1
|
Sequino G, Cobo-Diaz JF, Valentino V, Tassou C, Volpe S, Torrieri E, Nychas GJ, Álvarez Ordóñez A, Ercolini D, De Filippis F. Environmental microbiome mapping in poultry processing chain and assessment of microbial dynamics in response to different storage conditions. Food Microbiol 2025; 128:104734. [PMID: 39952751 DOI: 10.1016/j.fm.2025.104734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 02/17/2025]
Abstract
Poultry production chain comprises a complex network involving various stages from rearing to the final distribution of poultry products. This study explores the intricate dynamics within this chain, using shotgun metagenomics, particularly focusing on taxonomic and functional composition of the microbiome, antibiotic resistance and virulence potential. Moreover, the study of the impact of different packaging and storage conditions provides insights into how diverse packaging strategies and storage temperature can impact the shelf-life of chicken meat. Microbiome mapping in poultry processing facility revealed the dominance of Brochothrix thermosphacta, Pseudomonas fragi and Psychrobacter immobilis on poultry-based products and industrial surfaces. Indeed, surfaces of equipment and tools have a significant impact on the microbial composition of the final food products. Furthermore, the study of the microbiome dynamics in chicken meat stored in different packaging (air, modified atmosphere, under vacuum) and temperatures (0, 4 and 10 °C) revealed temperature-dependent microbiota shifts in chicken meat, highlighting specific spoilage organisms (SSOs) in the different packaging methods. Additionally, our results showed that poultry-based products and industrial surfaces belonging to carcasses processing area hosted elevated levels of Antibiotic Resistance Genes, mainly associated with resistance to aminoglycosides, β-lactams, MLSPs (which includes macrolides, lincosamides, streptogramins and pleuromutilins) amphenicols and tetracyclines classes and several Virulence-associated genes related to adherence, biofilm, effector delivery system, motility, nutritional/metabolic factors and regulation. Finally, our findings underscored a notably mobile resistome, showing multiple AR class correlated with mobile elements. This poses a considerable risk, emphasizing the urgent need for proactive measures in addressing potential antibiotic resistance genes dissemination in the poultry chain.
Collapse
Affiliation(s)
- Giuseppina Sequino
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, NA, Italy
| | - José F Cobo-Diaz
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Vincenzo Valentino
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, NA, Italy
| | - Chrysoula Tassou
- Hellenic Agricultural Organization-DIMITRA, Institute of Technology of Agricultural Products, Sofokli Venizelou 1, Lycovrissi, 14123, Attica, Greece
| | - Stefania Volpe
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, NA, Italy
| | - Elena Torrieri
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, NA, Italy
| | | | - Avelino Álvarez Ordóñez
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Danilo Ercolini
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, NA, Italy; Task Force on Microbiome Studies, University of Naples Federico II, Italy
| | - Francesca De Filippis
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, NA, Italy; Task Force on Microbiome Studies, University of Naples Federico II, Italy; Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao Street, Go Vap district, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
2
|
Asmus AE, Gaire TN, Heimer KM, Belk KE, Singer RS, Johnson TJ, Noyes NR. Fresh pork microbiota is temporally dynamic and compositionally diverse across meat, contact surfaces, and processing lines in a pork processing facility. Appl Environ Microbiol 2025; 91:e0004425. [PMID: 40178255 PMCID: PMC12016530 DOI: 10.1128/aem.00044-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/28/2025] [Indexed: 04/05/2025] Open
Abstract
The goal of this study was to analyze the microbial profiles of meat and contact surfaces from two different processing lines in a pork processing plant, using a 16S rRNA gene amplicon sequencing workflow specifically designed to investigate fresh meat and environmental samples throughout a commercial production schedule. Results indicated that the microbiota differed between the meat and contact surface, both across the two processing lines and within each individual processing line. Differences in the microbiota composition were also strongly associated with both the specific processing dates and the time of day during processing. Much of this variation was associated with distinct amplicon sequence variants unique to each processing date and each processing line throughout the day. The abundance of key taxa associated with food safety and spoilage was also temporally dynamic across a production shift and was different between the meat and contact surface. Overall, the results of this study indicate significant differences in the microbial profiles of the meat and contact surfaces between two processing lines within the same plant. These differences are likely influenced by daily variation in processing and sanitation procedures, as well as differences in the design of the processing lines, which appear to affect the microbiotas of both the meat and contact surfaces.IMPORTANCEThis study provides critical knowledge that can be used as a foundation for tailored processes to improve fresh pork safety and quality, potentially customized to individual processing lines, time points within a shift, and/or production days. Additionally, this study provides a list of potential biological markers associated with food safety and quality that could be used by processors to develop and validate intervention strategies specific to different processing lines.
