany
- Biology Department, College of Science, Taibah University, Al-Madinah Al-Munwarah, Saudi Arabia; Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, Egypt.
| | - Moayad S Waznah
- Biology Department, College of Science, Taibah University, Al-Madinah Al-Munwarah, Saudi Arabia
| | - Hana Sonbol
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Abeer S Aloufi
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Shereen Magdy Korany
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Ahmed Mohamed Reyad
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni‒Suef, Egypt
| | - Enas S Ahmed
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni‒Suef, Egypt; Biology Department, College of Science in Zulfi, Majmaah University, 11932, Saudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Hamada AbdElgawad
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni‒Suef, Egypt; Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
3
|
Zheng S, Tang Z, Li L, Jia P, Kong X, Xue H, Cheng X, Wang X, Zhang Y, Bai N, Zhang Z, Pan X, Zhang B. Melatonin reprograms soil microbial community, creates friendly soil environments, and promotes peanut growth. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 218:109307. [PMID: 39591892 DOI: 10.1016/j.plaphy.2024.109307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/31/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024]
Abstract
Melatonin helps to regulate various physiological processes in plants, including growth, seed germination, and stress responses. However, the mechanism of how melatonin treatments affect soil microbe diversity and ecology, and plant growth needs to be better understood. Here, we report that melatonin coordinates interactions between soil microorganisms and root exudates to create a friendly soil environment for peanut growth under a controlled environment. Interestingly, the results showed that melatonin was capable of regulating the structure of the soil microbial community, improving its relative abundance of beneficial microorganisms (such as Sphingomonas, Trichoderma, and Penicillium) in the soil. Furthermore, melatonin could also change the composition of soil metabolites and nutrients. These altered soil profiles reflected a healthy environment for peanuts created by melatonin. Furthermore, the favorable growing environment increased photosynthetic performance, biomass, and peanut yield. Collectively, our findings will help us better understand the role of melatonin as a bioregulator in maintaining a healthy plant growth environment. SYNOPSIS: Melatonin treatments improved soil microbe biodiversity and enhanced plant growth and development and sustainable agricultural development.
Collapse
Affiliation(s)
- Shuaichao Zheng
- Xinxiang Key Laboratory of Crop Root Biology and Green Efficient Production, School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Zixiang Tang
- Xinxiang Key Laboratory of Crop Root Biology and Green Efficient Production, School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Lijie Li
- Xinxiang Key Laboratory of Crop Root Biology and Green Efficient Production, School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China; Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Peipei Jia
- Xinxiang Key Laboratory of Crop Root Biology and Green Efficient Production, School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Xiangjun Kong
- Xinxiang Key Laboratory of Crop Root Biology and Green Efficient Production, School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Huiyun Xue
- Xinxiang Key Laboratory of Crop Root Biology and Green Efficient Production, School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Xiangguo Cheng
- Xinxiang Key Laboratory of Crop Root Biology and Green Efficient Production, School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Xiaohui Wang
- Xinxiang Key Laboratory of Crop Root Biology and Green Efficient Production, School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Yi Zhang
- Xinxiang Key Laboratory of Crop Root Biology and Green Efficient Production, School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Na Bai
- Xinxiang Key Laboratory of Crop Root Biology and Green Efficient Production, School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Zhiyong Zhang
- Xinxiang Key Laboratory of Crop Root Biology and Green Efficient Production, School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Xiaoping Pan
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA.
| |
Collapse
|
4
|
El-Saadony MT, Saad AM, Mohammed DM, Fahmy MA, Elesawi IE, Ahmed AE, Algopishi UB, Elrys AS, Desoky ESM, Mosa WF, Abd El-Mageed TA, Alhashmi FI, Mathew BT, AbuQamar SF, El-Tarabily KA. Drought-tolerant plant growth-promoting rhizobacteria alleviate drought stress and enhance soil health for sustainable agriculture: A comprehensive review. PLANT STRESS 2024; 14:100632. [DOI: 10.1016/j.stress.2024.100632] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
5
|
Jing D, Liu F, Li S, Dong Y. Synergistic effects of SAP and PGPR on physiological characteristics of leaves and soil enzyme activities in the rhizosphere of poplar seedlings under drought stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1485362. [PMID: 39539293 PMCID: PMC11557949 DOI: 10.3389/fpls.2024.1485362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
Super absorbent polymers (SAP) provide moisture conditions that allow plant growth-promoting rhizobacteria (PGPR) to enter the soil for acclimatization and strain propagation. However, the effects of SAP co-applied with PGPR on the physiological characteristics of leaves and rhizosphere soil enzyme activities of poplar seedlings are not well understood. Here, a pot experiment using one-year-old poplar seedlings with five treatments, normal watering, drought stress (DR), drought stress + SAP (DR+SAP), drought stress + Priestia megaterium (DR +PGPR) and drought stress + SAP + P. megaterium (DR+S+P), was performed to analyze the contents of non-enzymatic antioxidants, osmotic regulators and hormones in leaves, as well as rhizosphere soil enzyme activities. Compared with normal watering, the DR treatment significantly decreased the contents of dehydroascorbate (DHA; 19.08%), reduced glutathione (GSH; 14.18%), oxidized glutathione, soluble protein (26.84%), indoleacetic acid (IAA; 9.47%), gibberellin (GA) and zeatin (ZT), the IAA/abscisic acid (ABA), GA/ABA, ZT/ABA and (IAA+GA+ZT)/ABA (34.67%) ratios in leaves, and the urease and sucrase activities in the rhizosphere soil. Additionally, it significantly increased the soluble sugar, proline and ABA contents in leaves. However, in comparison with the DR treatment, the DR+S+P treatment significantly increased the DHA (29.63%), GSH (15.13%), oxidized glutathione, soluble protein (29.15%), IAA (12.55%) and GA contents, the IAA/ABA, GA/ABA, ZT/ABA and (IAA+GA+ZT)/ABA (46.85%) ratios in leaves, and the urease, sucrose and catalase activities in rhizosphere soil to different degrees. The soluble sugar, proline and ABA contents markedly reduced in comparison to the DR treatment. The effects of the DR+SAP and DR+PGPR treatments were generally weaker than those of the DR+S+P treatment. Thus, under drought-stress conditions, the simultaneous addition of SAP and P. megaterium enhanced the drought adaptive capacities of poplar seedlings by regulating the non-enzymatic antioxidants, osmotic regulators, and endogenous hormone content and balance in poplar seedling leaves, as well as by improving the rhizosphere soil enzyme activities.
Collapse
Affiliation(s)
- Dawei Jing
- College of Ecology, Resources and Environment, Dezhou University, Dezhou, China
| | - Fangchun Liu
- Institute of Resource and Environment, Shandong Academy of Forestry, Jinan, China
| | - Shanwen Li
- Key Laboratory for Genetic Improvement in Forest Trees of Shandong Province, Shandong Academy of Forestry, Jinan, China
| | | |
Collapse
|
6
|
Tadvani HK, Bijanzadeh E, Najafi-Ghiri M. Synergistic effect of salicylic acid and biochar on biochemical properties, yield and nutrient uptake of triticale under water stress. Heliyon 2024; 10:e37152. [PMID: 39296113 PMCID: PMC11408057 DOI: 10.1016/j.heliyon.2024.e37152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024] Open
Abstract
In arid regions, one of the practical solutions to overcome the water shortage and increasing soil fertility is application of salicylic acid (SA) with biochar. A pot experiment was conducted to consider the combination of SA with biochar on biochemical and physiological parameters of triticale as a factorial experiment using a completely randomized design (RCD) with four replicates. Treatments consisted of irrigation regime (normal irrigation and irrigation according to 50 % field capacity), salicylic acid application [without SA (SA0) and 3 mM SA (SA3)] and fertilizer type including without fertilizer (control), application of 50 kg ha-1 phosphorus (P), and application of wheat biochar (WB), cotton biochar (CB) and sesame biochar (SB) (2 % w/w). Under water stress, CB at SA0 and SA3 could improve the total chlorophyll by 119.4 and 70.6 %, compared to control, respectively. Also, carotenoid content in SA3 treatments increased in the range of 75.8 to 34.6 % compared to SA0. CB at SA3, increased catalase activity by 11.4 % compared to SB. At SA3, the highest RWC was observed in WB and CB by 26.7 and 18.1 % increases compared to SA0, respectively. At SA3, CB could enhance grain yield by 24.8 % under water stress. Under water stress, at SA3, remobilization efficiency from 63.2 % in control was enhanced to 69.2, 74.3 and 68.1 % in WB, CB and SB, respectively. CB and WB had better chemical properties in terms of EC, N, P, K and micronutrients compared to SB. These properties of BC and WB enhanced their ability to increase the nutrient availability, biochemical properties and consequently the grain yield enhancement, especially when applied with SA3.
Collapse
Affiliation(s)
- Hesameddin Khajepour Tadvani
- Agroecology Department, College of Agriculture and Natural Resources of Darab, Shiraz University, Agroecology Dep. BOX: 7459117666, Shiraz, Iran
| | - Ehsan Bijanzadeh
- Agroecology Department, College of Agriculture and Natural Resources of Darab, Shiraz University, Agroecology Dep. BOX: 7459117666, Shiraz, Iran
| | - Mahdi Najafi-Ghiri
- Oil Science Department, College of Agriculture and Natural Resources of Darab, Shiraz University, Agroecology Dep. BOX: 7459117666, Shiraz, Iran
| |
Collapse
|
7
|
Kumari R, Pandey E, Bushra S, Faizan S, Pandey S. Plant Growth Promoting Rhizobacteria (PGPR) induced protection: A plant immunity perspective. PHYSIOLOGIA PLANTARUM 2024; 176:e14495. [PMID: 39247988 DOI: 10.1111/ppl.14495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/03/2024] [Accepted: 08/10/2024] [Indexed: 09/10/2024]
Abstract
Plant-environment interactions, particularly biotic stress, are increasingly essential for global food security due to crop losses in the dynamic environment. Therefore, understanding plant responses to biotic stress is vital to mitigate damage. Beneficial microorganisms and their association with plants can reduce the damage associated with plant pathogens. One such group is PGPR (Plant growth-promoting rhizobacteria), which influences plant immunity significantly by interacting with biotic stress factors and plant signalling compounds. This review explores the types, metabolism, and mechanisms of action of PGPR, including their enzyme pathways and the signalling compounds secreted by PGPR that modulate gene and protein expression during plant defence. Furthermore, the review will delve into the crosstalk between PGPR and other plant growth regulators and signalling compounds, elucidating the physiological, biochemical, and molecular insights into PGPR's impact on plants under multiple biotic stresses, including interactions with fungi, bacteria, and viruses. Overall, the review comprehensively adds to our knowledge about PGPR's role in plant immunity and its application for agricultural resilience and food security.
Collapse
Affiliation(s)
- Rinkee Kumari
- Environmental Physiology Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, (U.P.), India
| | - Ekta Pandey
- Environmental Physiology Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, (U.P.), India
| | - Sayyada Bushra
- Environmental Physiology Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, (U.P.), India
| | - Shahla Faizan
- Environmental Physiology Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, (U.P.), India
| | - Saurabh Pandey
- Department of Agriculture, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
8
|
Ehinmitan E, Losenge T, Mamati E, Ngumi V, Juma P, Siamalube B. BioSolutions for Green Agriculture: Unveiling the Diverse Roles of Plant Growth-Promoting Rhizobacteria. Int J Microbiol 2024; 2024:6181491. [PMID: 39238543 PMCID: PMC11377119 DOI: 10.1155/2024/6181491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/23/2024] [Accepted: 08/17/2024] [Indexed: 09/07/2024] Open
Abstract
The extensive use of chemical pesticides and fertilizers in conventional agriculture has raised significant environmental and health issues, including the emergence of resistant pests and pathogens. Plant growth-promoting rhizobacteria (PGPR) present a sustainable alternative, offering dual benefits as biofertilizers and biocontrol agents. This review delves into the mechanisms by which PGPR enhance plant growth, including nutrient solubilization, phytohormone production, and pathogen suppression. PGPR's commercial viability and application, particularly under abiotic stress conditions, are also examined. PGPR improves plant growth directly by enhancing nutrient uptake and producing growth-promoting substances and indirectly by inhibiting phytopathogens through mechanisms such as siderophore production and the secretion of lytic enzymes. Despite their potential, the commercialization of PGPR faces challenges, including strain specificity, formulation stability, and regulatory barriers. The review highlights the need for ongoing research to deepen our understanding of plant-microbe interactions and develop more robust PGPR formulations. Addressing these challenges will be crucial for integrating PGPR into mainstream agricultural practices and reducing reliance on synthetic agrochemicals. The successful adoption of PGPR could lead to more sustainable agricultural practices, promoting healthier crops and ecosystems.
