1
|
Tarcsai KR, Bányai K, Bali K, Abbas AA, Kövesdi V, Ongrádi J. Feline Adenovirus Isolate Shows Silent Nucleotide Alterations, Alternative Receptor/Coreceptor Binding, High Resistance to Disinfectants and Antiviral Drugs, as Well as Immunomodulation. Animals (Basel) 2024; 14:3502. [PMID: 39682467 DOI: 10.3390/ani14233502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Adenovirus (AdV) infection has been rarely documented in cats and other felids. Partial sequences of the hexon and fiber genes of a Hungarian feline adenovirus isolate (FeAdV isolate) showed a close relationship to human AdV (HAdV) type C1. Further molecular and biological characterization is reported here. Whole-genome sequencing revealed two silent mutations in the genome of the FeAdV isolate compared to a HAdV-C1 reference strain (at positions 14,096 and 15,082). Competitive antibody binding to the Coxsackie-adenovirus receptor and αvβ3 and αvβ5 integrin coreceptors inhibited the binding of the FeAdV isolate in different cell lines, but residual infections suggested alternative entry routes. The FeAdV isolate was found to be more sensitive to heat, low pH and detergents, but more resistant to alkaline and free chlorine treatments, as well as to ribavirin, stavudine and cidofovir treatments, than other human AdV types. We observed a suppression of IL-10 and TGF-β1 production during the entire course of viral replication. This immunomodulation may restore intratumoral immunity; thus, the FeAdV isolate could serve as an alternative oncolytic vector. Collectively, our results support that the Hungarian FeAdV isolate is a variant of common HAdV-C1. The cohabitation of cats with humans might result in reverse zoonotic infection. Felids appear to be susceptible to persistent and productive adenovirus infection, but further studies are needed to better understand the clinical and epidemiological implications.
Collapse
Affiliation(s)
| | - Krisztián Bányai
- Pathogen Discovery Group, HUN-REN Veterinary Medical Research Institute, 1143 Budapest, Hungary
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, 1078 Budapest, Hungary
- Szentágothai Research Centre, University of Pécs, 7622 Pécs, Hungary
- Department of Laboratory Medicine, Medical School, University of Pécs, 7622 Pécs, Hungary
| | - Krisztina Bali
- Pathogen Discovery Group, HUN-REN Veterinary Medical Research Institute, 1143 Budapest, Hungary
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, 1078 Budapest, Hungary
| | | | - Valéria Kövesdi
- Department of Preventive Medicine and Public Health, Semmelweis University, 1085 Budapest, Hungary
| | - József Ongrádi
- Department of Preventive Medicine and Public Health, Semmelweis University, 1085 Budapest, Hungary
- Department of Transfusion Medicine, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
2
|
Moonga LC, Chipinga J, Collins JP, Kapoor V, Saasa N, Nalubamba KS, Hang’ombe BM, Namangala B, Lundu T, Lu XJ, Yingst S, Wickiser JK, Briese T. Application of a Sensitive Capture Sequencing Approach to Reservoir Surveillance Detects Novel Viruses in Zambian Wild Rodents. Viruses 2024; 16:1754. [PMID: 39599868 PMCID: PMC11598836 DOI: 10.3390/v16111754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 11/29/2024] Open
Abstract
We utilized a pan-viral capture sequencing assay, VirCapSeq-VERT, to assess viral diversity in rodents from the Eastern Province of Zambia as a model for pre-pandemic viral reservoir surveillance. We report rodent adeno-, parvo-, paramyxo-, and picornaviruses that represent novel species or isolates, including murine adenovirus 4, two additional species in the genus Chaphamaparvovirus, two paramyxoviruses distantly related to unclassified viruses in the genus Jeilongvirus, and the first Aichivirus A sequence identified from rodents in Africa. Our results emphasize the importance of rodents as a reservoir for potential zoonotic viruses.
Collapse
Affiliation(s)
- Lavel C. Moonga
- Department of Paraclinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (L.C.M.); (B.M.H.); (B.N.)
- Africa Centre of Excellence in Infectious Diseases of Humans and Animals (ACEIDHA), School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
| | | | - John P. Collins
- Global Alliance for Preventing Pandemics at the Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY 10032, USA; (J.P.C.); (V.K.); (X.-J.L.); (S.Y.); (J.K.W.)
| | - Vishal Kapoor
- Global Alliance for Preventing Pandemics at the Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY 10032, USA; (J.P.C.); (V.K.); (X.-J.L.); (S.Y.); (J.K.W.)
