1
|
Kim HW, Lee JW, Yoon HS, Park HW, Lee YI, Lee SK, Whang J, Kim JS. Restriction of mitochondrial oxidation of glutamine or fatty acids enhances intracellular growth of Mycobacterium abscessus in macrophages. Virulence 2025; 16:2454323. [PMID: 39828906 PMCID: PMC11749347 DOI: 10.1080/21505594.2025.2454323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/28/2024] [Accepted: 01/12/2025] [Indexed: 01/22/2025] Open
Abstract
Mycobacterium abscessus (Mab), a nontuberculous mycobacterium, is increasing in prevalence worldwide and causes treatment-refractory pulmonary diseases. However, how Mab rewires macrophage energy metabolism to facilitate its survival is poorly understood. We compared the metabolic profiles of murine bone marrow-derived macrophages (BMDMs) infected with smooth (S)- and rough (R)-type Mab using extracellular flux technology. Mab infection shifted BMDMs towards a more energetic phenotype, marked by increased oxidative phosphorylation (OXPHOS) and glycolysis, with a significantly greater enhancement in OXPHOS. This metabolic adaptation was characterized by enhanced ATP production rates, particularly in cells infected with S-type Mab, highlighting OXPHOS as a key energy source. Notably, Mab infection also modulated mitochondrial substrate preferences, increasing fatty acid oxidation capabilities while revealing significant changes in glutamine dependency and flexibility. R-type Mab infections exhibited a marked decrease in glutamine reliance but enhanced metabolic flexibility and capacity. Furthermore, targeting metabolic pathways related to glutamine and fatty acid oxidation exacerbated Mab growth within macrophages, suggesting these pathways play a protective role against infection. These insights advance our understanding of Mab's impact on host cell metabolism and propose a novel avenue for therapeutic intervention. By manipulating host mitochondrial metabolism, we identify a potential host-directed therapeutic strategy against Mab, offering a promising alternative to conventional treatments beleaguered by drug resistance. This study underscores the importance of exploring metabolic interventions to combat Mab infection, paving the way for innovative approaches in the fight against this formidable pathogen.
Collapse
Affiliation(s)
- Ho Won Kim
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, South Korea
| | - Ji Won Lee
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, South Korea
| | - Hoe Sun Yoon
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, South Korea
| | - Hwan-Woo Park
- Department of Cell Biology, Konyang University Hospital and College of Medicine, Daejeon, South Korea
| | | | - Sung Ki Lee
- Department of Obstetrics and Gynecology, Konyang University Hospital, Daejeon, South Korea
| | - Jake Whang
- Korea Mycobacterium Resource Center (KMRC), Department of Research and Development, The Korean Institute of Tuberculosis, Osong, South Korea
| | - Jong-Seok Kim
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, South Korea
- Department of Cell Biology, Konyang University Hospital and College of Medicine, Daejeon, South Korea
| |
Collapse
|
2
|
Keefe B, Leestemaker-Palmer A, Bermudez LE. The ability to detach from biofilms in the lung airways prior to transmission to another host is associated with the infectious phenotype of Mycobacterium abscessus. Front Immunol 2025; 16:1508584. [PMID: 40124375 PMCID: PMC11925935 DOI: 10.3389/fimmu.2025.1508584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/17/2025] [Indexed: 03/25/2025] Open
Abstract
Introduction Mycobacterium abscessus is a pathogen recently associated with patients with chronic lung conditions such as bronchiectasis and cystic fibrosis. M. abscessus is an environmental bacterium but recent evidence suggests that the pathogen is also transmitted from host-to-host. Because M. abscessus is known to form biofilms on the respiratory mucosa the release of bacteria from the biofilm becomes an important aspect on the transmission of the infection. Methods A biofilm releasing system was established. A transposon library of M. abscessus was then screened to identify genes associated with the release from biofilms. Results Several enzymes and genes of unidentified function were linked with the ability to detach from the biofilm. It was also shown that detached bacteria were increased capable of establish a new biofilm, attach to epithelial cells, and infect macrophages. To determine the surface molecules linked with the ability to infect new hosts, a surface proteomic was performed, showing that detaching bacteria express many proteins do not present in biofilm bacteria. Discussion Detached M. abscessus, one of the possible infectious phenotypes, contains specific proteins and lipids in the surface that facilitate the infection of new hosts. In addition, we identified many small proteins that have the likelihood to be associated with the release of the biofilm bacteria.
Collapse
Affiliation(s)
- Bailey Keefe
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
| | - Amy Leestemaker-Palmer
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
| | - Luiz E. Bermudez
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
- Department of Microbiology, College of Sciences, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
3
|
Dzalamidze E, Gorzynski M, Vande Voorde R, Nelson D, Danelishvili L. Discovery of Biofilm-Inhibiting Compounds to Enhance Antibiotic Effectiveness Against M. abscessus Infections. Pharmaceuticals (Basel) 2025; 18:225. [PMID: 40006039 PMCID: PMC11859778 DOI: 10.3390/ph18020225] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 01/29/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Mycobacterium abscessus (MAB) is a highly resilient pathogen that causes difficult-to-treat pulmonary infections, particularly in individuals with cystic fibrosis (CF) and other underlying conditions. Its ability to form robust biofilms within the CF lung environment is a major factor contributing to its resistance to antibiotics and evasion of the host immune response, making conventional treatments largely ineffective. These biofilms, encased in an extracellular matrix, enhance drug tolerance and facilitate metabolic adaptations in hypoxic conditions, driving the bacteria into a persistent, non-replicative state that further exacerbates antimicrobial resistance. Treatment options remain limited, with multidrug regimens showing low success rates, highlighting the urgent need for more effective therapeutic strategies. Methods: In this study, we employed artificial sputum media to simulate the CF lung environment and conducted high-throughput screening of 24,000 compounds from diverse chemical libraries to identify inhibitors of MAB biofilm formation, using the Crystal Violet (CV) assay. Results: The screen established 17 hits with ≥30% biofilm inhibitory activity in mycobacteria. Six of these compounds inhibited MAB biofilm formation by over 60%, disrupted established biofilms by ≥40%, and significantly impaired bacterial viability within the biofilms, as confirmed by reduced CFU counts. In conformational assays, select compounds showed potent inhibitory activity in biofilms formed by clinical isolates of both MAB and Mycobacterium avium subsp. hominissuis (MAH). Key compounds, including ethacridine, phenothiazine, and fluorene derivatives, demonstrated potent activity against pre- and post-biofilm conditions, enhanced antibiotic efficacy, and reduced intracellular bacterial loads in macrophages. Conclusions: This study results underscore the potential of these compounds to target biofilm-associated resistance mechanisms, making them valuable candidates for use as adjuncts to existing therapies. These findings also emphasize the need for further investigations, including the initiation of a medicinal chemistry campaign to leverage structure-activity relationship studies and optimize the biological activity of these underexplored class of compounds against nontuberculous mycobacterial (NTM) strains.
Collapse
Affiliation(s)
- Elizaveta Dzalamidze
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Mylene Gorzynski
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Rebecca Vande Voorde
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Dylan Nelson
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Lia Danelishvili
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
4
|
Zakhareva EV, Martini BA, Salina EG. Mechanisms of Virulence of Mycobacterium abscessus and Interaction with the Host Immune System. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:S214-S232. [PMID: 40164160 DOI: 10.1134/s0006297924603496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 04/02/2025]
Abstract
Mycobacterium abscessus is a non-tuberculosis fast-growing mycobacterium that has recently become a serious concern due to its rapidly increasing prevalence worldwide, mainly in individuals with a high susceptibility to pulmonary infections, for example, patients with cystic fibrosis, bronchiectasis, chronic obstructive pulmonary disease, and previous tuberculosis infection. According to present estimations, at least 20% of patients with cystic fibrosis are infected with M. abscessus. This bacterium is extremely resistant to most drugs, leading to a severe and difficult-to-treat infection. That is why M. abscessus, previously classified as a low-virulent opportunistic pathogen, is now reconsidered as a true pathogenic bacterium. There are no effective drugs for successful M. abscessus infection therapy, as well as no vaccines to prevent its spread. This review focuses on the molecular mechanisms ensuring M. abscessus resistance to immune response and its ability to survive in the aggressive intracellular environment of human immune cells, and describes virulence factors that can serve as potential targets for the development of innovative therapeutic approaches to combat the spread of infections caused by M. abscessus.
Collapse
Affiliation(s)
- Ekaterina V Zakhareva
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Science, Moscow, 119071, Russia
| | - Billy A Martini
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Science, Moscow, 119071, Russia
| | - Elena G Salina
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Science, Moscow, 119071, Russia.
| |
Collapse
|
5
|
Rathod SN, Weber RT, Salim AA, Tanna SD, Stosor V, Malczynski M, O'Boye A, Hoke K, Landon J, McCarthy S, Qi C, Angarone MP, Ison MG, Williams JL, Zembower TR, Bolon MK. Mycobacteroides abscessus outbreak and mitigation in a cardiothoracic transplant population: the problem with tap water. J Hosp Infect 2025; 155:150-157. [PMID: 39515477 DOI: 10.1016/j.jhin.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/12/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Hospital outbreaks caused by Mycobacteroides abscessus complex are a major cause for concern in vulnerable patients such as the cardiothoracic transplant population. AIM To describe the outbreak investigation and mitigation steps undertaken to address an increase in healthcare-associated M. abscessus complex cases in an inpatient cardiothoracic transplant population. METHODS We extracted clinical characteristics from patients with M. abscessus pre-outbreak (March 2018 to December 2020) and during the outbreak (January 2021 to June 2022) from the electronic medical record. A multi-disciplinary team conducted the outbreak investigation and devised a mitigation strategy to implement at our institution. FINDINGS The baseline incidence of healthcare-associated M. abscessus was 0.11 cases per 10,000 patient-days; this increased to 0.24 cases per 10,000 patient-days during the outbreak. There were 1/9 (11%) cardiothoracic transplant patients in the pre-outbreak group compared with 7/12 (58%) during the outbreak, and respiratory specimen types compromised 6/9 (67%) of M. abscessus results in the pre-outbreak group compared with 10/12 (83%) during the outbreak. Among the clinical care activities involving water, a variety of water sources were utilized, including filtered and tap water. The incidence of healthcare-associated M. abscessus subsequently decreased to 0.06 cases per 10,000 patient-days after implementing an outbreak-mitigation strategy of sterile water precautions. CONCLUSIONS Robust educational efforts from a multi-disciplinary team on eliminating exposure to tap water were effective measures to reduce healthcare-associated M. abscessus incidence at our institution. Non-tuberculous mycobacteria infection surveillance, targeted education, and water mitigation strategies may be beneficial preventative strategies for other lung transplant centres facing similar issues.
Collapse
Affiliation(s)
- S N Rathod
- Department of Healthcare Epidemiology and Infection Prevention, Northwestern Memorial Hospital, Chicago, IL, USA.
| | - R T Weber
- Department of Healthcare Epidemiology and Infection Prevention, Northwestern Memorial Hospital, Chicago, IL, USA
| | - A A Salim
- Department of Healthcare Epidemiology and Infection Prevention, Northwestern Memorial HealthCare, Chicago, IL, USA
| | - S D Tanna
- Division of Infectious Disease, Department of Medicine, Inova Fairfax Medical Center, Falls Church, VA, USA
| | - V Stosor
- Divisions of Infectious Diseases and Organ Transplantation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - M Malczynski
- Department of Pathology, Northwestern University Feinberg School of Medicine, Clinical Microbiology Laboratory, Northwestern Memorial Hospital and Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - A O'Boye
- Department of Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - K Hoke
- Cardiac Intensive Care Unit, Northwestern Medicine Central DuPage Hospital, Chicago, IL, USA
| | - J Landon
- Pulmonary Medicine, Northwestern Memorial Hospital, Chicago, IL, USA
| | - S McCarthy
- Cardiac, Vascular, and Thoracic Stepdown, Northwestern Memorial Hospital, Chicago, IL, USA
| | - C Qi
- Department of Pathology, Northwestern University Feinberg School of Medicine, Clinical Microbiology Laboratory, Northwestern Memorial Hospital and Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - M P Angarone
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - M G Ison
- Respiratory Diseases Branch, Division of Microbiology and Infectious Diseases, NIAID/NIH, Rockville, MD, USA
| | - J L Williams
- Division of Infectious Diseases, Corewell Health Medical Group, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | - T R Zembower
- Department of Healthcare Epidemiology and Infection Prevention, Northwestern Memorial Hospital, Chicago, IL, USA; Department of Pathology, Northwestern University Feinberg School of Medicine, Clinical Microbiology Laboratory, Northwestern Memorial Hospital and Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - M K Bolon
- Department of Healthcare Epidemiology and Infection Prevention, Northwestern Memorial Hospital, Chicago, IL, USA; Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
6
|
Ross BN, Evans E, Whiteley M. Phenylacetic acid metabolic genes are associated with Mycobacteroides abscessus dominant circulating clone 1. Microbiol Spectr 2024; 12:e0133024. [PMID: 39315786 PMCID: PMC11537035 DOI: 10.1128/spectrum.01330-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/12/2024] [Indexed: 09/25/2024] Open
Abstract
Mycobacteroides abscessus (MAB) causes lung infections in people with cystic fibrosis (pwCF), and infecting strains show significant genetic variability both between and within individuals. MAB isolates can be divided into dominant clonal clusters (DCCs) or non-clustering groups and can present as smooth or rough colonies on agar plates. Both DCCs and the rough colony morphology have been linked to increased pathogenicity, but the mechanisms are unclear. This study explored the genomes of MAB isolates collected from individuals within the CF@LANTA CF center along with publicly available genomes to identify genes associated with more pathogenic MAB DCCs. Sixty-eight isolates from 26 CF individuals colonized by MAB were morphotyped and sequenced, with almost half of these isolates being members of DCC group 1 (DCC1). While lung function was not significantly impacted by colonization with DCC1 or rough isolates, 102 genes were specifically associated with DCC1 isolates. These genes were enriched for functions in sulfur-based DNA modification, DNA integration, and phenylacetic acid (PAA) catabolism. PAA is produced by the human gut microbiota and found throughout the human body. We show that strains containing PAA metabolic genes allow MAB to use PAA as a sole carbon and energy source. Although the benefits of PAA metabolic genes and other enriched pathways remain unclear, these findings highlight genes associated with emerging MAB CF strains. IMPORTANCE A primary challenge in treating bacterial infections is the wide spectrum of disease and genetic variability across bacterial strains. This is particularly evident in Mycobacteroides abscessus (MAB), an emerging pathogen affecting people with cystic fibrosis (pwCF). MAB exhibits significant genetic diversity both within and between individuals. However, seven dominant circulating clones (DCCs) have emerged as the major cause of human infections, demonstrating increased pathogenicity. Understanding the mechanisms underlying this increased pathogenicity and the associated genetic factors is crucial for developing novel treatment strategies. Our findings reveal that specific genes are associated with the DCC1 isolate of MAB, many of which are implicated in antimicrobial susceptibility or virulence.