Collapse
Affiliation(s)
- Emmanuel Ehinmitan
- Department of Molecular Biology and Biotechnology Pan African University Institute for Basic Sciences, Technology and Innovation, P.O. Box 62000-00200, Nairobi, Kenya
| | - Turoop Losenge
- Department of Horticulture Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya
| | - Edward Mamati
- Department of Horticulture Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya
| | - Victoria Ngumi
- Department of Botany Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya
| | - Patrick Juma
- Department of Horticulture Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya
| | - Beenzu Siamalube
- Department of Molecular Biology and Biotechnology Pan African University Institute for Basic Sciences, Technology and Innovation, P.O. Box 62000-00200, Nairobi, Kenya
| |
Collapse
|
9
|
Zhang H, Nie M, Du X, Chen S, Liu H, Wu C, Tang Y, Lei Z, Shi G, Zhao X. Selenium and Bacillus proteolyticus SES increased Cu-Cd-Cr uptake by ryegrass: highlighting the significance of key taxa and soil enzyme activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29113-29131. [PMID: 38568308 DOI: 10.1007/s11356-024-32959-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/13/2024] [Indexed: 04/24/2024]
Abstract
Many studies have focused their attention on strategies to improve soil phytoremediation efficiency. In this study, a pot experiment was carried out to investigate whether Se and Bacillus proteolyticus SES promote Cu-Cd-Cr uptake by ryegrass. To explore the effect mechanism of Se and Bacillus proteolyticus SES, rhizosphere soil physiochemical properties and rhizosphere soil bacterial properties were determined further. The findings showed that Se and Bacillus proteolyticus SES reduced 23.04% Cu, 36.85% Cd, and 9.85% Cr from the rhizosphere soil of ryegrass. Further analysis revealed that soil pH, organic matter, soil enzyme activities, and soil microbial properties were changed with Se and Bacillus proteolyticus SES application. Notably, rhizosphere key taxa (Bacteroidetes, Actinobacteria, Firmicutes, Patescibacteria, Verrucomicrobia, Chloroflexi, etc.) were significantly enriched in rhizosphere soil of ryegrass, and those taxa abundance were positively correlated with soil heavy metal contents (P < 0.01). Our study also demonstrated that in terms of explaining variations of soil Cu-Cd-Cr content under Se and Bacillus proteolyticus SES treatment, soil enzyme activities (catalase and acid phosphatase) and soil microbe properties showed 42.5% and 12.2% contributions value, respectively. Overall, our study provided solid evidence again that Se and Bacillus proteolyticus SES facilitated phytoextraction of soil Cu-Cd-Cr, and elucidated the effect of soil key microorganism and chemical factor.
Collapse
Affiliation(s)
- Huan Zhang
- College of Resources and Environment, Huazhong Agricultural University / Research Center of Trace Elements, Wuhan, 430070, China
- Key Laboratory of Se-Enriched Products Development and Quality Control, Ministry of Agriculture and Rural Affairs/ National-Local Joint Engineering Laboratory of Se-Enriched Food Development, Ankang, 725000, China
| | - Min Nie
- College of Resources and Environment, Huazhong Agricultural University / Research Center of Trace Elements, Wuhan, 430070, China
| | - Xiaoping Du
- Key Laboratory of Se-Enriched Products Development and Quality Control, Ministry of Agriculture and Rural Affairs/ National-Local Joint Engineering Laboratory of Se-Enriched Food Development, Ankang, 725000, China
| | - Suhua Chen
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization (Nanchang Hangkong University), Nanchang, 330063, China
| | - Hanliang Liu
- Key Laboratory of Geochemical Exploration, Institute of Geophysical and Geochemical Exploration, CAGS, Langfang, 065000, Hebei, China
| | - Chihhung Wu
- Fujian Provincial Key Laboratory of Resources and Environment Monitoring & Sustainable Management and Utilization, Sanming University, Sanming, 365004, China
| | - Yanni Tang
- College of Resources and Environment, Huazhong Agricultural University / Research Center of Trace Elements, Wuhan, 430070, China
| | - Zheng Lei
- College of Resources and Environment, Huazhong Agricultural University / Research Center of Trace Elements, Wuhan, 430070, China
| | - Guangyu Shi
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiaohu Zhao
- College of Resources and Environment, Huazhong Agricultural University / Research Center of Trace Elements, Wuhan, 430070, China.
- Key Laboratory of Se-Enriched Products Development and Quality Control, Ministry of Agriculture and Rural Affairs/ National-Local Joint Engineering Laboratory of Se-Enriched Food Development, Ankang, 725000, China.
| |
Collapse
|
10
|
Agunbiade VF, Babalola OO. Drought Stress Amelioration Attributes of Plant-Associated Microbiome on Agricultural Plants. Bioinform Biol Insights 2024; 18:11779322241233442. [PMID: 38464334 PMCID: PMC10924568 DOI: 10.1177/11779322241233442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 02/01/2024] [Indexed: 03/12/2024] Open
Abstract
The future global food security depends on the availability of water for agriculture. Yet, the ongoing rise in nonagricultural uses for water, such as urban and industrial uses, and growing environmental quality concerns have increased pressure of irrigation water demand and posed danger to food security. Nevertheless, its severity and duration are predicted to rise shortly. Drought pressure causes stunted growth, severe damage to photosynthesis activity, loss in crop yield, reduced seed germination, and reduced nutrient intake by plants. To overcome the effects of a devastating drought on plants, it is essential to think about the causes, mechanisms of action, and long-term agronomy management and genetics. As a result, there is an urgent need for long-term medication to deal with the harmful effects of drought pressure. The review focuses on the adverse impact of drought on the plant, physiological, and biochemical aspects, and management measures to control the severity of drought conditions. This article reviews the role of genome editing (GE) technologies such as CRISPR 9 (CRISPR-Cas9) related spaces and short palindromic relapse between proteins in reducing the effects of phytohormones, osmolytes, external compounds, proteins, microbes (plant growth-promoting microorganism [PGPM]), approach omics, and drought on plants that support plant growth. This research is to examine the potential of using the microbiome associated with plants for drought resistance and sustainable agriculture. Researchers also advocate using a mix of biotechnology, agronomic, and advanced GE technologies to create drought-tolerant plant varieties.
Collapse
Affiliation(s)
- Victor Funso Agunbiade
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| |
Collapse
|
11
|
Huang XY, Ye XP, Hu YY, Tang ZX, Zhang T, Zhou H, Zhou T, Bai XL, Pi EX, Xie BH, Shi LE. Exopolysaccharides of Paenibacillus polymyxa: A review. Int J Biol Macromol 2024; 261:129663. [PMID: 38278396 DOI: 10.1016/j.ijbiomac.2024.129663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/30/2023] [Accepted: 01/19/2024] [Indexed: 01/28/2024]
Abstract
Paenibacillus polymyxa (P. polymyxa) is a member of the genus Paenibacillus, which is a rod-shaped, spore-forming gram-positive bacterium. P. polymyxa is a source of many metabolically active substances, including polypeptides, volatile organic compounds, phytohormone, hydrolytic enzymes, exopolysaccharide (EPS), etc. Due to the wide range of compounds that it produces, P. polymyxa has been extensively studied as a plant growth promoting bacterium which provides a direct benefit to plants through the improvement of N fixation from the atmosphere and enhancement of the solubilization of phosphorus and the uptake of iron in the soil, and phytohormones production. Among the metabolites from P. polymyxa, EPS exhibits many activities, for example, antioxidant, immunomodulating, anti-tumor and many others. EPS has various applications in food, agriculture, environmental protection. Particularly, in the field of sustainable agriculture, P. polymyxa EPS can be served as a biofilm to colonize microbes, and also can act as a nutrient sink on the roots of plants in the rhizosphere. Therefore, this paper would provide a comprehensive review of the advancements of diverse aspects of EPS from P. polymyxa, including the production, extraction, structure, biosynthesis, bioactivity and applications, etc. It would provide a direction for future research on P. polymyxa EPS.
Collapse
Affiliation(s)
- Xuan-Ya Huang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xin-Pei Ye
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yan-Yu Hu
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zhen-Xing Tang
- School of Culinary Art, Tourism College of Zhejiang, Hangzhou, Zhejiang 311231, China
| | - Tian Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Hai Zhou
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Ting Zhou
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xue-Lian Bai
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Er-Xu Pi
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Bing-Hua Xie
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Lu-E Shi
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
12
|
Sanjana S, Jazeel K, Janeeshma E, Nair SG, Shackira AM. Synergistic interactions of assorted ameliorating agents to enhance the potential of heavy metal phytoremediation. STRESS BIOLOGY 2024; 4:13. [PMID: 38363436 PMCID: PMC10873264 DOI: 10.1007/s44154-024-00153-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/29/2024] [Indexed: 02/17/2024]
Abstract
Pollution by toxic heavy metals creates a significant impact on the biotic community of the ecosystem. Nowadays, a solution to this problem is an eco-friendly approach like phytoremediation, in which plants are used to ameliorate heavy metals. In addition, various amendments are used to enhance the potential of heavy metal phytoremediation. Symbiotic microorganisms such as phosphate-solubilizing bacteria (PSB), endophytes, mycorrhiza and plant growth-promoting rhizobacteria (PGPR) play a significant role in the improvement of heavy metal phytoremediation potential along with promoting the growth of plants that are grown in contaminated environments. Various chemical chelators (Indole 3-acetic acid, ethylene diamine tetra acetic acid, ethylene glycol tetra acetic acid, ethylenediamine-N, N-disuccinic acid and nitrilotri-acetic acid) and their combined action with other agents also contribute to heavy metal phytoremediation enhancement. With modern techniques, transgenic plants and microorganisms are developed to open up an alternative strategy for phytoremediation. Genomics, proteomics, transcriptomics and metabolomics are widely used novel approaches to develop competent phytoremediators. This review accounts for the synergistic interactions of the ameliorating agent's role in enhancing heavy metal phytoremediation, intending to highlight the importance of these various approaches in reducing heavy metal pollution.
Collapse
Affiliation(s)
- S Sanjana
- Department of Botany, Sir Syed College, Kannur University, Kerala, 670142, India
| | - K Jazeel
- Department of Botany, Sir Syed College, Kannur University, Kerala, 670142, India
| | - E Janeeshma
- Department of Botany, MES KEVEEYAM College, Valanchery, Malappuram, Kerala, India
| | - Sarath G Nair
- Department of Botany, Mar Athanasius College, Mahatma Gandhi University, Kottayam, Kerala, India
| | - A M Shackira
- Department of Botany, Sir Syed College, Kannur University, Kerala, 670142, India.
| |
Collapse
|
13
|
Wang T, Xu J, Chen J, Liu P, Hou X, Yang L, Zhang L. Progress in Microbial Fertilizer Regulation of Crop Growth and Soil Remediation Research. PLANTS (BASEL, SWITZERLAND) 2024; 13:346. [PMID: 38337881 PMCID: PMC10856823 DOI: 10.3390/plants13030346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
More food is needed to meet the demand of the global population, which is growing continuously. Chemical fertilizers have been used for a long time to increase crop yields, and may have negative effect on human health and the agricultural environment. In order to make ongoing agricultural development more sustainable, the use of chemical fertilizers will likely have to be reduced. Microbial fertilizer is a kind of nutrient-rich and environmentally friendly biological fertilizer made from plant growth-promoting bacteria (PGPR). Microbial fertilizers can regulate soil nutrient dynamics and promote soil nutrient cycling by improving soil microbial community changes. This process helps restore the soil ecosystem, which in turn promotes nutrient uptake, regulates crop growth, and enhances crop resistance to biotic and abiotic stresses. This paper reviews the classification of microbial fertilizers and their function in regulating crop growth, nitrogen fixation, phosphorus, potassium solubilization, and the production of phytohormones. We also summarize the role of PGPR in helping crops against biotic and abiotic stresses. Finally, we discuss the function and the mechanism of applying microbial fertilizers in soil remediation. This review helps us understand the research progress of microbial fertilizer and provides new perspectives regarding the future development of microbial agent in sustainable agriculture.
Collapse
Affiliation(s)
- Tingting Wang
- College of Plant Protection, Shandong Agricultural University, Tai’an 271002, China; (T.W.); (J.X.); (P.L.); (X.H.)
| | - Jiaxin Xu
- College of Plant Protection, Shandong Agricultural University, Tai’an 271002, China; (T.W.); (J.X.); (P.L.); (X.H.)
| | - Jian Chen
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Nanjing 221122, China;
| | - Peng Liu
- College of Plant Protection, Shandong Agricultural University, Tai’an 271002, China; (T.W.); (J.X.); (P.L.); (X.H.)
| | - Xin Hou
- College of Plant Protection, Shandong Agricultural University, Tai’an 271002, China; (T.W.); (J.X.); (P.L.); (X.H.)
| | - Long Yang
- College of Plant Protection, Shandong Agricultural University, Tai’an 271002, China; (T.W.); (J.X.); (P.L.); (X.H.)
| | - Li Zhang
- College of Plant Protection, Shandong Agricultural University, Tai’an 271002, China; (T.W.); (J.X.); (P.L.); (X.H.)
| |
Collapse
|
14
|
Gao Q, Liu Y, Liu Y, Dai C, Zhang Y, Zhou F, Zhu Y. Salicylic Acid Modulates the Osmotic System and Photosynthesis Rate to Enhance the Drought Tolerance of Toona ciliata. PLANTS (BASEL, SWITZERLAND) 2023; 12:4187. [PMID: 38140515 PMCID: PMC10747095 DOI: 10.3390/plants12244187] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
Toona ciliata M. Roem. is a valuable and fast-growing timber species which is found in subtropical regions; however, drought severely affects its growth and physiology. Although the exogenous application of salicylic acid (SA) has been proven to enhance plant drought tolerance by regulating the osmotic system and photosynthesis rate, the physiological processes involved in the regulation of drought tolerance by SA in various plants differ. Therefore, drought mitigation techniques tailored for T. ciliata should be explored or developed for the sustainable development of the timber industry. We selected 2-year-old T. ciliata seedlings for a potting experiment, set the soil moisture at 45%, and subjected some of the T. ciliata seedlings to a moderate drought (MD) treatment; to others, 0.5 mmol/L exogenous SA (MD + SA) was applied as a mitigation test, and we also conducted a control using a normal water supply at 70% soil moisture (CK). Our aim was to investigate the mitigating effects of exogenous SA on the growth condition, osmotic system, and photosynthesis rate of T. ciliata under drought stress conditions. OPLS-VIP was used to analyze the main physiological factors that enable exogenous SA to alleviate drought-induced injury in T. ciliata. The results indicated that exogenous SA application increased the growth of the ground diameter, plant height, and leaf blades and enhanced the drought tolerance of the T. ciliata seedlings by maintaining the balance of their osmotic systems, improving their gas exchange parameters, and restoring the activity of their PSII reaction centers. The seven major physiological factors that enabled exogenous SA to mitigate drought-induced injury in the T. ciliata seedlings were the soluble proteins (Sp), net photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), stomatal opening window (Sow), activity of the photosystem II reaction center (ΦPSII), and electron transfer rate (ETR). Of these, Sp was the most dominant factor. There was a synergistic effect between the osmotic system and the photosynthetic regulation of drought injury in the T. ciliata seedlings. Overall, our study confirms that exogenous SA enhances the drought tolerance of T. ciliata by modulating the osmotic system and photosynthesis rate.
