1
|
Pahus MH, Zheng Y, Olefsky M, Gunst JD, Tebas P, Taiwo B, Søgaard OS, Peluso MJ, Lie Y, Reeves JD, Petropoulos CJ, Caskey M, Bar KJ. Evaluation and Real-world Experience of a Neutralization Susceptibility Screening Assay for Broadly Neutralizing Anti-HIV-1 Antibodies. J Infect Dis 2025; 231:424-434. [PMID: 39441137 PMCID: PMC11841631 DOI: 10.1093/infdis/jiae486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/05/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Development of a screening assay for the clinical use of broadly neutralizing antibodies (bnAbs) is a priority for HIV therapy and cure initiatives. METHODS We assessed the PhenoSense Monoclonal Antibody Assay (Labcorp-Monogram Biosciences), which is Clinical Laboratory Improvement Amendments (CLIA) validated and has been used prospectively and retrospectively in multiple recent bnAb clinical trials. RESULTS When performed on plasma and longitudinal peripheral blood mononuclear cell samples (before and during antiretroviral therapy, respectively), as sourced from a recent clinical trial, the PhenoSense assay produced robust reproducibility, concordance across sample types, and expected ranges in the susceptibility measures of bnAbs in clinical development. When applied retrospectively to baseline samples from 3 recent studies, the PhenoSense assay correlated with published laboratory-based study evaluations, but baseline bnAb susceptibility was not consistently predictive of durable virus suppression. Assessment of assay feasibility in 4 recent clinical studies provides estimates of assay success rate and processing time. CONCLUSIONS The PhenoSense Monoclonal Antibody Assay provides reproducible bnAb susceptibility measurements across relevant sample types yet is not consistently predictive of virus suppression. Logistical and operational assay requirements can affect timely clinical trial conduct. These results inform bnAb studies in development.
Collapse
Affiliation(s)
- Marie Høst Pahus
- Department of Infectious Diseases, Aarhus University Hospital, Denmark
| | - Yu Zheng
- Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Maxine Olefsky
- Chan School of Public Health, Harvard University, Boston, Massachusetts
| | | | - Pablo Tebas
- Division of Infectious Disease, Department of Medicine, University of Pennsylvania, Philadelphia
| | - Babafemi Taiwo
- Division of Infectious Disease, Department of Medicine, Northwestern University, Chicago, Illinois
| | - Ole S Søgaard
- Department of Infectious Diseases, Aarhus University Hospital, Denmark
| | - Michael J Peluso
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California San Francisco
| | - Yolanda Lie
- Labcorp-Monogram Biosciences, South San Francisco, California
| | | | | | - Marina Caskey
- Department of Clinical Investigation, Rockefeller University, New York City, New York
| | - Katharine J Bar
- Division of Infectious Disease, Department of Medicine, University of Pennsylvania, Philadelphia
| |
Collapse
|
2
|
Murzin AI, Elfimov KA, Gashnikova NM. The Proviral Reservoirs of Human Immunodeficiency Virus (HIV) Infection. Pathogens 2024; 14:15. [PMID: 39860976 PMCID: PMC11768375 DOI: 10.3390/pathogens14010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 01/27/2025] Open
Abstract
Human Immunodeficiency Virus (HIV) proviral reservoirs are cells that harbor integrated HIV proviral DNA within their nuclear genomes. These cells form a heterogeneous group, represented by peripheral blood mononuclear cells (PBMCs), tissue-resident lymphoid and monocytic cells, and glial cells of the central nervous system. The importance of studying the properties of proviral reservoirs is connected with the inaccessibility of integrated HIV proviral DNA for modern anti-retroviral therapies (ARTs) that block virus reproduction. If treatment is not effective enough or is interrupted, the proviral reservoir can reactivate. Early initiation of ART improves the prognosis of the course of HIV infection, which is explained by the reduction in the proviral reservoir pool observed in the early stages of the disease. Different HIV subtypes present differences in the number of latent reservoirs, as determined by structural and functional differences. Unique signatures of patients with HIV, such as elite controllers, have control over viral replication and can be said to have achieved a functional cure for HIV infection. Uncovering the causes of this phenomenon will bring humanity closer to curing HIV infection, potential approaches to which include stem cell transplantation, clustered regularly interspaced short palindromic repeats (CRISPR)/cas9, "Shock and kill", "Block and lock", and the application of broad-spectrum neutralizing antibodies (bNAbs).
Collapse
Affiliation(s)
- Andrey I. Murzin
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo 630559, Russia; (K.A.E.); (N.M.G.)
| | | | | |
Collapse
|
3
|
Juste MAJ, Joseph Y, Lespinasse D, Apollon A, Jamshidi P, Lee MH, Ward M, Brill E, Duffus Y, Chukwukere U, Danesh A, Alberto WC, Fitzgerald DW, Pape JW, Jones RB, Dupnik K. People Living With HIV Have More Intact HIV DNA in Circulating CD4+ T Cells if They Have History of Pulmonary Tuberculosis. Pathog Immun 2024; 9:172-193. [PMID: 39345793 PMCID: PMC11432494 DOI: 10.20411/pai.v9i2.722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/22/2024] [Indexed: 10/01/2024] Open
Abstract
Background A primary barrier to curing HIV is the HIV reservoir. The leading infectious cause of death worldwide for people living with HIV is tuberculosis (TB), but we do not know how TB impacts the HIV reservoir. Methods Participants in identification and validation cohorts were selected from previously enrolled studies at Groupe Haïtien d'Étude du Sarcome de Kaposi et des Infections Opportunistes (GHESKIO) in Port au Prince, Haiti. Intact and non-intact proviral DNA were quantified using droplet digital PCR of peripheral blood mononuclear cell (PBMC)-derived CD4+ T cells. Kruskal-Wallis tests were used to compare medians with tobit regression for censoring. Results In the identification cohort, we found that people living with HIV with a history of active pulmonary TB (n=19) had higher levels of intact provirus than people living with HIV without a history of active TB (n=47) (median 762; IQR, 183-1173 vs 117; IQR, 24-279 intact provirus per million CD4, respectively; P=0.0001). This difference also was seen in the validation cohort (n=31), (median 102; IQR, 0-737 vs 0; IQR, 0-24.5 intact provirus per million CD4, P=0.03) for TB vs no-TB history groups, respectively. The frequencies of CD4+ T cells with any detectable proviral fragment was directly proportional to the levels of interleukin-1 beta (r=0.524, P= 0.0025) and interleukin-2 (r=0.622, P=0.0002). Conclusions People living with HIV with a history of active pulmonary TB have more HIV pro-virus in their circulating CD4+ T cells, even years after TB cure. We need to characterize which CD4+ T cells are harboring intact provirus to consider the impact of T cell-targeting HIV cure interventions for people living in TB-endemic areas.