Collapse
Affiliation(s)
- Brittany N. Ross
- School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Emma Evans
- School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Marvin Whiteley
- School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- CF@LANTA-Children’s Cystic Fibrosis Center, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Sondhi A, Singh P, Anand KB, Ghosh A, Lall M, Sen S. Mycobacterium abscessus causing native aortic valve endocarditis post stenting. Med J Armed Forces India 2024; 80:726-730. [PMID: 39990534 PMCID: PMC11842913 DOI: 10.1016/j.mjafi.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/09/2022] [Indexed: 11/29/2022] Open
Abstract
Native valve endocarditis owing to Mycobacterium abscessus (M. abscessus) is extremely rare and only a few cases have been reported in the literature. We present a case of a 44-year old male patient, a coronary artery disease (CAD) case with a stent in situ with pyrexia of unknown origin (PUO). He started becoming febrile following placement of stent and continued to remain febrile for duration of five months before coming to our centre. Echocardiogram showed vegetations on the aortic valve and paired blood cultures grew M. abscessus. Antibiotics including Clarithromycin were added to his treatment and a valve replacement was planned. The patient underwent valve replacement, however succumbed to the illness despite best efforts. It is difficult to diagnose M. abscessus in Gram stain as they appear as diphtheroids and may be interpreted as contaminants. Even an accurate diagnosis makes this organism difficult to treat. Early surgical intervention along with aggressive antibiotic therapy is recommended for treatment.
Collapse
Affiliation(s)
- Aditi Sondhi
- Senior Resident, Department of Microbiology, Armed Forces Medical College, Pune, India
| | - Priyanka Singh
- Resident (Cardiology), Army Institute of Cardio Thoracic Sciences (AICTS), Pune, India
| | - Kavita Bala Anand
- Professor, Department of Microbiology, Armed Forces Medical College, Pune, India
| | - Arijit Ghosh
- Professor & Head (Cardiology), Army Institute of Cardio Thoracic Sciences (AICTS), Pune, India
| | - Mahima Lall
- Classified Specialist (Microbiology), 155 Base Hospital, C/o 99 APO, India
| | - Sourav Sen
- Professor & Head, University Research Department, MUHS, Nashik, India
| |
Collapse
|
8
|
Breen P, Zimbric M, Caverly LJ. Itaconic acid inhibits nontuberculous mycobacterial growth in pH dependent manner while 4-octyl-itaconic acid enhances THP-1 clearance of nontuberculous mycobacteria in vitro. PLoS One 2024; 19:e0303516. [PMID: 38728330 PMCID: PMC11086914 DOI: 10.1371/journal.pone.0303516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
Increasingly prevalent, nontuberculous mycobacteria (NTM) infections affect approximately 20% of people with cystic fibrosis (CF). Previous studies of CF sputum identified lower levels of the host metabolite itaconate in those infected with NTM. Itaconate can inhibit the growth of M. tuberculosis (MTB) in vitro via the inhibition of the glyoxylate cycle enzyme (ICL), but its impact on NTM is unclear. To test itaconic acid's (IA) effect on NTM growth, laboratory and CF clinical strains of Mycobacterium abscessus and Mycobacterium avium were cultured in 7H9 minimal media supplemented with 1-10 mM of IA and short-chain fatty acids (SCFA). M. avium and M. abscessus grew when supplemented with SCFAs, whereas the addition of IA (≥ 10 mM) completely inhibited NTM growth. NTM supplemented with acetate or propionate and 5 mM IA displayed slower growth than NTM cultured with SCFA and ≤ 1 mM of IA. However, IA's inhibition of NTM was pH dependent; as similar and higher quantities (100 mM) of pH adjusted IA (pH 7) did not inhibit growth in vitro, while in an acidic minimal media (pH 6.1), 1 to 5 mM of non-pH adjusted IA inhibited growth. None of the examined isolates displayed the ability to utilize IA as a carbon source, and IA added to M. abscessus isocitrate lyase (ICL) decreased enzymatic activity. Lastly, the addition of cell-permeable 4-octyl itaconate (4-OI) to THP-1 cells enhanced NTM clearance, demonstrating a potential role for IA/itaconate in host defense against NTM infections.
Collapse
Affiliation(s)
- Paul Breen
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Madsen Zimbric
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Lindsay J. Caverly
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States of America
| |
Collapse
|
9
|
Drysdale M, Choate R, Brunton AE, Tiberi S, Gillespie IA, Lininger N, Shrimpton SB, Metersky M, Lapinel NC, McShane PJ, Richards CJ, Swenson C, Sharma H, Mannino D, Winthrop KL. Nontuberculous mycobacterial (NTM) infections in bronchiectasis patients: A retrospective US registry cohort study. Pulm Pharmacol Ther 2023; 83:102260. [PMID: 37741357 DOI: 10.1016/j.pupt.2023.102260] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/22/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023]
Abstract
RATIONALE Longitudinal epidemiological and clinical data are needed to improve the management of patients with bronchiectasis developing nontuberculous mycobacterial (NTM) pulmonary disease. OBJECTIVES To describe the epidemiology, patient management, and treatment outcomes of NTM infections in patients with bronchiectasis enrolled in the United States Bronchiectasis and NTM Research Registry (US BRR). METHODS This was a retrospective cohort study of patients with bronchiectasis and NTM infections enrolled with follow-up in the US BRR in 2008-2019. The study included patients with ≥1 positive NTM respiratory culture in the 24-month baseline period (baseline NTM cohort) and/or during the annual follow-up visits (incident NTM cohort). Incidence, prevalence, baseline patient characteristics, treatment exposure, treatment outcomes, and respiratory clinical outcomes were described in the baseline NTM cohort, incident NTM cohort, and both cohorts combined (prevalent NTM cohort). RESULTS Between 2008 and 2019, 37.9% (1457/3840) of patients with bronchiectasis in the US BRR met the inclusion criteria for this study and were reported to have Mycobacterium avium complex (MAC) and/or Mycobacterium abscessus complex (MABSC) infections. MAC prevalence increased steadily in the US BRR during 2009-2019; incidence was relatively stable, except for a peak in 2011 followed by a slow decrease. MABSC and mixed MAC/MABSC infections were rare. Most patients with bronchiectasis and NTM infections in the registry were female, White, and aged >65 years. The antibiotics administered most commonly reflected current guidelines. In the prevalent cohort, 44.9% of MAC infections and 37.1% of MABSC infections remained untreated during follow-up, and MAC treatment was initiated with delay (>90 days after positive NTM respiratory culture) twice as frequently as promptly (≤90 days after positive NTM respiratory culture) (68.6% vs 31.4%, respectively). The median time from diagnosis to treatment was shorter for MABSC versus MAC infections (194.0 days [interquartile range (IQR) 8.0, 380.0] vs 296.0 days [IQR 35.0, 705.0], respectively). Among patients with MAC infections who completed treatment, 27.6% were classified as cured and 29.6% as treatment failure during the annual follow-up visit window. For MABSC, these proportions were 25.0% and 28.0%, respectively. CONCLUSIONS A considerable proportion of MAC and MABSC infections were untreated or treated after initial delay/observation. MABSC infections were more likely to be treated and start treatment sooner than MAC infections. Further longitudinal studies are warranted to evaluate the monitor-with-delay approach and inform clinical guidelines.
Collapse
Affiliation(s)
| | - Radmila Choate
- Department of Epidemiology and Environmental Health, University of Kentucky College of Public Health, Lexington, KY, United States
| | - Amanda E Brunton
- Oregon Health and Science University, School of Public Health, Portland, OR, United States
| | - Simon Tiberi
- GSK, London, United Kingdom; Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | | | - Noah Lininger
- Oregon Health and Science University, School of Public Health, Portland, OR, United States
| | | | - Mark Metersky
- Department of Medicine, University of Connecticut, Farmington, CT, United States
| | - Nicole C Lapinel
- Department of Medicine, Northwell Health, New Hyde Park, NY, United States
| | - Pamela J McShane
- Department of Medicine, University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | | | | | | | - David Mannino
- Department of Medicine, University of Kentucky, Lexington, KY, United States
| | - Kevin L Winthrop
- Oregon Health and Science University, School of Public Health, Portland, OR, United States.
| |
Collapse
|
10
|
Cao Yao JC, Navas Méndez J, Tórtola Fernández MT. Analysis of Phenotypic and Genotypic Susceptibility to Clarithromycin and Amikacin of Mycobacterium abscessus Complex Strains Isolated from Cystic Fibrosis Patients. Microorganisms 2023; 11:2897. [PMID: 38138041 PMCID: PMC10745751 DOI: 10.3390/microorganisms11122897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/10/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Mycobacterium abscessus complex infections are ever on the rise. To curb their increasing evolution, we performed an in-depth study of 43 clinical isolates of cystic fibrosis patients obtained from 2009 to 2020. We identified their subspecies, uncovered their genotypic resistance profiles, characterised their antibiotic-resistant genes, and assessed their phenotypic antibiotic susceptibilities. The phenotypic and genotypic methods showed total agreement in terms of resistance to clarithromycin and amikacin. Of the 43 clinical strains, 28 belonged to M. abscessus subsp. abscessus (65.1%), 13 to M. abscessus subsp. massiliense (30.2%), and 2 to M. abscessus subsp. bolletii (4.6%). The resistant rates for clarithromycin and amikacin, the two main drugs against M. abscessus complex pulmonary infections, were 64.2% and 14.2%, respectively. We found three strains of M. abscessus subsp. abscessus that showed heteroresistance in the rrl and rrs genes, and these strains also presented double-resistance since they were macrolide- and aminoglycoside-resistant. M. abscessus subsp. abscessus showed a high minimum inhibitory concentration (MIC) and a resistant percentage larger than or equal to 88% to cefoxitin, ciprofloxacin, moxifloxacin, doxycycline, imipenem, and trimethoprim-sulfamethoxazole. These results show a panorama of the high resistance of Mycobacterium abscessus complex to current drugs for cystic fibrosis patients. Thus, other treatment methods are urgently needed.
Collapse
Affiliation(s)
- Juan Carlos Cao Yao
- Department of Molecular Biology and Biomedicine, University of Cantabria, 39011 Santander, Spain
| | - Jesús Navas Méndez
- Department of Molecular Biology and Biomedicine, University of Cantabria, 39011 Santander, Spain
| | - María Teresa Tórtola Fernández
- Mycobacteria Unit, Clinical Laboratories, Microbiology Service, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona; 08035 Barcelona, Spain
| |
Collapse
|
11
|
Pachathundikandi SK, Tegtmeyer N, Backert S. Masking of typical TLR4 and TLR5 ligands modulates inflammation and resolution by Helicobacter pylori. Trends Microbiol 2023; 31:903-915. [PMID: 37012092 DOI: 10.1016/j.tim.2023.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/28/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023]
Abstract
Helicobacter pylori is a paradigm of chronic bacterial infection and is associated with peptic ulceration and malignancies. H. pylori uses specific masking mechanisms to avoid canonical ligands from activating Toll-like receptors (TLRs), such as lipopolysaccharide (LPS) modification and specific flagellin sequences that are not detected by TLR4 and TLR5, respectively. Thus, it was believed for a long time that H. pylori evades TLR recognition as a crucial strategy for immune escape and bacterial persistence. However, recent data indicate that multiple TLRs are activated by H. pylori and play a role in the pathology. Remarkably, H. pylori LPS, modified through changes in acylation and phosphorylation, is mainly sensed by other TLRs (TLR2 and TLR10) and induces both pro- and anti-inflammatory responses. In addition, two structural components of the cag pathogenicity island-encoded type IV secretion system (T4SS), CagL and CagY, were shown to contain TLR5-activating domains. These domains stimulate TLR5 and enhance immunity, while LPS-driven TLR10 signaling predominantly activates anti-inflammatory reactions. Here, we discuss the specific roles of these TLRs and masking mechanisms during infection. Masking of typical TLR ligands combined with evolutionary shifting to other TLRs is unique for H. pylori and has not yet been described for any other species in the bacterial kingdom. Finally, we highlight the unmasked T4SS-driven activation of TLR9 by H. pylori, which mainly triggers anti-inflammatory responses.
Collapse
Affiliation(s)
- Suneesh Kumar Pachathundikandi
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Dept. of Biology, Chair of Microbiology, Staudtstr. 5, 91058 Erlangen, Germany; Babasaheb Bhimrao Ambedkar University, Dept. of Environmental Microbiology, School of Earth and Environmental Sciences, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Nicole Tegtmeyer
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Dept. of Biology, Chair of Microbiology, Staudtstr. 5, 91058 Erlangen, Germany
| | - Steffen Backert
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Dept. of Biology, Chair of Microbiology, Staudtstr. 5, 91058 Erlangen, Germany.
| |
Collapse
|
12
|
Illouz M, Leclercq LD, Dessenne C, Hatfull G, Daher W, Kremer L, Guérardel Y. Multiple Mycobacterium abscessus O-acetyltransferases influence glycopeptidolipid structure and colony morphotype. J Biol Chem 2023; 299:104979. [PMID: 37390990 PMCID: PMC10400925 DOI: 10.1016/j.jbc.2023.104979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023] Open
Abstract
Mycobacterium abscessus causes severe lung infections. Clinical isolates can have either smooth (S) or rough (R) colony morphotypes; of these, S but not R variants have abundant cell wall glycopeptidolipids (GPL) consisting of a peptidolipid core substituted by a 6-deoxy-α-L-talose (6-dTal) and rhamnose residues. Deletion of gtf1, encoding the 6-dTal transferase, results in the S-to-R transition, mycobacterial cord formation, and increased virulence, underscoring the importance of 6-dTal in infection outcomes. However, since 6-dTal is di-O-acetylated, it is unclear whether the gtf1 mutant phenotypes are related to the loss of the 6-dTal or the result of the absence of acetylation. Here, we addressed whether M. abscessus atf1 and atf2, encoding two putative O-acetyltransferases located within the gpl biosynthetic locus, transfer acetyl groups to 6-dTal. We found deletion of atf1 and/or atf2 did not drastically alter the GPL acetylation profile, suggesting there are additional enzymes with redundant functions. We subsequently identified two paralogs of atf1 and atf2, MAB_1725c and MAB_3448. While deletion of MAB_1725c and MAB_3448 had no effect on GPL acetylation, the triple atf1-atf2-MAB_1725c mutant did not synthetize fully acetylated GPL, and the quadruple mutant was totally devoid of acetylated GPL. Moreover, both triple and quadruple mutants accumulated hyper-methylated GPL. Finally, we show deletion of atf genes resulted in subtle changes in colony morphology but had no effect on M. abscessus internalization by macrophages. Overall, these findings reveal the existence of functionally redundant O-acetyltransferases and suggest that O-acetylation influences the glycan moiety of GPL by deflecting biosynthetic flux in M. abscessus.