Collapse
Affiliation(s)
- Qi Gao
- College of Resources and Environment, Southwest University, Chongqing 400715, China; (Q.G.); (Y.L.); (C.D.); (Y.Z.); (F.Z.); (Y.Z.)
- Key Laboratory of Ecological Environment in Three Gorges Reservoir Area, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Yamin Liu
- College of Resources and Environment, Southwest University, Chongqing 400715, China; (Q.G.); (Y.L.); (C.D.); (Y.Z.); (F.Z.); (Y.Z.)
- Key Laboratory of Ecological Environment in Three Gorges Reservoir Area, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Yumin Liu
- College of Resources and Environment, Southwest University, Chongqing 400715, China; (Q.G.); (Y.L.); (C.D.); (Y.Z.); (F.Z.); (Y.Z.)
- Key Laboratory of Ecological Environment in Three Gorges Reservoir Area, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Chongwen Dai
- College of Resources and Environment, Southwest University, Chongqing 400715, China; (Q.G.); (Y.L.); (C.D.); (Y.Z.); (F.Z.); (Y.Z.)
- Key Laboratory of Ecological Environment in Three Gorges Reservoir Area, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Yulin Zhang
- College of Resources and Environment, Southwest University, Chongqing 400715, China; (Q.G.); (Y.L.); (C.D.); (Y.Z.); (F.Z.); (Y.Z.)
- Key Laboratory of Ecological Environment in Three Gorges Reservoir Area, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Fanbo Zhou
- College of Resources and Environment, Southwest University, Chongqing 400715, China; (Q.G.); (Y.L.); (C.D.); (Y.Z.); (F.Z.); (Y.Z.)
- Key Laboratory of Ecological Environment in Three Gorges Reservoir Area, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Yating Zhu
- College of Resources and Environment, Southwest University, Chongqing 400715, China; (Q.G.); (Y.L.); (C.D.); (Y.Z.); (F.Z.); (Y.Z.)
- Key Laboratory of Ecological Environment in Three Gorges Reservoir Area, Ministry of Education, Southwest University, Chongqing 400715, China
| |
Collapse
|
15
|
Upadhyay SK, Rajput VD, Kumari A, Espinosa-Saiz D, Menendez E, Minkina T, Dwivedi P, Mandzhieva S. Plant growth-promoting rhizobacteria: a potential bio-asset for restoration of degraded soil and crop productivity with sustainable emerging techniques. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9321-9344. [PMID: 36413266 DOI: 10.1007/s10653-022-01433-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
The rapid expansion of degraded soil puts pressure on agricultural crop yield while also increasing the likelihood of food scarcity in the near future at the global level. The degraded soil does not suit plants growth owing to the alteration in biogeochemical cycles of nutrients, soil microbial diversity, soil organic matter, and increasing concentration of heavy metals and organic chemicals. Therefore, it is imperative that a solution should be found for such emerging issues in order to establish a sustainable future. In this context, the importance of plant growth-promoting rhizobacteria (PGPR) for their ability to reduce plant stress has been recognized. A direct and indirect mechanism in plant growth promotion is facilitated by PGPR via phytostimulation, biofertilizers, and biocontrol activities. However, plant stress mediated by deteriorated soil at the field level is not entirely addressed by the implementation of PGPR at the field level. Thus, emerging methods such as CRISPR and nanotechnological approaches along with PGPR could manage degraded soil effectively. In the pursuit of the critical gaps in this respect, the present review discusses the recent advancement in PGPR action when used along with nanomaterials and CRISPR, impacting plant growth under degraded soil, thereby opening a new horizon for researchers in this field to mitigate the challenges of degraded soil.
Collapse
Affiliation(s)
- Sudhir K Upadhyay
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, 222003, India
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344090.
| | - Arpna Kumari
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344090
| | - Daniel Espinosa-Saiz
- Microbiology and Genetics Department, Universidad de Salamanca, Salamanca, Spain
- Institute for Agribiotechnology Research (CIALE), Villamayor, Salamanca, Spain
| | - Esther Menendez
- Microbiology and Genetics Department, Universidad de Salamanca, Salamanca, Spain
- Institute for Agribiotechnology Research (CIALE), Villamayor, Salamanca, Spain
- Mediterranean Institute for Agriculture, Environment and Development (MED), Institute for Advanced Studies and Research (IIFA), Universidade de Évora, Pólo da Mitra, Évora, Portugal
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344090
| | - Padmanabh Dwivedi
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, U.P., 221005, India
| | - Saglara Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344090
| |
Collapse
|
16
|
Shaffique S, Hussain S, Kang SM, Imran M, Injamum-Ul-Hoque M, Khan MA, Lee IJ. Phytohormonal modulation of the drought stress in soybean: outlook, research progress, and cross-talk. FRONTIERS IN PLANT SCIENCE 2023; 14:1237295. [PMID: 37929163 PMCID: PMC10623132 DOI: 10.3389/fpls.2023.1237295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/07/2023] [Indexed: 11/07/2023]
Abstract
Phytohormones play vital roles in stress modulation and enhancing the growth of plants. They interact with one another to produce programmed signaling responses by regulating gene expression. Environmental stress, including drought stress, hampers food and energy security. Drought is abiotic stress that negatively affects the productivity of the crops. Abscisic acid (ABA) acts as a prime controller during an acute transient response that leads to stomatal closure. Under long-term stress conditions, ABA interacts with other hormones, such as jasmonic acid (JA), gibberellins (GAs), salicylic acid (SA), and brassinosteroids (BRs), to promote stomatal closure by regulating genetic expression. Regarding antagonistic approaches, cytokinins (CK) and auxins (IAA) regulate stomatal opening. Exogenous application of phytohormone enhances drought stress tolerance in soybean. Thus, phytohormone-producing microbes have received considerable attention from researchers owing to their ability to enhance drought-stress tolerance and regulate biological processes in plants. The present study was conducted to summarize the role of phytohormones (exogenous and endogenous) and their corresponding microbes in drought stress tolerance in model plant soybean. A total of n=137 relevant studies were collected and reviewed using different research databases.
Collapse
Affiliation(s)
- Shifa Shaffique
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Muhamad Imran
- Biosafety Division, National Institute of Agriculture Science, Rural Development Administration, Jeonju, Republic of Korea
| | - Md. Injamum-Ul-Hoque
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Muhammad Aaqil Khan
- Department of Chemical and Life Science, Qurtaba University of Science and Information Technology, Peshawar, Pakistan
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
17
|
Alsiary WA, AbdElgawad H, Madany MMY. How could actinobacteria augment the growth and redox homeostasis in barley plants grown in TiO 2NPs-contaminated soils? A growth and biochemical study. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107943. [PMID: 37651952 DOI: 10.1016/j.plaphy.2023.107943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/21/2023] [Accepted: 08/04/2023] [Indexed: 09/02/2023]
Abstract
The increases in titanium dioxide nanoparticles (TiO2-NPs) released into the environment have raised concerns about their toxicity. However, their phytotoxic impact on plants is not well studied. Therefore, this study aimed at a deeper understanding of the TiO2-NPs phytotoxic impact on barley (Hordeum vulgare) growth and stress defense. We also hypothesized that soil inoculation with bioactive Rhodospirillum sp. JY3 strain can be applied as a biological fertilizer to alleviate TiO2-NPs phytotoxicity. At TiO2-NPs phytotoxicity level, photosynthesis was significantly retarded (∼50% reduction) in TiO2-NPs treated-barley plants which accordingly affect the biomass of barley plants. This retardation was accompanied by a remarkable induction of oxidative damage (H2O2, lipid peroxidation) with a concomitant reduction in the antioxidant defense metabolism. At a glance, Rhodospirillum sp. JY3 ameliorated the reduction in growth by enhancing the photosynthetic efficiency in contaminated barley plants. Moreover, Rhodospirillum sp. JY3 inoculation reduced the oxidative damage induced by TiO2-NPs via quenching H2O2 production and lipid peroxidation. Regarding the antioxidant defense arsenal, Rhodospirillum sp. JY3 enhanced both enzymatic (e.g. peroxidase (POX), catalase (CAT), superoxide dismutase (SOD), …. etc.) and non-enzymatic (glutathione (GSH), ascorbate (ASC), polyphenols, flavonoids, tocopherols) antioxidants in shoots and to a greater extent roots of barley plants. Moreover, the inoculation significantly enhanced the heavy metal-detoxifying metabolites (eg. phytochelatins, glutaredoxin, thioredoxin, peroxiredoxin) as well as metal-detoxifying enzymes in barley shoots and more apparently in roots of TiO2-NPs stressed plants. Furthermore, there was an organ-specific response to TiO2-NPs and Rhodospirillum sp. JY3. To this end, this study shed light, for the first time, on the molecular bases underlie TiO2-NPs stress mitigating impact of Rhodospirillum sp. JY3 and it introduced Rhodospirillum sp. JY3 as a promising eco-friendly tool in managing environmental risks to maintain agricultural sustainability.
Collapse
Affiliation(s)
- Waleed A Alsiary
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, 21441, Saudi Arabia
| | - Hamada AbdElgawad
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, 62511, Egypt
| | - Mahmoud M Y Madany
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
18
|
Chieb M, Gachomo EW. The role of plant growth promoting rhizobacteria in plant drought stress responses. BMC PLANT BIOLOGY 2023; 23:407. [PMID: 37626328 PMCID: PMC10464363 DOI: 10.1186/s12870-023-04403-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
Climate change has exacerbated the effects of abiotic stresses on plant growth and productivity. Drought is one of the most important abiotic stress factors that interfere with plant growth and development. Plant selection and breeding as well as genetic engineering methods used to improve crop drought tolerance are expensive and time consuming. Plants use a myriad of adaptative mechanisms to cope with the adverse effects of drought stress including the association with beneficial microorganisms such as plant growth promoting rhizobacteria (PGPR). Inoculation of plant roots with different PGPR species has been shown to promote drought tolerance through a variety of interconnected physiological, biochemical, molecular, nutritional, metabolic, and cellular processes, which include enhanced plant growth, root elongation, phytohormone production or inhibition, and production of volatile organic compounds. Therefore, plant colonization by PGPR is an eco-friendly agricultural method to improve plant growth and productivity. Notably, the processes regulated and enhanced by PGPR can promote plant growth as well as enhance drought tolerance. This review addresses the current knowledge on how drought stress affects plant growth and development and describes how PGPR can trigger plant drought stress responses at the physiological, morphological, and molecular levels.
Collapse
Affiliation(s)
- Maha Chieb
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA, 92507, USA
| | - Emma W Gachomo
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA, 92507, USA.
| |
Collapse
|
19
|
Li X, Ma S, Meng Y, Wei W, Peng C, Ling C, Fan S, Liu Z. Characterization of Antagonistic Bacteria Paenibacillus polymyxa ZYPP18 and the Effects on Plant Growth. PLANTS (BASEL, SWITZERLAND) 2023; 12:2504. [PMID: 37447065 DOI: 10.3390/plants12132504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
Paenibacillus polymyxa is a plant growth-promoting rhizobacteria (PGPR) that has significant biocontrol properties. Wheat sheath blight caused by Rhizoctonia cerealis is a significant soil-borne disease of wheat that causes significant losses in wheat production, and the biological control against the disease has received extensive attention. P. polymyxa ZYPP18 was identified using morphological and molecular characterization. An antagonistic activity experiment verified that ZYPP18 inhibits the growth of R. cerealis on artificial growth media. A detached leaf assay verified that ZYPP18 inhibits the expansion of wheat sheath blight on the detached leaf. ZYPP18 has been found to possess plant growth-promoting properties, as well as the ability to solubilize phosphate and generate indole-3-acetic acid. Results from hydroponic experiments showed that wheat seedlings treated with ZYPP18 grew faster. Additionally, pot experiments and field experiments demonstrated that ZYPP18 effectively controls the occurrence of wheat sheath blight. ZYPP18 reduced the incidence of wheat sheath blight in wheat seedlings by 37.37% and 37.90%, respectively. The control effect of ZYPP18 on wheat sheath blight was 56.30% and 65.57%, respectively. These findings provide evidence that P. polymyxa ZYPP18 is an effective biological factor that can control disease and promote plant growth.