Collapse
Affiliation(s)
- A. E. Asmus
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
- Hormel Foods Corporation, Austin, Minnesota, USA
| | - T. N. Gaire
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - K. M. Heimer
- Hormel Foods Corporation, Austin, Minnesota, USA
| | - K. E. Belk
- Department of Animal Science, Colorado State University, Fort Collins, Colorado, USA
| | - R. S. Singer
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, USA
| | - T. J. Johnson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, USA
| | - N. R. Noyes
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
3
|
Asmus AE, Gaire TN, Schweisthal KJ, Staben SM, Noyes NR. Microbiome characterization of two fresh pork cuts during production in a pork fabrication facility. Microbiol Spectr 2025; 13:e0220924. [PMID: 39882867 PMCID: PMC11878005 DOI: 10.1128/spectrum.02209-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025] Open
Abstract
The goal of this study was to characterize the microbial profile of two different fresh pork cuts, bootjack (BJ) trim and tenderloin (TL), through a 16S rRNA sequencing workflow developed specifically for investigating low-biomass fresh meat within a commercial production schedule. Additionally, this study aimed to determine a baseline Salmonella prevalence and enumeration profile across these two fresh pork cuts. Results showed that microbiome diversity was different between the BJ and TL, and also differed significantly by processing date. The relative abundance of key bacterial genera associated with food safety and spoilage was also different between the two meat types. However, over the course of the production shift, changes in the meat microbiome were limited in both the BJ and TL. The crude prevalence and enumerated burden of Salmonella were lower than what has been previously reported in similar fresh pork cuts, and all of the Salmonella-positive samples occurred on just two processing windows of 1-2 days each. Taken together, the results of this study suggest that the microbial profile of two fresh pork cuts is significantly different even within the same plant at the same time points, and that day-to-day variability within the production process likely influences both the fresh pork microbiome and Salmonella profile of these two meat types.IMPORTANCEModern pork processing involves a series of processes that begin with the handling and transport of the live animals, proceed through harvest and fabrication, and end with the packaging and distribution of fresh pork to the consumer. Each step in this process can alter the microbial community of fresh pork and influence the meat's safety and shelf life. However, little is known about the microbial ecology of individual, unprocessed pork cuts and if the diversity of the meat microbiome remains consistent throughout a production schedule. Additionally, the crude prevalence and enumeration of Salmonella have not been well established for individual fresh pork cuts throughout a production schedule. A more thorough understanding of the microbial profile at different stages of pork production will help processors determine processing steps that impact the microbial characteristics of fresh pork. This insight will help processors implement targeted intervention strategies to enhance food safety and quality.
Collapse
Affiliation(s)
- A. E. Asmus
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
- Hormel Foods Corporation, Austin, Minnesota, USA
| | - T. N. Gaire
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | | | - S. M. Staben
- Hormel Foods Corporation, Austin, Minnesota, USA
| | - N. R. Noyes
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
4
|
Botta C, Buzzanca D, Chiarini E, Chiesa F, Rubiola S, Ferrocino I, Fontanella E, Rantsiou K, Houf K, Alessandria V. Microbial contamination pathways in a poultry abattoir provided clues on the distribution and persistence of Arcobacter spp. Appl Environ Microbiol 2024; 90:e0029624. [PMID: 38647295 PMCID: PMC11107157 DOI: 10.1128/aem.00296-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/29/2024] [Indexed: 04/25/2024] Open
Abstract
The consumption of contaminated poultry meat is a significant threat for public health, as it implicates in foodborne pathogen infections, such as those caused by Arcobacter. The mitigation of clinical cases requires the understanding of contamination pathways in each food process and the characterization of resident microbiota in the productive environments, so that targeted sanitizing procedures can be effectively implemented. Nowadays these investigations can benefit from the complementary and thoughtful use of culture- and omics-based analyses, although their application in situ is still limited. Therefore, the 16S-rRNA gene-based sequencing of total DNA and the targeted isolation of Arcobacter spp. through enrichment were performed to reconstruct the environmental contamination pathways within a poultry abattoir, as well as the dynamics and distribution of this emerging pathogen. To that scope, broiler's neck skin and caeca have been sampled during processing, while environmental swabs were collected from surfaces after cleaning and sanitizing. Metataxonomic survey highlighted a negligible impact of fecal contamination and a major role of broiler's skin in determining the composition of the resident abattoir microbiota. The introduction of Arcobacter spp. in the environment was mainly conveyed by this source rather than the intestinal content. Arcobacter butzleri represented one of the most abundant species and was extensively detected in the abattoir by both metataxonomic and enrichment methods, showing higher prevalence than other more thermophilic Campylobacterota. In particular, Arcobacter spp. was recovered viable in the plucking sector with high frequency, despite the adequacy of the sanitizing procedure.IMPORTANCEOur findings have emphasized the persistence of Arcobacter spp. in a modern poultry abattoir and its establishment as part of the resident microbiota in specific environmental niches. Although the responses provided here are not conclusive for the identification of the primary source of contamination, this biogeographic assessment underscores the importance of monitoring Arcobacter spp. from the early stages of the production chain with the integrative support of metataxonomic analysis. Through such combined detection approaches, the presence of this pathogen could be soon regarded as hallmark indicator of food safety and quality in poultry slaughtering.