Collapse
Affiliation(s)
| | | | | | | | | | - Myung Hee Lee
- Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Maureen Ward
- Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Esther Brill
- Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Yanique Duffus
- Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Uche Chukwukere
- Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Ali Danesh
- Department of Medicine, Weill Cornell Medicine, New York, NY
| | | | | | - Jean W. Pape
- GHESKIO Centers, Port au Prince, Haiti
- Department of Medicine, Weill Cornell Medicine, New York, NY
| | - R. Brad Jones
- Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Kathryn Dupnik
- Department of Medicine, Weill Cornell Medicine, New York, NY
| |
Collapse
|
4
|
Ling L, Kim M, Soper A, Kovarova M, Spagnuolo RA, Begum N, Kirchherr J, Archin N, Battaglia D, Cleveland D, Wahl A, Margolis DM, Browne EP, Garcia JV. Analysis of the effect of HDAC inhibitors on the formation of the HIV reservoir. mBio 2024; 15:e0163224. [PMID: 39136440 PMCID: PMC11389399 DOI: 10.1128/mbio.01632-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024] Open
Abstract
The HIV reservoir is more dynamic than previously thought with around 70% of the latent reservoir originating from viruses circulating within 1 year of the initiation of antiretroviral therapy (ART). In an ex vivo model system of HIV latency, it was reported that early exposure to class I histone deacetylase (HDAC) inhibitors might prevent these more recently infected cells from entering a state of stable viral latency. This finding raises the possibility that co-administration of HDAC inhibitors at the time of ART initiation may prevent the establishment of much of the HIV reservoir. Here, we tested the effects of the HDAC inhibitors suberoylanilide hydroxamic acid (SAHA) and panobinostat co-administered at the time of ART initiation on the formation of the viral reservoir in HIV-infected humanized mice. As previously shown, SAHA and panobinostat were well tolerated in humanized mice. Unexpectedly, co-administration of SAHA resulted in an increase in the frequency of CD4+ cells carrying HIV DNA but did not alter the frequency of cell-associated HIV RNA in HIV-infected, ART-treated humanized mice. Co-administration of panobinostat did not alter levels of cell-associated HIV DNA or RNA. Our in vivo findings indicate that co-administration of HDAC inhibitors initiated at the same time of ART treatment does not prevent recently infected cells from entering latency.IMPORTANCECurrent antiretroviral therapy (ART) does not eradicate cells harboring replication-competent HIV reservoir. Withdrawal of ART inevitably results in a rapid viremia rebound. The HIV reservoir is more dynamic than previously thought. Early exposure to class I histone deacetylase (HDAC) inhibitors inhibit these more recently infected cells from entering a state of stable viral latency in an ex vivo model of latency, raising the possibility that co-administration of HDAC inhibitors at the time of ART initiation may reduce much of the HIV reservoir. Here, we tested the effects of the HDAC inhibitors suberoylanilide hydroxamic acid or panobinostat during ART initiation on the formation of the viral reservoir in HIV-infected humanized mice. Our in vivo study indicates that in contrast to in vitro observations, the co-administration of HDAC inhibitors at the same time of ART initiation does not prevent recently infected cells from entering latency.
Collapse
Affiliation(s)
- Lijun Ling
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Manse Kim
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Andrew Soper
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Martina Kovarova
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rae Ann Spagnuolo
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nurjahan Begum
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jennifer Kirchherr
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nancie Archin
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Diana Battaglia
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Dave Cleveland
- Center for AIDS Research, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Angela Wahl
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David M. Margolis
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Edward P. Browne
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - J. Victor Garcia
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
5
|
Gutierrez H, Eugenin EA. The challenges to detect, quantify, and characterize viral reservoirs in the current antiretroviral era. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2024; 3:211-219. [PMID: 39845128 PMCID: PMC11751450 DOI: 10.1515/nipt-2024-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/10/2024] [Indexed: 01/24/2025]
Abstract
A major barrier to cure HIV is the early generation of viral reservoirs in tissues. These viral reservoirs can contain intact or defective proviruses, but both generates low levels of viral proteins contribute to chronic bystander damage even in the ART era. Most viral reservoir detection techniques are limited to blood-based, reactivation, and sequencing assays that lack spatial properties to examine the contribution of the host's microenvironment to latency and cure efforts. Currently, little is known about the contribution of the microenvironment to viral reservoir survival, residual viral expression, and associated inflammation. Only a few spatiotemporal techniques are available, and fewer integrate spatial genomics, transcriptomics, and proteomics into the analysis of the viral reservoir microenvironment-all essential components to cure HIV. During the development of these spatial techniques, many considerations need to be included in the analysis to avoid misinterpretation. This manuscript tries to clarify some critical concepts in viral reservoir detection by spatial techniques and the upcoming opportunities for cure efforts.
Collapse
Affiliation(s)
- Hector Gutierrez
- Department of Neurobiology, The University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Eliseo A. Eugenin
- Department of Neurobiology, The University of Texas Medical Branch (UTMB), Galveston, TX, USA
| |
Collapse
|
6
|
Raines SLM, Falcinelli SD, Peterson JJ, Van Gulck E, Allard B, Kirchherr J, Vega J, Najera I, Boden D, Archin NM, Margolis DM. Nanoparticle delivery of Tat synergizes with classical latency reversal agents to express HIV antigen targets. Antimicrob Agents Chemother 2024; 68:e0020124. [PMID: 38829049 PMCID: PMC11232404 DOI: 10.1128/aac.00201-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/10/2024] [Indexed: 06/05/2024] Open
Abstract
Limited cellular levels of the HIV transcriptional activator Tat are one contributor to proviral latency that might be targeted in HIV cure strategies. We recently demonstrated that lipid nanoparticles containing HIV tat mRNA induce HIV expression in primary CD4 T cells. Here, we sought to further characterize tat mRNA in the context of several benchmark latency reversal agents (LRAs), including inhibitor of apoptosis protein antagonists (IAPi), bromodomain and extra-Terminal motif inhibitors (BETi), and histone deacetylase inhibitors (HDACi). tat mRNA reversed latency across several different cell line models of HIV latency, an effect dependent on the TAR hairpin loop. Synergistic enhancement of tat mRNA activity was observed with IAPi, HDACi, and BETi, albeit to variable degrees. In primary CD4 T cells from durably suppressed people with HIV, tat mRNA profoundly increased the frequencies of elongated, multiply-spliced, and polyadenylated HIV transcripts, while having a lesser impact on TAR transcript frequencies. tat mRNAs alone resulted in variable HIV p24 protein induction across donors. However, tat mRNA in combination with IAPi, BETi, or HDACi markedly enhanced HIV RNA and protein expression without overt cytotoxicity or cellular activation. Notably, combination regimens approached or in some cases exceeded the latency reversal activity of maximal mitogenic T cell stimulation. Higher levels of tat mRNA-driven HIV p24 induction were observed in donors with larger mitogen-inducible HIV reservoirs, and expression increased with prolonged exposure time. Combination LRA strategies employing both small molecule inhibitors and Tat delivered to CD4 T cells are a promising approach to effectively target the HIV reservoir.
Collapse
Affiliation(s)
- Samuel L. M. Raines
- Department of Medicine and UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Shane D. Falcinelli
- Department of Medicine and UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jackson J. Peterson
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ellen Van Gulck
- Janssen Infectious Diseases, Janssen Research and Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Brigitte Allard
- Department of Medicine and UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jennifer Kirchherr
- Department of Medicine and UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jerel Vega
- Arcturus Therapeutics, Science Center Drive, San Diego, California, USA
| | - Isabel Najera
- Janssen Infectious Diseases, Janssen Research and Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Daniel Boden
- Janssen Infectious Diseases, Janssen Research and Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Nancie M. Archin
- Department of Medicine and UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - David M. Margolis
- Department of Medicine and UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
7
|
Hossain T, Lungu C, de Schrijver S, Kuali M, Crespo R, Reddy N, Ngubane A, Kan TW, Reddy K, Rao S, Palstra RJ, Madlala P, Ndung'u T, Mahmoudi T. Specific quantification of inducible HIV-1 reservoir by RT-LAMP. COMMUNICATIONS MEDICINE 2024; 4:123. [PMID: 38918506 PMCID: PMC11199587 DOI: 10.1038/s43856-024-00553-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Strategies toward HIV-1 cure aim to clear, inactivate, reduce, or immunologically control the virus from a pool of latently infected cells such that combination antiretroviral therapy (cART) can be safely interrupted. In order to assess the impact of any putative curative interventions on the size and inducibility of the latent HIV-1 reservoir, robust and scalable assays are needed to precisely quantify the frequency of infected cells containing inducible HIV-1. METHODS We developed Specific Quantification of Inducible HIV-1 by RT-LAMP (SQuHIVLa), leveraging the high sensitivity and specificity of RT-LAMP, performed in a single reaction, to detect and quantify cells expressing tat/rev HIV-1 multiply spliced RNA (msRNA) upon activation. The LAMP primer/probe used in SQuHIVLa was designed to exclusively detect HIV-1 tat/rev msRNA and adapted for different HIV-1 subtypes. RESULTS Using SQuHIVLa, we successfully quantify the inducible viral reservoir in CD4+ T cells from people living with HIV-1 subtypes B and C on cART. The assay demonstrates high sensitivity, specificity, and reproducibility. CONCLUSIONS SQuHIVLa offers a high throughput, scalable, and specific HIV-1 reservoir quantification tool that is amenable to resource-limited settings. This assay poses remarkable potential in facilitating the evaluation of potential interventional strategies toward achieving HIV-1 cure.