Collapse
Affiliation(s)
- Morgane Illouz
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Louis-David Leclercq
- UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, CNRS, Université de Lille, Lille, France
| | - Clara Dessenne
- UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, CNRS, Université de Lille, Lille, France
| | - Graham Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Wassim Daher
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France; INSERM, IRIM, Montpellier, France
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France; INSERM, IRIM, Montpellier, France.
| | - Yann Guérardel
- UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, CNRS, Université de Lille, Lille, France; Institute for Glyco-Core Research (iGCORE), Gifu University, Gifu, Japan.
| |
Collapse
|
13
|
Li A, He S, Li J, Zhang Z, Li B, Chu H. Omadacycline, Eravacycline, and Tigecycline Express Anti-Mycobacterium abscessus Activity In Vitro. Microbiol Spectr 2023; 11:e0071823. [PMID: 37140428 PMCID: PMC10269442 DOI: 10.1128/spectrum.00718-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/17/2023] [Indexed: 05/05/2023] Open
Abstract
Mycobacterium abscessus infections are increasing worldwide necessitating the development of new antibiotics and treatment regimens. The utility of third-generation tetracycline antibiotics was reestablished; their anti-M. abscessus activity needs further study. The activities of omadacycline (OMC), eravacycline (ERC), tigecycline (TGC), and sarecycline (SAC) were tested against two reference strains and 193 clinical M. abscessus isolates at different temperatures (30°C and 37°C). The minimum bactericidal concentrations (MBCs) of the four drugs were determined to distinguish between their bactericidal and bacteriostatic activities. The MICs of OMC, ERC, and TGC for the reference strains and clinical isolates were summarized and compared. OMC, ERC, and TGC exhibited a high level of bacteriostatic activity against M. abscessus. The MICs of OMC and ERC for M. abscess remained stable, while the MICs of TGC for the isolates/strains increased with increasing temperature. Notably, the MICs of OMC for M. abscessus isolates obtained in the United States are lower than for those obtained in China. IMPORTANCE The antimicrobial activities of four third-generation tetracycline-class drugs, omadacycline (OMC), eravacycline (ERC), tigecycline (TGC), and sarecycline (SAC), were determined for 193 M. abscessus isolates. The activities of the four drugs at two different temperatures (30°C and 37°C) were also tested. OMC, ERC, and TGC exhibited significant activity against M. abscessus. The anti-M. abscessus activity of TGC increased when the temperature was increased from 30°C to 37°C; the activities of OMC and ERC, on the other hand, remained the same. We found that in vitro MICs of OMC against Chinese and American isolates were distinct. Evaluations in in vivo models of M. abscessus disease or in the clinical setting will provide more accurate insight into potency of OMC against distinct isolates.
Collapse
Affiliation(s)
- Anqi Li
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Medicine, Tongji University, Shanghai, China
| | - Siyuan He
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Medicine, Tongji University, Shanghai, China
| | - Jingren Li
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Medicine, Tongji University, Shanghai, China
| | - Zhemin Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Medicine, Tongji University, Shanghai, China
| | - Bing Li
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Medicine, Tongji University, Shanghai, China
| | - Haiqing Chu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
14
|
Gorzynski M, De Ville K, Week T, Jaramillo T, Danelishvili L. Understanding the Phage-Host Interaction Mechanism toward Improving the Efficacy of Current Antibiotics in Mycobacterium abscessus. Biomedicines 2023; 11:biomedicines11051379. [PMID: 37239050 DOI: 10.3390/biomedicines11051379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Pulmonary infections caused by Mycobacterium abscessus (MAB) have been increasing in incidence in recent years, leading to chronic and many times fatal infections due to MAB's natural resistance to most available antimicrobials. The use of bacteriophages (phages) in clinics is emerging as a novel treatment strategy to save the lives of patients suffering from drug-resistant, chronic, and disseminated infections. The substantial research indicates that phage-antibiotic combination therapy can display synergy and be clinically more effective than phage therapy alone. However, there is limited knowledge in the understanding of the molecular mechanisms in phage-mycobacteria interaction and the synergism of phage-antibiotic combinations. We generated the lytic mycobacteriophage library and studied phage specificity and the host range in MAB clinical isolates and characterized the phage's ability to lyse the pathogen under various environmental and mammalian host stress conditions. Our results indicate that phage lytic efficiency is altered by environmental conditions, especially in conditions of biofilm and intracellular states of MAB. By utilizing the MAB gene knockout mutants of the MAB_0937c/MmpL10 drug efflux pump and MAB_0939/pks polyketide synthase enzyme, we discovered the surface glycolipid diacyltrehalose/polyacyltrehalose (DAT/PAT) as one of the major primary phage receptors in mycobacteria. We also established a set of phages that alter the MmpL10 multidrug efflux pump function in MAB through an evolutionary trade-off mechanism. The combination of these phages with antibiotics significantly decreases the number of viable bacteria when compared to phage or antibiotic-alone treatments. This study deepens our understanding of phage-mycobacteria interaction mechanisms and identifies therapeutic phages that can lower bacterial fitness by impairing an antibiotic efflux function and attenuating the MAB intrinsic resistance mechanism via targeted therapy.
Collapse
Affiliation(s)
- Mylene Gorzynski
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR 97331, USA
| | - Katalla De Ville
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
- Department of Biochemistry & Molecular Biology, College of Science, Oregon State University, Corvallis, OR 97331, USA
| | - Tiana Week
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
- Department of Bioengineering, College of Engineering, Oregon State University, Corvallis, OR 97331, USA
| | - Tiana Jaramillo
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
- Department of Animal Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Lia Danelishvili
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
15
|
Parmar S, Tocheva EI. The cell envelope of Mycobacterium abscessus and its role in pathogenesis. PLoS Pathog 2023; 19:e1011318. [PMID: 37200238 DOI: 10.1371/journal.ppat.1011318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Abstract
Mycobacterium abscessus is a nontuberculosis mycobacterium (NTM) that has shown an exponential rise in its ability to cause disease. Due to its ubiquitous presence in the environment, M. abscessus is widely implicated in secondary exacerbations of many nosocomial infections and genetic respiratory disorders, such as cystic fibrosis (CF). Contrary to other rapidly growing NTMs, the cell envelope of M. abscessus harbors several prominent features and undergoes modifications that are responsible for its pathogenesis. Compositional changes of the mycobacterial outer membrane (MOM) significantly decrease the presence of glycopeptidolipids (GPLs) and enable the transition from a colonizing, smooth morphotype into a virulent, rough morphotype. The GPLs are transported to the MOM by the Mycobacterial membrane proteins Large (MmpL), which further act as drug efflux pumps and confer antibiotic resistance. Lastly, M. abscessus possesses 2 type VII secretion systems (T7SS): ESX-3 and ESX-4, both of which have recently been implicated in host-pathogen interactions and virulence. This review summarizes the current knowledge of M. abscessus pathogenesis and highlights the clinically relevant association between the structure and functions of its cell envelope.
Collapse
Affiliation(s)
- Shweta Parmar
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Elitza I Tocheva
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
16
|
Santos A, Pinto M, Carneiro S, Silva S, Rodrigues I, Munhá J, Gomes JP, Macedo R. Microevolution of a Mycobacteroides abscessus subsp. bolletii strain in a clinical persistent infection. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 112:105437. [PMID: 37100339 DOI: 10.1016/j.meegid.2023.105437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/04/2023] [Accepted: 04/21/2023] [Indexed: 04/28/2023]
Abstract
Mycobacteroides abscessus complex (MAB), a fast-growing nontuberculous mycobacterium, is emerging as a significant infectious disease threat, due to both intrinsic and acquired resistance mechanisms to antibiotics and disinfectants and the need for extensive and multidrug regimens for treatment. Despite the prolonged regimens, outcomes are poor and persistence cases have been reported. Here, we describe clinical, microbiologic and genomic features of a M. abscessus subsp. bolletii (M. bolletii) strain consecutively isolated from a patient within an eight-year infection period. From April 2014 to September 2021, the National Reference Laboratory for Mycobacteria received eight strains isolated from a male patient. Species identification, molecular resistance profile and phenotypic drug susceptibility were determined. Five of these isolates were recovered for further in-depth genomic analysis. Genomic analysis confirmed the multidrug resistant pattern of the strain and also other genetic changes associated with adaptation to environment and defence mechanisms. We highlight the identification of new mutations in locus MAB_1881c and in locus MAB_4099c (mps1 gene), already described as associated with macrolides resistance and morphotype switching, respectively. Additionally, we also observed the emergence and fixation of a mutation in locus MAB_0364c that appeared at a frequency of 36% for the 2014 isolate, 57% for the 2015 isolate and 100% for the 2017 and 2021 isolates, clearly illustrating a fixation process underlying a microevolution of the MAB strain within the patient. Altogether these results suggest that the observed genetic alterations are a reflection of the bacterial population's continuous adaptation and survival to the host environment during infection, contributing to persistence and treatment failure.
Collapse
Affiliation(s)
- Andrea Santos
- National Reference Laboratory for Mycobacteria, Department of Infectious Diseases, National Institute of Health (INSA), Lisbon, Portugal
| | - Miguel Pinto
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health (INSA), Lisbon, Portugal
| | - Sofia Carneiro
- National Reference Laboratory for Mycobacteria, Department of Infectious Diseases, National Institute of Health (INSA), Lisbon, Portugal; Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Sónia Silva
- National Reference Laboratory for Mycobacteria, Department of Infectious Diseases, National Institute of Health (INSA), Lisbon, Portugal
| | - Irene Rodrigues
- National Reference Laboratory for Mycobacteria, Department of Infectious Diseases, National Institute of Health (INSA), Lisbon, Portugal
| | - João Munhá
- Pulmonology Unit of Portimão Hospital, Algarve University Hospital Centre, Algarve, Portugal
| | - João Paulo Gomes
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health (INSA), Lisbon, Portugal
| | - Rita Macedo
- National Reference Laboratory for Mycobacteria, Department of Infectious Diseases, National Institute of Health (INSA), Lisbon, Portugal.
| |
Collapse
|
17
|
Gilliland HN, Beckman OK, Olive AJ. A Genome-Wide Screen in Macrophages Defines Host Genes Regulating the Uptake of Mycobacterium abscessus. mSphere 2023; 8:e0066322. [PMID: 36794958 PMCID: PMC10117111 DOI: 10.1128/msphere.00663-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/26/2023] [Indexed: 02/17/2023] Open
Abstract
The interactions between a host cell and a pathogen can dictate disease outcomes and are important targets for host-directed therapies. Mycobacterium abscessus (Mab) is a highly antibiotic resistant, rapidly growing nontuberculous mycobacterium that infects patients with chronic lung diseases. Mab can infect host immune cells, such as macrophages, which contribute to its pathogenesis. However, our understanding of initial host-Mab interactions remains unclear. Here, we developed a functional genetic approach to define these host-Mab interactions by coupling a Mab fluorescent reporter with a genome-wide knockout library in murine macrophages. We used this approach to conduct a forward genetic screen to define host genes that contribute to the uptake of Mab by macrophages. We identified known regulators of phagocytosis, such as the integrin ITGB2, and uncovered a key requirement for glycosaminoglycan (sGAG) synthesis for macrophages to efficiently take up Mab. CRISPR-Cas9 targeting of three key sGAG biosynthesis regulators, Ugdh, B3gat3, and B4galt7 resulted in reduced uptake of both smooth and rough Mab variants by macrophages. Mechanistic studies suggest that sGAGs function upstream of pathogen engulfment and are required for the uptake of Mab, but not Escherichia coli or latex beads. Further investigation found that the loss of sGAGs reduced the surface expression, but not the mRNA expression, of key integrins, suggesting an important role for sGAGs in modulating surface receptor availability. Together, these studies globally define and characterize important regulators of macrophage-Mab interactions and are a first step to understanding host genes that contribute to Mab pathogenesis and disease. IMPORTANCE Pathogen interactions with immune cells like macrophages contribute to pathogenesis, yet the mechanisms underlying these interactions remain largely undefined. For emerging respiratory pathogens, like Mycobacterium abscessus, understanding these host-pathogen interactions is important to fully understand disease progression. Given that M. abscessus is broadly recalcitrant to antibiotic treatments, new therapeutic approaches are needed. Here, we leveraged a genome-wide knockout library in murine macrophages to globally define host genes required for M. abscessus uptake. We identified new macrophage uptake regulators during M. abscessus infection, including a subset of integrins and the glycosaminoglycan synthesis (sGAG) pathway. While ionic characteristics of sGAGs are known to drive pathogen-cell interactions, we discovered a previously unrecognized requirement for sGAGs to maintain robust surface expression of key uptake receptors. Thus, we developed a flexible forward-genetic pipeline to define important interactions during M. abscessus infection and more broadly identified a new mechanism by which sGAGs control pathogen uptake.
Collapse
Affiliation(s)
- Haleigh N. Gilliland
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Olivia K. Beckman
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Andrew J. Olive
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
18
|
Recchia D, Stelitano G, Stamilla A, Gutierrez DL, Degiacomi G, Chiarelli LR, Pasca MR. Mycobacterium abscessus Infections in Cystic Fibrosis Individuals: A Review on Therapeutic Options. Int J Mol Sci 2023; 24:ijms24054635. [PMID: 36902066 PMCID: PMC10002592 DOI: 10.3390/ijms24054635] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/02/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Mycobacterium abscessus is an opportunistic pathogen that mainly colonizes and infects cystic fibrosis patients' lungs. M. abscessus is naturally resistant to many antibiotics such as rifamycin, tetracyclines and β-lactams. The current therapeutic regimens are not very effective and are mostly based on repurposed drugs used against Mycobacterium tuberculosis infections. Thus, new approaches and novel strategies are urgently needed. This review aims to provide an overview of the latest ongoing findings to fight M. abscessus infections by analyzing emerging and alternative treatments, novel drug delivery strategies, and innovative molecules.
Collapse
|
19
|
Karam J, Blanchet FP, Vivès É, Boisguérin P, Boudehen YM, Kremer L, Daher W. Mycobacterium abscessus alkyl hydroperoxide reductase C promotes cell invasion by binding to tetraspanin CD81. iScience 2023; 26:106042. [PMID: 36818301 PMCID: PMC9929602 DOI: 10.1016/j.isci.2023.106042] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/19/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Mycobacterium abscessus (Mab) is an increasingly recognized pulmonary pathogen. How Mab is internalized by macrophages and establishes infection remains unknown. Here, we show that Mab uptake is significantly reduced in macrophages pre-incubated with neutralizing anti-CD81 antibodies or in cells in which the large extracellular loop (LEL) of CD81 has been deleted. Saturation of Mab with either soluble GST-CD81-LEL or CD81-LEL-derived peptides also diminished internalization of the bacilli. The mycobacterial alkyl hydroperoxide reductase C (AhpC) was unveiled as a major interactant of CD81-LEL. Pre-exposure of macrophages with soluble AhpC inhibited mycobacterial uptake whereas overexpression of AhpC in Mab enhanced its internalization. Importantly, pre-incubation of macrophages with anti-CD81-LEL antibodies inhibited phagocytosis of AhpC-coated beads, indicating that AhpC is a direct interactant of CD81-LEL. Conditional depletion of AhpC in Mab correlated with decreased internalization of Mab. These compelling data unravel a previously unexplored role for CD81/AhpC to promote uptake of pathogenic mycobacteria by host cells.