Collapse
Affiliation(s)
- Cristian Botta
- Department of Agricultural, Forest and Food Sciences, University of Torino, Torino, Italy
| | - Davide Buzzanca
- Department of Agricultural, Forest and Food Sciences, University of Torino, Torino, Italy
| | - Elisabetta Chiarini
- Department of Agricultural, Forest and Food Sciences, University of Torino, Torino, Italy
| | - Francesco Chiesa
- Department of Veterinary Sciences, University of Torino, Torino, Italy
| | - Selene Rubiola
- Department of Veterinary Sciences, University of Torino, Torino, Italy
| | - Ilario Ferrocino
- Department of Agricultural, Forest and Food Sciences, University of Torino, Torino, Italy
| | | | - Kalliopi Rantsiou
- Department of Agricultural, Forest and Food Sciences, University of Torino, Torino, Italy
| | - Kurt Houf
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Valentina Alessandria
- Department of Agricultural, Forest and Food Sciences, University of Torino, Torino, Italy
| |
Collapse
|
5
|
Jeong J, Song H, Kim WH, Chae M, Lee JY, Kwon YK, Cho S. Tracking the contamination sources of microbial population and characterizing Listeria monocytogenes in a chicken slaughterhouse by using culture-dependent and -independent methods. Front Microbiol 2023; 14:1282961. [PMID: 38098672 PMCID: PMC10720907 DOI: 10.3389/fmicb.2023.1282961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/09/2023] [Indexed: 12/17/2023] Open
Abstract
Listeria monocytogenes is the etiologic agent of listeriosis, a foodborne disease that poses a threat to public health globally. Chicken meat exhibits heightened susceptibility to L. monocytogenes contamination during butchery. The persistence of this pathogen in the slaughterhouse environment enables recurring contamination of meat products. This study aimed at identifying the sources and transmission routes of L. monocytogenes contamination within an abattoir where it was consistently detected for three consecutive years (2019-2021). Furthermore, the environmental factors aiding contamination along chicken processing lines were determined by surveying the microbiome within the facility. Samples collected in 2019 to 2021 were subjected to culture-dependent analysis to assess the prevalence, serotypes, and multi-locus sequence typing (MLST) of L. monocytogenes. Additionally, the specimens collected in 2021 underwent culture-independent analysis via real-time quantitative polymerase chain reaction (qPCR) and 16S rRNA gene amplicon sequencing to identify the contamination sources and characterize the entire microbial community within the slaughterhouse. L. monocytogenes was isolated only from the clean zone, where the final slaughtering stage occurs. Most strains isolated from the final carcasses showed the same genetic cluster as the isolate in the chilling water and were assigned to MLST profile ST3. Culture-independent qPCR confirmed L. monocytogenes contamination in all samples, excluding post-scalding carcasses, prewashed post-evisceration carcasses, and the bleeding areas. Consequently, qPCR enabled more comprehensive identification of L. monocytogenes contamination points than culture-dependent approaches. Moreover, 16S rRNA gene amplicon sequencing demonstrated that psychro-tolerant and spoilage-related bacteria with L. monocytogenes-like attributes exhibited enhanced viability in the clean zone and immersion-chilling water. Metagenomics-based source tracking analysis further revealed that the shackles and chilling waters represent predominant sources of cross-contamination between different slaughterhouse zones, whereas the grading and packaging workstations and chilling water in the clean zone were deemed crucial sources affecting final carcass contamination. Collectively, these findings demonstrate through culture-dependent and -independent methods that L. monocytogenes spreads along the slaughter line, contaminating the slaughterhouse. Moreover, by investigating changes in microbial community and bacterial flow along the slaughter line within the facility, the sources influencing carcass contamination can be effectively traced.
Collapse
Affiliation(s)
- Jiyeon Jeong
- Avian Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do, Republic of Korea
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Hyokeun Song
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Woo-Hyun Kim
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Myeongju Chae
- Avian Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do, Republic of Korea
| | - Ji-Youn Lee
- Avian Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do, Republic of Korea
| | - Yong-Kuk Kwon
- Avian Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do, Republic of Korea
| | - Seongbeom Cho
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Tadielo LE, Dos Santos EAR, Possebon FS, Schmiedt JA, Juliano LCB, Cerqueira-Cézar CK, de Oliveira JP, Sampaio ANDCE, Melo PRL, Caron EFF, Pinto JPDAN, Bersot LDS, Pereira JG. Characterization of microbial ecology, Listeria monocytogenes, and Salmonella sp. on equipment and utensil surfaces in Brazilian poultry, pork, and dairy industries. Food Res Int 2023; 173:113422. [PMID: 37803760 DOI: 10.1016/j.foodres.2023.113422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/09/2023] [Accepted: 08/29/2023] [Indexed: 10/08/2023]
Abstract
This study aimed to evaluate the level of counting by indicator microorganisms, identify the microbial ecology, detect Listeria monocytogenes and Salmonella sp., and determine the presence of virulence genes and biofilm formation. A total of 480 samples were collected from the surfaces of the equipment and utensils using sterile swabs for the detection of L. monocytogenes and Salmonella sp. and counting mesophilic aerobes, Enterobacteriaceae, Escherichia coli, and Pseudomonas sp. The microbial ecology was evaluated by sequencing the 16S rRNA gene. Genes for virulence and biofilm formation were analyzed and adhesion capacity was evaluated for L. monocytogenes and Salmonella sp. The mesophilic aerobe count was the highest in the dairy processing facility, followed by the pork and poultry slaughterhouses. L. monocytogenes was detected in all facilities, with the highest detection in the pork slaughterhouse, followed by the poultry and dairy facilities. Salmonella sp. was only detected in the dairy. Isolates of L. monocytogenes and Salmonella sp. showed poor adhesion to polystyrene surfaces, virulence genes, and biofilm formation. The frequent contaminants in the slaughterhouses were Pseudomonas, Acinetobacter, and Aeromonas in poultry, Acinetobacter, Pseudomonas, and Brevundimonas in pork, and Pseudomonas, Kocuria, and Staphylococcus in dairy. Our results provide useful information to understand the microbiological risks associated with contamination.