Collapse
Affiliation(s)
- Tanvir Hossain
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Cynthia Lungu
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sten de Schrijver
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mamokoena Kuali
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Raquel Crespo
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Nicole Reddy
- Africa Health Research Institute, Durban, South Africa
| | - Ayanda Ngubane
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Tsung Wai Kan
- Department of Urology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Kavidha Reddy
- Africa Health Research Institute, Durban, South Africa
| | - Shringar Rao
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Robert-Jan Palstra
- Department of Urology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Paradise Madlala
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Thumbi Ndung'u
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Africa Health Research Institute, Durban, South Africa
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, MA, USA
- Division of Infection and Immunity, University College London, London, UK
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands.
- Department of Urology, Erasmus University Medical Center, Rotterdam, The Netherlands.
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
8
|
Gay CL, Hanley PJ, Falcinelli SD, Kuruc JD, Pedersen SM, Kirchherr J, Raines SLM, Motta CM, Lazarski C, Chansky P, Tanna J, Shibli A, Datar A, McCann CD, Sili U, Ke R, Eron JJ, Archin N, Goonetilleke N, Bollard CM, Margolis DM. The Effects of Human Immunodeficiency Virus Type 1 (HIV-1) Antigen-Expanded Specific T-Cell Therapy and Vorinostat on Persistent HIV-1 Infection in People With HIV on Antiretroviral Therapy. J Infect Dis 2024; 229:743-752. [PMID: 38349333 PMCID: PMC10938201 DOI: 10.1093/infdis/jiad423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/29/2023] [Indexed: 03/16/2024] Open
Abstract
BACKGROUND The histone deacetylase inhibitor vorinostat (VOR) can reverse human immunodeficiency virus type 1 (HIV-1) latency in vivo and allow T cells to clear infected cells in vitro. HIV-specific T cells (HXTCs) can be expanded ex vivo and have been safely administered to people with HIV (PWH) on antiretroviral therapy. METHODS Six PWH received infusions of 2 × 107 HXTCs/m² with VOR 400 mg, and 3 PWH received infusions of 10 × 107 HXTCs/m² with VOR. The frequency of persistent HIV by multiple assays including quantitative viral outgrowth assay (QVOA) of resting CD4+ T cells was measured before and after study therapy. RESULTS VOR and HXTCs were safe, and biomarkers of serial VOR effect were detected, but enhanced antiviral activity in circulating cells was not evident. After 2 × 107 HXTCs/m² with VOR, 1 of 6 PWH exhibited a decrease in QVOA, and all 3 PWH exhibited such declines after 10 × 107 HXTCs/m² and VOR. However, most declines did not exceed the 6-fold threshold needed to definitively attribute decline to the study intervention. CONCLUSIONS These modest effects provide support for the strategy of HIV latency reversal and reservoir clearance, but more effective interventions are needed to yield the profound depletion of persistent HIV likely to yield clinical benefit. Clinical Trials Registration. NCT03212989.
Collapse
Affiliation(s)
- Cynthia L Gay
- UNC HIV Cure Center, University of North Carolina at Chapel Hill
- Department of Medicine, University of North Carolina at Chapel Hill
| | - Patrick J Hanley
- Center for Cancer and Immunology Research, Children's National Health System
- Pediatrics and GW Cancer Center, The George Washington University, Washington, District of Columbia
| | - Shane D Falcinelli
- UNC HIV Cure Center, University of North Carolina at Chapel Hill
- Department of Medicine, University of North Carolina at Chapel Hill
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill
| | - JoAnn D Kuruc
- UNC HIV Cure Center, University of North Carolina at Chapel Hill
- Department of Medicine, University of North Carolina at Chapel Hill
| | - Susan M Pedersen
- UNC HIV Cure Center, University of North Carolina at Chapel Hill
- Department of Medicine, University of North Carolina at Chapel Hill
| | - Jennifer Kirchherr
- UNC HIV Cure Center, University of North Carolina at Chapel Hill
- Department of Medicine, University of North Carolina at Chapel Hill
| | | | - Cecilia M Motta
- Center for Cancer and Immunology Research, Children's National Health System
| | - Chris Lazarski
- Center for Cancer and Immunology Research, Children's National Health System
- Pediatrics and GW Cancer Center, The George Washington University, Washington, District of Columbia
| | - Pamela Chansky
- Center for Cancer and Immunology Research, Children's National Health System
| | - Jay Tanna
- Center for Cancer and Immunology Research, Children's National Health System
| | - Abeer Shibli
- Center for Cancer and Immunology Research, Children's National Health System
| | - Anushree Datar
- Center for Cancer and Immunology Research, Children's National Health System
| | - Chase D McCann
- Center for Cancer and Immunology Research, Children's National Health System
- Pediatrics and GW Cancer Center, The George Washington University, Washington, District of Columbia
| | - Uluhan Sili
- Center for Cancer and Immunology Research, Children's National Health System
| | - Ruian Ke
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, New Mexico
| | - Joseph J Eron
- UNC HIV Cure Center, University of North Carolina at Chapel Hill
- Department of Epidemiology, University of North Carolina at Chapel Hill
| | - Nancie Archin
- UNC HIV Cure Center, University of North Carolina at Chapel Hill
- Department of Medicine, University of North Carolina at Chapel Hill
| | - Nilu Goonetilleke
- UNC HIV Cure Center, University of North Carolina at Chapel Hill
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Health System
- Pediatrics and GW Cancer Center, The George Washington University, Washington, District of Columbia
| | - David M Margolis
- UNC HIV Cure Center, University of North Carolina at Chapel Hill
- Department of Medicine, University of North Carolina at Chapel Hill
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill
- Department of Epidemiology, University of North Carolina at Chapel Hill
| |
Collapse
|
9
|
Gasca-Capote C, Lian X, Gao C, Roseto IC, Jiménez-León MR, Gladkov G, Camacho-Sojo MI, Pérez-Gómez A, Gallego I, Lopez-Cortes LE, Bachiller S, Vitalle J, Rafii-El-Idrissi Benhnia M, Ostos FJ, Collado-Romacho AR, Santos J, Palacios R, Gomez-Ayerbe C, Muñoz-Medina L, Ruiz-Sancho A, Frias M, Rivero-Juarez A, Roca-Oporto C, Hidalgo-Tenorio C, Rull A, Olalla J, Lopez-Ruz MA, Vidal F, Viladés C, Mastrangelo A, Cavassini M, Espinosa N, Perreau M, Peraire J, Rivero A, López-Cortes LF, Lichterfeld M, Yu XG, Ruiz-Mateos E. The HIV-1 reservoir landscape in persistent elite controllers and transient elite controllers. J Clin Invest 2024; 134:e174215. [PMID: 38376918 PMCID: PMC11014653 DOI: 10.1172/jci174215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/13/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUNDPersistent controllers (PCs) maintain antiretroviral-free HIV-1 control indefinitely over time, while transient controllers (TCs) eventually lose virological control. It is essential to characterize the quality of the HIV reservoir in terms of these phenotypes in order to identify the factors that lead to HIV progression and to open new avenues toward an HIV cure.METHODSThe characterization of HIV-1 reservoir from peripheral blood mononuclear cells was performed using next-generation sequencing techniques, such as full-length individual and matched integration site proviral sequencing (FLIP-Seq; MIP-Seq).RESULTSPCs and TCs, before losing virological control, presented significantly lower total, intact, and defective proviruses compared with those of participants on antiretroviral therapy (ART). No differences were found in total and defective proviruses between PCs and TCs. However, intact provirus levels were lower in PCs compared with TCs; indeed the intact/defective HIV-DNA ratio was significantly higher in TCs. Clonally expanded intact proviruses were found only in PCs and located in centromeric satellite DNA or zinc-finger genes, both associated with heterochromatin features. In contrast, sampled intact proviruses were located in permissive genic euchromatic positions in TCs.CONCLUSIONSThese results suggest the need for, and can give guidance to, the design of future research to identify a distinct proviral landscape that may be associated with the persistent control of HIV-1 without ART.FUNDINGInstituto de Salud Carlos III (FI17/00186, FI19/00083, MV20/00057, PI18/01532, PI19/01127 and PI22/01796), Gilead Fellowships (GLD22/00147). NIH grants AI155171, AI116228, AI078799, HL134539, DA047034, MH134823, amfAR ARCHE and the Bill and Melinda Gates Foundation.