Collapse
Affiliation(s)
- Jona Karam
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 Route de Mende, 34293 Montpellier, France
| | - Fabien P. Blanchet
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 Route de Mende, 34293 Montpellier, France
- INSERM, IRIM, 34293 Montpellier, France
| | - Éric Vivès
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR, 9214 Montpellier, France
| | - Prisca Boisguérin
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR, 9214 Montpellier, France
| | - Yves-Marie Boudehen
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 Route de Mende, 34293 Montpellier, France
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 Route de Mende, 34293 Montpellier, France
- INSERM, IRIM, 34293 Montpellier, France
| | - Wassim Daher
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 Route de Mende, 34293 Montpellier, France
- INSERM, IRIM, 34293 Montpellier, France
| |
Collapse
|
20
|
Amarh ED, Dedrick RM, Garlena RA, Russell DA, Gauthier CH, Aull HG, Abad L, Jacobs-Sera D, Akusobi C, Rubin EJ, Hatfull GF. Unusual prophages in Mycobacterium abscessus genomes and strain variations in phage susceptibilities. PLoS One 2023; 18:e0281769. [PMID: 36795728 PMCID: PMC9934374 DOI: 10.1371/journal.pone.0281769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Mycobacterium abscessus infections are relatively common in patients with cystic fibrosis and are clinically challenging, with frequent intrinsic resistance to antibiotics. Therapeutic treatment with bacteriophages offers some promise but faces many challenges including substantial variation in phage susceptibilities among clinical isolates, and the need to personalize therapies for individual patients. Many strains are not susceptible to any phages or are not efficiently killed by lytic phages, including all smooth colony morphotype strains tested to-date. Here, we analyze a set of new M. abscessus isolates for the genomic relationships, prophage content, spontaneous phage release, and phage susceptibilities. We find that prophages are common in these M. abscessus genomes, but some have unusual arrangements, including tandemly integrated prophages, internal duplications, and they participate in active exchange of polymorphic toxin-immunity cassettes secreted by ESX systems. Relatively few strains are efficiently infected by any mycobacteriophages, and the infection patterns do not reflect the overall phylogenetic relationships of the strains. Characterization of these strains and their phage susceptibility profiles will help to advance the broader application of phage therapies for NTM infections.
Collapse
Affiliation(s)
- Elizabeth D. Amarh
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Rebekah M. Dedrick
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Rebecca A. Garlena
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Daniel A. Russell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Christian H. Gauthier
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Haley G. Aull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Lawrence Abad
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Deborah Jacobs-Sera
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Chidiebere Akusobi
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| | - Eric J. Rubin
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| | - Graham F. Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States of America
| |
Collapse
|
21
|
Sullivan JR, Yao J, Courtine C, Lupien A, Herrmann J, Müller R, Behr MA. Natural Products Lysobactin and Sorangicin A Show In Vitro Activity against Mycobacterium abscessus Complex. Microbiol Spectr 2022; 10:e0267222. [PMID: 36342177 PMCID: PMC9769517 DOI: 10.1128/spectrum.02672-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/08/2022] [Indexed: 11/09/2022] Open
Abstract
The prevalence of lung disease caused by Mycobacterium abscessus is increasing among patients with cystic fibrosis. M. abscessus is a multidrug resistant opportunistic pathogen that is notoriously difficult to treat due to a lack of efficacious therapeutic regimens. Currently, there are no standard regimens, and treatment guidelines are based empirically on drug susceptibility testing. Thus, novel antibiotics are required. Natural products represent a vast pool of biologically active compounds that have a history of being a good source of antibiotics. Here, we screened a library of 517 natural products purified from fermentations of various bacteria, fungi, and plants against M. abscessus ATCC 19977. Lysobactin and sorangicin A were active against the M. abscessus complex and drug resistant clinical isolates. These natural products merit further consideration to be included in the M. abscessus drug pipeline. IMPORTANCE The many thousands of people living with cystic fibrosis are at a greater risk of developing a chronic lung infection caused by Mycobacterium abscessus. Since M. abscessus is clinically resistant to most anti-TB drugs available, treatment options are limited to macrolides. Despite macrolide-based therapies, cure rates for M. abscessus lung infections are 50%. Using an in-house library of curated natural products, we identified lysobactin and sorangicin A as novel scaffolds for the future development of antimicrobials for patients with M. abscessus infections.
Collapse
Affiliation(s)
- Jaryd R. Sullivan
- Department of Microbiology & Immunology, McGill University, Montréal, Québec, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- McGill International TB Centre, Montréal, Québec, Canada
| | - Jacqueline Yao
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Christophe Courtine
- Department of Microbiology & Immunology, McGill University, Montréal, Québec, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Andréanne Lupien
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- McGill International TB Centre, Montréal, Québec, Canada
| | - Jennifer Herrmann
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI),Saarbrücken, Germany
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI),Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Marcel A. Behr
- Department of Microbiology & Immunology, McGill University, Montréal, Québec, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- McGill International TB Centre, Montréal, Québec, Canada
- Department of Medicine, McGill University Health Centre, Montréal, Québec, Canada
| |
Collapse
|
22
|
Nava A, Hahn AC, Wu TH, Byrd TF. Mice with lung airway ciliopathy develop persistent Mycobacterium abscessus lung infection and have a proinflammatory lung phenotype associated with decreased T regulatory cells. Front Immunol 2022; 13:1017540. [PMID: 36505420 PMCID: PMC9732727 DOI: 10.3389/fimmu.2022.1017540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
Introduction Human pulmonary infection with non-tuberculous mycobacteria (NTM) such as Mycobacterium abscessus (Mabs) occurs in seemingly immunocompetent patients with underlying structural lung disease such as bronchiectasis in which normal ciliary function is perturbed. In addition to alterations in mucociliary clearance, the local immunologic milieu may be altered in patients with structural lung disease, but the nature of these changes and how they relate to NTM persistence remain unclear. Methods We used a mouse strain containing a conditional floxed allele of the gene IFT88, which encodes for the protein Polaris. Deletion of this gene in adult mice reportedly leads to loss of cilia on lung airway epithelium and to the development of bronchiectasis. In a series of experiments, IFT88 control mice and IFT88 KO mice received different preparations of Mabs lung inocula with lung CFU assessed out to approximately 8 weeks post-infection. In addition, cytokine levels in bronchoalveolar lavage (BAL) fluid, lung T cell subset analysis, and lung histopathology and morphometry were performed at various time points. Results Mabs embedded in agarose beads persisted in the lungs of IFT88 KO mice out to approximately 8 weeks (54 days), while Mabs agarose beads in the lungs of IFT88 control mice was cleared from the lungs of all mice at this time point. T cells subset analysis showed a decrease in the percentage of CD4+FoxP3+ T cells in the total lymphocyte population in the lungs of IFT88 KO mice relative to IFT88 control mice. Proinflammatory cytokines were elevated in the BAL fluid from infected IFT88 KO mice compared to infected IFT88 control mice, and histopathology showed an increased inflammatory response and greater numbers of granulomas in the lungs of infected IFT88 KO mice compared to the lungs of infected IFT88 control mice. Scanning lung morphometry did not show a significant difference comparing lung airway area and lung airway perimeter between IFT88 KO mice and IFT88 control mice. Discussion Persistent lung infection in our model was established using Mabs embedded in agarose beads. The utility of using IFT88 mice is that a significant difference in Mabs lung CFU is observed comparing IFT88 KO mice to IFT88 control mice thus allowing for studies assessing the mechanism(s) of Mabs lung persistence. Our finding of minimal differences in lung airway area and lung airway diameter comparing IFT88 KO mice to IFT88 control mice suggests that the development of a proinflammatory lung phenotype in IFT88 KO mice contributes to Mabs lung persistence independent of bronchiectasis. The contribution of cilia to immune regulation is increasingly recognized, and our results suggest that ciliopathy associated with structural lung disease may play a role in NTM pulmonary infection via alteration of the local immunologic lung milieu.
Collapse
Affiliation(s)
- Audrey Nava
- Center for Infectious Disease and Immunity, The University of New Mexico Health Science Center, Albuquerque, NM, United States
| | - Andrew C. Hahn
- Center for Infectious Disease and Immunity, The University of New Mexico Health Science Center, Albuquerque, NM, United States
| | - Terry H. Wu
- Center for Infectious Disease and Immunity, The University of New Mexico Health Science Center, Albuquerque, NM, United States,Department of Medicine, The University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Thomas F. Byrd
- Center for Infectious Disease and Immunity, The University of New Mexico Health Science Center, Albuquerque, NM, United States,Department of Medicine, The University of New Mexico School of Medicine, Albuquerque, NM, United States,*Correspondence: Thomas F. Byrd,
| |
Collapse
|
23
|
Paulowski L, Beckham KSH, Johansen MD, Berneking L, Van N, Degefu Y, Staack S, Sotomayor FV, Asar L, Rohde H, Aldridge BB, Aepfelbacher M, Parret A, Wilmanns M, Kremer L, Combrink K, Maurer FP. C25-modified rifamycin derivatives with improved activity against Mycobacterium abscessus. PNAS NEXUS 2022; 1:pgac130. [PMID: 36714853 PMCID: PMC9802118 DOI: 10.1093/pnasnexus/pgac130] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/05/2022] [Indexed: 02/01/2023]
Abstract
Infections caused by Mycobacterium abscessus are difficult to treat due to its intrinsic resistance to most antibiotics. Formation of biofilms and the capacity of M. abscessus to survive inside host phagocytes further complicate eradication. Herein, we explored whether addition of a carbamate-linked group at the C25 position of rifamycin SV blocks enzymatic inactivation by ArrMab, an ADP-ribosyltransferase conferring resistance to rifampicin (RMP). Unlike RMP, 5j, a benzyl piperidine rifamycin derivative with a morpholino substituted C3 position and a naphthoquinone core, is not modified by purified ArrMab. Additionally, we show that the ArrMab D82 residue is essential for catalytic activity. Thermal profiling of ArrMab in the presence of 5j, RMP, or rifabutin shows that 5j does not bind to ArrMab. We found that the activity of 5j is comparable to amikacin against M. abscessus planktonic cultures and pellicles. Critically, 5j also exerts potent antimicrobial activity against M. abscessus in human macrophages and shows synergistic activity with amikacin and azithromycin.
Collapse
Affiliation(s)
| | | | | | | | - Nhi Van
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine and Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, MA 02111, USA
| | - Yonatan Degefu
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine and Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, MA 02111, USA
| | - Sonja Staack
- European Molecular Biology Laboratory, 22607 Hamburg, Germany
| | - Flor Vasquez Sotomayor
- National and WHO Supranational Reference Center for Mycobacteria, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany,Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Lucia Asar
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Holger Rohde
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Bree B Aldridge
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine and Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, MA 02111, USA
| | - Martin Aepfelbacher
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Annabel Parret
- European Molecular Biology Laboratory, 22607 Hamburg, Germany,Charles River Laboratories, 2340 Beerse, Belgium
| | - Matthias Wilmanns
- European Molecular Biology Laboratory, 22607 Hamburg, Germany,University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 34293 Montpellier, France,INSERM, Institut de Recherche en Infectiologie de Montpellier, 34293 Montpellier, France
| | - Keith Combrink
- Department of Chemistry and Biochemistry, Texas A&M International University, Laredo, TX 77843, USA,Department of Chemistry, Blinn College, Bryan Campus, Brenham, TX 77833, USA
| | | |
Collapse
|
24
|
Lanni A, Borroni E, Iacobino A, Russo C, Gentile L, Fattorini L, Giannoni F. Activity of Drug Combinations against Mycobacterium abscessus Grown in Aerobic and Hypoxic Conditions. Microorganisms 2022; 10:microorganisms10071421. [PMID: 35889140 PMCID: PMC9316547 DOI: 10.3390/microorganisms10071421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/30/2022] Open
Abstract
Infections caused by Mycobacterium abscessus (Mab), an environmental non-tuberculous mycobacterium, are difficult to eradicate from patients with pulmonary diseases such as cystic fibrosis and bronchiectasis even after years of antibiotic treatments. In these people, the low oxygen pressure in mucus and biofilm may restrict Mab growth from actively replicating aerobic (A) to non-replicating hypoxic (H) stages, which are known to be extremely drug-tolerant. After the exposure of Mab A and H cells to drugs, killing was monitored by measuring colony-forming units (CFU) and regrowth in liquid medium (MGIT 960) of 1-day-old A cells (A1) and 5-day-old H cells (H5). Mab killing was defined as a lack of regrowth of drug-exposed cells in MGIT tubes after >50 days of incubation. Out of 18 drugs tested, 14-day treatments with bedaquiline-amikacin (BDQ-AMK)-containing three-drug combinations were very active against A1 + H5 cells. However, drug-tolerant cells (persisters) were not killed, as shown by CFU curves with typical bimodal trends. Instead, 56-day treatments with the nitrocompounds containing combinations BDQ-AMK-rifabutin-clarithromycin-nimorazole and BDQ-AMK-rifabutin-clarithromycin-metronidazole-colistin killed all A1 + H5 Mab cells in 42 and 56 days, respectively, as shown by lack of regrowth in agar and MGIT medium. Overall, these data indicated that Mab persisters may be killed by appropriate drug combinations.
Collapse
Affiliation(s)
- Alessio Lanni
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.L.); (A.I.); (L.F.)
| | - Emanuele Borroni
- Emerging Bacterial Pathogens Unit, San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Angelo Iacobino
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.L.); (A.I.); (L.F.)
| | - Cristina Russo
- Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (C.R.); (L.G.)
| | - Leonarda Gentile
- Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (C.R.); (L.G.)
| | - Lanfranco Fattorini
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.L.); (A.I.); (L.F.)
| | - Federico Giannoni
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.L.); (A.I.); (L.F.)
- Correspondence: ; Tel.: +39-06-49902318; Fax: +39-06-49387112
| |
Collapse
|
25
|
Tabaja H, Jensen KL, Rivera CG, Misra A, Pruthi RK, Vergidis P. Multiple Simultaneous Infections with Nontuberculous Mycobacteria in the Setting of GATA2 Mutation and Myelodysplastic Syndrome. Open Forum Infect Dis 2022; 9:ofac309. [PMID: 35891688 PMCID: PMC9308453 DOI: 10.1093/ofid/ofac309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/24/2022] [Indexed: 11/29/2022] Open
Abstract
GATA2 mutation can result in profoundly reduced monocytes, dendritic cells, natural killer cells, and B cells, and is associated with a predisposition for recurrent and disseminated nontuberculous mycobacterial (NTM) infections and myelodysplasias. Herein, we describe a unique case of 3 simultaneous disseminated NTM infections in a patient with GATA2 mutations.