Collapse
Affiliation(s)
- Leonardo Ereno Tadielo
- São Paulo State University (UNESP), Botucatu Campus, School of Veterinary Medicine and Animal Science, Distrito de Rubião Jr, SN, 18618-681 Botucatu, São Paulo, Brazil
| | - Emanoelli Aparecida Rodrigues Dos Santos
- São Paulo State University (UNESP), Botucatu Campus, School of Veterinary Medicine and Animal Science, Distrito de Rubião Jr, SN, 18618-681 Botucatu, São Paulo, Brazil
| | - Fábio Sossai Possebon
- São Paulo State University (UNESP), Botucatu Campus, School of Veterinary Medicine and Animal Science, Distrito de Rubião Jr, SN, 18618-681 Botucatu, São Paulo, Brazil
| | - Jhennifer Arruda Schmiedt
- Federal University of Paraná (UFPR), Palotina Campus, Department of Veterinary Sciences, Rua Pioneiro, 2153, Jardim Dallas, 85950-000 Palotina, PR, Brazil
| | - Lara Cristina Bastos Juliano
- São Paulo State University (UNESP), Botucatu Campus, School of Veterinary Medicine and Animal Science, Distrito de Rubião Jr, SN, 18618-681 Botucatu, São Paulo, Brazil
| | - Camila Koutsodontis Cerqueira-Cézar
- São Paulo State University (UNESP), Botucatu Campus, School of Veterinary Medicine and Animal Science, Distrito de Rubião Jr, SN, 18618-681 Botucatu, São Paulo, Brazil
| | - Janaina Prieto de Oliveira
- São Paulo State University (UNESP), Botucatu Campus, School of Veterinary Medicine and Animal Science, Distrito de Rubião Jr, SN, 18618-681 Botucatu, São Paulo, Brazil
| | - Aryele Nunes da Cruz Encide Sampaio
- São Paulo State University (UNESP), Botucatu Campus, School of Veterinary Medicine and Animal Science, Distrito de Rubião Jr, SN, 18618-681 Botucatu, São Paulo, Brazil
| | - Patrícia Regina Lopes Melo
- São Paulo State University (UNESP), Botucatu Campus, School of Veterinary Medicine and Animal Science, Distrito de Rubião Jr, SN, 18618-681 Botucatu, São Paulo, Brazil
| | - Evelyn Fernanda Flores Caron
- São Paulo State University (UNESP), Botucatu Campus, School of Veterinary Medicine and Animal Science, Distrito de Rubião Jr, SN, 18618-681 Botucatu, São Paulo, Brazil
| | - José Paes de Almeida Nogueira Pinto
- São Paulo State University (UNESP), Botucatu Campus, School of Veterinary Medicine and Animal Science, Distrito de Rubião Jr, SN, 18618-681 Botucatu, São Paulo, Brazil
| | - Luciano Dos Santos Bersot
- Federal University of Paraná (UFPR), Palotina Campus, Department of Veterinary Sciences, Rua Pioneiro, 2153, Jardim Dallas, 85950-000 Palotina, PR, Brazil.
| | - Juliano Gonçalves Pereira
- São Paulo State University (UNESP), Botucatu Campus, School of Veterinary Medicine and Animal Science, Distrito de Rubião Jr, SN, 18618-681 Botucatu, São Paulo, Brazil.
| |
Collapse
|
7
|
Xu X, Rothrock MJ, Mishra A, Kumar GD, Mishra A. Relationship of the Poultry Microbiome to Pathogen Colonization, Farm Management, Poultry Production, and Foodborne Illness Risk Assessment. J Food Prot 2023; 86:100169. [PMID: 37774838 DOI: 10.1016/j.jfp.2023.100169] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
Despite the continuous progress in food science and technology, the global burden of foodborne illnesses remains substantial, with pathogens in food causing millions of infections each year. Traditional microbiological culture methods are inadequate in detecting the full spectrum of these microorganisms, highlighting the need for more comprehensive detection strategies. This review paper aims to elucidate the relationship between foodborne pathogen colonization and the composition of the poultry microbiome, and how this knowledge can be used for improved food safety. Our review highlights that the relationship between pathogen colonization varies across different sections of the poultry microbiome. Further, our review suggests that the microbiome profile of poultry litter, farm soil, and farm dust may serve as potential indicators of the farm environment's food safety issues. We also agree that the microbiome of processed chicken samples may reveal potential pathogen contamination and food quality issues. In addition, utilizing predictive modeling techniques on the collected microbiome data, we suggest establishing correlations between particular taxonomic groups and the colonization of pathogens, thus providing insights into food safety, and offering a comprehensive overview of the microbial community. In conclusion, this review underscores the potential of microbiome analysis as a powerful tool in food safety, pathogen detection, and risk assessment.
Collapse
Affiliation(s)
- Xinran Xu
- Department of Food Science and Technology, University of Georgia, Athens, GA, USA
| | - Michael J Rothrock
- Egg Safety and Quality Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, GA, USA
| | - Aditya Mishra
- Department of Statistics, University of Georgia, Athens, GA, USA
| | | | - Abhinav Mishra
- Department of Food Science and Technology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
8
|
Rapid Oxford Nanopore Technologies MinION Sequencing Workflow for Campylobacter jejuni Identification in Broilers on Site—A Proof-of-Concept Study. Animals (Basel) 2022; 12:ani12162065. [PMID: 36009653 PMCID: PMC9405271 DOI: 10.3390/ani12162065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/04/2022] [Accepted: 08/10/2022] [Indexed: 12/03/2022] Open
Abstract
Campylobacter is recognised as one of the most important foodborne bacteria, with a worldwide health and socioeconomic impact. This bacterium is one of the most important zoonotic players in poultry, where efficient and fast detection methods are required. Current official culture methods for Campylobacter enumeration in poultry usually include >44 h of culture and >72 h for identification, thus requiring at least five working shifts (ISO/TS 10272-2:2017). Here, we have assembled a portable sequencing kit composed of the Bento Lab and the MinION and developed a workflow for on-site farm use that is able to detect and report the presence of Campylobacter from caecal samples in less than five hours from sampling time, as well as the relationship of Campylobacter with other caecal microbes. Beyond that, our workflow may offer a cost-effective and practical method of microbiologically monitoring poultry at the farm. These results would demonstrate the possibility of carrying out rapid on-site screening to monitor the health status of the poultry farm/flock during the production chain.