- Department of Zoology, Rabindranath Tagore University, Bhopal 464993, India
| | - Ngonda Saasa
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia;
| | - King S. Nalubamba
- Department of Clinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia;
| | - Bernard M. Hang’ombe
- Department of Paraclinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (L.C.M.); (B.M.H.); (B.N.)
- Africa Centre of Excellence in Infectious Diseases of Humans and Animals (ACEIDHA), School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
| | - Boniface Namangala
- Department of Paraclinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (L.C.M.); (B.M.H.); (B.N.)
- Africa Centre of Excellence in Infectious Diseases of Humans and Animals (ACEIDHA), School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
| | - Tapiwa Lundu
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia;
| | - Xiang-Jun Lu
- Global Alliance for Preventing Pandemics at the Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY 10032, USA; (J.P.C.); (V.K.); (X.-J.L.); (S.Y.); (J.K.W.)
| | - Samuel Yingst
- Global Alliance for Preventing Pandemics at the Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY 10032, USA; (J.P.C.); (V.K.); (X.-J.L.); (S.Y.); (J.K.W.)
| | - J. Kenneth Wickiser
- Global Alliance for Preventing Pandemics at the Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY 10032, USA; (J.P.C.); (V.K.); (X.-J.L.); (S.Y.); (J.K.W.)
- Department of Population and Family Health, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Thomas Briese
- Global Alliance for Preventing Pandemics at the Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY 10032, USA; (J.P.C.); (V.K.); (X.-J.L.); (S.Y.); (J.K.W.)
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| |
Collapse
|
3
|
Wang Y, Liu Y, Wang J, Zhang M, Deng X, Song J, Zhu J, Yu L, Li G, Liu G. An adenovirus-vectored vaccine based on the N protein of feline coronavirus elicit robust protective immune responses. Antiviral Res 2024; 223:105825. [PMID: 38311297 DOI: 10.1016/j.antiviral.2024.105825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Feline coronavirus (FCoV) is an unsegmented, single-stranded RNA virus belonging to the Alphacoronavirus genus. It can cause fatal feline infectious peritonitis (FIP) in cats of any ages. Currently, there are no effective prevention and control measures to against FCoV. In this study, we developed a recombinant adenovirus vaccine, AD5-N, based on the nucleocapsid(N) protein of FCoV. The immunogenicity of AD5-N was evaluated through intramuscular immunization in 6-week-old Balb/c mice and 9-12 months old cats. Compared to the control group, AD5-N specifically induced a significant increase in IgG and SIgA levels in the vaccinated mice. Furthermore, AD5-N not only effectively promoted strong cellular immune responses in cats but also induced high levels of specific SIgA, effectively helping cats resist FCoV infection. Our findings suggest that adenovirus vector vaccines based on the N gene have the potential to become candidate vaccines for the prevention and control of FCoV infection.
Collapse
Affiliation(s)
- Yuanhong Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Yun Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Junna Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Miao Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Xiaoying Deng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Junhan Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Jie Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Lingxue Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China.
| | - Guoxin Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China.
| | - Guangqing Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China.
| |
Collapse
|
4
|
Tarcsai KR, Hidvégi M, Corolciuc O, Nagy K, Abbas AA, Ablashi DV, Kövesdi V, Ongrádi J. The effects of Avemar treatment on feline immunodeficiency virus infected cell cultures. Vet Med Sci 2023. [PMID: 37079719 DOI: 10.1002/vms3.1141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 02/02/2023] [Accepted: 03/26/2023] [Indexed: 04/22/2023] Open
Abstract
INTRODUCTION In addition to standard highly active antiretroviral therapy protocols, complementary therapies using natural compounds are widely used by human immunodeficiency virus (HIV)-infected human patients. One such compound is the fermented wheat germ extract (FWGE), named Avemar. MATERIALS AND METHODS In this study, we investigate the effects of Avemar in a feline-acquired immunodeficiency syndrome model. MBM lymphoid cells were acutely infected by the American feline immunodeficiency virus (FIV)-Petaluma (FIV-Pet) and the European FIV Pisa-M2 strains. FL-4 lymphoid cells, continuously producing FIV-Pet, served as a model for chronic infection. Crandell Rees feline kidney (CRFK) cells were infected by either FIV-Pet or feline adenovirus (FeAdV) as a model for transactivation and opportunistic viral infection. Cell cultures were treated pre- and post-infection with serial dilutions of spray-dried FWGE (Avemar pulvis, AP), a standardized active ingredient in commercial Avemar products. Residual FIV and FeAdV infectivity was quantified. RESULTS In a concentration-dependent manner, AP inhibited replication of FIV strains in MBM and CRFK cells by 3-5 log. Low AP concentration prevented FIV-Pet release from FL-4 cells. Higher concentrations destroyed virus-producing cells with cytopathic effects resembling apoptosis. AP strongly inhibited FeAdV production inside CRFK cells but not in HeLa cells. Adenovirus particles are then released via the disintegration of CRFK cells. DISCUSSION This report is the first to describe the antiviral effects of Avemar. Further studies are required to confirm its in vitro and in vivo effects and to investigate the potential for its use as a nutraceutical in FIV-infected felines or HIV-infected humans. CONCLUSION Avemar, as a single nutraceutical, inhibits FIV replication and destroys retrovirus carrier cells. An important conclusion is that prolonged Avemar treatment might reduce the number of retrovirus-producing cells in the host.