Collapse
Affiliation(s)
- Carmen Gasca-Capote
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, Spanish National Research Council (CSIC), University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | - Xiaodong Lian
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Ce Gao
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Isabelle C. Roseto
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - María Reyes Jiménez-León
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, Spanish National Research Council (CSIC), University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | - Gregory Gladkov
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - María Inés Camacho-Sojo
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, Spanish National Research Council (CSIC), University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | - Alberto Pérez-Gómez
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, Spanish National Research Council (CSIC), University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | - Isabel Gallego
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, Spanish National Research Council (CSIC), University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | - Luis E. Lopez-Cortes
- Clinical Unit of Infectious Diseases and Microbiology, Virgen Macarena University Hospital, Seville, Spain
- Department of Medicine and Microbiology, School of Medicine and
- IBiS, Virgen Macarena University Hospital, CSIC, University of Seville, Seville, Spain
- CIBERINFEC, Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Sara Bachiller
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, Spanish National Research Council (CSIC), University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Joana Vitalle
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, Spanish National Research Council (CSIC), University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | - Mohamed Rafii-El-Idrissi Benhnia
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, Spanish National Research Council (CSIC), University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Francisco J. Ostos
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, Spanish National Research Council (CSIC), University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Seville, Spain
| | | | - Jesús Santos
- Infectious Diseases, Microbiology and Preventive Medicine Unit, Virgen de la Victoria University Hospital, Malaga, Spain
| | - Rosario Palacios
- Infectious Diseases, Microbiology and Preventive Medicine Unit, Virgen de la Victoria University Hospital, Malaga, Spain
| | - Cristina Gomez-Ayerbe
- Infectious Diseases, Microbiology and Preventive Medicine Unit, Virgen de la Victoria University Hospital, Malaga, Spain
| | - Leopoldo Muñoz-Medina
- Unit of Infectious Diseases, San Cecilio University Hospital, Biohealth Research Institute, IBS-Granada, Granada, Spain
| | - Andrés Ruiz-Sancho
- Unit of Infectious Diseases, San Cecilio University Hospital, Biohealth Research Institute, IBS-Granada, Granada, Spain
| | - Mario Frias
- CIBERINFEC, Institute of Health Carlos III (ISCIII), Madrid, Spain
- Service of Infectious Diseases, Reina Sofía University Hospital, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba University, Cordoba, Spain
| | - Antonio Rivero-Juarez
- CIBERINFEC, Institute of Health Carlos III (ISCIII), Madrid, Spain
- Service of Infectious Diseases, Reina Sofía University Hospital, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba University, Cordoba, Spain
| | - Cristina Roca-Oporto
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, Spanish National Research Council (CSIC), University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | - Carmen Hidalgo-Tenorio
- Unit of Infectious Diseases, Virgen de las Nieves University Hospital, Biohealth Research Institute, IBS-Granada, Granada, Spain
| | - Anna Rull
- CIBERINFEC, Institute of Health Carlos III (ISCIII), Madrid, Spain
- Joan XXIII University Hospital of Tarragona, IISPV, University of Rovira i Virgili, Tarragona, Spain
| | - Julian Olalla
- Internal Medicine Department, Costa Del Sol Hospital, Marbella, Spain
| | - Miguel A. Lopez-Ruz
- Unit of Infectious Diseases, Virgen de las Nieves University Hospital, Biohealth Research Institute, IBS-Granada, Granada, Spain
| | - Francesc Vidal
- CIBERINFEC, Institute of Health Carlos III (ISCIII), Madrid, Spain
- Joan XXIII University Hospital of Tarragona, IISPV, University of Rovira i Virgili, Tarragona, Spain
| | - Consuelo Viladés
- CIBERINFEC, Institute of Health Carlos III (ISCIII), Madrid, Spain
- Joan XXIII University Hospital of Tarragona, IISPV, University of Rovira i Virgili, Tarragona, Spain
| | | | - Matthias Cavassini
- Service of Infectious Diseases, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Nuria Espinosa
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, Spanish National Research Council (CSIC), University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | - Matthieu Perreau
- Service of Immunology and Allergy, Lausanne University Hospital and
| | - Joaquin Peraire
- CIBERINFEC, Institute of Health Carlos III (ISCIII), Madrid, Spain
- Joan XXIII University Hospital of Tarragona, IISPV, University of Rovira i Virgili, Tarragona, Spain
| | - Antonio Rivero
- CIBERINFEC, Institute of Health Carlos III (ISCIII), Madrid, Spain
- Service of Infectious Diseases, Reina Sofía University Hospital, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba University, Cordoba, Spain
| | - Luis F. López-Cortes
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, Spanish National Research Council (CSIC), University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Xu G. Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Ezequiel Ruiz-Mateos
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, Spanish National Research Council (CSIC), University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| |
Collapse
|
10
|
Zhang X, Qazi AA, Deshmukh S, Lobato Ventura R, Mukim A, Beliakova-Bethell N. Single-cell RNA sequencing reveals common and unique gene expression profiles in primary CD4+ T cells latently infected with HIV under different conditions. Front Cell Infect Microbiol 2023; 13:1286168. [PMID: 38156317 PMCID: PMC10754520 DOI: 10.3389/fcimb.2023.1286168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023] Open
Abstract
Background The latent HIV reservoir represents the major barrier to a cure. One curative strategy is targeting diseased cells for elimination based on biomarkers that uniquely define these cells. Single-cell RNA sequencing (scRNA-seq) has enabled the identification of gene expression profiles associated with disease at the single-cell level. Because HIV provirus in many cells during latency is not entirely silent, it became possible to determine gene expression patterns in a subset of cells latently infected with HIV. Objective The primary objective of this study was the identification of the gene expression profiles of single latently infected CD4+ T cells using scRNA-seq. Different conditions of latency establishment were considered. The identified profiles were then explored to prioritize the identified genes for future experimental validation. Methods To facilitate gene prioritization, three approaches were used. First, we characterized and compared the gene expression profiles of HIV latency established in different environments: in cells that encountered an activation stimulus and then returned to quiescence, and in resting cells that were infected directly via cell-to-cell viral transmission from autologous activated, productively infected cells. Second, we characterized and compared the gene expression profiles of HIV latency established with viruses of different tropisms, using an isogenic pair of CXCR4- and CCR5-tropic viruses. Lastly, we used proviral expression patterns in cells from people with HIV to more accurately define the latently infected cells in vitro. Results Our analyses demonstrated that a subset of genes is expressed differentially between latently infected and uninfected cells consistently under most conditions tested, including cells from people with HIV. Our second important observation was the presence of latency signatures, associated with variable conditions when latency was established, including cellular exposure and responsiveness to a T cell receptor stimulus and the tropism of the infecting virus. Conclusion Common signatures, specifically genes that encode proteins localized to the cell surface, should be prioritized for further testing at the protein level as biomarkers for the ability to enrich or target latently infected cells. Cell- and tropism-dependent biomarkers may need to be considered in developing targeting strategies to ensure that all the different reservoir subsets are eliminated.