Collapse
|
9
|
Thames HT, Fancher CA, Colvin MG, McAnally M, Tucker E, Zhang L, Kiess AS, Dinh TTN, Sukumaran AT. Spoilage Bacteria Counts on Broiler Meat at Different Stages of Commercial Poultry Processing Plants That Use Peracetic Acid. Animals (Basel) 2022; 12:1439. [PMID: 35681902 PMCID: PMC9179590 DOI: 10.3390/ani12111439] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 02/05/2023] Open
Abstract
In poultry processing, spoilage microbes are persistent microorganisms, which affect the quality of broiler meat. Peracetic acid (PAA) is the most common antimicrobial used by commercial processing plants, which can reduce the prevalence of these microbes. The goal of this study was to determine the concentrations of aerobic bacteria, coliforms, lactic acid bacteria, and Pseudomonas on broiler meat in processing plants that use peracetic acid in various concentrations as the primary antimicrobial. Samples were collected from three processing plants at five processing steps: post-pick (defeathering), pre-chill, post-chill, mechanically deboned meat (MDM), and drumsticks. Samples were rinsed in buffered peptone water for bacteria isolation. Over six log CFU/sample of aerobic plate counts (APC), lactic acid bacteria, and coliforms were detected on post-pick samples. All spoilage bacteria were reduced to nondetectable levels on post-chill samples (p < 0.001). However, the presence of all bacteria on mechanically deboned meat (MDM) samples indicated varying degrees of cross contamination from post-chill and MDM samples. These results suggest PAA effectively reduces spoilage microbes in chilling applications irrespective of differences in PAA concentrations. However, due to the levels of spoilage microbes detected in MDM, it may be worth investigating the potential interventions for this stage of processing.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Anuraj T. Sukumaran
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762, USA; (H.T.T.); (C.A.F.); (M.G.C.); (M.M.); (E.T.); (L.Z.); (A.S.K.); (T.T.N.D.)
| |
Collapse
|
10
|
De Villena JF, Vargas DA, Bueno López R, Chávez-Velado DR, Casas DE, Jiménez RL, Sanchez-Plata MX. Bio-Mapping Indicators and Pathogen Loads in a Commercial Broiler Processing Facility Operating with High and Low Antimicrobial Intervention Levels. Foods 2022; 11:foods11060775. [PMID: 35327198 PMCID: PMC8947298 DOI: 10.3390/foods11060775] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/02/2022] [Accepted: 03/06/2022] [Indexed: 01/01/2023] Open
Abstract
The poultry industry in the United States has traditionally implemented non-chemical and chemical interventions against Salmonella spp. and Campylobacter spp. on the basis of experience and word-of-mouth information shared among poultry processors. The effects of individual interventions have been assessed with microbiological testing methods for Salmonella spp. and Campylobacter spp. prevalence as well as quantification of indicator organisms, such as aerobic plate counts (APC), to demonstrate efficacy. The current study evaluated the loads of both indicators and pathogens in a commercial chicken processing facility, comparing the “normal chemical”, with all chemical interventions turned-on, at typical chemical concentrations set by the processing plant versus low-chemical process (“reduced chemical”), where all interventions were turned off or reduced to the minimum concentrations considered in the facility’s HACCP system. Enumeration and prevalence of Salmonella spp. and Campylobacter spp. as well as indicator organisms (APC and Enterobacteriaceae—EB) enumeration were evaluated to compare both treatments throughout a 25-month sampling period. Ten locations were selected in the current bio-mapping study, including live receiving, rehanger, post eviscerator, post cropper, post neck breaker, post IOBW #1, post IOBW #2, prechilling, post chilling, and parts (wings). Statistical process control parameters for each location and processing schemes were developed for each pathogen and indicator evaluated. Despite demonstrating significant statistical differences between the normal and naked processes in Salmonella spp. counts (“normal” significantly lower counts than the “reduced” at each location except for post-eviscerator and post-cropper locations), the prevalence of Salmonella spp. after chilling is comparable on both treatments (~10%), whereas for Campylobacter spp. counts, only at the parts’ location was there significant statistical difference between the “normal chemical” and the “reduced chemical”. Therefore, not all chemical intervention locations show an overall impact on Salmonella spp. or Campylobacter spp., and certain interventions can be turned off to achieve the same or better microbial performance if strategic intervention locations are enhanced.