Collapse
Affiliation(s)
- Xiangying Li
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Sujing Ma
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Yuan Meng
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Wei Wei
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Chen Peng
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Chunli Ling
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Susu Fan
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Zhenyu Liu
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
20
|
Gul H, Ali R, Rauf M, Hamayun M, Arif M, Khan SA, Parveen Z, Alrefaei AF, Lee IJ. Aspergillus welwitschiae BK Isolate Ameliorates the Physicochemical Characteristics and Mineral Profile of Maize under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:1703. [PMID: 37111926 PMCID: PMC10145286 DOI: 10.3390/plants12081703] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/09/2023] [Accepted: 04/15/2023] [Indexed: 06/19/2023]
Abstract
Abiotic stressors are global limiting constraints for plant growth and development. The most severe abiotic factor for plant growth suppression is salt. Among many field crops, maize is more vulnerable to salt, which inhibits the growth and development of plants and results in low productivity or even crop loss under extreme salinity. Consequently, comprehending the effects of salt stress on maize crop improvement, while retaining high productivity and applying mitigation strategies, is essential for achieving the long-term objective of sustainable food security. This study aimed to exploit the endophytic fungal microbe; Aspergillus welwitschiae BK isolate for the growth promotion of maize under severe salinity stress. Current findings showed that salt stress (200 mM) negatively affected chlorophyll a and b, total chlorophyll, and endogenous IAA, with enhanced values of chlorophyll a/b ratio, carotenoids, total protein, total sugars, total lipids, secondary metabolites (phenol, flavonoids, tannins), antioxidant enzyme activity (catalase, ascorbate peroxidase), proline content, and lipid peroxidation in maize plants. However, BK inoculation reversed the negative impact of salt stress by rebalancing the chlorophyll a/b ratio, carotenoids, total protein, total sugars, total lipids, secondary metabolites (phenol, flavonoids, tannins), antioxidant enzyme activity (catalase, ascorbate peroxidase), and proline content to optimal levels suitable for growth promotion and ameliorating salt stress in maize plants. Furthermore, maize plants inoculated with BK under salt stress had lower Na+, Cl- concentrations, lower Na+/K+ and Na+/Ca2+ ratios, and higher N, P, Ca2+, K+, and Mg2+ content than non-inoculated plants. The BK isolate improved the salt tolerance by modulating physiochemical attributes, and the root-to-shoot translocation of ions and mineral elements, thereby rebalancing the Na+/K+, Na+/Ca2+ ratio of maize plants under salt stress.
Collapse
Affiliation(s)
- Humaira Gul
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Mardan 23200, Pakistan; (H.G.); (R.A.)
| | - Raid Ali
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Mardan 23200, Pakistan; (H.G.); (R.A.)
| | - Mamoona Rauf
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Mardan 23200, Pakistan; (H.G.); (R.A.)
| | - Muhammad Hamayun
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Mardan 23200, Pakistan; (H.G.); (R.A.)
| | - Muhammad Arif
- Department of Biotechnology, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Mardan 23200, Pakistan;
| | - Sumera Afzal Khan
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar 25120, Pakistan;
| | - Zahida Parveen
- Department of Biochemistry, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Mardan 23200, Pakistan;
| | | | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
21
|
Parihar A, Malaviya P. Textile wastewater phytoremediation using Spirodela polyrhiza (L.) Schleid. assisted by novel bacterial consortium in a two-step remediation system. ENVIRONMENTAL RESEARCH 2023; 221:115307. [PMID: 36657596 DOI: 10.1016/j.envres.2023.115307] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
The study aims at developing a phyto-microremediation system for textile wastewater treatment using Spirodela polyrhiza (L.) Schleid. and a consortium of bacterial strains isolated from textile wastewater-contaminated matrices and rhizosphere of S. polyrhiza. The sequential phyto-microremediation of textile wastewater was carried out utilizing two-stage phyto-microremediation systems I [phytoremediation system (Stage 1) preceded microremediation system (Stage 2)] and II [microremediation system (Stage 1) preceded phytoremediation system (Stage 2)]. Pseudomonas stutzeri, Janibacter anophelis, Bacillus safensis, Bacillus pumilus, Bacillus thuringiensis, and Bacillus cereus constituted the bacterial consortium that was involved in the microremediation of textile wastewater. Biochemical characterization of Spirodela on exposure to untreated textile wastewater showed cadmium and nickel uptake as 26.03 and 22.99 mg g-1 dw-1. S. polyrhiza exhibited anatomical changes like distortion in the structure of the xylem, phloem, lower epidermis, and increased aerenchyma formation when remediating textile wastewater. The textile wastewater bioremediation in phyto-microremediation system I gives final reduction of COD 77.36%, color 91.70%, calcium 61.65%, iron 69.41%, nickel 89.30%, cadmium 88.37%, nitrate 70.83%, phosphate 73.11%, and sulfate 75.49%. Further, LC-MS analysis of treated wastewater from phyto-microremediation system I have shown biotransformation of metabolites into simpler compounds like 2-{Bis [4-(2-cyanophenoxy)phenyl]methyl}benzoic acid (C34H22N2O4). The FTIR spectrum of bacterial biomass exposed to textile wastewater exhibits substantial shifts of various bands in the IR region for functional groups such as alcohol, alkene, esters, azide, and amine as compared to non-exposed biomass.
Collapse
Affiliation(s)
- Akrity Parihar
- Department of Environmental Sciences, University of Jammu, Jammu, 180006, J&K, India
| | - Piyush Malaviya
- Department of Environmental Sciences, University of Jammu, Jammu, 180006, J&K, India.
| |
Collapse
|
22
|
Jain R, Saraf M. ACC deaminase producing PGPR modulates nutrients uptake, soil properties and growth of cluster bean (Cyamopsis tetragonoloba L.) under deficit irrigation. Biologia (Bratisl) 2023. [DOI: 10.1007/s11756-023-01376-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
23
|
Nagrale DT, Chaurasia A, Kumar S, Gawande SP, Hiremani NS, Shankar R, Gokte-Narkhedkar N, Renu, Prasad YG. PGPR: the treasure of multifarious beneficial microorganisms for nutrient mobilization, pest biocontrol and plant growth promotion in field crops. World J Microbiol Biotechnol 2023; 39:100. [PMID: 36792799 DOI: 10.1007/s11274-023-03536-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023]
Abstract
Plant growth-promoting rhizobacteria (PGPR) have multifarious beneficial activities for plant growth promotion; act as source of metabolites, enzymes, nutrient mobilization, biological control of pests, induction of disease resistance vis-a-vis bioremediation potentials by phytoextraction and detoxification of heavy metals, pollutants and pesticides. Agrochemicals and synthetic pesticides are currently being utilized widely in all major field crops, thereby adversely affecting human and animal health, and posing serious threats to the environments. Beneficial microorganisms like PGPR could potentially substitute and supplement the toxic chemicals and pesticides with promising application in organic farming leading to sustainable agriculture practices and bioremediation of heavy metal contaminated sites. Among field crops limited bio-formulations have been prepared till now by utilization of PGPR strains having plant growth promotion, metabolites, enzymes, nutrient mobilization and biocontrol activities. The present review contributes comprehensive description of PGPR applications in field crops including commercial, oilseeds, leguminous and cereal crops to further extend the utilization of these potent groups of beneficial microorganisms so that even higher level of crop productivity and quality produce of field crops could be achieved. PGPR and bacteria based commercialized bio-formulations available worldwide for its application in the field crops have been compiled in this review which can be a substitute for the harmful synthetic chemicals. The current knowledge gap and potential target areas for future research have also been projected.
Collapse
Affiliation(s)
- D T Nagrale
- ICAR-Central Institute for Cotton Research, Nagpur, Maharashtra, 440010, India.
| | - A Chaurasia
- ICAR-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, 221305, India.
| | - S Kumar
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, Pusa, New Delhi, 110012, India
| | - S P Gawande
- ICAR-Central Institute for Cotton Research, Nagpur, Maharashtra, 440010, India
| | - N S Hiremani
- ICAR-Central Institute for Cotton Research, Nagpur, Maharashtra, 440010, India
| | - Raja Shankar
- ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake Post, Bengaluru, 560089, India
| | - N Gokte-Narkhedkar
- ICAR-Central Institute for Cotton Research, Nagpur, Maharashtra, 440010, India
| | - Renu
- Indian Council of Agricultural Research, Krishi Bhawan, New Delhi, 110001, India
| | - Y G Prasad
- ICAR-Central Institute for Cotton Research, Nagpur, Maharashtra, 440010, India
| |
Collapse
|
24
|
Orozco-Mosqueda MDC, Santoyo G, Glick BR. Recent Advances in the Bacterial Phytohormone Modulation of Plant Growth. PLANTS (BASEL, SWITZERLAND) 2023; 12:606. [PMID: 36771689 PMCID: PMC9921776 DOI: 10.3390/plants12030606] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Phytohormones are regulators of plant growth and development, which under different types of stress can play a fundamental role in a plant's adaptation and survival. Some of these phytohormones such as cytokinin, gibberellin, salicylic acid, auxin, and ethylene are also produced by plant growth-promoting bacteria (PGPB). In addition, numerous volatile organic compounds are released by PGPB and, like bacterial phytohormones, modulate plant physiology and genetics. In the present work we review the basic functions of these bacterial phytohormones during their interaction with different plant species. Moreover, we discuss the most recent advances of the beneficial effects on plant growth of the phytohormones produced by PGPB. Finally, we review some aspects of the cross-link between phytohormone production and other plant growth promotion (PGP) mechanisms. This work highlights the most recent advances in the essential functions performed by bacterial phytohormones and their potential application in agricultural production.
Collapse
Affiliation(s)
- Ma. del Carmen Orozco-Mosqueda
- Departamento de Ingeniería Bioquímica y Ambiental, Tecnológico Nacional de México/I.T. Celaya, Celaya 38110, Guanajuato, Mexico
| | - Gustavo Santoyo
- Genomic Diversity Laboratory, Institute of Biological and Chemical Research, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacan, Mexico
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
25
|
Meena M, Mehta T, Nagda A, Yadav G, Sonigra P. PGPR-mediated synthesis and alteration of different secondary metabolites during plant-microbe interactions. PLANT-MICROBE INTERACTION - RECENT ADVANCES IN MOLECULAR AND BIOCHEMICAL APPROACHES 2023:229-255. [DOI: 10.1016/b978-0-323-91875-6.00002-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
|
26
|
Mahdi I, Fahsi N, Hijri M, Sobeh M. Antibiotic resistance in plant growth promoting bacteria: A comprehensive review and future perspectives to mitigate potential gene invasion risks. Front Microbiol 2022; 13:999988. [PMID: 36204627 PMCID: PMC9530320 DOI: 10.3389/fmicb.2022.999988] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/25/2022] [Indexed: 11/26/2022] Open
Abstract
Plant growth-promoting bacteria (PGPB) are endowed with several attributes that can be beneficial for host plants. They opened myriad doors toward green technology approach to reduce the use of chemical inputs, improve soil fertility, and promote plants' health. However, many of these PGPB harbor antibiotic resistance genes (ARGs). Less attention has been given to multi-resistant bacterial bioinoculants which may transfer their ARGs to native soil microbial communities and other environmental reservoirs including animals, waters, and humans. Therefore, large-scale inoculation of crops by ARGs-harboring bacteria could worsen the evolution and dissemination of antibiotic resistance and aggravate the negative impacts on such ecosystem and ultimately public health. Their introduction into the soil could serve as ARGs invasion which may inter into the food chain. In this review, we underscore the antibiotic resistance of plant-associated bacteria, criticize the lack of consideration for this phenomenon in the screening and application processes, and provide some recommendations as well as a regulation framework relating to the development of bacteria-based biofertilizers to aid maximizing their value and applications in crop improvement while reducing the risks of ARGs invasion.
Collapse
Affiliation(s)
- Ismail Mahdi
- Agrobiosciences Research Program, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Nidal Fahsi
- Agrobiosciences Research Program, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Mohamed Hijri
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Mansour Sobeh
- Agrobiosciences Research Program, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| |
Collapse
|
27
|
Sun H, Zhang J, Liu W, E W, Wang X, Li H, Cui Y, Zhao D, Liu K, Du B, Ding Y, Wang C. Identification and combinatorial engineering of indole-3-acetic acid synthetic pathways in Paenibacillus polymyxa. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:81. [PMID: 35953838 PMCID: PMC9367139 DOI: 10.1186/s13068-022-02181-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/05/2022] [Indexed: 11/22/2022]
Abstract
Background Paenibacillus polymyxa is a typical plant growth-promoting rhizobacterium (PGPR), and synthesis of indole-3-acetic acid (IAA) is one of the reasons for its growth-promoting capacity. The synthetic pathways of IAA in P. polymyxa must be identified and modified. Results P. polymyxa SC2 and its spontaneous mutant SC2-M1 could promote plant growth by directly secreting IAA. Through metabonomic and genomic analysis, the genes patA, ilvB3, and fusE in the native IPyA pathway of IAA synthesis in strain SC2-M1 were predicted. A novel strong promoter P04420 was rationally selected, synthetically analyzed, and then evaluated on its ability to express IAA synthetic genes. Co-expression of three genes, patA, ilvB3, and fusE, increased IAA yield by 60% in strain SC2-M1. Furthermore, the heterogeneous gene iaam of the IAM pathway and two heterogeneous IPyA pathways of IAA synthesis were selected to improve the IAA yield of strain SC2-M1. The genes ELJP6_14505, ipdC, and ELJP6_00725 of the entire IPyA pathway from Enterobacter ludwigii JP6 were expressed well by promoter P04420 in strain SC2-M1 and increased IAA yield in the engineered strain SC2-M1 from 13 to 31 μg/mL, which was an increase of 138%. Conclusions The results of our study help reveal and enhance the IAA synthesis pathways of P. polymyxa and its future application. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02181-3. Verifying an entire native IPyA pathway of IAA synthesis in P. polymyxa. Introducing heterologous IAM and IPyA pathways of IAA synthesis to P. polymyxa. Selecting and analyzing a novel strong promoter P04420 to express IAA synthesis genes.