Collapse
Affiliation(s)
| | - Máté Hidvégi
- Jewish Theological Seminary - University of Jewish Studies (OR-ZSE), Budapest, Hungary
| | - Oliga Corolciuc
- Doctoral School, Semmelweis University, Budapest, Hungary
- Department of Transfusion Medicine, Semmelweis University, Budapest, Hungary
| | - Károly Nagy
- Molecular Microbiology Diagnostic Laboratory, Eötvös Lóránd University (ELTE), Budapest, Hungary
| | | | | | - Valéria Kövesdi
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - József Ongrádi
- Department of Transfusion Medicine, Semmelweis University, Budapest, Hungary
- Department of Public Health, Semmelweis University, Budapest, Hungary
| |
Collapse
|
5
|
MacNeil KM, Dodge MJ, Evans AM, Tessier TM, Weinberg JB, Mymryk JS. Adenoviruses in medicine: innocuous pathogen, predator, or partner. Trends Mol Med 2023; 29:4-19. [PMID: 36336610 PMCID: PMC9742145 DOI: 10.1016/j.molmed.2022.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/09/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
The consequences of human adenovirus (HAdV) infections are generally mild. However, despite the perception that HAdVs are harmless, infections can cause severe disease in certain individuals, including newborns, the immunocompromised, and those with pre-existing conditions, including respiratory or cardiac disease. In addition, HAdV outbreaks remain relatively common events and the recent emergence of more pathogenic genomic variants of various genotypes has been well documented. Coupled with evidence of zoonotic transmission, interspecies recombination, and the lack of approved AdV antivirals or widely available vaccines, HAdVs remain a threat to public health. At the same time, the detailed understanding of AdV biology garnered over nearly 7 decades of study has made this group of viruses a molecular workhorse for vaccine and gene therapy applications.
Collapse
Affiliation(s)
- Katelyn M MacNeil
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Mackenzie J Dodge
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Andris M Evans
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Tanner M Tessier
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Jason B Weinberg
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
| | - Joe S Mymryk
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada; Department of Otolaryngology, Head & Neck Surgery, The University of Western Ontario, London, ON, Canada; Department of Oncology, The University of Western Ontario, London, ON, Canada; London Regional Cancer Program, Lawson Health Research Institute, London, ON, Canada.
| |
Collapse
|
6
|
Gao YY, Liang XY, Wang Q, Zhang S, Zhao H, Wang K, Hu GX, Liu WJ, Gao FS. Mind the feline coronavirus: Comparison with SARS-CoV-2. Gene 2022; 825:146443. [PMID: 35337854 PMCID: PMC8938304 DOI: 10.1016/j.gene.2022.146443] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/25/2022] [Accepted: 03/18/2022] [Indexed: 12/13/2022]
Abstract
Both feline coronavirus (FCoV) and SARS-CoV-2 are coronaviruses that infect cats and humans, respectively. However, cats have been shown to be susceptible to SARS-CoV-2, and FCoV also had been shown to infect human. To elucidate the relationship between FCoV and SARS-CoV-2, we highlight the main characteristics of the genome, the receptor usage, and the correlation of the receptor-binding domain (RBD) of spike proteins in FCoV and SARS-CoV-2. It is demonstrated that FCoV and SARS-CoV-2 are closely related to the main characteristics of the genome, receptor usage, and RBD of spike proteins with similar furin cleavage sites. In particular, the affinity of the conserved feline angiotensin-converting enzyme 2 (fACE2) receptor to the RBD of SARS-CoV-2 suggests that cats are susceptible to SARS-CoV-2. In addition, cross-species of coronaviruses between cats and humans or other domesticated animals are also discussed. This review sheds light on cats as potential intermediate hosts for SARS-CoV-2 transmission, and cross-species transmission or zoonotic infection of FCoV and SARS-CoV-2 between cats and humans was identified.