Collapse
Affiliation(s)
- Hussam Tabaja
- Division of Public Health, Infectious Diseases and Occupational Medicine, Mayo Clinic Rochester , MN , USA
| | - Kelsey L Jensen
- Department of Pharmacy Services, Mayo Clinic Health System – Austin , MN , USA
| | | | - Anisha Misra
- Division of Clinical Microbiology, Mayo Clinic , Rochester, MN , USA
| | - Rajiv K Pruthi
- Division of Hematology, Mayo Clinic , Rochester, MN , USA
| | - Paschalis Vergidis
- Division of Public Health, Infectious Diseases and Occupational Medicine, Mayo Clinic Rochester , MN , USA
| |
Collapse
|
26
|
Sur S, Patra T, Karmakar M, Banerjee A. Mycobacterium abscessus: insights from a bioinformatic perspective. Crit Rev Microbiol 2022:1-16. [PMID: 35696783 DOI: 10.1080/1040841x.2022.2082268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mycobacterium abscessus is a nontuberculous mycobacterium, associated with broncho-pulmonary infections in individuals suffering from cystic fibrosis, bronchiectasis, and pulmonary diseases. The risk factors for transmission include biofilms, contaminated water resources, fomites, and infected individuals. M. abscessus is extensively resistant to antibiotics. To date, there is no vaccine and combination antibiotic therapy is followed. However, drug toxicities, low cure rates, and high cost of treatment make it imperfect. Over the last 20 years, bioinformatic studies on M. abscessus have advanced our understanding of the pathogen. This review integrates knowledge from the analysis of genomes, microbiomes, genomic variations, phylogeny, proteome, transcriptome, secretome, antibiotic resistance, and vaccine design to further our understanding. The utility of genome-based studies in comprehending disease progression, surveillance, tracing transmission routes, and epidemiological outbreaks on a global scale has been highlighted. Furthermore, this review underlined the importance of using computational methodologies for pinpointing factors responsible for pathogen survival and resistance. We reiterate the significance of interdisciplinary research to fight M. abscessus. In a nutshell, the outcome of computational studies can go a long way in creating novel therapeutic avenues to control M. abscessus mediated pulmonary infections.
Collapse
Affiliation(s)
- Saubashya Sur
- Postgraduate Department of Botany, Ramananda College, Bishnupur, India
| | - Tanushree Patra
- Postgraduate Department of Botany, Ramananda College, Bishnupur, India
| | - Mistu Karmakar
- Postgraduate Department of Botany, Ramananda College, Bishnupur, India
| | - Anindita Banerjee
- Postgraduate Department of Botany, Ramananda College, Bishnupur, India
| |
Collapse
|
27
|
Aw KM, Ng HF, Lee CL, Zin T, Ngeow YF. RshA mutations contributing to tigecycline resistance in Mycobacteroides abscessus. J Med Microbiol 2022; 71. [PMID: 35700112 DOI: 10.1099/jmm.0.001547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tigecycline is an important rescue antibiotic for many bacterial infections. In Mycobacteroides abscessus, tigecycline resistance has been associated with dysregulated stress response caused by aberrations in the interaction of the SigH and RshA factors. In this study, two tigecycline-resistant mutants of M. abscessus (CL5A and CL6A) with mutations in the rshA gene were studied using gene complementation, RT-qPCR and the bacterial adenylate cyclase two-hybrid (BACTH) system. The results supported the premise that mutations in the rshA interrupt the RshA-SigH interaction to cause the overexpression of the sigH gene that leads to tigecycline resistance or reduced susceptibility.
Collapse
Affiliation(s)
- Kar Men Aw
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Petaling Jaya, Malaysia
| | - Hien Fuh Ng
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Petaling Jaya, Malaysia
| | - Col Lin Lee
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Petaling Jaya, Malaysia
| | - Thaw Zin
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Petaling Jaya, Malaysia
| | - Yun Fong Ngeow
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Petaling Jaya, Malaysia
| |
Collapse
|
28
|
Daher W, Leclercq LD, Johansen MD, Hamela C, Karam J, Trivelli X, Nigou J, Guérardel Y, Kremer L. Glycopeptidolipid glycosylation controls surface properties and pathogenicity in Mycobacterium abscessus. Cell Chem Biol 2022; 29:910-924.e7. [PMID: 35358417 DOI: 10.1016/j.chembiol.2022.03.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/17/2021] [Accepted: 03/10/2022] [Indexed: 12/18/2022]
Abstract
Mycobacterium abscessus is an emerging and difficult-to-manage mycobacterial species that exhibits smooth (S) or rough (R) morphotypes. Disruption of glycopeptidolipid (GPL) production results in transition from S to R and severe lung disease. A structure-activity relationship study was undertaken to decipher the role of GPL glycosylation in morphotype transition and pathogenesis. Deletion of gtf3 uncovered the prominent role of the extra rhamnose in enhancing mannose receptor-mediated internalization of M. abscessus by macrophages. In contrast, the absence of the 6-deoxy-talose and the first rhamnose in mutants lacking gtf1 and gtf2, respectively, affected M abscessus phagocytosis but also resulted in the S-to-R transition. Strikingly, gtf1 and gtf2 mutants displayed a strong propensity to form cords and abscesses in zebrafish, leading to robust and lethal infection. Together, these results underscore the importance and differential contribution of GPL monosaccharides in promoting virulence and infection outcomes.
Collapse
Affiliation(s)
- Wassim Daher
- CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France; INSERM, IRIM, 34293 Montpellier, France
| | - Louis-David Leclercq
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Matt D Johansen
- CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France; Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Claire Hamela
- CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Jona Karam
- CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Xavier Trivelli
- Université de Lille, CNRS, INRAE, Centrale Lille, Université d'Artois, FR 2638 - IMEC - Institut Michel-Eugène Chevreul, 59000 Lille, France
| | - Jérôme Nigou
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| | - Yann Guérardel
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France; Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan.
| | - Laurent Kremer
- CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France; INSERM, IRIM, 34293 Montpellier, France.
| |
Collapse
|
29
|
Orujyan D, Narinyan W, Rangarajan S, Rangchaikul P, Prasad C, Saviola B, Venketaraman V. Protective Efficacy of BCG Vaccine against Mycobacterium leprae and Non-Tuberculous Mycobacterial Infections. Vaccines (Basel) 2022; 10:vaccines10030390. [PMID: 35335022 PMCID: PMC8952781 DOI: 10.3390/vaccines10030390] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/16/2022] [Accepted: 03/02/2022] [Indexed: 02/06/2023] Open
Abstract
The genus mycobacterium includes several species that are known to cause infections in humans. The microorganisms are classified into tuberculous and non-tuberculous based on their morphological characteristics, defined by the dynamic relationship between the host defenses and the infectious agent. Non-tuberculous mycobacteria (NTM) include all the species of mycobacterium other than the ones that cause tuberculosis (TB). The group of NTM contains almost 200 different species and they are found in soil, water, animals—both domestic and wild—milk and food products, and from plumbed water resources such as sewers and showerhead sprays. A systematic review of Medline between 1946 and 2014 showed an 81% decline in TB incidence rates with a simultaneous 94% increase in infections caused by NTM. Prevalence of infections due to NTM has increased relative to infections caused by TB owing to the stringent prevention and control programs in Western countries such as the USA and Canada. While the spread of typical mycobacterial infections such as TB and leprosy involves human contact, NTM seem to spread easily from the environment without the risk of acquiring from a human contact except in the case of M. abscessus in patients with cystic fibrosis, where human transmission as well as transmission through fomites and aerosols has been recorded. NTM are opportunistic in their infectious processes, making immunocompromised individuals such as those with other systemic infections such as HIV, immunodeficiencies, pulmonary disease, or usage of medications such as long-term corticosteroids/TNF-α inhibitors more susceptible. This review provides insight on pathogenesis, treatment, and BCG vaccine efficacy against M. leprae and some important NTM infections.
Collapse
|
30
|
Ferrell KC, Johansen MD, Triccas JA, Counoupas C. Virulence Mechanisms of Mycobacterium abscessus: Current Knowledge and Implications for Vaccine Design. Front Microbiol 2022; 13:842017. [PMID: 35308378 PMCID: PMC8928063 DOI: 10.3389/fmicb.2022.842017] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/08/2022] [Indexed: 12/22/2022] Open
Abstract
Mycobacterium abscessus is a member of the non-tuberculous mycobacteria (NTM) group, responsible for chronic infections in individuals with cystic fibrosis (CF) or those otherwise immunocompromised. While viewed traditionally as an opportunistic pathogen, increasing research into M. abscessus in recent years has highlighted its continued evolution into a true pathogen. This is demonstrated through an extensive collection of virulence factors (VFs) possessed by this organism which facilitate survival within the host, particularly in the harsh environment of the CF lung. These include VFs resembling those of other Mycobacteria, and non-mycobacterial VFs, both of which make a notable contribution in shaping M. abscessus interaction with the host. Mycobacterium abscessus continued acquisition of VFs is cause for concern and highlights the need for novel vaccination strategies to combat this pathogen. An effective M. abscessus vaccine must be suitably designed for target populations (i.e., individuals with CF) and incorporate current knowledge on immune correlates of protection against M. abscessus infection. Vaccination strategies must also build upon lessons learned from ongoing efforts to develop novel vaccines for other pathogens, particularly Mycobacterium tuberculosis (M. tb); decades of research into M. tb has provided insight into unconventional and innovative vaccine approaches that may be applied to M. abscessus. Continued research into M. abscessus pathogenesis will be critical for the future development of safe and effective vaccines and therapeutics to reduce global incidence of this emerging pathogen.
Collapse
Affiliation(s)
- Kia C. Ferrell
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Tuberculosis Research Program, Centenary Institute, Sydney, NSW, Australia
- *Correspondence: Kia C. Ferrell,
| | - Matt D. Johansen
- Centre for Inflammation, Centenary Institute, University of Technology, Sydney, NSW, Australia
- Faculty of Science, School of Life Sciences, University of Technology, Sydney, NSW, Australia
| | - James A. Triccas
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Sydney Institute for Infectious Diseases and the Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Claudio Counoupas
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Tuberculosis Research Program, Centenary Institute, Sydney, NSW, Australia
- Sydney Institute for Infectious Diseases and the Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- Claudio Counoupas,
| |
Collapse
|
31
|
Robinson PD, Vaughan S, Missaghi B, Meatherall B, Pattullo A, Kuhn S, Conly J. A case series of infectious complications in medical tourists requiring hospital admission or outpatient home parenteral therapy. JOURNAL OF THE ASSOCIATION OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASE CANADA = JOURNAL OFFICIEL DE L'ASSOCIATION POUR LA MICROBIOLOGIE MEDICALE ET L'INFECTIOLOGIE CANADA 2022; 7:64-74. [PMID: 36340853 PMCID: PMC9603019 DOI: 10.3138/jammi-2021-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/09/2021] [Accepted: 09/24/2021] [Indexed: 06/16/2023]
Abstract
BACKGROUND Travelling for medical care is increasing, and this medical tourism (MT) may have complications, notably infectious diseases (ID). We sought to identify MT-related infections (MTRIs) in a large Canadian health region and estimate resulting costs. METHODS Retrospective and prospective capture of post-MT cases requiring hospital admission or outpatient parenteral antimicrobial therapy was completed by canvassing ID physicians practising in Calgary, Alberta, from January 2017 to July 2019. Cost estimates for management were made with the Canadian Institute for Health Information's (CIHI's) patient cost estimator database tool applied to estimated rates of Canadians engaging in MT from a 2017 Fraser Institute report. RESULTS We identified 12 cases of MT-related infectious syndromes. Eight had microbial etiologies identified. MTs were young (mean 40.3 [SD 12.2] y) and female (n = 11) and pursued surgical treatment (n = 11). Destination countries and surgical procedures varied but were largely cosmetic (n = 5) and orthopaedic (n = 3). Duration to organism identification (mean 5.3 wk) and treatment courses (mean 19 wk) appeared lengthy. CIHI cost estimates for management of relevant infectious complications of our cases ranged from $6,288 to $20,741, with total cost for cases with matching codes (n = 8) totalling $94,290. CONCLUSIONS In our series of MTRIs, etiologic organisms often found in Canadian-performed post-procedural infections were identified, and prolonged treatment durations were noted. Young women pursuing cosmetic surgery may be a population to target with public health measures to reduce the incidence of MTRIs and burden of disease.
Collapse
Affiliation(s)
- Paul D Robinson
- Department of Medicine, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, Alberta, Canada
| | - Stephen Vaughan
- Department of Medicine, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, Alberta, Canada
- Synder Institute for Chronic Diseases, University of Calgary and Alberta Health Services, Calgary, Alberta, Canada
| | - Bayan Missaghi
- Department of Medicine, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, Alberta, Canada
| | - Bonnie Meatherall
- Department of Medicine, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, Alberta, Canada
| | - Andrew Pattullo
- Department of Medicine, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, Alberta, Canada
| | - Susan Kuhn
- Department of Pediatrics, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, Alberta, Canada
| | - John Conly
- Department of Medicine, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, Alberta, Canada
- Department of Pediatrics, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Synder Institute for Chronic Diseases, University of Calgary and Alberta Health Services, Calgary, Alberta, Canada
- O’Brien Institute for Public Health, University of Calgary and Alberta Health Services, Calgary, Alberta, Canada
| |
Collapse
|
32
|
Poerio N, Riva C, Olimpieri T, Rossi M, Lorè NI, De Santis F, Henrici De Angelis L, Ciciriello F, D’Andrea MM, Lucidi V, Cirillo DM, Fraziano M. Combined Host- and Pathogen-Directed Therapy for the Control of Mycobacterium abscessus Infection. Microbiol Spectr 2022; 10:e0254621. [PMID: 35080463 PMCID: PMC8791191 DOI: 10.1128/spectrum.02546-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/07/2022] [Indexed: 12/14/2022] Open
Abstract
Mycobacterium abscessus is the etiological agent of severe pulmonary infections in vulnerable patients, such as those with cystic fibrosis (CF), where it represents a relevant cause of morbidity and mortality. Treatment of pulmonary infections caused by M. abscessus remains extremely difficult, as this species is resistant to most classes of antibiotics, including macrolides, aminoglycosides, rifamycins, tetracyclines, and β-lactams. Here, we show that apoptotic body like liposomes loaded with phosphatidylinositol 5-phosphate (ABL/PI5P) enhance the antimycobacterial response, both in macrophages from healthy donors exposed to pharmacological inhibition of cystic fibrosis transmembrane conductance regulator (CFTR) and in macrophages from CF patients, by enhancing phagosome acidification and reactive oxygen species (ROS) production. The treatment with liposomes of wild-type as well as CF mice, intratracheally infected with M. abscessus, resulted in about a 2-log reduction of pulmonary mycobacterial burden and a significant reduction of macrophages and neutrophils in bronchoalveolar lavage fluid (BALF). Finally, the combination treatment with ABL/PI5P and amikacin, to specifically target intracellular and extracellular bacilli, resulted in a further significant reduction of both pulmonary mycobacterial burden and inflammatory response in comparison with the single treatments. These results offer the conceptual basis for a novel therapeutic regimen based on antibiotic and bioactive liposomes, used as a combined host- and pathogen-directed therapeutic strategy, aimed at the control of M. abscessus infection, and of related immunopathogenic responses, for which therapeutic options are still limited. IMPORTANCE Mycobacterium abscessus is an opportunistic pathogen intrinsically resistant to many antibiotics, frequently linked to chronic pulmonary infections, and representing a relevant cause of morbidity and mortality, especially in immunocompromised patients, such as those affected by cystic fibrosis. M. abscessus-caused pulmonary infection treatment is extremely difficult due to its high toxicity and long-lasting regimen with life-impairing side effects and the scarce availability of new antibiotics approved for human use. In this context, there is an urgent need for the development of an alternative therapeutic strategy that aims at improving the current management of patients affected by chronic M. abscessus infections. Our data support the therapeutic value of a combined host- and pathogen-directed therapy as a promising approach, as an alternative to single treatments, to simultaneously target intracellular and extracellular pathogens and improve the clinical management of patients infected with multidrug-resistant pathogens such as M. abscessus.