Collapse
|
28
|
Sabra MA, Alaidaroos BA, Jastaniah SD, Heflish AI, Ghareeb RY, Mackled MI, El-Saadony MT, Abdelsalam NR, Conte-Junior CA. Comparative Effect of Commercially Available Nanoparticles on Soil Bacterial Community and “Botrytis fabae” Caused Brown Spot: In vitro and in vivo Experiment. Front Microbiol 2022. [DOI: 10.3389/fmicb.2022.934031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study revealed the possible effects of various levels of silver nanoparticle (AgNP) application on plant diseases and soil microbial diversity. It investigated the comparison between the application of AgNPs and two commercial nanoproducts (Zn and FeNPs) on the rhizobacterial population and Botrytis fabae. Two experiments were conducted. The first studied the influence of 13 AgNP concentration on soil bacterial diversity besides two other commercial nanoparticles, ZnNPs (2,000 ppm) and FeNPs (2,500 ppm), used for comparison and application on onion seedlings. The second experiment was designed to determine the antifungal activity of previous AgNP concentrations (150, 200, 250, 300, 400, and 500 ppm) against B. fabae, tested using commercial fungicide as control. The results obtained from both experiments revealed the positive impact of AgNPs on the microbial community, representing a decrease in both the soil microbial biomass and the growth of brown spot disease, affecting microbial community composition, including bacteria, fungi, and biological varieties. In contrast, the two commercial products displayed lower effects compared to AgNPs. This result clearly showed that the AgNPs strongly inhibited the plant pathogen B. fabae growth and development, decreasing the number of bacteria (cfu/ml) and reducing the rhizosphere. Using AgNPs as an antimicrobial agent in the agricultural domain is recommended.
Collapse
|
29
|
Huang H, Fan L, Zhao Y, Jin Q, Yang G, Zhao D, Xu Z. Integrating Broussonetia papyrifera and Two Bacillus Species to Repair Soil Antimony Pollutions. Front Microbiol 2022; 13:871581. [PMID: 35592006 PMCID: PMC9111523 DOI: 10.3389/fmicb.2022.871581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/05/2022] [Indexed: 12/02/2022] Open
Abstract
Heavy metal resistant bacteria play an important role in the metal biogeochemical cycle in soil, but the benefits of microbial oxidation for plants and soil have not been well-documented. The purpose of this study was to explore the contribution of two Bacillus spp. to alleviate the antimony (Sb) toxicity in plants, and, then, to propose a bioremediation method for Sb contaminated soil, which is characterized by environmental protection, high efficiency, and low cost. This study explored the effects of Bacillus cereus HM5 and Bacillus thuringiensis HM7 inoculation on Broussonetia papyrifera and soil were evaluated under controlled Sb stressed conditions (0 and 100 mmol/L, antimony slag) through a pot experiment. The results show that the total root length, root volume, tips, forks, crossings, and root activities of B. papyrifera with inoculation are higher than those of the control group, and the strains promote the plant absorption of Sb from the soil environment. Especially in the antimony slag treatment group, B. cereus HM5 had the most significant effect on root promotion and promoting the absorption of Sb by B. papyrifera. Compared with the control group, the total root length, root volume, tips, forks, crossings, and root activities increased by 64.54, 70.06, 70.04, 78.15, 97.73, and 12.95%, respectively. The absorption of Sb by root, stem, and leaf increased by 265.12, 250.00, and 211.54%, compared with the control group, respectively. Besides, both B. cereus HM5 and B. thuringiensis HM7 reduce the content of malondialdehyde, proline, and soluble sugars in plant leaves, keeping the antioxidant enzyme activity of B. papyrifera at a low level, and alleviating lipid peroxidation. Principal component analysis (PCA) shows that both B. cereus HM5 and B. thuringiensis HM7 are beneficial to the maintenance of plant root functions and the improvement of the soil environment, thereby alleviating the toxicity of Sb. Therefore, B. cereus HM5 and B. thuringiensis HM7 in phytoremediation with B. papyrifera is a promising inoculant used for bacteria-assisted phytoremediation on Sb contaminated sites.
Collapse
Affiliation(s)
- Huimin Huang
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, China
- Changsha Environmental Protection College, Changsha, China
| | - Li Fan
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, China
| | - Yunlin Zhao
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, China
| | - Qi Jin
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, China
| | - Guiyan Yang
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio-Disaster, College of Forestry, Northwest A&F University, Xianyang, China
| | - Di Zhao
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, China
| | - Zhenggang Xu
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio-Disaster, College of Forestry, Northwest A&F University, Xianyang, China
| |
Collapse
|
30
|
Ali S, Tyagi A, Mushtaq M, Al-Mahmoudi H, Bae H. Harnessing plant microbiome for mitigating arsenic toxicity in sustainable agriculture. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118940. [PMID: 35122918 DOI: 10.1016/j.envpol.2022.118940] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/08/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Heavy metal toxicity has become an impediment to agricultural productivity, which presents major human health concerns in terms of food safety. Among them, arsenic (As) a non-essential heavy metal has gained worldwide attention because of its noxious effects on agriculture and public health. The increasing rate of global warming and anthropogenic activities have promptly exacerbated As levels in the agricultural soil, thereby causing adverse effects to crop genetic and phenotypic traits and rendering them vulnerable to other stresses. Conventional breeding and transgenic approaches have been widely adapted for producing heavy metal resilient crops; however, they are time-consuming and labor-intensive. Hence, finding new mitigation strategies for As toxicity would be a game-changer for sustainable agriculture. One such promising approach is harnessing plant microbiome in the era of 'omics' which is gaining prominence in recent years. The use of plant microbiome and their cocktails to combat As metal toxicity has gained widespread attention, because of their ability to metabolize toxic elements and offer an array of perquisites to host plants such as increased nutrient availability, stress resilience, soil fertility, and yield. A comprehensive understanding of below-ground plant-microbiome interactions and their underlying molecular mechanisms in exhibiting resilience towards As toxicity will help in identifying elite microbial communities for As mitigation. In this review, we have discussed the effect of As, their accumulation, transportation, signaling, and detoxification in plants. We have also discussed the role of the plant microbiome in mitigating As toxicity which has become an intriguing research frontier in phytoremediation. This review also provides insights on the advancements in constructing the beneficial synthetic microbial communities (SynComs) using microbiome engineering that will facilitate the development of the most advanced As remedial tool kit in sustainable agriculture.
Collapse
Affiliation(s)
- Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | | | - Henda Al-Mahmoudi
- Directorate of Programs, International Center for Biosaline Agriculture, Dubai, United Arab Emirates
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
31
|
An Insight into Abiotic Stress and Influx Tolerance Mechanisms in Plants to Cope in Saline Environments. BIOLOGY 2022; 11:biology11040597. [PMID: 35453796 PMCID: PMC9028878 DOI: 10.3390/biology11040597] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/27/2022] [Accepted: 04/11/2022] [Indexed: 12/20/2022]
Abstract
Simple Summary This review focuses on plant growth and development harmed by abiotic stress, primarily salt stress. Salt stress raises the intracellular osmotic pressure, leading to hazardous sodium buildup. Plants react to salt stress signals by regulating ion homeostasis, activating the osmotic stress pathway, modulating plant hormone signaling, and altering cytoskeleton dynamics and cell wall composition. Understanding the processes underlying these physiological and biochemical responses to salt stress could lead to more effective agricultural crop yield measures. In this review, researchers outline recent advances in plant salt stress control. The study of plant salt tolerance processes is essential, both theoretically and practically, to improve agricultural output, produce novel salt-tolerant cultivars, and make full use of saline soil. Based on past research, this paper discusses the adverse effects of salt stress on plants, including photosynthesis suppression, ion homeostasis disturbance, and membrane peroxidation. The authors have also covered the physiological mechanisms of salt tolerance, such as the scavenging of reactive oxygen species and osmotic adjustment. This study further identifies specific salt stress-responsive mechanisms linked to physiological systems. Based on previous studies, this article reviews the current methodologies and techniques for improving plant salt tolerance. Overall, it is hoped that the above-mentioned points will impart helpful background information for future agricultural and crop plant production. Abstract Salinity is significant abiotic stress that affects the majority of agricultural, irrigated, and cultivated land. It is an issue of global importance, causing many socio-economic problems. Salt stress mainly occurs due to two factors: (1) soil type and (2) irrigation water. It is a major environmental constraint, limiting crop growth, plant productivity, and agricultural yield. Soil salinity is a major problem that considerably distorts ecological habitats in arid and semi-arid regions. Excess salts in the soil affect plant nutrient uptake and osmotic balance, leading to osmotic and ionic stress. Plant adaptation or tolerance to salinity stress involves complex physiological traits, metabolic pathways, the production of enzymes, compatible solutes, metabolites, and molecular or genetic networks. Different plant species have different salt overly sensitive pathways and high-affinity K+ channel transporters that maintain ion homeostasis. However, little progress has been made in developing salt-tolerant crop varieties using different breeding approaches. This review highlights the interlinking of plant morpho-physiological, molecular, biochemical, and genetic approaches to produce salt-tolerant plant species. Most of the research emphasizes the significance of plant growth-promoting rhizobacteria in protecting plants from biotic and abiotic stressors. Plant growth, survival, and yield can be stabilized by utilizing this knowledge using different breeding and agronomical techniques. This information marks existing research areas and future gaps that require more attention to reveal new salt tolerance determinants in plants—in the future, creating genetically modified plants could help increase crop growth and the toleration of saline environments.
Collapse
|
32
|
Saeng-Ngam S, Jampasri K. Effects of Drought Stress on the Growth and Heavy Metal Accumulation by Chromolaena odorata Grown in Hydroponic Media. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:762-767. [PMID: 34997262 DOI: 10.1007/s00128-021-03401-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/26/2021] [Indexed: 06/14/2023]
Abstract
This study aimed to investigate the effects of drought stress on cadmium (Cd) and zinc (Zn) accumulation in Chromolaena odorata grown in an artificially contaminated nutrient solution for 15 days. Polyethylene glycol (5% PEG) was used as a drought stressor. The presence of PEG did not affect the chlorophyll content and photochemical efficiency, while drought stress induced by PEG caused a decrease in water content in the plant tissues. The bioaccumulation factor (BAF) of Cd were higher than the BAF of Zn and accumulated mainly in the roots of C. odorata. The highest concentrations (4273.7 mg/kg Cd, 2135.4 mg/kg Zn) were found in the 20 mg/L treatment. The results suggested that Cd and Zn accumulation in C. odorata was not affected by PEG, while a translocation factor (TF) value < 1 was caused by either PEG or contaminants. Based on the hydroponic BAF criterion, the study confirmed that C. odorata was useful for phytoremediation of Cd with low drought stress.
Collapse
Affiliation(s)
- Sukhumaporn Saeng-Ngam
- Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Kongkeat Jampasri
- Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand.
| |
Collapse
|
33
|
Damalas CA, Koutroubas SD. Exogenous application of salicylic acid for regulation of sunflower growth under abiotic stress: a systematic review. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01020-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Xiao Y, Liu H, Chen R, Liu S, Hao X, Fang J. Heteroauxin-producing bacteria enhance the plant growth and lead uptake of Miscanthus floridulus (Lab.). INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 24:1205-1212. [PMID: 34995152 DOI: 10.1080/15226514.2021.2024134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Soil lead (Pb) contamination has caused severe environmental threats and is in urgent need of remediation. This study was aimed to explore the feasibility of using the Miscanthus-microbe combination to reduce Pb pollution in the farmland surrounding a lead-zinc mining area. We have screened three heteroauxin (IAA)-producing microbes (Lelliottia jeotgali MR2, Klebsiella michiganensis TS8, and Klebsiella michiganensis ZR1) with high Pb tolerance. The IAA-producing ability of the mixed-species was stronger than that of the single bacterium. In pot experiments, the mixed-species of MR2-ZR1 and MR2-TS8 had better performance in enhancing the weight of Miscanthus grass (increased by 22.2-53.6% compared to the control group without inoculating microbes). The remediation efficiency of Pb was significantly higher in the MR2 (30.79%), MR2-TS8 (24.96%), and TS8-ZR1 (21.10%) groups than that in the control group (6.75%). We speculated that MR2 and mixed species of MR2-TS8 and TS8-ZR1 could promote the percentages of activated Pb fractions in soils and increase the Pb uptake of M. floridulus (Lab.). These results implied that the MR2-TS8 mixed-species might be selected as the effective microbial agent to simultaneously enhance the remediation efficiency of Pb-contaminated soils and the biomass of M. floridulus (Lab.).
Collapse
Affiliation(s)
- Yunhua Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
- Hunan Engineering Laboratory for Pollution Control and Waste, Utilization in Swine Production, Changsha, China
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, China
| | - Hongmei Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Rui Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Shuming Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Xiaodong Hao
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
- Hunan Engineering Laboratory for Pollution Control and Waste, Utilization in Swine Production, Changsha, China
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, China
| |
Collapse
|
35
|
Saha L, Tiwari J, Bauddh K, Ma Y. Recent Developments in Microbe-Plant-Based Bioremediation for Tackling Heavy Metal-Polluted Soils. Front Microbiol 2021; 12:731723. [PMID: 35002995 PMCID: PMC8733405 DOI: 10.3389/fmicb.2021.731723] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
Soil contamination with heavy metals (HMs) is a serious concern for the developing world due to its non-biodegradability and significant potential to damage the ecosystem and associated services. Rapid industrialization and activities such as mining, manufacturing, and construction are generating a huge quantity of toxic waste which causes environmental hazards. There are various traditional physicochemical techniques such as electro-remediation, immobilization, stabilization, and chemical reduction to clean the contaminants from the soil. However, these methods require high energy, trained manpower, and hazardous chemicals make these techniques costly and non-environment friendly. Bioremediation, which includes microorganism-based, plant-based, microorganism-plant associated, and other innovative methods, is employed to restore the contaminated soils. This review covers some new aspects and dimensions of bioremediation of heavy metal-polluted soils. The bioremediation potential of bacteria and fungi individually and in association with plants has been reviewed and critically examined. It is reported that microbes such as Pseudomonas spp., Bacillus spp., and Aspergillus spp., have high metal tolerance, and bioremediation potential up to 98% both individually and when associated with plants such as Trifolium repens, Helianthus annuus, and Vallisneria denseserrulata. The mechanism of microbe's detoxification of metals depends upon various aspects which include the internal structure, cell surface properties of microorganisms, and the surrounding environmental conditions have been covered. Further, factors affecting the bioremediation efficiency and their possible solution, along with challenges and future prospects, are also discussed.