Collapse
Affiliation(s)
- Xinlian Zhang
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, CA, United States
| | - Andrew A. Qazi
- Veterans Affairs (VA), San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, CA, United States
| | - Savitha Deshmukh
- Veterans Affairs (VA), San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, CA, United States
| | - Roni Lobato Ventura
- Veterans Affairs (VA), San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, CA, United States
| | - Amey Mukim
- Veterans Affairs (VA), San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, CA, United States
| | - Nadejda Beliakova-Bethell
- Veterans Affairs (VA), San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, CA, United States
- Department of Medicine, University of California, San Diego, CA, United States
| |
Collapse
|
11
|
Barton K, Ferguson JM, Deveson IW, Falcinelli SD, James KS, Kirchherr J, Ramirez C, Gay CL, Hammond JM, Bevear B, Carswell SL, Margolis DM, Smith MA, Adimora AA, Archin NM. HIVepsilon-seq-scalable characterization of intact persistent proviral HIV reservoirs in women. J Virol 2023; 97:e0070523. [PMID: 37843370 PMCID: PMC10688329 DOI: 10.1128/jvi.00705-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/07/2023] [Indexed: 10/17/2023] Open
Abstract
IMPORTANCE The lack of a reliable method to accurately detect when replication-competent HIV has been cleared is a major challenge in developing a cure. This study introduces a new approach called the HIVepsilon-seq (HIVε-seq) assay, which uses long-read sequencing technology and bioinformatics to scrutinize the HIV genome at the nucleotide level, distinguishing between defective and intact HIV. This study included 30 participants on antiretroviral therapy, including 17 women, and was able to discriminate between defective and genetically intact viruses at the single DNA strand level. The HIVε-seq assay is an improvement over previous methods, as it requires minimal sample, less specialized lab equipment, and offers a shorter turnaround time. The HIVε-seq assay offers a promising new tool for researchers to measure the intact HIV reservoir, advancing efforts towards finding a cure for this devastating disease.
Collapse
Affiliation(s)
- Kirston Barton
- The Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- The Kirby Institute, University of New South Wales, Randwick, New South Wales, Australia
- Serology and Virology Division (SAViD), NSW Health Pathology, Randwick, New South Wales, Australia
| | - James M. Ferguson
- The Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Ira W. Deveson
- The Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Shane D. Falcinelli
- Department of Microbiology, University of North Carolina, Chapel Hill, North Carolina, USA
- UNC HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Katherine S. James
- UNC HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jennifer Kirchherr
- UNC HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Catalina Ramirez
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Cynthia L. Gay
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jillian M. Hammond
- The Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Brent Bevear
- The Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Shaun L. Carswell
- The Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- National Institute of Water and Atmospheric Research, Auckland, New Zealand
| | - David M. Margolis
- Department of Microbiology, University of North Carolina, Chapel Hill, North Carolina, USA
- UNC HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Martin A. Smith
- The Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
- CHU Sainte-Justine Research Centre, Montreal, Canada
| | - Adaora A. Adimora
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Nancie M. Archin
- UNC HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
12
|
Moar P, Premeaux TA, Atkins A, Ndhlovu LC. The latent HIV reservoir: current advances in genetic sequencing approaches. mBio 2023; 14:e0134423. [PMID: 37811964 PMCID: PMC10653892 DOI: 10.1128/mbio.01344-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023] Open
Abstract
Multiple cellular HIV reservoirs in diverse anatomical sites can undergo clonal expansion and persist for years despite suppressive antiretroviral therapy, posing a major barrier toward an HIV cure. Commonly adopted assays to assess HIV reservoir size mainly consist of PCR-based measures of cell-associated total proviral DNA, intact proviruses and transcriptionally competent provirus (viral RNA), flow cytometry and microscopy-based methods to measure translationally competent provirus (viral protein), and quantitative viral outgrowth assay, the gold standard to measure replication-competent provirus; yet no assay alone can provide a comprehensive view of the total HIV reservoir or its dynamics. Furthermore, the detection of extant provirus by these measures does not preclude defects affecting replication competence. An accurate measure of the latent reservoir is essential for evaluating the efficacy of HIV cure strategies. Recent approaches have been developed, which generate proviral sequence data to create a more detailed profile of the latent reservoir. These sequencing approaches are valuable tools to understand the complex multicellular processes in a diverse range of tissues and cell types and have provided insights into the mechanisms of HIV establishment and persistence. These advancements over previous sequencing methods have allowed multiplexing and new assays have emerged, which can document transcriptional activity, chromosome accessibility, and in-depth cellular phenotypes harboring latent HIV, enabling the characterization of rare infected cells across restrictive sites such as the brain. In this manuscript, we provide a review of HIV sequencing-based assays adopted to address challenges in quantifying and characterizing the latent HIV reservoir.
Collapse
Affiliation(s)
- Preeti Moar
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York City, New York, USA
| | - Thomas A. Premeaux
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York City, New York, USA
| | - Andrew Atkins
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York City, New York, USA
| | - Lishomwa C. Ndhlovu
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York City, New York, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York City, New York, USA
| |
Collapse
|
13
|
Ramirez-Mata AS, Ostrov D, Salemi M, Marini S, Magalis BR. Machine Learning Prediction and Phyloanatomic Modeling of Viral Neuroadaptive Signatures in the Macaque Model of HIV-Mediated Neuropathology. Microbiol Spectr 2023; 11:e0308622. [PMID: 36847516 PMCID: PMC10100676 DOI: 10.1128/spectrum.03086-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/06/2023] [Indexed: 03/01/2023] Open
Abstract
In human immunodeficiency virus (HIV) infection, virus replication in and adaptation to the central nervous system (CNS) can result in neurocognitive deficits in approximately 25% of patients with unsuppressed viremia. While no single viral mutation can be agreed upon as distinguishing the neuroadapted population, earlier studies have demonstrated that a machine learning (ML) approach could be applied to identify a collection of mutational signatures within the virus envelope glycoprotein (Gp120) predictive of disease. The S[imian]IV-infected macaque is a widely used animal model of HIV neuropathology, allowing in-depth tissue sampling infeasible for human patients. Yet, translational impact of the ML approach within the context of the macaque model has not been tested, much less the capacity for early prediction in other, noninvasive tissues. We applied the previously described ML approach to prediction of SIV-mediated encephalitis (SIVE) using gp120 sequences obtained from the CNS of animals with and without SIVE with 97% accuracy. The presence of SIVE signatures at earlier time points of infection in non-CNS tissues indicated these signatures cannot be used in a clinical setting; however, combined with protein structural mapping and statistical phylogenetic inference, results revealed common denominators associated with these signatures, including 2-acetamido-2-deoxy-beta-d-glucopyranose structural interactions and high rate of alveolar macrophage (AM) infection. AMs were also determined to be the phyloanatomic source of cranial virus in SIVE animals, but not in animals that did not develop SIVE, implicating a role for these cells in the evolution of the signatures identified as predictive of both HIV and SIV neuropathology. IMPORTANCE HIV-associated neurocognitive disorders remain prevalent among persons living with HIV (PLWH) owing to our limited understanding of the contributing viral mechanisms and ability to predict disease onset. We have expanded on a machine learning method previously used on HIV genetic sequence data to predict neurocognitive impairment in PLWH to the more extensively sampled SIV-infected macaque model in order to (i) determine the translatability of the animal model and (ii) more accurately characterize the predictive capacity of the method. We identified eight amino acid and/or biochemical signatures in the SIV envelope glycoprotein, the most predominant of which demonstrated the potential for aminoglycan interaction characteristic of previously identified HIV signatures. These signatures were not isolated to specific points in time or to the central nervous system, limiting their use as an accurate clinical predictor of neuropathogenesis; however, statistical phylogenetic and signature pattern analyses implicate the lungs as a key player in the emergence of neuroadapted viruses.