Collapse
Affiliation(s)
- Noemi Poerio
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Camilla Riva
- Emerging Bacteria Pathogens Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Tommaso Olimpieri
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Marco Rossi
- Emerging Bacteria Pathogens Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Nicola I. Lorè
- Emerging Bacteria Pathogens Unit, San Raffaele Scientific Institute, Milan, Italy
| | | | | | - Fabiana Ciciriello
- Department of Pediatric Medicine, Cystic Fibrosis Complex Operating Unit, Bambino Gesù Pediatric Hospital, Rome, Italy
| | - Marco M. D’Andrea
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Vincenzina Lucidi
- Department of Pediatric Medicine, Cystic Fibrosis Complex Operating Unit, Bambino Gesù Pediatric Hospital, Rome, Italy
| | - Daniela M. Cirillo
- Emerging Bacteria Pathogens Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Maurizio Fraziano
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
33
|
Huang L, Li H, Ren W, Zhang X, Shang Y, Liu Y, Liu A, Pang Y. Highly Discriminative Genotyping of Mycobacterium abscessus Complex Using a Set of Variable Number Tandem Repeats in China. Front Microbiol 2022; 12:802133. [PMID: 35173692 PMCID: PMC8841818 DOI: 10.3389/fmicb.2021.802133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/15/2021] [Indexed: 11/20/2022] Open
Abstract
In this study, our aims were to comparatively analyze the power of variable number tandem repeat (VNTR) typing to discriminate isolates within subspecies and to identify a potential genetic marker for better molecular typing of Mycobacterium abscessus complex (MABC) strains. A total of 103 clinical MABC isolates were collected from a nationwide cross-sectional study in China. Eighteen VNTR loci were chosen to genotype the MABC isolates. Of the 103 clinical MABC isolates, there were 76 (73.8%) M. abscessus subsp. abscessus (MAA) and 27 (26.2%) M. abscessus subsp. massiliense (MAM) isolates. Among the patients with MAA lung diseases, the percentage of patients older than 45 years (67.1%) was significantly higher than that of patients with MAM lung diseases [33.3%, adjusted odds ratio (aOR) = 0.36, 95% CI = 0.13–0.98, p = 0.046]. Fifteen VNTR loci were designated as being “highly discriminant” in our sample, except for TR109. The total of 103 MABC isolates were fully discriminated into 103 unique patterns by an 18-locus VNTR set [Hunter–Gaston Discriminatory Index (HGDI) = 1.000], of which the inclusion of the top 12 loci yielded a comparative HGDI value (HGDI = 0.9998). Remarkably, the order of the diversity of the VNTR loci showed significant difference between the MAA and MAM isolates. TR137 and TR2, two loci with high diversity indices for the MAA isolates, only yielded poor discriminatory power for the MAM isolates; the allelic diversity (h) values were 0.0000 and 0.2621, respectively. A detailed analysis of TR137 in combination with the other 17 VNTR loci showed that the combination of TR137–TR2 could fully distinguish MAA from MAM isolates. In conclusion, our data revealed that MAA is more prone to affect elderly patients. Additionally, the population structure of the MABC isolates circulating in China has high diversity. The combined use of the TR137 and TR2 loci provides a simple criterion for the precise identification of MABC to the subspecies level.
Collapse
Affiliation(s)
- Lihua Huang
- Longtan Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, China
| | - Haoran Li
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, China
| | - Weicong Ren
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, China
| | - Xuxia Zhang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, China
| | - Yuanyuan Shang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, China
| | - Yi Liu
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, China
| | - Aimei Liu
- Longtan Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, China
- *Correspondence: Aimei Liu,
| | - Yu Pang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, China
- Yu Pang,
| |
Collapse
|
34
|
Sharma M, Singh P. Role of TlyA in the Biology of Uncultivable Mycobacteria. Comb Chem High Throughput Screen 2022; 25:1587-1594. [PMID: 35021968 DOI: 10.2174/1386207325666220111150923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 10/25/2021] [Accepted: 11/05/2021] [Indexed: 11/22/2022]
Abstract
TlyA proteins are related to distinct functions in a diverse spectrum of bacterial pathogens including mycobacterial spp. There are several annotated proteins function as hemolysin or pore forming molecules that play an important role in the virulence of pathogenic organisms. Many studies reported the dual activity of mycobacterial TlyA as 'hemolysin' and 'S-adenosylmethionine dependent rRNA methylase'. To act as a hemolysin, a sequence must have a signal sequence and transmembrane segment which helps the protein to enter the extracellular environment. Interestingly, the mycobacterial tlyA has neither a traditional signal sequences of general/sec/tat pathways nor any transmembrane segments are present. Still it can reach the extracellular milieu with the help of non-classical signal mechanisms. Also, retention of tlyA in cultivable mycobacterial pathogens (such as Mycobacterium tuberculosis and M. marinum) as well as uncultivated mycobacterial pathogens despite their extreme reductive evolution (such as M. leprae, M. lepromatosis and M. uberis) suggests its crucial role in evolutionary biology of pathogenic mycobacteria. Numerous virulence factors have been characterised from the uncultivable mycobacteria but the information of TlyA protein is still limited in terms of molecular and structural characterisation. The genomic insights offered by comparative analysis of TlyA sequences and its conserved domains reveal its pore forming activity which further confirms its role as a virulence protein, particularly in uncultivable mycobacteria. Therefore, this review presents a comparative analysis of mycobacterial TlyA family by sequence homology and alignment to improve our understanding of this unconventional hemolysin and RNA methyltransferase TlyA of uncultivable mycobacteria.
Collapse
Affiliation(s)
- Mukul Sharma
- ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| | - Pushpendra Singh
- ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| |
Collapse
|
35
|
Bich Hanh BT, Quang NT, Park Y, Heo BE, Jeon S, Park JW, Jang J. Omadacycline Potentiates Clarithromycin Activity Against Mycobacterium abscessus. Front Pharmacol 2021; 12:790767. [PMID: 34955859 PMCID: PMC8693020 DOI: 10.3389/fphar.2021.790767] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/15/2021] [Indexed: 11/29/2022] Open
Abstract
Mycobacterium abscessus is a difficult respiratory pathogen to treat, when compared to other nontuberculus mycobacteria (NTM), due to its drug resistance. In this study, we aimed to find a new clarithromycin partner that potentiated strong, positive, synergy against M. abscessus among current anti-M. abscessus drugs, including omadacycline, amikacin, rifabutin, bedaquiline, and cefoxitine. First, we determined the minimum inhibitory concentrations required of all the drugs tested for M. abscessus subsp. abscessus CIP104536T treatment using a resazurin microplate assay. Next, the best synergistic partner for clarithromycin against M. abscessus was determined using an in vitro checkerboard combination assay. Among the drug combinations evaluated, omadacycline showed the best synergistic effect with clarithromycin, with a fractional inhibitory concentration index of 0.4. This positive effect was also observed against M. abscessus clinical isolates and anti-M. abscessus drug resistant strains. Lastly, this combination was further validated using a M. abscessus infected zebrafish model. In this model, the clarithromycin-omadacyline regimen was found to inhibit the dissemination of M. abscessus, and it significantly extended the lifespan of the M. abscessus infected zebrafish. In summation, the synergy between two anti-M. abscessus compounds, clarithromycin and omadacycline, provides an attractive foundation for a new M. abscessus treatment regimen.
Collapse
Affiliation(s)
- Bui Thi Bich Hanh
- Division of Applied Life Science (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Nguyen Thanh Quang
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Yujin Park
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Bo Eun Heo
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Seunghyeon Jeon
- Division of Life Science, Gyeongsang National University, Jinju, South Korea
| | - June-Woo Park
- Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology, Korea & Human and Environmental Toxicology Program, Korea University of Science and Technology (UST), Daejeon, South Korea
| | - Jichan Jang
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea.,Division of Life Science, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
36
|
Vang CK, Dawrs SN, Oberlag NM, Gilmore AE, Hasan NA, Honda JR. Comparative survival of environmental and clinical Mycobacterium abscessus isolates in a variety of diverse host cells. J Appl Microbiol 2021; 132:3302-3314. [PMID: 34919308 PMCID: PMC9306708 DOI: 10.1111/jam.15416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/12/2021] [Accepted: 12/14/2021] [Indexed: 11/28/2022]
Abstract
Aims Mycobacterium abscessus subsp. abscessus (MABS) is an emerging, opportunistic pathogen found globally in freshwater biofilms and soil. Typically, isolates are treated as a uniform group of organisms and very little is known about their comparative survival in healthy host cells. We posit that environmentally‐ and clinically derived isolates, show differential infectivity in immune cells and resistance to innate defenses. Methods and Results Six MABS isolates were tested including three water biofilm/soil and three sputum‐derived isolates. A clinical MABS type strain and an environmental isolate of Arthrobacter were also included. MABS counts were significantly higher compared to Arthrobacter after co‐culture with Acanthamoeba lenticulata, BEAS‐2B epithelial cells, alveolar macrophages and the THP‐1 macrophage cell line. A rough sputum‐derived MABS isolate emerged as an isolate with higher virulence compared to others tested, as both a pellicle and cord former, survivor in the human cell models tested, inducer of high and prolonged production of pro‐inflammatory cytokines, and the capacity to evade LL‐37. Conclusions Findings support intraspecies variation between MABS isolates. Significance and Impact of the Study These data indicate subversion of host immune defenses by environmental and clinical MABS isolates is nuanced and maybe isolate dependent, providing new information regarding the pathogenesis of NTM infections.
Collapse
Affiliation(s)
- Charmie K Vang
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, USA
| | - Stephanie N Dawrs
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, USA
| | - Nicole M Oberlag
- Department of Biology, Harvey Mudd College, Claremont, California, USA
| | - Anah E Gilmore
- Professional Biomedical Science Program, University of Denver, Denver, Colorado, USA
| | - Nabeeh A Hasan
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, USA
| | - Jennifer R Honda
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, USA
| |
Collapse
|
37
|
Quang NT, Jang J. Current Molecular Therapeutic Agents and Drug Candidates for Mycobacterium abscessus. Front Pharmacol 2021; 12:724725. [PMID: 34526902 PMCID: PMC8435730 DOI: 10.3389/fphar.2021.724725] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium abscessus has been recognised as a dreadful respiratory pathogen among the non-tuberculous mycobacteria (NTM) because of misdiagnosis, prolonged therapy with poor treatment outcomes and a high cost. This pathogen also shows extremely high antimicrobial resistance against current antibiotics, including the anti-tuberculosis agents. Therefore, current chemotherapies require a long curative period and the clinical outcomes are not satisfactory. Thus, there is an urgent need for discovering and developing novel, more effective anti-M. abscessus drugs. In this review, we sum the effectiveness of the current anti-M. abscessus drugs and drug candidates. Furthermore, we describe the shortcomings and difficulties associated with M. abscessus drug discovery and development.
Collapse
Affiliation(s)
- Nguyen Thanh Quang
- Molecular Mechanisms of Antibiotics, Division of Life Science, Department of Bio and Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Jichan Jang
- Molecular Mechanisms of Antibiotics, Division of Life Science, Department of Bio and Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
38
|
Jia Khor M, Broda A, Kostrzewa M, Drobniewski F, Larrouy-Maumus G. An Improved Method for Rapid Detection of Mycobacterium abscessus Complex Based on Species-Specific Lipid Fingerprint by Routine MALDI-TOF. Front Chem 2021; 9:715890. [PMID: 34386482 PMCID: PMC8353234 DOI: 10.3389/fchem.2021.715890] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/28/2021] [Indexed: 01/09/2023] Open
Abstract
Rapid diagnostics of bacterial infection is the key to successful recovery and eradication of the disease. Currently, identification of bacteria is based on the detection of highly abundant proteins, mainly ribosomal proteins, by routine MALDI-TOF mass spectrometry. However, relying solely on proteins is limited in subspecies typing for some pathogens. This is the case for, for example, the mycobacteria belonging to the Mycobacterium abscessus (MABS) complex, which is classified into three subspecies, namely, M. abscessus subsp. abscessus, M. abscessus subsp. bolletii, and M. abscessus subsp. massiliense. Being able to detect bacteria accurately and rapidly at the subspecies level could not only reliably identify the pathogen causing the disease but also enable better antibiotic stewardship. For instance, M. abscessus subsp. abscessus and M. abscessus subsp. bolletii possess a functional erm41 (erythromycin ribosomal methylation gene 41) gene, whilst M. abscessus subsp. massiliense does not, resulting in differences in macrolide antibiotic (e.g., clarithromycin and azithromycin) susceptibilities. This presents a challenge for physicians when designing an appropriate treatment regimen. To address this challenge, in addition to proteins, species-specific lipids have now been considered as a game changer in clinical microbiology diagnostics. However, their extraction can be time-consuming, and analysis requires the use of apolar toxic organic solvents (e.g., chloroform). Here, we present a new method to accurately detect species and subspecies, allowing the discrimination of the mycobacteria within the MABS complex and relying on the use of ethanol. We found that a combination of the matrix named super-DHB with 25% ethanol with a bacterial suspension at McFarland 20 gave robust and reproducible data, allowing the discrimination of the bacteria within the MABS complex strains tested in this study (n = 9). Further investigations have to be conducted to validate the method on a larger panel of strains for its use in diagnostic laboratories.
Collapse
Affiliation(s)
- Min Jia Khor
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | - Agnieszka Broda
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | | | - Francis Drobniewski
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Gerald Larrouy-Maumus
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
39
|
Kim YJ, Lee SH, Jeon SM, Silwal P, Seo JY, Hanh BTB, Park JW, Whang J, Lee MJ, Heo JY, Kim SH, Kim JM, Song GY, Jang J, Jo EK. Sirtuin 3 is essential for host defense against Mycobacterium abscessus infection through regulation of mitochondrial homeostasis. Virulence 2021; 11:1225-1239. [PMID: 32835604 PMCID: PMC7549921 DOI: 10.1080/21505594.2020.1809961] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The global incidence of Mycobacterium abscessus (Mabc), a rapidly growing nontuberculous mycobacterial strain that causes treatment-refractory pulmonary diseases, is increasing. Despite this, the host factors that allow for protection against infection are largely unknown. In this study, we found that sirtuin 3 (SIRT3), a mitochondrial protein deacetylase, plays a critical role in host defense against Mabc infection. Mabc decreased SIRT3 and upregulated mitochondrial oxidative stress in macrophages. SIRT3 deficiency led to increased bacterial loads, histopathological, and mitochondrial damage, and pathological inflammation during Mabc infection. Administration of scavengers of mitochondrial reactive oxygen species significantly decreased the in vivo Mabc burden and excessive inflammation, and induced SIRT3 expression in infected lungs. Notably, SIRT3 agonist (resveratrol) significantly decreased Mabc growth and attenuated inflammation in mice and zebrafishes, indicating the key role for SIRT3 in metazoan host defense. Collectively, these data strongly suggest that SIRT3 is a host-directed therapeutic target against Mabc infection by controlling mitochondrial homeostasis.