Collapse
Affiliation(s)
- Lala Saha
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, India
| | - Jaya Tiwari
- Department of Community Medicine and School of Public Health, PGIMER, Chandigarh, India
| | - Kuldeep Bauddh
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, India
| | - Ying Ma
- College of Resources and Environment, Southwest University, Chongqing, China
| |
Collapse
|
36
|
Sehar S, Adil MF, Zeeshan M, Holford P, Cao F, Wu F, Wang Y. Mechanistic Insights into Potassium-Conferred Drought Stress Tolerance in Cultivated and Tibetan Wild Barley: Differential Osmoregulation, Nutrient Retention, Secondary Metabolism and Antioxidative Defense Capacity. Int J Mol Sci 2021; 22:ijms222313100. [PMID: 34884904 PMCID: PMC8658718 DOI: 10.3390/ijms222313100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 11/23/2022] Open
Abstract
Keeping the significance of potassium (K) nutrition in focus, this study explores the genotypic responses of two wild Tibetan barley genotypes (drought tolerant XZ5 and drought sensitive XZ54) and one drought tolerant barley cv. Tadmor, under the exposure of polyethylene glycol-induced drought stress. The results revealed that drought and K deprivation attenuated overall plant growth in all the tested genotypes; however, XZ5 was least affected due to its ability to retain K in its tissues which could be attributed to the smallest reductions of photosynthetic parameters, relative chlorophyll contents and the lowest Na+/K+ ratios in all treatments. Our results also indicate that higher H+/K+-ATPase activity (enhancement of 1.6 and 1.3-fold for shoot; 1.4 and 2.5-fold for root), higher shoot K+ (2 and 2.3-fold) and Ca2+ content (1.5 and 1.7-fold), better maintenance of turgor pressure by osmolyte accumulation and enhanced antioxidative performance to scavenge ROS, ultimately suppress lipid peroxidation (in shoots: 4% and 35%; in roots 4% and 20% less) and bestow higher tolerance to XZ5 against drought stress in comparison with Tadmor and XZ54, respectively. Conclusively, this study adds further evidence to support the concept that Tibetan wild barley genotypes that utilize K efficiently could serve as a valuable genetic resource for the provision of genes for improved K metabolism in addition to those for combating drought stress, thereby enabling the development of elite barley lines better tolerant of abiotic stresses.
Collapse
Affiliation(s)
- Shafaque Sehar
- Department of Agronomy, Zijingang Campus, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (S.S.); (M.F.A.); (M.Z.); (F.C.); (F.W.)
| | - Muhammad Faheem Adil
- Department of Agronomy, Zijingang Campus, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (S.S.); (M.F.A.); (M.Z.); (F.C.); (F.W.)
| | - Muhammad Zeeshan
- Department of Agronomy, Zijingang Campus, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (S.S.); (M.F.A.); (M.Z.); (F.C.); (F.W.)
| | - Paul Holford
- Hawkesbury Campus, School of Science and Health, University of Western Sydney, Penrith, NSW 2751, Australia;
| | - Fangbin Cao
- Department of Agronomy, Zijingang Campus, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (S.S.); (M.F.A.); (M.Z.); (F.C.); (F.W.)
| | - Feibo Wu
- Department of Agronomy, Zijingang Campus, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (S.S.); (M.F.A.); (M.Z.); (F.C.); (F.W.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
- Provincial Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Yizhou Wang
- Department of Agronomy, Zijingang Campus, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (S.S.); (M.F.A.); (M.Z.); (F.C.); (F.W.)
- Provincial Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
- Correspondence:
| |
Collapse
|
37
|
Ahmed B, Shahid M, Syed A, Rajput VD, Elgorban AM, Minkina T, Bahkali AH, Lee J. Drought Tolerant Enterobacter sp./ Leclercia adecarboxylata Secretes Indole-3-acetic Acid and Other Biomolecules and Enhances the Biological Attributes of Vigna radiata (L.) R. Wilczek in Water Deficit Conditions. BIOLOGY 2021; 10:1149. [PMID: 34827142 PMCID: PMC8614786 DOI: 10.3390/biology10111149] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 12/17/2022]
Abstract
Drought or water stress is a limiting factor that hampers the growth and yield of edible crops. Drought-tolerant plant growth-promoting rhizobacteria (PGPR) can mitigate water stress in crops by synthesizing multiple bioactive molecules. Here, strain PAB19 recovered from rhizospheric soil was biochemically and molecularly characterized, and identified as Enterobacter sp./Leclercia adecarboxylata (MT672579.1). Strain PAB19 tolerated an exceptionally high level of drought (18% PEG-6000) and produced indole-3-acetic acid (176.2 ± 5.6 µg mL-1), ACC deaminase (56.6 ± 5.0 µg mL-1), salicylic acid (42.5 ± 3.0 µg mL-1), 2,3-dihydroxy benzoic acid (DHBA) (44.3 ± 2.3 µg mL-1), exopolysaccharide (204 ± 14.7 µg mL-1), alginate (82.3 ± 6.5 µg mL-1), and solubilized tricalcium phosphate (98.3 ± 3.5 µg mL-1), in the presence of 15% polyethylene glycol. Furthermore, strain PAB19 alleviated water stress and significantly (p ≤ 0.05) improved the overall growth and biochemical attributes of Vigna radiata (L.) R. Wilczek. For instance, at 2% PEG stress, PAB19 inoculation maximally increased germination, root dry biomass, leaf carotenoid content, nodule biomass, leghaemoglobin (LHb) content, leaf water potential (ΨL), membrane stability index (MSI), and pod yield by 10%, 7%, 14%, 38%, 9%, 17%, 11%, and 11%, respectively, over un-inoculated plants. Additionally, PAB19 inoculation reduced two stressor metabolites, proline and malondialdehyde, and antioxidant enzymes (POD, SOD, CAT, and GR) levels in V. radiata foliage in water stress conditions. Following inoculation of strain PAB19 with 15% PEG in soil, stomatal conductance, intercellular CO2 concentration, transpiration rate, water vapor deficit, intrinsic water use efficiency, and photosynthetic rate were significantly improved by 12%, 8%, 42%, 10%, 9% and 16%, respectively. Rhizospheric CFU counts of PAB19 were 2.33 and 2.11 log CFU g-1 after treatment with 15% PEG solution and 8.46 and 6.67 log CFU g-1 for untreated controls at 40 and 80 DAS, respectively. Conclusively, this study suggests the potential of Enterobacter sp./L. adecarboxylata PAB19 to alleviate water stress by improving the biological and biochemical features and of V. radiata under water-deficit conditions.
Collapse
Affiliation(s)
- Bilal Ahmed
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | - Mohammad Shahid
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India;
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.S.); (A.M.E.); (A.H.B.)
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (V.D.R.); (T.M.)
| | - Abdallah M. Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.S.); (A.M.E.); (A.H.B.)
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (V.D.R.); (T.M.)
| | - Ali H. Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.S.); (A.M.E.); (A.H.B.)
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
38
|
Sharma A, Singh RK, Singh P, Vaishnav A, Guo DJ, Verma KK, Li DP, Song XP, Malviya MK, Khan N, Lakshmanan P, Li YR. Insights into the Bacterial and Nitric Oxide-Induced Salt Tolerance in Sugarcane and Their Growth-Promoting Abilities. Microorganisms 2021; 9:microorganisms9112203. [PMID: 34835329 PMCID: PMC8623439 DOI: 10.3390/microorganisms9112203] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/11/2021] [Accepted: 10/18/2021] [Indexed: 11/21/2022] Open
Abstract
Soil salinity causes severe environmental stress that affects agriculture production and food security throughout the world. Salt-tolerant plant-growth-promoting rhizobacteria (PGPR) and nitric oxide (NO), a distinctive signaling molecule, can synergistically assist in the alleviation of abiotic stresses and plant growth promotion, but the mechanism by which this happens is still not well known. In the present study, in a potential salt-tolerant rhizobacteria strain, ASN-1, growth up to 15% NaCl concentration was achieved with sugarcane rhizosphere soil. Based on 16S-rRNA gene sequencing analysis, the strain ASN-1 was identified as a Bacillus xiamenensis. Strain ASN-1 exhibits multiple plant-growth-promoting attributes, such as the production of indole-3-acetic acid, 1-aminocyclopropane-1-carboxylate deaminase, siderophores, HCN, ammonia, and exopolysaccharides as well as solubilized phosphate solubilization. Biofilm formation showed that NO enhanced the biofilm and root colonization capacity of the PGPR strain ASN-1 with host plants, evidenced by scanning electron microscopy. The greenhouse study showed that, among the different treatments, the combined application of PGPR and sodium nitroprusside (SNP) as an NO donor significantly (p ≤ 0.05) enhanced sugarcane plant growth by maintaining the relative water content, electrolyte leakage, gas exchange parameters, osmolytes, and Na+/K+ ratio. Furthermore, PGPR and SNP fertilization reduced the salinity-induced oxidative stress in plants by modulating the antioxidant enzyme activities and stress-related gene expression. Thus, it is believed that the acquisition of advanced information about the synergistic effect of salt-tolerant PGPR and NO fertilization will reduce the use of harmful chemicals and aid in eco-friendly sustainable agricultural production under salt stress conditions.
Collapse
Affiliation(s)
- Anjney Sharma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (A.S.); (R.K.S.); (P.S.); (D.-J.G.); (K.K.V.); (M.K.M.); (P.L.)
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning 530007, China;
| | - Rajesh Kumar Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (A.S.); (R.K.S.); (P.S.); (D.-J.G.); (K.K.V.); (M.K.M.); (P.L.)
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning 530007, China;
| | - Pratiksha Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (A.S.); (R.K.S.); (P.S.); (D.-J.G.); (K.K.V.); (M.K.M.); (P.L.)
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning 530007, China;
| | - Anukool Vaishnav
- Department of Biotechnology, GLA University, Mathura 281406, U.P., India;
| | - Dao-Jun Guo
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (A.S.); (R.K.S.); (P.S.); (D.-J.G.); (K.K.V.); (M.K.M.); (P.L.)
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning 530007, China;
- College of Agriculture, State Key Laboratory of Conservation and Utilization of Subtropical, Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (A.S.); (R.K.S.); (P.S.); (D.-J.G.); (K.K.V.); (M.K.M.); (P.L.)
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning 530007, China;
| | - Dong-Ping Li
- Microbiology Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Xiu-Peng Song
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning 530007, China;
| | - Mukesh Kumar Malviya
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (A.S.); (R.K.S.); (P.S.); (D.-J.G.); (K.K.V.); (M.K.M.); (P.L.)
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning 530007, China;
| | - Naeem Khan
- Department of Agronomy, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA;
| | - Prakash Lakshmanan
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (A.S.); (R.K.S.); (P.S.); (D.-J.G.); (K.K.V.); (M.K.M.); (P.L.)
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning 530007, China;
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Yang-Rui Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (A.S.); (R.K.S.); (P.S.); (D.-J.G.); (K.K.V.); (M.K.M.); (P.L.)
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning 530007, China;
- College of Agriculture, State Key Laboratory of Conservation and Utilization of Subtropical, Agro-Bioresources, Guangxi University, Nanning 530005, China
- Correspondence:
| |
Collapse
|
39
|
Urooj N, Bano A, Riaz A. Role of PGPR on the physiology of sunflower irrigated with produced water containing high total dissolved solids (TDS) and its residual effects on soil fertility. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:567-579. [PMID: 34505549 DOI: 10.1080/15226514.2021.1957771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The present study was conducted to evaluate the bioremediation potential of plant growth-promoting rhizobacteria (PGPR) PGPR isolates from high total dissolved solids (TDS) bearing produced water on the water quality, soil physicochemical properties and growth and physiology of sunflower irrigated with high TDS bearing produced water having salinity level 130 times higher above seawater and also containing traces of oil and grease. Seeds of sunflower hybrid Parsun 3 were soaked for 3-4 h prior to sowing in 72 h old culture of PGPR strains W1 and W2 isolated from high TDS bearing polluted water. The control plants were irrigated with 90% diluted TDS water supplemented with 5 ml LB media. Whereas, the inoculated plants were irrigated with 90% diluted TDS water supplemented with 5 ml PGPR inocula.in LB media. The plants were grown under natural conditions. The 16S rRNA sequence analyses identified the isolate W1 bearing 100% similarity with the plant growth-promoting rhizobacteria (PGPR) Ralstonia pickettii and W2 bearing 99.7% similarity with Brevibacillus invocatus. Both the isolate were catalase and oxidase positive. The Ralstonia pickettii and Brevibacillus invocatus treatments decreased the EC and TDS values significantly such that the EC and TDS values of 90% diluted TDS water were 29 times and 19 times higher than tap water. Sodium adsorption ratio (SAR), organic matter, nitrogen, potassium, magnesium and carbon content were 1.96, 1.10, 2.28 1.20, 6.63 and 1.00 times greater than control in the rhizosphere soil of Ralstonia pickettii inoculated plants irrigated with high TDS bearing water There were significant increases in plant growth, sugar, flavonoids and phenolics, chlorophyll b, total chlorophyll, carotenoids content and activities of superoxide dismutase, catalase and peroxidase in plants inoculated with Ralstonia pickettii and Brevibacillus invocatus. The flavonoids, phenolics and proline contents were 0.54, 0.72 and 0.30 times higher in Ralstonia pickettii inoculated plants. Shoot/root dry weight ratio was about (50%) lower than control in Ralstonia pickettii and Brevibacillus invocatus treatments. Ralstonia pickettii was more effective than Brevibacillus invocatus to combat oxidative and osmotic stresses. It is inferred that the high TDS bearing produced water from oil factory harbor Plant growth-promoting rhizobacteria (PGPR) having the potential to combat high salinity stress in plants when used as bioinoculant. The broth culture containing the bacteria may be supplemented with the saline water used for irrigation as it provides nutrients for the growth and proliferation of bacteria present in the saline water and hence the synergistic action of bacterial inocula with the indigenous bacteria present in saline water may better alleviate osmotic and oxidative stresses of plants encountered under salinity stress. The residual effect of Ralstonia pickettii on organic matter and Ca, Mg, K and P content of the rhizosphere soil was notably higher for succeeding crops. Novelty statement This is the first report demonstrating that rhizobacteria can proliferate in water containing salinity higher above seawater in addition to oil grease and TSS. Their efficiency to reduce TDS can be augmented by an exogenous supply of LB broth culture of PGPR isolated from the polluted water. These indigenous rhizobacteria when used as bioinoculant on the plant can act as plant growth promoters as well as bioremediation of salinity effects.