Collapse
Affiliation(s)
- Andrea S. Ramirez-Mata
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - David Ostrov
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Marco Salemi
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Simone Marini
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
- Department of Epidemiology, University of Florida, Gainesville, Florida, USA
| | - Brittany Rife Magalis
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
14
|
Andre M, Nair M, Raymond AD. HIV Latency and Nanomedicine Strategies for Anti-HIV Treatment and Eradication. Biomedicines 2023; 11:biomedicines11020617. [PMID: 36831153 PMCID: PMC9953021 DOI: 10.3390/biomedicines11020617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/22/2023] Open
Abstract
Antiretrovirals (ARVs) reduce Human Immunodeficiency Virus (HIV) loads to undetectable levels in infected patients. However, HIV can persist throughout the body in cellular reservoirs partly due to the inability of some ARVs to cross anatomical barriers and the capacity of HIV-1 to establish latent infection in resting CD4+ T cells and monocytes/macrophages. A cure for HIV is not likely unless latency is addressed and delivery of ARVs to cellular reservoir sites is improved. Nanomedicine has been used in ARV formulations to improve delivery and efficacy. More specifically, researchers are exploring the benefit of using nanoparticles to improve ARVs and nanomedicine in HIV eradication strategies such as shock and kill, block and lock, and others. This review will focus on mechanisms of HIV-1 latency and nanomedicine-based approaches to treat HIV.
Collapse
Affiliation(s)
- Mickensone Andre
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Madhavan Nair
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Andrea D. Raymond
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
- Correspondence: ; Tel.: +1-305-348-6430
| |
Collapse
|
15
|
Khetan P, Liu Y, Dhummakupt A, Persaud D. Advances in Pediatric HIV-1 Cure Therapies and Reservoir Assays. Viruses 2022; 14:v14122608. [PMID: 36560612 PMCID: PMC9787749 DOI: 10.3390/v14122608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
Significant advances in the field of HIV-1 therapeutics to achieve antiretroviral treatment (ART)-free remission and cure for persons living with HIV-1 are being made with the advent of broadly neutralizing antibodies and very early ART in perinatal infection. The need for HIV-1 remission and cure arises due to the inability of ART to eradicate the major reservoir for HIV-1 in resting memory CD4+ T cells (the latent reservoir), and the strict adherence to lifelong treatment. To measure the efficacy of these cure interventions on reservoir size and to dissect reservoir dynamics, assays that are sensitive and specific to intact proviruses are critical. In this review, we provided a broad overview of some of the key interventions underway to purge the reservoir in adults living with HIV-1 and ones under study in pediatric populations to reduce and control the latent reservoir, primarily focusing on very early treatment in combination with broadly neutralizing antibodies. We also summarized assays currently in use to measure HIV-1 reservoirs and their feasibility and considerations for studies in children.
Collapse
Affiliation(s)
- Priya Khetan
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yufeng Liu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Adit Dhummakupt
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Deborah Persaud
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Correspondence: ; Tel.: +1-443-287-3735
| |
Collapse
|
16
|
Roberto de Souza Fonseca R, Valois Laurentino R, Fernando Almeida Machado L, Eduardo Vieira da Silva Gomes C, Oliveira de Alencar Menezes T, Faciola Pessoa O, Branco Oliveira-Filho A, Resque Beckmann Carvalho T, Gabriela Faciola Pessoa de Oliveira P, Brito Tanaka E, Sá Elias Nogueira J, Magno Guimarães D, Newton Carneiro M, Mendes Acatauassú Carneiro P, Ferreira Celestino Junior A, de Almeida Rodrigues P, Augusto Fernandes de Menezes S. HIV Infection and Oral Manifestations: An Update. Infect Dis (Lond) 2022. [DOI: 10.5772/intechopen.105894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Human immunodeficiency virus (HIV) causes a complete depletion of the immune system; it has been a major health issue around the world since the 1980s, and due to the reduction of CD4+ T lymphocytes levels, it can trigger various opportunistic infections. Oral lesions are usually accurate indicators of immunosuppression because these oral manifestations may occur as a result of the compromised immune system caused by HIV infection; therefore, oral lesions might be initial and common clinical features in people living with HIV. So, it is necessary to evaluate and understand the mechanism, prevalence, and risk factors of oral lesions to avoid the increase morbidity among those with oral diseases.
Collapse
|
17
|
Donoso M, D’Amico D, Valdebenito S, Hernandez CA, Prideaux B, Eugenin EA. Identification, Quantification, and Characterization of HIV-1 Reservoirs in the Human Brain. Cells 2022; 11:2379. [PMID: 35954221 PMCID: PMC9367788 DOI: 10.3390/cells11152379] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
The major barrier to cure HIV infection is the early generation and extended survival of HIV reservoirs in the circulation and tissues. Currently, the techniques used to detect and quantify HIV reservoirs are mostly based on blood-based assays; however, it has become evident that viral reservoirs remain in tissues. Our study describes a novel multi-component imaging method (HIV DNA, mRNA, and viral proteins in the same assay) to identify, quantify, and characterize viral reservoirs in tissues and blood products obtained from HIV-infected individuals even when systemic replication is undetectable. In the human brains of HIV-infected individuals under ART, we identified that microglia/macrophages and a small population of astrocytes are the main cells with integrated HIV DNA. Only half of the cells with integrated HIV DNA expressed viral mRNA, and one-third expressed viral proteins. Surprisingly, we identified residual HIV-p24, gp120, nef, vpr, and tat protein expression and accumulation in uninfected cells around HIV-infected cells suggesting local synthesis, secretion, and bystander uptake. In conclusion, our data show that ART reduces the size of the brain's HIV reservoirs; however, local/chronic viral protein secretion still occurs, indicating that the brain is still a major anatomical target to cure HIV infection.
Collapse
Affiliation(s)
| | | | | | | | | | - Eliseo A. Eugenin
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Research Building 17, Fifth Floor, 105 11th Street, Galveston, TX 77555, USA; (M.D.); (D.D.); (S.V.); (C.A.H.); (B.P.)
| |
Collapse
|
18
|
Mishra S, Gohil Y, Mehta K, D'silva A, Amanullah A, Selvam D, Pargain N, Nala N, Sanjeeva GN, Ranga U. An Optimized Tat/Rev Induced Limiting Dilution Assay for the Characterization of HIV-1 Latent Reservoirs. Bio Protoc 2022; 12:e4391. [PMID: 35800103 PMCID: PMC9081478 DOI: 10.21769/bioprotoc.4391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 12/27/2021] [Accepted: 03/02/2022] [Indexed: 12/29/2022] Open
Abstract
The administration of antiretroviral therapy (ART) leads to a rapid reduction in plasma viral load in HIV-1 seropositive subjects. However, when ART is suspended, the virus rebounds due to the presence of a latent viral reservoir. Several techniques have been developed to characterize this latent viral reservoir. Of the various assay formats available presently, the Tat/Rev induced limiting dilution assay (TILDA) offers the most robust and technically simple assay strategy. The TILDA formats reported thus far are limited by being selective to one or a few HIV-1 genetic subtypes, thus, restricting them from a broader level application. The novel TILDA, labelled as U-TILDA ('U' for universal), can detect all the major genetic subtypes of HIV-1 unbiasedly, and with comparable sensitivity of detection. U-TILDA is well suited to characterize the latent reservoirs of HIV-1 and aid in the formulation of cure strategies. Graphical abstract.