Collapse
Affiliation(s)
- Yong-Yu Gao
- College of Animal Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Xiang-Yu Liang
- College of Animal Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Qian Wang
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Shuang Zhang
- College of Animal Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Han Zhao
- College of Animal Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Kai Wang
- College of Animal Medicine, Jilin Agricultural University, Changchun 130118, China.
| | - Gui-Xue Hu
- College of Animal Medicine, Jilin Agricultural University, Changchun 130118, China.
| | - William J Liu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Feng-Shan Gao
- College of Life Science and Technology, Dalian University, Dalian 116622, China.
| |
Collapse
|
7
|
Lial HC, Navas-Suárez PE, Ewbank AC, Exposto Novoselecki H, Ferreira-Machado E, Dos Santos Cirqueira C, de Azevedo Fernandes NCC, Esperón F, Catão-Dias JL, Sacristán C. Adenovirus surveillance in wild carnivores from Brazil. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 99:105246. [PMID: 35158084 DOI: 10.1016/j.meegid.2022.105246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Landscape transformation favors the spread of new pathogens that can be shared between domestic and wild animals. Certain adenoviruses (e.g., canine adenovirus 1 and 2, family Adenoviridae) can infect domestic and wild carnivores. In domestic canids, these viruses are associated with hepatic and respiratory diseases (among others). Nevertheless, information regarding adenovirus pathogenicity and molecular features in wild carnivores is still limited. Herein we surveyed adenovirus in free-ranging carnivores from Brazil. Total DNA was extracted from and subsequently tested by a nested panPCR in spleen and/or lung of 52 carnivores, representing species of the following families: Canidae (n = 4), Felidae (n = 3), Mustelidae (n = 2) and Procyonidae (n = 2). The obtained sequences were compared to others available at GenBank. Available tissue samples from the positive cases were evaluated histopathologically. One out of 52 (1.9%, CI 95%, 0.0-5.7%) carnivores was positive; a roadkilled ocelot (Leopardus pardalis). The obtained sequence presented a low deduced amino acid (78.1%) similarity with the closest adenovirus, identified in a pinniped from the United States of America. This fact and its detection in a novel host suggest it may be representative of a novel species and denominated ocelot adenovirus 1. None of the gross and microscopic findings of the positive case were associated with adenovirus. To the authors' knowledge, this is the first report of adenovirus in wild felids of South America and the second worldwide. Further studies are necessary to assess the epidemiology and potential pathogenicity of this agent in wild carnivores.
Collapse
Affiliation(s)
- Henrique Christino Lial
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 05508-270, SP, Brazil.
| | - Pedro Enrique Navas-Suárez
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 05508-270, SP, Brazil
| | - Ana Carolina Ewbank
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 05508-270, SP, Brazil
| | - Helena Exposto Novoselecki
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 05508-270, SP, Brazil
| | - Eduardo Ferreira-Machado
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 05508-270, SP, Brazil; School of Veterinary Medicine and Animal Science, Júlio de Mesquita Filho São Paulo State University - Botucatu campus, Botucatu 18618-681, SP, Brazil
| | | | - Natália Coelho Couto de Azevedo Fernandes
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 05508-270, SP, Brazil; Instituto Adolfo Lutz, São Paulo, 01246-000, SP, Brazil
| | - Fernando Esperón
- Group of Epidemiology and Environmental Health, Animal Health Research Centre (INIA-CISA), Valdeolmos, 28130 Madrid, Spain; Veterinary Department, School of Biomedical and Health Sciences, Universidad Europea de Madrid, C/Tajo s/n, Villaviciosa de Odón, 28670 Madrid, Spain
| | - José Luiz Catão-Dias
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 05508-270, SP, Brazil
| | - Carlos Sacristán
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 05508-270, SP, Brazil.