Collapse
|
11
|
Billington C, Kingsbury JM, Rivas L. Metagenomics Approaches for Improving Food Safety: A Review. J Food Prot 2022; 85:448-464. [PMID: 34706052 DOI: 10.4315/jfp-21-301] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/21/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Advancements in next-generation sequencing technology have dramatically reduced the cost and increased the ease of microbial whole genome sequencing. This approach is revolutionizing the identification and analysis of foodborne microbial pathogens, facilitating expedited detection and mitigation of foodborne outbreaks, improving public health outcomes, and limiting costly recalls. However, next-generation sequencing is still anchored in the traditional laboratory practice of the selection and culture of a single isolate. Metagenomic-based approaches, including metabarcoding and shotgun and long-read metagenomics, are part of the next disruptive revolution in food safety diagnostics and offer the potential to directly identify entire microbial communities in a single food, ingredient, or environmental sample. In this review, metagenomic-based approaches are introduced and placed within the context of conventional detection and diagnostic techniques, and essential considerations for undertaking metagenomic assays and data analysis are described. Recent applications of the use of metagenomics for food safety are discussed alongside current limitations and knowledge gaps and new opportunities arising from the use of this technology. HIGHLIGHTS
Collapse
Affiliation(s)
- Craig Billington
- Institute of Environmental Science and Research, 27 Creyke Road, Ilam, Christchurch 8041, New Zealand
| | - Joanne M Kingsbury
- Institute of Environmental Science and Research, 27 Creyke Road, Ilam, Christchurch 8041, New Zealand
| | - Lucia Rivas
- Institute of Environmental Science and Research, 27 Creyke Road, Ilam, Christchurch 8041, New Zealand
| |
Collapse
|
12
|
Practical Opportunities for Microbiome Analyses and Bioinformatics in Poultry Processing. Poult Sci 2022; 101:101787. [PMID: 35346493 PMCID: PMC9079351 DOI: 10.1016/j.psj.2022.101787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/05/2022] [Indexed: 11/21/2022] Open
|
13
|
Wythe LA, Dittoe DK, Feye KM, Olson EG, Perry LM, Ricke SC. Reduction of Salmonella Infantis on skin-on, bone-in chicken thighs by cetylpyridinium chloride application and the impact on the skin microbiota. Poult Sci 2021; 101:101409. [PMID: 34953376 PMCID: PMC8715379 DOI: 10.1016/j.psj.2021.101409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 01/04/2023] Open
Abstract
Salmonella Infantis has been the etiological agent of numerous foodborne outbreaks of nontyphoidal Salmonella. Consequently, there is an emergent need to mitigate Salmonella Infantis among poultry. Thus, this study evaluated the efficacy of cetylpyridinium chloride (CPC) versus peroxyacetic acid (PAA), on bone-in, skin-on chicken thighs for the reduction of Salmonella and changes in the microbiota. Exactly 100 skin-on, bone-in chicken thighs (2 trials, 0 and 24 h, k = 5, n = 5, N = 50) were inoculated with 108 CFU/mL of a nalidixic acid resistant strain of S. Infantis for an attachment of 106 CFU/g. Thighs were treated with 20 s part dips (350 mL): a no inoculum, no treatment control (NINTC); no treatment control (NTC); tap water (TW); TW+CPC; TW+PAA. Following treatment, thighs were rinsed in 150 mL of nBPW, and rinsates were collected. Rinsates were spot plated for Salmonella and aerobic bacteria (APC). Log10 transformed counts were analyzed using a mixed-effects model (random effect = trial) with means separated using Tukey's HSD (P ≤ 0.05). The genomic DNA of rinsates was extracted, and the 16S rDNA was sequenced on an Illumina MiSeq. Microbiota data were analyzed using QIIME2, with data considered significant at P ≤ 0.05 (main effects) and Q≤0.05 (pairwise differences). Treatment × time interactions were observed for both Salmonella and APC (P < 0.05). The treatment of thighs with PAA and CPC reduced Salmonella and APC in respect to the controls. Numerically, thighs treated with CPC had less Salmonella (4.29 log10CFU/g) and less APC (4.56 log10CFU/g) at 24 h than all other treatments (P > 0.05). Differences in diversity metrics were not consistently observed between treatments; however, in trial 2, the NTC treated thighs were different than those treated with CPC (P < 0.05; Q < 0.05). In both trials, ANCOM, the analysis of microbiome compositional profiles, revealed shifts at both the phylum and order levels with thighs being different in the relative abundances of Proteobacteria (P < 0.05). In conclusion, treatment of skin-on poultry parts with CPC may reduce the risk of foodborne outbreaks caused by Salmonella Infantis.
Collapse
Affiliation(s)
- L A Wythe
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706
| | - D K Dittoe
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706
| | - K M Feye
- Department of Food Science and Center for Food Safety, University of Arkansas, Fayetteville, AR 72704
| | - E G Olson
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706
| | - L M Perry
- Safe Foods Corporation, Little Rock, AR 72114
| | - S C Ricke
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706.
| |
Collapse
|
14
|
Jang MJ, Kim SY, Ricke SC, Rhee MS, Kim SA. Microbial ecology of alfalfa, radish, and rapeseed sprouts based on culture methods and 16S rRNA microbiome sequencing. Food Res Int 2021; 144:110316. [PMID: 34053521 DOI: 10.1016/j.foodres.2021.110316] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 11/25/2022]
Abstract
Sprouts harbor high populations of bacteria and cause numerous foodborne disease outbreaks, yet little is known about their microbial composition. The present study aimed to define the microbiological ecology of sprouts using 16S rRNA microbiome sequencing and culture-dependent methods. Different types (radish, alfalfa, and rapeseed), brands (A, B, and C), and distribution routes (online and offline) of sprouts (n = 70) were considered for microbiome analysis, as well as quantitative (aerobic plate count and coliforms) and qualitative analyses (Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella Typhimurium). The aerobic plate count ranged from 7 to 8 CFU/g, and the coliforms ranged from 6 to 7 log CFU/g. Microbiome analysis revealed that Proteobacteria was the dominant phylum, accounting for 79.0% in alfalfa sprouts, 68.5% in rapeseed sprouts, and 61.9% in radish sprouts. Enterobacteriaceae was the dominant family in alfalfa sprouts (33.9%) and rapeseed sprouts (14.6%), while Moraxellaceae (11.9%) were prevalent on radish sprouts. The majority of the dominant genera were common in the environment, such as soil or water. Alfalfa sprouts yielded the lowest aerobic plate count but the highest relative abundance of Enterobacteriaceae compared to the other sprouts. These results could explain why alfalfa sprouts are a leading cause of sprout-related foodborne disease outbreaks. Alpha-diversity results (Chao1 and Shannon indices) suggested that species richness was greater on radish sprouts than the other sprout types. Beta-diversity results showed samples were clustered by types, indicating dissimilarity in microbial communities. However, the distribution route had a limited influence on microbial composition. The present study provides a comparative examination of the microbial profiles of sprouts. Microbiome analyses contribute to an in-depth understanding of the microbial ecology of sprouts, leading to potential control measures for ensuring food safety.