Collapse
Affiliation(s)
- Swarnima Mishra
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka, India
| | - Yuvrajsinh Gohil
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka, India
| | - Kavita Mehta
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka, India
| | - Anish D'silva
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka, India
| | - Afzal Amanullah
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka, India
| | - Deepak Selvam
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka, India
| | - Neelam Pargain
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka, India
| | - Narendra Nala
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka, India
| | - G. N. Sanjeeva
- Department of Pediatric Genetics, Indira Gandhi Institute of Child Health, Bengaluru, India
| | - Udaykumar Ranga
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka, India
,
*For correspondence: ;
| |
Collapse
|
19
|
Falcinelli SD, Peterson JJ, Turner AMW, Irlbeck D, Read J, Raines SL, James KS, Sutton C, Sanchez A, Emery A, Sampey G, Ferris R, Allard B, Ghofrani S, Kirchherr JL, Baker C, Kuruc JD, Gay CL, James LI, Wu G, Zuck P, Rioja I, Furze RC, Prinjha RK, Howell BJ, Swanstrom R, Browne EP, Strahl BD, Dunham RM, Archin NM, Margolis DM. Combined noncanonical NF-κB agonism and targeted BET bromodomain inhibition reverse HIV latency ex vivo. J Clin Invest 2022; 132:e157281. [PMID: 35426377 PMCID: PMC9012286 DOI: 10.1172/jci157281] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/01/2022] [Indexed: 11/23/2022] Open
Abstract
Latency reversal strategies for HIV cure using inhibitor of apoptosis protein (IAP) antagonists (IAPi) induce unprecedented levels of latent reservoir expression without immunotoxicity during suppressive antiretroviral therapy (ART). However, full targeting of the reservoir may require combinatorial approaches. A Jurkat latency model screen for IAPi combination partners demonstrated synergistic latency reversal with bromodomain (BD) and extraterminal domain protein inhibitors (BETi). Mechanistic investigations using CRISPR-CAS9 and single-cell RNA-Seq informed comprehensive ex vivo evaluations of IAPi plus pan-BET, bD-selective BET, or selective BET isoform targeting in CD4+ T cells from ART-suppressed donors. IAPi+BETi treatment resulted in striking induction of cell-associated HIV gag RNA, but lesser induction of fully elongated and tat-rev RNA compared with T cell activation-positive controls. IAPi+BETi resulted in HIV protein induction in bulk cultures of CD4+ T cells using an ultrasensitive p24 assay, but did not result in enhanced viral outgrowth frequency using a standard quantitative viral outgrowth assay. This study defines HIV transcriptional elongation and splicing as important barriers to latent HIV protein expression following latency reversal, delineates the roles of BET proteins and their BDs in HIV latency, and provides a rationale for exploration of IAPi+BETi in animal models of HIV latency.
Collapse
Affiliation(s)
- Shane D. Falcinelli
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, North Carolina, USA
| | - Jackson J. Peterson
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, North Carolina, USA
| | - Anne-Marie W. Turner
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, UNC, Chapel Hill, North Carolina, USA
| | - David Irlbeck
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
- HIV Drug Discovery, ViiV Healthcare, Research Triangle Park, North Carolina, USA
| | - Jenna Read
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
| | - Samuel L.M. Raines
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
| | - Katherine S. James
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
| | - Cameron Sutton
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
- Department of Biochemistry and Biophysics, UNC School of Medicine, Chapel Hill, North Carolina, USA
| | - Anthony Sanchez
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
| | - Ann Emery
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
- Department of Biochemistry and Biophysics, UNC School of Medicine, Chapel Hill, North Carolina, USA
| | - Gavin Sampey
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
| | - Robert Ferris
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
- HIV Drug Discovery, ViiV Healthcare, Research Triangle Park, North Carolina, USA
| | - Brigitte Allard
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
| | - Simon Ghofrani
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
| | - Jennifer L. Kirchherr
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
| | - Caroline Baker
- Division of Infectious Diseases, Department of Medicine, UNC, Chapel Hill, North Carolina, USA
| | - JoAnn D. Kuruc
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, UNC, Chapel Hill, North Carolina, USA
| | - Cynthia L. Gay
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, UNC, Chapel Hill, North Carolina, USA
| | - Lindsey I. James
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Guoxin Wu
- Department of Infectious Disease, Merck & Co. Inc., Kenilworth, New Jersey, USA
| | - Paul Zuck
- Department of Infectious Disease, Merck & Co. Inc., Kenilworth, New Jersey, USA
| | - Inmaculada Rioja
- Immuno-Epigenetics, Immunology Research Unit, GSK Medicines Research Centre, Stevenage, United Kingdom
| | - Rebecca C. Furze
- Immuno-Epigenetics, Immunology Research Unit, GSK Medicines Research Centre, Stevenage, United Kingdom
| | - Rab K. Prinjha
- Immuno-Epigenetics, Immunology Research Unit, GSK Medicines Research Centre, Stevenage, United Kingdom
| | - Bonnie J. Howell
- Department of Infectious Disease, Merck & Co. Inc., Kenilworth, New Jersey, USA
| | - Ronald Swanstrom
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
- Department of Biochemistry and Biophysics, UNC School of Medicine, Chapel Hill, North Carolina, USA
| | - Edward P. Browne
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, UNC, Chapel Hill, North Carolina, USA
| | - Brian D. Strahl
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
- Department of Biochemistry and Biophysics, UNC School of Medicine, Chapel Hill, North Carolina, USA
| | - Richard M. Dunham
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
- HIV Drug Discovery, ViiV Healthcare, Research Triangle Park, North Carolina, USA
| | - Nancie M. Archin
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, UNC, Chapel Hill, North Carolina, USA
| | - David M. Margolis
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, UNC, Chapel Hill, North Carolina, USA
| |
Collapse
|
20
|
Mori L, Valente ST. Cure and Long-Term Remission Strategies. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2407:391-428. [PMID: 34985678 DOI: 10.1007/978-1-0716-1871-4_26] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The majority of virally suppressed individuals will experience rapid viral rebound upon antiretroviral therapy (ART) interruption, providing a strong rationale for the development of cure strategies. Moreover, despite ART virological control, HIV infection is still associated with chronic immune activation, inflammation, comorbidities, and accelerated aging. These effects are believed to be due, in part, to low-grade persistent transcription and trickling production of viral proteins from the pool of latent proviruses constituting the viral reservoir. In recent years there has been an increasing interest in developing what has been termed a functional cure for HIV. This approach entails the long-term, durable control of viral expression in the absence of therapy, preventing disease progression and transmission, despite the presence of detectable integrated proviruses. One such strategy, the block-and-lock approach for a functional cure, proposes the epigenetic silencing of proviral expression, locking the virus in a profound latent state, from which reactivation is very unlikely. The proof-of-concept for this approach was demonstrated with the use of a specific small molecule targeting HIV transcription. Here we review the principles behind the block-and-lock approach and some of the additional strategies proposed to silence HIV expression.