Collapse
Affiliation(s)
- Neelam Urooj
- Department of Biosciences, University of Wah, Wah Cantt, Pakistan
| | - Asghari Bano
- Department of Biosciences, University of Wah, Wah Cantt, Pakistan
| | - Asif Riaz
- Nano Biosolution, Islamabad, Pakistan
| |
Collapse
|
40
|
Anum F, Jabeen K, Javad S, Iqbal S, Tahir A, Javed Z, Cruz-Martins N, Ayatollahi SA, Sharifi-Rad J, Alshehri MM, Cho WC. Green Synthesized Silver Nanoparticles as Potent Antifungal Agent against Aspergillus terreus Thom. JOURNAL OF NANOMATERIALS 2021; 2021:1-10. [DOI: 10.1155/2021/2992335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Medicinal plants are composed of a rich pool of biomolecules and have been increasingly recognized for their antimicrobial properties; however, increasing concerns have been put on the bioavailability features. Thus, this study is aimed at exploring the synthesis and characterization of silver nanoparticles synthesized by Chenopodium album L. leaf extract and assessing the antifungal activity against Aspergillus terreus Thom. Plant extract was prepared in methanol to synthetize silver nanoparticles, which were then characterized by Scanning Electron Microscopy (SEM), UV-Visible spectroscopy, and particle size analysis. UV-Visible analysis indicated maximum absorption at 378 nm, and an average particle size was observed as 25.6 nm. Oval to hexagonal shape was observed by SEM. Antifungal activity of silver nanoparticles (1, 1.5, 2, 2.5, 3, and 3.5%) was addressed against A. terreus biomass. At 3.5%, silver nanoparticles revealed to be highly effective, leading to 92% retardation in fungus growth. In next phase, various organic fractions, viz., chloroform, n-butanol, n-hexane, and ethyl acetate, were obtained from plant methanol extract, and the corresponding silver nanoparticles were prepared. These fractions were also assessed for antifungal activity, and n-hexane fraction led to 64% inhibition in A. terreus biomass. Following gas chromatography-mass spectrometry (GC-MS), 18 compounds were identified, namely, 1,3-cyclopentadiene-5-(1 methylethylidene and o-xylene), ethyl benzene, octadecane, nonane, decane, 2-methylheptane, n-hexadecane, 2-methylheptane, and eicosane, along with carbonyl compounds (4,4-dimethyl-3-hexanone) and phenols, like stearic acid, propionic acid hydrazide, and 2,4-di-T-butylphenol. These findings proved that C. album silver nanoparticles are highly effective against A. terreus.
Collapse
Affiliation(s)
- Faiza Anum
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
- Office of Research Innovation and Commercialization, Lahore Garrison University, Lahore, Pakistan
| | - Khajista Jabeen
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Sumera Javad
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Sumera Iqbal
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Arifa Tahir
- Department of Environmental Sciences, Lahore College for Women University, Lahore, Pakistan
| | - Zeeshan Javed
- Department of Environmental Sciences, Lahore College for Women University, Lahore, Pakistan
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pharmacognosy and Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammed M. Alshehri
- Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
41
|
Fahsi N, Mahdi I, Mesfioui A, Biskri L, Allaoui A. Phosphate solubilizing rhizobacteria isolated from jujube ziziphus lotus plant stimulate wheat germination rate and seedlings growth. PeerJ 2021; 9:e11583. [PMID: 34249493 PMCID: PMC8256818 DOI: 10.7717/peerj.11583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/19/2021] [Indexed: 11/20/2022] Open
Abstract
Jujube plant (Ziziphus lotus (L.) Desf.) can survive in arid climates and tolerates both biotic and abiotic stresses. Here, we isolated, for the first time in Morocco, nine phosphate solubilizing bacteria strains from jujube rhizosphere, designated J10 to J13, J15, & J153 to J156. Genotypic identification based on 16S rDNA sequencing, revealed six strains that belong to Pseudomonas (J10, J12, J13, J15, J153 and J154), two to Bacillus (J11 and J156), and one to Paenibacillus J155. Siderophores were produced by all strains. Proteases activity was missing in Pseudomonas sp. J153 & J154, whereas cellulase was restricted only to Pseudomonas sp. J10, Paenibacillus xylanexedens J155 and Bacillus cereus J156. Indole-3- acetic acid and ammonia were also produced by all strains, with a maxima of 204.28 µg mL−1 in Bacillus megaterium J11 and 0.33 µmol mL−1 in Pseudomonas sp. J153, respectively. Pseudomonas sp. J10 and B. cereus J156 grew on plates containing 1,500 µg mL−1 of nickel nitrate, while Pseudomonas sp. J153 withstood 1,500 µg mL−1 of either copper sulfate or cadmium sulfate. Phenotypic analysis of the potential of the isolates to promote early plant growth showed that wheat seeds inoculated with either P. moraviensis J12 or B. cereus J156 remarkably increased germination rate and seedlings growth. Lastly, antibiotic resistance profiling revealed that except for Pseudomonas sp. J11 and B. cereus J156, remaining strains displayed resistance at least to one of tested antibiotics. Collectively, Pseudomonas sp. J10, P. moraviensis J12, Pseudomonas sp. J153 and B. cereus J156, represent potential biofertilizers suitable for soils that are poor in P, and/or heavy metals contaminated.
Collapse
Affiliation(s)
- Nidal Fahsi
- Institute of Biological Sciences (ISSB-P), Mohammed VI Polytechnic University (UM6P), Benguerir, Morocco.,Laboratory of Biologie & Sante, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Ismail Mahdi
- Institute of Biological Sciences (ISSB-P), Mohammed VI Polytechnic University (UM6P), Benguerir, Morocco.,Laboratory of Microbial Biotechnologies, Agrobiosciences and Environement (BioMAgE), Faculty of Sciences Semlalia, University Cadi Ayyad, Marrakesh, Morocco
| | - Abdelhalem Mesfioui
- Laboratory of Biologie & Sante, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Latefa Biskri
- Molecular Microbiology laboratory, Coalition Center of Innovation and Prevention of Epidemies in Morocco (CIPEM), Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco.,African Genome Center (AGC), Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Abdelmounaaim Allaoui
- Molecular Microbiology laboratory, Coalition Center of Innovation and Prevention of Epidemies in Morocco (CIPEM), Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| |
Collapse
|
42
|
Khalofah A, Kilany M, Migdadi H. Assessment of Morpho-Physiological and Biochemical Responses of Mercury-Stressed Trigonella foenum-gracum L. to Silver Nanoparticles and Sphingobacterium ginsenosidiumtans Applications. PLANTS 2021; 10:plants10071349. [PMID: 34371552 PMCID: PMC8309213 DOI: 10.3390/plants10071349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/03/2022]
Abstract
Heavy metals are primarily generated and deposited in the environment, causing phytotoxicity. This work evaluated fenugreek plants’ morpho-physiological and biochemical responses under mercury stress conditions toward Ag nanoparticles and Sphingobacterium ginsenosidiumtans applications. The fabrication of Ag nanoparticles by Thymus vulgaris was monitored and described by UV/Vis analysis, FTIR, and SEM. The effect of mercury on vegetative growth was determined by measuring the root and shoots length, the number and area of leaves, the relative water content, and the weight of the green and dried plants; appraisal of photosynthetic pigments, proline, hydrogen peroxide, and total phenols content were also performed. In addition, the manipulation of Ag nanoparticles, S. ginsenosidiumtans, and their combination were tested for mercury stress. Here, Ag nanoparticles were formed at 420 nm with a uniform cuboid form and size of 85 nm. Interestingly, the gradual suppression of vegetal growth and photosynthetic pigments by mercury, Ag nanoparticles, and S. ginsenosidiumtans were detected; however, carotenoids and anthocyanins were significantly increased. In addition, proline, hydrogen peroxide, and total phenols content were significantly increased because mercury and S. ginsenosidiumtans enhance this increase. Ag nanoparticles achieve higher levels by the combination. Thus, S. ginsenosidiumtans and Ag nanoparticles could have the plausible ability to relieve and combat mercury’s dangerous effects in fenugreek.
Collapse
Affiliation(s)
- Ahlam Khalofah
- Biology Department, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia;
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia;
| | - Mona Kilany
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia;
- Department of Microbiology, National Organization for Drug Control and Research (NODCAR), Giza 12561, Egypt
| | - Hussein Migdadi
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh 11461, Saudi Arabia
- National Agricultural Research Center, Baqa 19381, Jordan
- Correspondence: ; Tel.: +966-535871345
| |
Collapse
|
43
|
Bruno LB, Anbuganesan V, Karthik C, Kumar A, Banu JR, Freitas H, Rajkumar M. Enhanced phytoextraction of multi-metal contaminated soils under increased atmospheric temperature by bioaugmentation with plant growth promoting Bacillus cereus. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 289:112553. [PMID: 33857710 DOI: 10.1016/j.jenvman.2021.112553] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/01/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
The co-occurrence of environmental stresses such as heavy metals (HM) and increased atmospheric temperature (IAT) pose serious implications on plant growth and productivity. In this work, we evaluated the role of plant growth-promoting bacteria (PGPB) and its effectiveness on Zea mays growth, stress tolerance and phytoremediation potential in multi-metal (MM) contaminated soils under IAT stress conditions. The PGPB strain TCU11 was isolated from metal contaminated soils and identified as Bacillus cereus. TCU11 was able to resist abiotic stresses such as IAT (45 °C), MM (Pb, Zn, Ni, Cu, and Cd), antibiotics and induced in vitro plant growth promotion (PGP) by producing siderophores (catechol and hydroxymate) and indole 3-acetic acid even in the presence of MM under IAT. Inoculation of TCU11 significantly increased the biomass, chlorophyll, carotenoids, and protein content of Z. mays compared to the respective control under MM, IAT, and MM + IAT stress. A decrease of malondialdehyde and over-accumulation of total phenolics, proline along with the increased activity of superoxide dismutase, catalase and ascorbic peroxidase were observed in TCU11 inoculated plants under stress conditions. These results suggested MM and/or IAT significantly reduced the maize growth, whereas TCU11 inoculation mitigated the combined stress effects on maize performance. Moreover, the inoculation of TCU11 under IAT stress increased the MM (Pb, Zn, Ni, Cu, and Cd) accumulation in plant tissues and also increased the translocation of HM from root to shoot except for Ni. The results of soil HM mobilization further indicates that IAT increased the HM mobilizing activity of TCU11, thus increasing the concentrations of bio-available HM in soil. These results suggested that TCU11 not only alleviates MM and IAT stresses but also enhances the biomass production and HM accumulation in plants. Therefore, TCU11 can be exploited as inoculums for improving the phytoremediation efficiency in MM polluted soils under IAT conditions.
Collapse
Affiliation(s)
- L Benedict Bruno
- Department of Environmental Sciences, Bharathiar University, Coimbatore, 641046, India
| | - Vadivel Anbuganesan
- Department of Environmental Sciences, Bharathiar University, Coimbatore, 641046, India
| | - Chinnannan Karthik
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Zhejiang Province, China
| | - Adarsh Kumar
- Laboratory of Biotechnology, Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, 620002, Russia
| | - J Rajesh Banu
- Department of Life Sciences, Central University of Tamilnadu, Tiruvarur, 610 005, India
| | - Helena Freitas
- Centre for Functional Ecology - Science for People & the Planet, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Mani Rajkumar
- Department of Environmental Sciences, Bharathiar University, Coimbatore, 641046, India.
| |
Collapse
|
44
|
Insights into the Interactions among Roots, Rhizosphere, and Rhizobacteria for Improving Plant Growth and Tolerance to Abiotic Stresses: A Review. Cells 2021; 10:cells10061551. [PMID: 34205352 PMCID: PMC8234610 DOI: 10.3390/cells10061551] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 01/21/2023] Open
Abstract
Abiotic stresses, such as drought, salinity, heavy metals, variations in temperature, and ultraviolet (UV) radiation, are antagonistic to plant growth and development, resulting in an overall decrease in plant yield. These stresses have direct effects on the rhizosphere, thus severely affect the root growth, and thereby affecting the overall plant growth, health, and productivity. However, the growth-promoting rhizobacteria that colonize the rhizosphere/endorhizosphere protect the roots from the adverse effects of abiotic stress and facilitate plant growth by various direct and indirect mechanisms. In the rhizosphere, plants are constantly interacting with thousands of these microorganisms, yet it is not very clear when and how these complex root, rhizosphere, and rhizobacteria interactions occur under abiotic stresses. Therefore, the present review attempts to focus on root–rhizosphere and rhizobacterial interactions under stresses, how roots respond to these interactions, and the role of rhizobacteria under these stresses. Further, the review focuses on the underlying mechanisms employed by rhizobacteria for improving root architecture and plant tolerance to abiotic stresses.