Collapse
Affiliation(s)
- Min Ji Jang
- Department of Food Science and Engineering, Ewha Womans University, Seoul, South Korea
| | - Seo Young Kim
- Department of Food Science and Engineering, Ewha Womans University, Seoul, South Korea
| | - Steven C Ricke
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Science, University of Wisconsin, Madison, WI, USA
| | - Min Suk Rhee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea
| | - Sun Ae Kim
- Department of Food Science and Engineering, Ewha Womans University, Seoul, South Korea.
| |
Collapse
|
15
|
Colombino E, Ferrocino I, Biasato I, Cocolin LS, Prieto-Botella D, Zduńczyk Z, Jankowski J, Milala J, Kosmala M, Fotschki B, Capucchio MT, Juśkiewicz J. Dried fruit pomace inclusion in poultry diet: growth performance, intestinal morphology and physiology. J Anim Sci Biotechnol 2020; 11:63. [PMID: 32577234 PMCID: PMC7304194 DOI: 10.1186/s40104-020-00464-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/24/2020] [Indexed: 12/17/2022] Open
Abstract
Background Fruit pomaces are by-products rich in polyphenol compounds and dietary fiber. They seem to play an important role in regulating the gut microbiota, morphology and physiology. The aim of this study was to assess whether apple (A), blackurrant (B) or strawberry (S) pomaces could be suitable ingredients in broiler diets and their effect on gut health. A total of 480 male broilers were randomly allotted to 8 dietary treatments with lower (3%-L) or higher (6%-H) dietary fiber content: two control groups (CL/CH), two A diets (AL/AH), two B diets (BL/BH), two S diets (SL/SH). Diet and fruit pomaces were chemically analyzed to assess polyphenol concentration and fibre fraction content. After the evaluation of growth performance, 6 birds/group were slaughtered at 35 days of age. Morphometric and histopathological investigations were performed on duodenum, jejunum and ileum. Excreta were collected to perform microbiota evaluation by 16S DNA sequencing. Weight, viscosity, enzymatic activity, short chain fatty acid (SCFAs) and ammonia concentration were determined in ileum and/or ceca content. Results A pomace and A diets showed the lowest polyphenol content and the highest content of soluble fibre fraction. No significant differences were observed for growth performance, gut morphometry and histopathology (P > 0.05). Dietary fruit pomace inclusion increased the weight of ileum and ceca and the ileum digesta viscosity (P < 0.05). In the ileum, A and S groups showed lower bacterial α-glucosidase activity than C groups. Moreover, small intestine SCFAs concentration was higher in fruit pomaces diets (P < 0.05). In ceca, B and S groups showed lower ammonia concentration and higher SCFAs than C. Dietary treatments also influenced the activity of α-glucosidase, α-galactosidase, β-galactosidase β-glucuronidase and xylase. Regarding microbiota, at phylum level, Firmicutes were differentially abundant across treatment (maximum for C and minimum in S, FDR > 0.05). At genus level, an increase of Weissella in AH and Erwinia in S/B diets, as well as a decrease of Lactobacillus in all fruit pomace groups were recorded (P < 0.05). Conclusions Fruit pomaces could be suitable ingredients in poultry nutrition even if further studies are needed to better understand which doses is more recommended to avoid negative effects on gut microbiota.