Collapse
Affiliation(s)
- Young Jae Kim
- Department of Microbiology, Chungnam National University College of Medicine , Daejeon, Korea.,Infection Control Convergence Research Center, Chungnam National University College of Medicine , Daejeon, Korea
| | - Sang-Hee Lee
- Center for Research Equipment, Korea Basic Science Institute , Cheongju, Chungbuk, South Korea
| | - Sang Min Jeon
- Department of Microbiology, Chungnam National University College of Medicine , Daejeon, Korea.,Infection Control Convergence Research Center, Chungnam National University College of Medicine , Daejeon, Korea
| | - Prashanta Silwal
- Department of Microbiology, Chungnam National University College of Medicine , Daejeon, Korea.,Infection Control Convergence Research Center, Chungnam National University College of Medicine , Daejeon, Korea
| | - Ju-Young Seo
- Infection Control Convergence Research Center, Chungnam National University College of Medicine , Daejeon, Korea.,College of Pharmacy, Chungnam National University , Daejeon, Republic of Korea
| | - Bui Thi Bich Hanh
- Molecular Mechanisms of Antibiotics, Division of Life Science, Research Institute of Life Science, Gyeongsang National University , Jinju, Korea.,Division of Applied Life Science (Bk21plus Program), Gyeongsang National University , Jinju, Korea
| | - June-Woo Park
- Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology , Jinju, Korea.,Human and Environmental Toxicology Program, Korea University of Science and Technology (UST) , Daejeon, Korea
| | - Jake Whang
- Korea Mycobacterium Resource Center (KMRC) & Basic Research Section, The Korean Institute of Tuberculosis (KIT) 168-5 , Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Min Joung Lee
- Infection Control Convergence Research Center, Chungnam National University College of Medicine , Daejeon, Korea.,Department of Biochemistry, Chungnam National University College of Medicine , Korea
| | - Jun Young Heo
- Infection Control Convergence Research Center, Chungnam National University College of Medicine , Daejeon, Korea.,Department of Biochemistry, Chungnam National University College of Medicine , Korea.,Department of Medical Science, Chungnam National University College of Medicine , Daejeon, Korea
| | - Soon Ha Kim
- MitoImmune Therapeutics, Inc ., Ganhnam-gu, Seoul, Korea
| | - Jin-Man Kim
- Infection Control Convergence Research Center, Chungnam National University College of Medicine , Daejeon, Korea.,Department of Pathology; Chungnam National University College of Medicine , Korea
| | - Gyu Yong Song
- Infection Control Convergence Research Center, Chungnam National University College of Medicine , Daejeon, Korea.,College of Pharmacy, Chungnam National University , Daejeon, Republic of Korea
| | - Jichan Jang
- Molecular Mechanisms of Antibiotics, Division of Life Science, Research Institute of Life Science, Gyeongsang National University , Jinju, Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University College of Medicine , Daejeon, Korea.,Infection Control Convergence Research Center, Chungnam National University College of Medicine , Daejeon, Korea.,Department of Medical Science, Chungnam National University College of Medicine , Daejeon, Korea
| |
Collapse
|
40
|
Rinaldi F, Hanieh PN, Sennato S, De Santis F, Forte J, Fraziano M, Casciardi S, Marianecci C, Bordi F, Carafa M. Rifampicin-Liposomes for Mycobacterium abscessus Infection Treatment: Intracellular Uptake and Antibacterial Activity Evaluation. Pharmaceutics 2021; 13:1070. [PMID: 34371761 PMCID: PMC8309174 DOI: 10.3390/pharmaceutics13071070] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 11/17/2022] Open
Abstract
Treatment of pulmonary infections caused by Mycobacterium abscessus are extremely difficult to treat, as this species is naturally resistant to many common antibiotics. Liposomes are vesicular nanocarriers suitable for hydrophilic and lipophilic drug loading, able to deliver drugs to the target site, and successfully used in different pharmaceutical applications. Moreover, liposomes are biocompatible, biodegradable and nontoxic vesicles and nebulized liposomes are efficient in targeting antibacterial agents to macrophages. The present aim was to formulate rifampicin-loaded liposomes (RIF-Lipo) for lung delivery, in order to increase the local concentration of the antibiotic. Unilamellar liposomal vesicles composed of anionic DPPG mixed with HSPC for rifampicin delivery were designed, prepared, and characterized. Samples were prepared by using the thin-film hydration method. RIF-Lipo and unloaded liposomes were characterized in terms of size, ζ-potential, bilayer features, stability and in different biological media. Rifampicin's entrapment efficiency and release were also evaluated. Finally, biological activity of RIF-loaded liposomes in Mycobacterium abscessus-infected macrophages was investigated. The results show that RIF-lipo induce a significantly better reduction of intracellular Mycobacterium abscessus viability than the treatment with free drug. Liposome formulation of rifampicin may represent a valuable strategy to enhance the biological activity of the drug against intracellular mycobacteria.
Collapse
Affiliation(s)
- Federica Rinaldi
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma-Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.R.); (P.N.H.); (J.F.); (M.C.)
| | - Patrizia Nadia Hanieh
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma-Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.R.); (P.N.H.); (J.F.); (M.C.)
| | - Simona Sennato
- Istituto dei Sistemi Complessi (ISC)-CNR, sede “Sapienza” and Dipartimento di Fisica, Sapienza Università di Roma, 00185 Rome, Italy;
| | - Federica De Santis
- Dipartimento di Biologia, Università di Roma “Tor Vergata” Via della Ricerca Scientifica, 00133 Rome, Italy; (F.D.S.); (M.F.)
| | - Jacopo Forte
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma-Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.R.); (P.N.H.); (J.F.); (M.C.)
| | - Maurizio Fraziano
- Dipartimento di Biologia, Università di Roma “Tor Vergata” Via della Ricerca Scientifica, 00133 Rome, Italy; (F.D.S.); (M.F.)
| | - Stefano Casciardi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, National Institute for Insurance against Accidents at Work (INAIL), Monteporzio Catone, 00144 Rome, Italy;
| | - Carlotta Marianecci
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma-Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.R.); (P.N.H.); (J.F.); (M.C.)
| | - Federico Bordi
- Istituto dei Sistemi Complessi (ISC)-CNR, sede “Sapienza” and Dipartimento di Fisica, Sapienza Università di Roma, 00185 Rome, Italy;
| | - Maria Carafa
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma-Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.R.); (P.N.H.); (J.F.); (M.C.)
| |
Collapse
|
41
|
Cornejo-Granados F, Kohl TA, Sotomayor FV, Andres S, Hernández-Pando R, Hurtado-Ramirez JM, Utpatel C, Niemann S, Maurer FP, Ochoa-Leyva A. Secretome characterization of clinical isolates from the Mycobacterium abscessus complex provides insight into antigenic differences. BMC Genomics 2021; 22:385. [PMID: 34034663 PMCID: PMC8152154 DOI: 10.1186/s12864-021-07670-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/27/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mycobacterium abscessus (MAB) is a widely disseminated pathogenic non-tuberculous mycobacterium (NTM). Like with the M. tuberculosis complex (MTBC), excreted / secreted (ES) proteins play an essential role for its virulence and survival inside the host. Here, we used a robust bioinformatics pipeline to predict the secretome of the M. abscessus ATCC 19977 reference strain and 15 clinical isolates belonging to all three MAB subspecies, M. abscessus subsp. abscessus, M. abscessus subsp. bolletii, and M. abscessus subsp. massiliense. RESULTS We found that ~ 18% of the proteins encoded in the MAB genomes were predicted as secreted and that the three MAB subspecies shared > 85% of the predicted secretomes. MAB isolates with a rough (R) colony morphotype showed larger predicted secretomes than isolates with a smooth (S) morphotype. Additionally, proteins exclusive to the secretomes of MAB R variants had higher antigenic densities than those exclusive to S variants, independent of the subspecies. For all investigated isolates, ES proteins had a significantly higher antigenic density than non-ES proteins. We identified 337 MAB ES proteins with homologues in previously investigated M. tuberculosis secretomes. Among these, 222 have previous experimental support of secretion, and some proteins showed homology with protein drug targets reported in the DrugBank database. The predicted MAB secretomes showed a higher abundance of proteins related to quorum-sensing and Mce domains as compared to MTBC indicating the importance of these pathways for MAB pathogenicity and virulence. Comparison of the predicted secretome of M. abscessus ATCC 19977 with the list of essential genes revealed that 99 secreted proteins corresponded to essential proteins required for in vitro growth. CONCLUSIONS This study represents the first systematic prediction and in silico characterization of the MAB secretome. Our study demonstrates that bioinformatics strategies can help to broadly explore mycobacterial secretomes including those of clinical isolates and to tailor subsequent, complex and time-consuming experimental approaches accordingly. This approach can support systematic investigation exploring candidate proteins for new vaccines and diagnostic markers to distinguish between colonization and infection. All predicted secretomes were deposited in the Secret-AAR web-server ( http://microbiomics.ibt.unam.mx/tools/aar/index.php ).
Collapse
Affiliation(s)
- Fernanda Cornejo-Granados
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autonoma de México, Cuernavaca, Morelos, Mexico
| | - Thomas A Kohl
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel, Borstel, Germany
| | - Flor Vásquez Sotomayor
- National and WHO Supranational Reference Center for Mycobacteria, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Sönke Andres
- National and WHO Supranational Reference Center for Mycobacteria, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Rogelio Hernández-Pando
- Experimental Pathology Section, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Mexico City, Mexico
| | - Juan Manuel Hurtado-Ramirez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autonoma de México, Cuernavaca, Morelos, Mexico
| | - Christian Utpatel
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel, Borstel, Germany
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel, Borstel, Germany
| | - Florian P Maurer
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel, Borstel, Germany.
- National and WHO Supranational Reference Center for Mycobacteria, Research Center Borstel, Leibniz Lung Center, Borstel, Germany.
- Institute of Medical Microbiology, Virology and Hospital Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Adrian Ochoa-Leyva
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autonoma de México, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
42
|
Burke A, Smith D, Coulter C, Bell SC, Thomson R, Roberts JA. Clinical Pharmacokinetic and Pharmacodynamic Considerations in the Drug Treatment of Non-Tuberculous Mycobacteria in Cystic Fibrosis. Clin Pharmacokinet 2021; 60:1081-1102. [PMID: 33982266 DOI: 10.1007/s40262-021-01010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2021] [Indexed: 10/21/2022]
Abstract
Non-tuberculous mycobacteria (NTM) are an emerging group of pulmonary infectious pathogens of increasing importance to the management of patients with cystic fibrosis (CF). NTM include slow-growing mycobacteria such as Mycobacterium avium complex (MAC) and rapidly growing mycobacteria such as Mycobacterium abscessus. The incidence of NTM in the CF population is increasing and infection contributes to significant morbidity to the patient and costs to the health system. Treating M. abscessus requires the combination of multiple costly antibiotics for months, with potentially significant toxicity associated with treatment. Although international guidelines for the treatment of NTM infection in CF are available, there are a lack of robust pharmacokinetic studies in CF patients to inform dosing and drug choice. This paper aims to outline the pharmacokinetic and pharmacodynamic factors informing the optimal treatment of NTM infections in CF.
Collapse
Affiliation(s)
- Andrew Burke
- Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland School of Medicine, Brisbane, QLD, Australia
| | - Daniel Smith
- Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland School of Medicine, Brisbane, QLD, Australia
| | - Chris Coulter
- Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland School of Medicine, Brisbane, QLD, Australia
| | - Scott C Bell
- Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland School of Medicine, Brisbane, QLD, Australia.,QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Rachel Thomson
- Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland School of Medicine, Brisbane, QLD, Australia.,Immunology Department, Gallipoli Medical Research Institute, Brisbane, QLD, Australia
| | - Jason A Roberts
- Faculty of Medicine, University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia. .,Department of Pharmacy, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia. .,Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia. .,Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France.
| |
Collapse
|
43
|
Mycobacterium abscessus Strain Morphotype Determines Phage Susceptibility, the Repertoire of Therapeutically Useful Phages, and Phage Resistance. mBio 2021; 12:mBio.03431-20. [PMID: 33785625 PMCID: PMC8092298 DOI: 10.1128/mbio.03431-20] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mycobacterium abscessus infections in cystic fibrosis patients are challenging to treat due to widespread antibiotic resistance. The therapeutic use of lytic bacteriophages presents a new potential strategy, but the great variation among clinical M. abscessus isolates demands determination of phage susceptibility prior to therapy. Mycobacterium abscessus is an opportunistic pathogen whose treatment is confounded by widespread multidrug resistance. The therapeutic use of bacteriophages against Mycobacterium abscessus infections offers a potential alternative approach, although the spectrum of phage susceptibilities among M. abscessus isolates is not known. We determined the phage infection profiles of 82 M. abscessus recent clinical isolates and find that colony morphotype—rough or smooth—is a key indicator of phage susceptibility. None of the smooth strains are efficiently killed by any phages, whereas 80% of rough strains are infected and efficiently killed by at least one phage. The repertoire of phages available for potential therapy of rough morphotype infections includes those with relatively broad host ranges, host range mutants of Mycobacterium smegmatis phages, and lytically propagated viruses derived from integrated prophages. The rough colony morphotype results from indels in the glycopeptidolipid synthesis genes mps1 and mps2, negating reversion to smooth as a common route to phage resistance. Resistance is thus rare, and although mutations in polyketide synthesis, uvrD2, and rpoZ can confer resistance, these likely also impair survival in vivo. The expanded therapeutic repertoire and the resistance profiles show that small cocktails or single phages could be suitable for controlling infections with rough strains.
Collapse
|
44
|
Li B, Ye M, Zhao L, Guo Q, Chen J, Xu B, Zhan M, Zhang Y, Zhang Z, Chu H. Glycopeptidolipid Genotype Correlates With the Severity of Mycobacterium abscessus Lung Disease. J Infect Dis 2021; 221:S257-S262. [PMID: 32176786 DOI: 10.1093/infdis/jiz475] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Smooth and rough colony morphotypes of Mycobacterium abscessus are associated with virulence, but some isolates form both smooth and rough colonies, impeding successful morphotype identification. Reportedly, smooth/rough morphotypes are also related to the glycopeptidolipid (GPL) genotype. However, the accuracy of GPL genotyping to discriminate morphotypes and the relationship between GPL genotype and clinical characteristics of M abscessus lung disease have not been verified. METHODS A retrospective analysis of colony morphology, GPL genotype, and clinical data from 182 patients with M abscessus lung disease was conducted. RESULTS Of 194 clinical isolates, 126 (65.0%), 15 (7.7%), and 53 (27.3%) exhibited rough, smooth, and mixed colony morphotypes, respectively. Glycopeptidolipid genotyping indicated that 86.7% (13 of 15) of smooth isolates belonged to the GPL-wild type (WT) group, whereas 98.4% (124 of 126) of rough isolates belonged to the GPL-mutant type (MUT) group. Therefore, GPL genotyping accurately distinguished between smooth and rough morphotypes. Mixed colony morphotypes were also divided into GPL-WT (18.9%) and GPL-MUT (81.1%) groups. Further analysis revealed that patients infected with the GPL-MUT group presented with significantly worse baseline clinical characteristics and exacerbated episodes of lung disease. CONCLUSIONS Glycopeptidolipid genotyping accurately distinguishes smooth and rough colony morphotypes. Patients infected with the GPL-MUT genotype exhibit worse clinical characteristics and are at a higher risk of exacerbated lung disease.