Collapse
|
45
|
Ullah A, Bano A, Khan N. Climate Change and Salinity Effects on Crops and Chemical Communication Between Plants and Plant Growth-Promoting Microorganisms Under Stress. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.618092] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
During the last two decades the world has experienced an abrupt change in climate. Both natural and artificial factors are climate change drivers, although the effect of natural factors are lesser than the anthropogenic drivers. These factors have changed the pattern of precipitation resulting in a rise in sea levels, changes in evapotranspiration, occurrence of flood overwintering of pathogens, increased resistance of pests and parasites, and reduced productivity of plants. Although excess CO2 promotes growth of C3 plants, high temperatures reduce the yield of important agricultural crops due to high evapotranspiration. These two factors have an impact on soil salinization and agriculture production, leading to the issue of water and food security. Farmers have adopted different strategies to cope with agriculture production in saline and saline sodic soil. Recently the inoculation of halotolerant plant growth promoting rhizobacteria (PGPR) in saline fields is an environmentally friendly and sustainable approach to overcome salinity and promote crop growth and yield in saline and saline sodic soil. These halotolerant bacteria synthesize certain metabolites which help crops in adopting a saline condition and promote their growth without any negative effects. There is a complex interkingdom signaling between host and microbes for mutual interaction, which is also influenced by environmental factors. For mutual survival, nature induces a strong positive relationship between host and microbes in the rhizosphere. Commercialization of such PGPR in the form of biofertilizers, biostimulants, and biopower are needed to build climate resilience in agriculture. The production of phytohormones, particularly auxins, have been demonstrated by PGPR, even the pathogenic bacteria and fungi which also modulate the endogenous level of auxins in plants, subsequently enhancing plant resistance to various stresses. The present review focuses on plant-microbe communication and elaborates on their role in plant tolerance under changing climatic conditions.
Collapse
|
46
|
Delgado-González CR, Madariaga-Navarrete A, Fernández-Cortés JM, Islas-Pelcastre M, Oza G, Iqbal HMN, Sharma A. Advances and Applications of Water Phytoremediation: A Potential Biotechnological Approach for the Treatment of Heavy Metals from Contaminated Water. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5215. [PMID: 34068925 PMCID: PMC8157233 DOI: 10.3390/ijerph18105215] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 02/05/2023]
Abstract
Potable and good-quality drinking water availability is a serious global concern, since several pollution sources significantly contribute to low water quality. Amongst these pollution sources, several are releasing an array of hazardous agents into various environmental and water matrices. Unfortunately, there are not very many ecologically friendly systems available to treat the contaminated environment exclusively. Consequently, heavy metal water contamination leads to many diseases in humans, such as cardiopulmonary diseases and cytotoxicity, among others. To solve this problem, there are a plethora of emerging technologies that play an important role in defining treatment strategies. Phytoremediation, the usage of plants to remove contaminants, is a technology that has been widely used to remediate pollution in soils, with particular reference to toxic elements. Thus, hydroponic systems coupled with bioremediation for the removal of water contaminants have shown great relevance. In this review, we addressed several studies that support the development of phytoremediation systems in water. We cover the importance of applied science and environmental engineering to generate sustainable strategies to improve water quality. In this context, the phytoremediation capabilities of different plant species and possible obstacles that phytoremediation systems may encounter are discussed with suitable examples by comparing different mechanistic processes. According to the presented data, there are a wide range of plant species with water phytoremediation potential that need to be studied from a multidisciplinary perspective to make water phytoremediation a viable method.
Collapse
Affiliation(s)
- Cristián Raziel Delgado-González
- Área Académica de Ciencias Agrícolas y Forestales, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo 43600, Mexico; (C.R.D.-G.); (A.M.-N.); (M.I.-P.)
| | - Alfredo Madariaga-Navarrete
- Área Académica de Ciencias Agrícolas y Forestales, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo 43600, Mexico; (C.R.D.-G.); (A.M.-N.); (M.I.-P.)
| | - José Miguel Fernández-Cortés
- Centre of Bioengineering, School of Engineering and Sciences, Tecnologico de Monterrey, San Pablo 76130, Mexico;
| | - Margarita Islas-Pelcastre
- Área Académica de Ciencias Agrícolas y Forestales, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo 43600, Mexico; (C.R.D.-G.); (A.M.-N.); (M.I.-P.)
| | - Goldie Oza
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica (CIDETEQ), Parque Tecnológico, Pedro Escobedo 76703, Mexico;
| | - Hafiz M. N. Iqbal
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Ashutosh Sharma
- Centre of Bioengineering, School of Engineering and Sciences, Tecnologico de Monterrey, San Pablo 76130, Mexico;
| |
Collapse
|
47
|
Prince MRU, Zihad SMNK, Ghosh P, Sifat N, Rouf R, Al Shajib GM, Alam MA, Shilpi JA, Uddin SJ. Amaranthus spinosus Attenuated Obesity-Induced Metabolic Disorders in High-Carbohydrate-High-Fat Diet-Fed Obese Rats. Front Nutr 2021; 8:653918. [PMID: 34041259 PMCID: PMC8142894 DOI: 10.3389/fnut.2021.653918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Amaranthus spinosus is a common vegetable of Bangladesh and well-known for its ethnomedicinal uses. In this study, we have evaluated the ability of powdered supplementation, methanol extract, and aqueous extract of A. spinosus in attenuating in high-carbohydrate-high-fat (HCHF) diet-induced obesity and associated metabolic disorders in female obese rates. Several parameters have been analyzed in this study including body weight, organ weight, fat deposition, glycemic status, lipid levels, hepatic and renal biomarkers, hepatic antioxidant status, and hepatosteatosis. All three samples of A. spinosus significantly reduced weight gain, organ weight, and abdominal fat deposition. Improved glucose tolerance and lipid parameters were seen in obese rats administered with A. spinosus powder, methanol extract, and aqueous extract. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and creatine kinase levels were normalized by the test samples. A. spinosus boosted hepatic antioxidant levels including reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Histopathology of liver tissue revealed increased fat infiltration and higher steatosis score in HCHF diet-fed obese rats which was brought down by A. spinosus. Analyzing all the results it can be concluded that this medicinal herb is beneficial in the management of obesity and obesity-induced metabolic disorders, making it a prospective food supplement.
Collapse
Affiliation(s)
| | - S. M. Neamul Kabir Zihad
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh
- University of Chinese Academy of Sciences, Beijing, China
| | - Puja Ghosh
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Nazifa Sifat
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Razina Rouf
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Gazi Mohammad Al Shajib
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Md. Ashraful Alam
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Jamil A. Shilpi
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Shaikh J. Uddin
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| |
Collapse
|
48
|
Rhizospheric Phosphate Solubilizing Bacillus atrophaeus GQJK17 S8 Increases Quinoa Seedling, Withstands Heavy Metals, and Mitigates Salt Stress. SUSTAINABILITY 2021. [DOI: 10.3390/su13063307] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Introduction of quinoa (Chenopodium quinoa willd.), a gluten-free nutritious pseudo-cereal, outside its traditional growing areas exposed it to seedling damping-off. Here, we isolated eleven phosphate-solubilizing bacteria from the quinoa rhizosphere and assessed their effect on germination and seedlings growth. All isolates solubilized phosphate, produced indole3-acetic acid, hydrocyanic acid, siderophores, and ammonia. Genotypic analysis revealed that our strains are related to the genus of Bacillus, Pseudomonas, and Enterobacter. Strains Enterobacter asburiae (QD14, QE4, QE6, and QE16), Enterobacter sp. QE3, and Enterobacter hormaechei QE7 withstood 1.5 mg·L−1 of cadmium sulfate, 0.5 mg·mL−1 of nickel nitrate, and 1 mg·mL−1 of copper sulfate. Moreover, all strains solubilized zinc from ZnO; P. Stutzeri QD1 and E. asburiae QD14 did not solubilize Zn3(PO4)2 and CO3Zn, whereas CO3Zn was not solubilized by E. asburiae QE16. Bacillus atrophaeus S8 tolerated 11% NaCl. P. frederiksbergensis S6 and Pseudomonas sp. S7 induced biofilm formation. Anti-fusarium activity was demonstrated for E.asburiae QE16, P. stutzeri QD1, P. frederiksbergensis S6, Pseudomonas sp. S7, and B. atrophaeus S8. Lastly, inoculation of quinoa seeds with B. atrophaeus S8 and E. asburiae QB1 induced the best germination rate and seedling growth, suggesting their potential use as inoculants for salty and heavy metal or zinc contaminated soils.
Collapse
|
49
|
Akhtar N, Ilyas N, Yasmin H, Sayyed RZ, Hasnain Z, A. Elsayed E, El Enshasy HA. Role of Bacillus cereus in Improving the Growth and Phytoextractability of Brassica nigra (L.) K. Koch in Chromium Contaminated Soil. Molecules 2021; 26:1569. [PMID: 33809305 PMCID: PMC7998664 DOI: 10.3390/molecules26061569] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/28/2021] [Accepted: 03/06/2021] [Indexed: 01/10/2023] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) mediate heavy metal tolerance and improve phytoextraction potential in plants. The present research was conducted to find the potential of bacterial strains in improving the growth and phytoextraction abilities of Brassica nigra (L.) K. Koch. in chromium contaminated soil. In this study, a total of 15 bacterial strains were isolated from heavy metal polluted soil and were screened for their heavy metal tolerance and plant growth promotion potential. The most efficient strain was identified by 16S rRNA gene sequencing and was identified as Bacillus cereus. The isolate also showed the potential to solubilize phosphate and synthesize siderophore, phytohormones (indole acetic acid, cytokinin, and abscisic acid), and osmolyte (proline and sugar) in chromium (Cr+3) supplemented medium. The results of the present study showed that chromium stress has negative effects on seed germination and plant growth in B. nigra while inoculation of B. cereus improved plant growth and reduced chromium toxicity. The increase in seed germination percentage, shoot length, and root length was 28.07%, 35.86%, 19.11% while the fresh and dry biomass of the plant increased by 48.00% and 62.16%, respectively, as compared to the uninoculated/control plants. The photosynthetic pigments were also improved by bacterial inoculation as compared to untreated stress-exposed plants, i.e., increase in chlorophyll a, chlorophyll b, chlorophyll a + b, and carotenoid was d 25.94%, 10.65%, 20.35%, and 44.30%, respectively. Bacterial inoculation also resulted in osmotic adjustment (proline 8.76% and sugar 28.71%) and maintained the membrane stability (51.39%) which was also indicated by reduced malondialdehyde content (59.53% decrease). The antioxidant enzyme activities were also improved to 35.90% (superoxide dismutase), 59.61% (peroxide), and 33.33% (catalase) in inoculated stress-exposed plants as compared to the control plants. B. cereus inoculation also improved the uptake, bioaccumulation, and translocation of Cr in the plant. Data showed that B. cereus also increased Cr content in the root (2.71-fold) and shoot (4.01-fold), its bioaccumulation (2.71-fold in root and 4.03-fold in the shoot) and translocation (40%) was also high in B. nigra. The data revealed that B. cereus is a multifarious PGPR that efficiently tolerates heavy metal ions (Cr+3) and it can be used to enhance the growth and phytoextraction potential of B. nigra in heavy metal contaminated soil.
Collapse
Affiliation(s)
- Nosheen Akhtar
- Department of Botany, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan;
| | - Noshin Ilyas
- Department of Botany, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan;
| | - Humaira Yasmin
- Department of Biosciences, COMSATS University, Islamabad (CUI), Islamabad 46300, Pakistan;
| | - R. Z. Sayyed
- Department of Microbiology, PSGVP Mandal’s Arts, Science, and Commerce College, Shahada, Maharashtra 425409, India;
| | - Zuhair Hasnain
- Department of Agronomy, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan;
| | - Elsayed A. Elsayed
- Bioproducts Research Chair, Zoology Department, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia;
- Natural & Microbial Products Dept., National Research Centre, Dokki, Cairo 1165, Egypt
| | - Hesham A. El Enshasy
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru 81310, Johor, Malaysia
- City of Scientific Research and Technology Applications, New Burg Al Arab, Alexandria 21934, Egypt
| |
Collapse
|
50
|
Salicylic acid and kaolin effects on pomological, physiological, and phytochemical characters of hazelnut (Corylus avellana) at warm summer condition. Sci Rep 2021; 11:4568. [PMID: 33633151 PMCID: PMC7907359 DOI: 10.1038/s41598-021-83790-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/08/2021] [Indexed: 01/31/2023] Open
Abstract
Climate change and population increase are two challenges for crop production in the world. Hazelnut (Corylus avellana L.) is considered an important nut regarding its nutritional and economic values. As a fact, the application of supporting materials as foliage sprays on plants will decrease biotic and abiotic stresses. In this study, the effects of salicylic acid (0, 1 mM and 2.5 mM) and kaolin (0, 3% and 6%) sprays were investigated on morphological, physiological, pomological, and biochemical characteristics of hazelnut. The results showed that 1 mM salicylic acid and 6% kaolin had the best effects on nut and kernel weight compared to control. Biochemical parameters such as chlorophyll a, b, a + b, and carotenoid contents showed that salicylic acid and kaolin improved pigment concentration. Proline and antioxidant contents such as phenolic acids, SOD, APX, and CAT enzyme activities increased by these applications. On the other hand, lipid peroxidation, protein content, and H2O2 content were decreased. Based on the tolerance index result, Merveille de Bollwiller cultivar showed the highest tolerance while 'Fertile de Coutard' had the lowest value. Therefore, hazelnut performance may be improved through exogenous application of the signaling (salicylic acid) and particle film (Kaolin) compounds in warmer climates.
Collapse
|