Collapse
Affiliation(s)
- Elena Colombino
- Department of Veterinary Sciences, University of Torino, Largo Paolo Braccini 2, Grugliasco, 10095 Turin, Italy
| | - Ilario Ferrocino
- Department of Agricultural, Forest and Food Sciences, University of Torino, Torino, Italy
| | - Ilaria Biasato
- Department of Agricultural, Forest and Food Sciences, University of Torino, Torino, Italy
| | - Luca Simone Cocolin
- Department of Agricultural, Forest and Food Sciences, University of Torino, Torino, Italy
| | - Daniel Prieto-Botella
- Research Team on Occupational Therapy (InTeO), Department of Surgery and Pathology, University Miguel Hernandez of Elche, Alicante, Spain
| | - Zenon Zduńczyk
- Polish Academy of Sciences, Institute of Animal Reproduction and Food Research, Olsztyn, Poland
| | - Jan Jankowski
- Department of Poultry Science, University of Warmia and Mazury, Olsztyn, Poland
| | - Joanna Milala
- Institute of Chemical Technology of Food, Lodz University of Technology, Lodz, Poland
| | - Monika Kosmala
- Institute of Chemical Technology of Food, Lodz University of Technology, Lodz, Poland
| | - Bartosz Fotschki
- Polish Academy of Sciences, Institute of Animal Reproduction and Food Research, Olsztyn, Poland
| | - Maria Teresa Capucchio
- Department of Veterinary Sciences, University of Torino, Largo Paolo Braccini 2, Grugliasco, 10095 Turin, Italy
| | - Jerzy Juśkiewicz
- Polish Academy of Sciences, Institute of Animal Reproduction and Food Research, Olsztyn, Poland
| |
Collapse
|
16
|
Chen SH, Fegan N, Kocharunchitt C, Bowman JP, Duffy LL. Impact of Poultry Processing Operating Parameters on Bacterial Transmission and Persistence on Chicken Carcasses and Their Shelf Life. Appl Environ Microbiol 2020; 86:e00594-20. [PMID: 32276979 PMCID: PMC7267199 DOI: 10.1128/aem.00594-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/03/2020] [Indexed: 01/23/2023] Open
Abstract
It is important for the poultry industry to maximize product safety and quality by understanding the connection between bacterial diversity on chicken carcasses throughout poultry processing to the end of shelf life and the impact of the local processing environment. Enumeration of total aerobic bacteria, Campylobacter and Pseudomonas, and 16S rRNA gene amplicon sequencing were used to evaluate the processing line by collecting 10 carcasses from five processing steps: prescald, postplucker, pre- and post-immersion chill, and post-air chill. The diversity throughout a 12-day shelf life was also determined by examining 30 packaged carcasses. To identify the sources of possible contamination, scald water tank, immersion chilling water tank, air samples, and wall surfaces in the air-chill room were analyzed. Despite bacterial reductions on carcasses (>5 log10 CFU/ml) throughout the process, each step altered the bacterial diversity. Campylobacter was a minor but persistent component in the bacterial community on carcasses. The combination of scalding, defeathering, and plucking distributed thermophilic spore-forming Anoxybacillus to carcasses, which remained at a high abundance on carcasses throughout subsequent processes. Pseudomonas was not isolated from carcasses after air chilling but was abundant on the wall of the air-chill room and became the predominant taxon at the end of shelf life, suggesting possible contamination through air movement. The results suggest that attention is needed at each processing step, regardless of bacterial reductions on carcasses. Changing scalding water regularly, maintaining good hygiene practices during processing, and thorough disinfection at the end of each processing day are important to minimize bacterial transmission.IMPORTANCE Culture-based and culture-independent approaches were utilized to reveal bacterial community changes on chicken carcasses at different processing steps and potential routes from the local processing environment. Current commercial processing effectively reduced bacterial loads on carcasses. Poultry processes have similar processes across facilities, but various processing arrangements and operating parameters could impact the bacterial transmission and persistence on carcasses differently. This study showed the use of a single tunnel incorporating scalding, defeathering and plucking may undesirably distribute the thermoduric bacteria, e.g., Campylobacter and Anoxybacillus, between the local environment and carcasses, whereas this does not occur when these steps are separated. The length of immersion and air chilling also impacted bacterial diversity on carcasses. Air chilling can transfer Pseudomonas from wall surfaces onto carcasses; this may subsequently influence chicken product shelf life. This study helps poultry processors understand the impact of current commercial processing and improve the chicken product quality and safety.
Collapse
Affiliation(s)
- Stanley H Chen
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Coopers Plains, Queensland, Australia
- Centre for Food Safety and Innovation, Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| | - Narelle Fegan
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Coopers Plains, Queensland, Australia
| | - Chawalit Kocharunchitt
- Centre for Food Safety and Innovation, Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| | - John P Bowman
- Centre for Food Safety and Innovation, Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| | - Lesley L Duffy
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Coopers Plains, Queensland, Australia
| |
Collapse
|
17
|
Feye KM, Thompson DR, Rothrock MJ, Kogut MH, Ricke SC. Poultry processing and the application of microbiome mapping. Poult Sci 2020; 99:678-688. [PMID: 32029154 PMCID: PMC7587767 DOI: 10.1016/j.psj.2019.12.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Indexed: 01/28/2023] Open
Abstract
Chicken is globally one of the most popular food animals. However, it is also one of the major reservoirs for foodborne pathogens, annually resulting in continued morbidity and mortality incidences worldwide. In an effort to reduce the threat of foodborne disease, the poultry industry has implemented a multifaceted antimicrobial program that incorporates not only chemical compounds, but also extensive amounts of water application and pathogen monitoring. Unfortunately, the pathogen detection methods currently used by the poultry industry lack speed, relying on microbiological plate methods and molecular detection systems that take time and lack precision. In many cases, the time to data acquisition can take 12 to 24 h. This is problematic if shorter-term answers are required which is becoming more likely as the public demand for chicken meat is only increasing, leading to new pressures to increase line speed. Therefore, new innovations in detection methods must occur to mitigate the risk of foodborne pathogens that could result from faster slaughter and processing speeds. Future technology will have 2 tracks: rapid methods that are meant to detect pathogens and indicator organisms within a few hours, and long-term methods that use microbiome mapping to evaluate sanitation and antimicrobial efficacy. Together, these methods will provide rapid, comprehensive data capable of being applied in both risk-assessment algorithms and used by management to safeguard the public.
Collapse
Affiliation(s)
- K M Feye
- Southern Plains Agricultural Research Center, USDA-ARS, Athens, TX 30605
| | - D R Thompson
- Department of Computer Science and Engineering, University of Arkansas, Fayetteville, AR 72704
| | - M J Rothrock
- US National Poultry Research Center, Egg Safety and Quality Research, USDA-ARS, Athens, GA 30605
| | - M H Kogut
- Southern Plains Agricultural Research Center, USDA-ARS, Athens, TX 30605
| | - S C Ricke
- Center for Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR 72704.
| |
Collapse
|