| |
Collapse
|
8
|
Kang J, Ismail AM, Dehghan S, Rajaiya J, Allard MW, Lim HC, Dyer DW, Chodosh J, Seto D. Genomics-based re-examination of the taxonomy and phylogeny of human and simian Mastadenoviruses: an evolving whole genomes approach, revealing putative zoonosis, anthroponosis, and amphizoonosis. Cladistics 2020; 36:358-373. [PMID: 34618969 DOI: 10.1111/cla.12422] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2020] [Indexed: 02/06/2023] Open
Abstract
With the advent of high-resolution and cost-effective genomics and bioinformatics tools and methods contributing to a large database of both human (HAdV) and simian (SAdV) adenoviruses, a genomics-based re-evaluation of their taxonomy is warranted. Interest in these particular adenoviruses is growing in part due to the applications of both in gene transfer protocols, including gene therapy and vaccines, as well in oncolytic protocols. In particular, the re-evaluation of SAdVs as appropriate vectors in humans is important as zoonosis precludes the assumption that human immune system may be naïve to these vectors. Additionally, as important pathogens, adenoviruses are a model organism system for understanding viral pathogen emergence through zoonosis and anthroponosis, particularly among the primate species, along with recombination, host adaptation, and selection, as evidenced by one long-standing human respiratory pathogen HAdV-4 and a recent re-evaluation of another, HAdV-76. The latter reflects the insights on amphizoonosis, defined as infections in both directions among host species including "other than human", that are possible with the growing database of nonhuman adenovirus genomes. HAdV-76 is a recombinant that has been isolated from human, chimpanzee, and bonobo hosts. On-going and potential impacts of adenoviruses on public health and translational medicine drive this evaluation of 174 whole genome sequences from HAdVs and SAdVs archived in GenBank. The conclusion is that rather than separate HAdV and SAdV phylogenetic lineages, a single, intertwined tree is observed with all HAdVs and SAdVs forming mixed clades. Therefore, a single designation of "primate adenovirus" (PrAdV) superseding either HAdV and SAdV is proposed, or alternatively, keeping HAdV for human adenovirus but expanding the SAdV nomenclature officially to include host species identification as in ChAdV for chimpanzee adenovirus, GoAdV for gorilla adenovirus, BoAdV for bonobo adenovirus, and ad libitum.
Collapse
Affiliation(s)
- June Kang
- Bioinformatics and Computational Biology Program, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| | - Ashrafali Mohamed Ismail
- Department of Ophthalmology, Howe Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Shoaleh Dehghan
- Bioinformatics and Computational Biology Program, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA.,Chemistry Department, American University, Washington, DC, 20016, USA
| | - Jaya Rajaiya
- Department of Ophthalmology, Howe Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Marc W Allard
- Division of Microbiology (HFS-710), Center for Food Safety & Applied Nutrition, US Food & Drug Administration, College Park, MD, 20740, USA
| | - Haw Chuan Lim
- Department of Biology, George Mason University Manassas, VA, 20110, USA
| | - David W Dyer
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - James Chodosh
- Department of Ophthalmology, Howe Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Donald Seto
- Bioinformatics and Computational Biology Program, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| |
Collapse
|
9
|
Borkenhagen LK, Fieldhouse JK, Seto D, Gray GC. Are adenoviruses zoonotic? A systematic review of the evidence. Emerg Microbes Infect 2019; 8:1679-1687. [PMID: 31749409 PMCID: PMC6882429 DOI: 10.1080/22221751.2019.1690953] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Adenoviruses (AdVs) are major contributors to clinical illnesses. Novel human and animal AdVs continue to be identified and characterized. Comparative analyses using bioinformatic methods and Omics-based technologies allow insights into how these human pathogens have emerged and their potential for host cross-species transmission. Systematic review of literature published across ProQuest, Pubmed, and Web of Science databases for evidence of adenoviral zoonotic potential identified 589 citations. After removing duplicates, 327 citations were screened for relevance; of which, 74 articles received full-text reviews. Among these, 24 were included here, of which 16 demonstrated evidence of zoonotic transmission of AdVs. These documented instances of AdV crossing host species barriers between humans and non-human primate, bat, feline, swine, canine, ovine, and caprine. Eight studies sought to but did not find evidence of zoonosis. The findings demonstrate substantial evidence suggesting AdVs have previously and will continue crossing host species barriers. These have human health consequences both in terms of novel pathogen emergence and epidemic outbreaks, and of appropriate and safe use of non-human adenoviruses for therapeutics. As routine human clinical diagnostics may miss a novel cross-species adenovirus infection in humans, next generation sequencing or panspecies molecular diagnostics may be necessary to detect such incursions.
Collapse
Affiliation(s)
- Laura K Borkenhagen
- Division of Infectious Diseases, School of Medicine and Global Health Institute, Duke University, Durham, NC, USA
| | - Jane K Fieldhouse
- Division of Infectious Diseases, School of Medicine and Global Health Institute, Duke University, Durham, NC, USA
| | - Donald Seto
- Bioinformatics and Computational Biology Program, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Gregory C Gray
- Division of Infectious Diseases, School of Medicine and Global Health Institute, Duke University, Durham, NC, USA.,Global Health Research Center, Duke Kunshan University, Kunshan, People's Republic of China.,Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|