Collapse
Affiliation(s)
- Bing Li
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Meiping Ye
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lan Zhao
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qi Guo
- Tongji University School of Medicine, Shanghai, China
| | - Jianhui Chen
- Tongji University School of Medicine, Shanghai, China
| | - Benyong Xu
- Tongji University School of Medicine, Shanghai, China
| | - Mengling Zhan
- Tongji University School of Medicine, Shanghai, China
| | - Yongjie Zhang
- Tongji University School of Medicine, Shanghai, China
| | - Zhemin Zhang
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haiqing Chu
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
45
|
Lopez A, Shoen C, Cynamon M, Dimitrakopoulou D, Paiola M, Pavelka MS, Robert J. Developing Tadpole Xenopus laevis as a Comparative Animal Model to Study Mycobacterium abscessus Pathogenicity. Int J Mol Sci 2021; 22:E806. [PMID: 33467397 PMCID: PMC7829954 DOI: 10.3390/ijms22020806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/19/2022] Open
Abstract
Mycobacterium abscessus (Mab) is an emerging, nontuberculosis mycobacterium (NTM) that infects humans. Mab has two morphotypes, smooth (S) and rough (R), related to the production of glycopeptidolipid (GPL), that differ in pathogenesis. To further understand the pathogenicity of these morphotypes in vivo, the amphibian Xenopus laevis was used as an alternative animal model. Mab infections have been previously modeled in zebrafish embryos and mice, but Mab are cleared early from immunocompetent mice, preventing the study of chronic infection, and the zebrafish model cannot be used to model a pulmonary infection and T cell involvement. Here, we show that X. laevis tadpoles, which have lungs and T cells, can be used as a complementary model for persistent Mab infection and pathogenesis. Intraperitoneal (IP) inoculation of S and R Mab morphotypes disseminated to tadpole tissues including liver and lungs, persisting for up to 40 days without significant mortality. Furthermore, the R morphotype was more persistent, maintaining a higher bacterial load at 40 days postinoculation. In contrast, the intracardiac (IC) inoculation with S Mab induced significantly greater mortality than inoculation with the R Mab form. These data suggest that X. laevis tadpoles can serve as a useful comparative experimental organism to investigate pathogenesis and host resistance to M. abscessus.
Collapse
Affiliation(s)
- Arianna Lopez
- Department of Immunology and Microbiology, Medical Center, University of Rochester, Rochester, NY 14642, USA; (A.L.); (D.D.); (M.P.); (M.S.P.J.)
| | - Carolyn Shoen
- Central New York Research Corporation, Syracuse, NY 13210, USA; (C.S.); (M.C.)
| | - Michael Cynamon
- Central New York Research Corporation, Syracuse, NY 13210, USA; (C.S.); (M.C.)
- Veterans Affairs Medical Center, Syracuse, NY 13210, USA
| | - Dionysia Dimitrakopoulou
- Department of Immunology and Microbiology, Medical Center, University of Rochester, Rochester, NY 14642, USA; (A.L.); (D.D.); (M.P.); (M.S.P.J.)
| | - Matthieu Paiola
- Department of Immunology and Microbiology, Medical Center, University of Rochester, Rochester, NY 14642, USA; (A.L.); (D.D.); (M.P.); (M.S.P.J.)
| | - Martin S. Pavelka
- Department of Immunology and Microbiology, Medical Center, University of Rochester, Rochester, NY 14642, USA; (A.L.); (D.D.); (M.P.); (M.S.P.J.)
| | - Jacques Robert
- Department of Immunology and Microbiology, Medical Center, University of Rochester, Rochester, NY 14642, USA; (A.L.); (D.D.); (M.P.); (M.S.P.J.)
| |
Collapse
|
46
|
Cheng A, Sun HY, Tsai YT, Lu PL, Lee SSJ, Lee YT, Wang YC, Liu PY, Chien JY, Hsueh PR, Chang SY, Wu UI, Sheng WH, Chen YC, Chang SC. Longitudinal non-cystic fibrosis trends of pulmonary Mycobacterium abscessus disease from 2010 to 2017: spread of the "globally successful clone" in Asia. ERJ Open Res 2021; 7:00191-2020. [PMID: 33532483 PMCID: PMC7836708 DOI: 10.1183/23120541.00191-2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/30/2020] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Mycobacterium abscessus (MAB) has emerged as the predominant pulmonary non-tuberculous mycobacterial pathogen in parts of Asia, including Taiwan. The reasons for the significant increase in MAB infections in the non-cystic fibrosis (CF) populations are poorly understood. The study aimed to elucidate whether this increase is related to the spread of the globally successful clone of MAB. METHODS We performed multilocus sequence typing of 371 nonduplicated MAB pulmonary isolates from 371 patients sampled between 2010-2017 at seven hospitals across Taiwan. RESULTS In total, 183 (49.3%) isolates were M. abscessus subsp. abscessus (MAB-a), 187 (50.4%) were M. abscessus subsp. massiliense (MAB-m), and 1 (0.3%) was M. abscessus subsp. bolletii (MAB-b). MAB-a sequence type (ST)1 (23.7%) and ST127 (3.8%), followed by MAB-m ST48 (16.2%), ST117 (15.1%), ST23 (8.6%) were most common overall. Of MAB-a strains, 50 (27.3%) belonged to novel STs and 38 (10.2%) were singleton strains, while of MAB-m strains, only 10 (5.3%) were novel and 8 (2.2%) were singletons. From 2010 to 2017, the frequency of the historically dominant ST1 declined from 28.6% to 22.5%, whereas the recently emerged globally successful clonal cluster 3, ST23 and ST48, increased from 14.3% to 40.0%. CONCLUSIONS The dominance of ST1 particularly in the last 2 years of this study appears to be declining, while ST23, reported in outbreaks among CF and post-surgical cohorts across the Americas and Europe, alongside the closely related ST48, is present among non-CF populations in Taiwan. These trends need to be confirmed with further ongoing studies to track the molecular epidemiology of clinical MAB isolates worldwide.
Collapse
Affiliation(s)
- Aristine Cheng
- Dept of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Yun Sun
- Dept of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Tzu Tsai
- Dept of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Po-Liang Lu
- Dept of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Susan Shin-Jung Lee
- Dept of Internal Medicine, Dept of Pathology and Laboratory, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Yi-Tzu Lee
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Dept of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yung-Chih Wang
- Dept of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Po-Yu Liu
- Dept of Internal Medicine, Taichung, Veterans General Hospital, Taichung, Taiwan
| | - Jung-Yien Chien
- Dept of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Ren Hsueh
- Dept of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- College of Medicine, National Taiwan University, Taipei, Taiwan
- Dept of Laboratory Medicine, National Taiwan University Hospital, Taiwan
| | - Shu-Yuan Chang
- Dept of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Un-In Wu
- Dept of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wang-Huei Sheng
- Dept of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yee-Chun Chen
- Dept of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shan-Chwen Chang
- Dept of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
47
|
Gonzales Zamora JA, Villar Astete A. Mycobacterium abscessus felon complicated with osteomyelitis: not an ordinary nail salon visit. Acta Clin Belg 2020; 75:429-433. [PMID: 31253072 DOI: 10.1080/17843286.2019.1637390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Mycobacterium abscessus is an environmental organism that has been implicated in pulmonary and extrapulmonary infections. Cases of furunculosis have been described in patients who underwent footbaths in nail salons; however, no cases of severe soft tissue infections or osteomyelitis have been reported following manicures. Here, we present the case of a 50-year-old woman who developed a felon in right index finger one week after having a manicure. She underwent incision and drainage of affected area. Cultures from purulence grew Mycobacterium abscessus. Imaging revealed osteomyelitis of distal phalanx. She was successfully treated with a prolonged course of antibiotics that included imipenem, linezolid, tigecycline, and clarithromycin. We highlight the importance of recognizing this uncommon complication and advocate the use of combined antibiotic regimens for an adequate treatment of this infection.
Collapse
Affiliation(s)
- Jose Armando Gonzales Zamora
- Division of Infectious Diseases, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA
| | | |
Collapse
|
48
|
Brzostek J, Fatin A, Chua WH, Tan HY, Dick T, Gascoigne NRJ. Single Cell Analysis of Drug Susceptibility of Mycobacterium Abscessus During Macrophage Infection. Antibiotics (Basel) 2020; 9:antibiotics9100711. [PMID: 33080864 PMCID: PMC7650608 DOI: 10.3390/antibiotics9100711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 11/16/2022] Open
Abstract
Mycobacterium abscessus is an emerging health risk to immunocompromised individuals and to people with pre-existing pulmonary conditions. As M. abscessus possesses multiple mechanisms of drug resistance, treatments of M. abscessus are of poor efficacy. Therefore, there is an urgent need for new therapeutic strategies targeting M. abscessus. We describe an experimental system for screening of compounds for their antimicrobial activity against intracellular M. abscessus using flow cytometry and imaging flow cytometry. The assay allows simultaneous analysis of multiple parameters, such as proportion of infected host cells, bacterial load per host cell from the infected population, and host cell viability. We verified the suitability of this method using two antibiotics with known activity against M. abscessus: clarithromycin and amikacin. Our analysis revealed a high degree of infection heterogeneity, which correlated with host cell size. A higher proportion of the larger host cells is infected with M. abscessus as compared to smaller host cells, and infected larger cells have higher intracellular bacterial burden than infected smaller cells. Clarithromycin treatment has a more pronounced effect on smaller host cells than on bigger host cells, suggesting that heterogeneity within the host cell population has an effect on antibiotic susceptibility of intracellular bacteria.
Collapse
Affiliation(s)
- Joanna Brzostek
- Department of Microbiology and Immunology, Yong Loo Lin School of Medcine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore; (A.F.); (W.H.C.); (H.Y.T.); (T.D.)
- Correspondence: (J.B.); (N.R.J.G.)
| | - Amierah Fatin
- Department of Microbiology and Immunology, Yong Loo Lin School of Medcine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore; (A.F.); (W.H.C.); (H.Y.T.); (T.D.)
| | - Wen Hui Chua
- Department of Microbiology and Immunology, Yong Loo Lin School of Medcine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore; (A.F.); (W.H.C.); (H.Y.T.); (T.D.)
| | - Hui Yi Tan
- Department of Microbiology and Immunology, Yong Loo Lin School of Medcine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore; (A.F.); (W.H.C.); (H.Y.T.); (T.D.)
| | - Thomas Dick
- Department of Microbiology and Immunology, Yong Loo Lin School of Medcine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore; (A.F.); (W.H.C.); (H.Y.T.); (T.D.)
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine at Seton Hall University, Nutley, NJ 07110, USA
| | - Nicholas R. J. Gascoigne
- Department of Microbiology and Immunology, Yong Loo Lin School of Medcine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore; (A.F.); (W.H.C.); (H.Y.T.); (T.D.)
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117545, Singapore
- Correspondence: (J.B.); (N.R.J.G.)
| |
Collapse
|
49
|
Daher W, Leclercq LD, Viljoen A, Karam J, Dufrêne YF, Guérardel Y, Kremer L. O-Methylation of the Glycopeptidolipid Acyl Chain Defines Surface Hydrophobicity of Mycobacterium abscessus and Macrophage Invasion. ACS Infect Dis 2020; 6:2756-2770. [PMID: 32857488 DOI: 10.1021/acsinfecdis.0c00490] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mycobacterium abscessus, an emerging pathogen responsible for severe lung infections in cystic fibrosis patients, displays either smooth (S) or rough (R) morphotypes. The S-to-R transition is associated with reduced levels of glycopeptidolipid (GPL) production and is correlated with increased pathogenicity in animal and human hosts. While the structure of GPL is well established, its biosynthetic pathway is incomplete. In addition, the biological functions of the distinct structural parts of this complex lipid remain elusive. Herein, the fmt gene encoding a putative O-methyltransferase was deleted in the M. abscessus S variant. Subsequent biochemical and structural analyses demonstrated that methoxylation of the fatty acyl chain of GPL was abrogated in the Δfmt mutant, and this defect was rescued upon complementation with a functional fmt gene. In contrast, the introduction of fmt derivatives mutated at residues essential for methyltransferase activity failed to complement GPL defects, indicating that fmt encodes an O-methyltransferase. Unexpectedly, phenotypic analyses showed that Δfmt was more hydrophilic than its parental progenitor, as demonstrated by hexadecane-aqueous buffer partitioning and atomic force microscopy experiments with hydrophobic probes. Importantly, the invasion rate of THP-1 macrophages by Δfmt was reduced by 50% when compared to the wild-type strain. Together, these results indicate that Fmt O-methylates the lipid moiety of GPL and plays a substantial role in conditioning the surface hydrophobicity of M. abscessus as well as in the early steps of the interaction between the bacilli and macrophages.
Collapse
Affiliation(s)
- Wassim Daher
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
- INSERM, IRIM, 34293 Montpellier, France
| | - Louis-David Leclercq
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Albertus Viljoen
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Jona Karam
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Yves F. Dufrêne
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Yann Guérardel
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
- INSERM, IRIM, 34293 Montpellier, France
| |
Collapse
|
50
|
To K, Cao R, Yegiazaryan A, Owens J, Venketaraman V. General Overview of Nontuberculous Mycobacteria Opportunistic Pathogens: Mycobacterium avium and Mycobacterium abscessus. J Clin Med 2020; 9:E2541. [PMID: 32781595 PMCID: PMC7463534 DOI: 10.3390/jcm9082541] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022] Open
Abstract
Nontuberculous mycobacteria (NTM) are emerging human pathogens, causing a wide range of clinical diseases affecting individuals who are immunocompromised and who have underlying health conditions. NTM are ubiquitous in the environment, with certain species causing opportunistic infection in humans, including Mycobacterium avium and Mycobacterium abscessus. The incidence and prevalence of NTM infections are rising globally, especially in developed countries with declining incidence rates of M. tuberculosis infection. Mycobacterium avium, a slow-growing mycobacterium, is associated with Mycobacterium avium complex (MAC) infections that can cause chronic pulmonary disease, disseminated disease, as well as lymphadenitis. M. abscessus infections are considered one of the most antibiotic-resistant mycobacteria and are associated with pulmonary disease, especially cystic fibrosis, as well as contaminated traumatic skin wounds, postsurgical soft tissue infections, and healthcare-associated infections (HAI). Clinical manifestations of diseases depend on the interaction of the host's immune response and the specific mycobacterial species. This review will give a general overview of the general characteristics, vulnerable populations most at risk, pathogenesis, treatment, and prevention for infections caused by Mycobacterium avium, in the context of MAC, and M. abscessus.
Collapse
Affiliation(s)
- Kimberly To
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (K.T.); (A.Y.)
| | - Ruoqiong Cao
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (R.C.); (J.O.)
| | - Aram Yegiazaryan
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (K.T.); (A.Y.)
| | - James Owens
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (R.C.); (J.O.)
| | - Vishwanath Venketaraman
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA; (R.C.); (J.O.)
| |
Collapse
|