Collapse
Affiliation(s)
- Luisa Mori
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Susana T Valente
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA.
| |
Collapse
|
21
|
External quality assessment of HIV-1 DNA quantification assays used in the clinical setting in Italy. Sci Rep 2022; 12:3291. [PMID: 35228581 PMCID: PMC8885833 DOI: 10.1038/s41598-022-07196-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/14/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractTotal cell-associated HIV-1 DNA is a surrogate marker of the HIV-1 reservoir, however, certified systems for its quantification are not available. The Italian HIV DNA Network was launched to validate HIV-1 DNA quantification methods in use at University and Hospital labs. A quality control panel including HIV-1 DNA standards, reconstructed blood samples (RBSs) and DNA from different HIV-1 subtypes was blindly tested by 12 participating labs by quantitative real-time PCR (n = 6), droplet digital PCR (n = 3) or both (n = 3). The median 95% hit rate was 4.6 (3.7–5.5) copies per test and linearity in the tested range was excellent (R2 = 1.000 [1.000–1.000]). The median values obtained across labs were 3,370 (2,287–4,245), 445 (299–498), 59 (40–81) and 7 (6–11) HIV-1 DNA copies, for the 3,584, 448, 56 and 7-copy standards, respectively. With RBSs, measured values were within twofold with respect to the median in two thirds of cases. HIV-1 subtypes were missed (CRF01_AE by 3 labs) or underestimated by > 1 log (subtypes A, C, D, F by one lab; CRF01_AE by one lab; CRF02_AG by one lab). The overall performance was excellent with HIV-1 DNA standards, however detection of different HIV-1 subtypes must be improved.
Collapse
|
22
|
Abstract
The introduction of antiretroviral therapy (ART) and highly active antiretroviral therapy (HAART) has transformed human immunodeficiency virus (HIV)-1 into a chronic, well-managed disease. However, these therapies do not eliminate all infected cells from the body despite suppressing viral load. Viral rebound is largely due to the presence of cellular reservoirs which support long-term persistence of HIV-1. A thorough understanding of the HIV-1 reservoir will facilitate the development of new strategies leading to its detection, reduction, and elimination, ultimately leading to curative therapies for HIV-1. Although immune cells derived from lymphoid and myeloid progenitors have been thoroughly studied as HIV-1 reservoirs, few studies have examined whether mesenchymal stromal/stem cells (MSCs) can assume this function. In this review, we evaluate published studies which have assessed whether MSCs contribute to the HIV-1 reservoir. MSCs have been found to express the receptors and co-receptors required for HIV-1 entry, albeit at levels of expression and receptor localisation that vary considerably between studies. Exposure to HIV-1 and HIV-1 proteins alters MSC properties in vitro, including their proliferation capacity and differentiation potential. However, in vitro and in vivo experiments investigating whether MSCs can become infected with and harbour latent integrated proviral DNA are lacking. In conclusion, MSCs appear to have the potential to contribute to the HIV-1 reservoir. However, further studies are needed using techniques such as those used to prove that cluster of differentiation (CD)4+ T cells constitute an HIV-1 reservoir before a reservoir function can definitively be ascribed to MSCs.
Collapse
|
23
|
Cattin A, Fert A, Planas D, Ancuta P. Flow Cytometry Sorting of Memory CCR6 +CD4 + T-Cells for HIV Reservoir Quantification. Methods Mol Biol 2022; 2407:81-89. [PMID: 34985659 DOI: 10.1007/978-1-0716-1871-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Antiretroviral therapy (ART) has transformed the deadly human immunodeficiency virus type I (HIV-1) epidemic into a manageable chronic condition. Current ART is not curative and treatment interruption leads to viral rebound in people living with HIV-1 (PLWH). The main cause of viral rebound is the persistence of HIV reservoirs in long-lived memory CD4+ T cells. Accurate techniques to identify and quantify viral reservoirs are required to monitor therapeutic approaches designed to cure HIV infection. Th17-polarized CD4+ T cells are located at mucosal sites of HIV entry and are preferentially targeted for infection and viral reservoir persistence. They constitute an important reservoir in both blood and colon. In this chapter we describe a step-by-step flow cytometry-based protocol to isolate a fraction of Th17-enriched cells from PBMC based on their expression of the Th17 surface marker CCR6. The isolation of memory CCR6+CD4+ T cells allows subsequent PCR/RT-PCR-based HIV DNA/RNA quantifications, as well as their culture for quantitative viral outgrowth assays (QVOA). This method can be adapted for the isolation of CCR6+CD4+ T cells from peripheral tissues, such as the colon.
Collapse
Affiliation(s)
- Amélie Cattin
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
- CHUM-Research Centre, Montréal, QC, Canada
| | - Augustine Fert
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
- CHUM-Research Centre, Montréal, QC, Canada
| | - Delphine Planas
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
- CHUM-Research Centre, Montréal, QC, Canada
| | - Petronela Ancuta
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada.
- CHUM-Research Centre, Montréal, QC, Canada.
| |
Collapse
|
24
|
Abstract
Recently the Tat/rev Induced Limiting Dilution Assay, or TILDA, has been proposed as a possible alternative method to quantify the HIV-1 reservoir. TILDA estimates the frequency of latently infected cells by probing, in a limiting dilution format, the presence or inducibility of tat and rev multiply spliced HIV-1 RNA. In doing so, TILDA reduces overestimation of reservoir size compared to HIV-1 DNA measurements because multiply spliced HIV-1 RNA is less likely to be transcribed from dysfunctional genomes with replication defects. TILDA is easy to perform, requires a very low input number of cells and has a fast turnaround time, making it ideal for use in clinical settings. Here we describe the execution of TILDA with particular emphasis on cell preparation and the limiting dilution scheme.
Collapse
Affiliation(s)
- Cynthia Lungu
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Francesco A Procopio
- Department of Immunology and Allergy, Lausanne University Hospital, Lausanne, Switzerland.
| |
Collapse
|
25
|
Quantification of Total HIV DNA as a Marker to Measure Viral Reservoir: Methods and Potential Implications for Clinical Practice. Diagnostics (Basel) 2021; 12:diagnostics12010039. [PMID: 35054206 PMCID: PMC8774405 DOI: 10.3390/diagnostics12010039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 01/08/2023] Open
Abstract
The focus of this review is to examine the importance of quantifying total HIV DNA to target the HIV reservoir and the clinical implications and challenges involved in its future application in clinical practice. Despite intrinsic limitations, the quantification of total HIV DNA is currently the most widely used marker for exploring the HIV reservoir. As it allows estimating all forms of HIV DNA in the infected cells, total HIV DNA load is the biomarker of the HIV reservoir that provides most of the insights into HIV pathogenesis. The clinical role of total HIV-DNA in both untreated and treated patients is extensively supported by important lines of evidence. Thus, predictive models that include total HIV DNA load together with other variables could constitute a prognostic tool for use in clinical practice. To date, however, this marker has been primarily used in experimental evaluations. The main challenge is technical. Although the implementation of droplet digital PCR could improve analytical performance over real-time PCR, the lack of standardization has made cross-comparisons of the data difficult. An effort by investigators to compare protocols is needed. Furthermore, the main effort now should be to involve the biomedical industry in the development of certified assays for in vitro diagnostics use.
Collapse
|
26
|
Lau CY, Adan MA, Maldarelli F. Why the HIV Reservoir Never Runs Dry: Clonal Expansion and the Characteristics of HIV-Infected Cells Challenge Strategies to Cure and Control HIV Infection. Viruses 2021; 13:2512. [PMID: 34960781 PMCID: PMC8708047 DOI: 10.3390/v13122512] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/22/2021] [Accepted: 11/27/2021] [Indexed: 12/13/2022] Open
Abstract
Antiretroviral therapy (ART) effectively reduces cycles of viral replication but does not target proviral populations in cells that persist for prolonged periods and that can undergo clonal expansion. Consequently, chronic human immunodeficiency virus (HIV) infection is sustained during ART by a reservoir of long-lived latently infected cells and their progeny. This proviral landscape undergoes change over time on ART. One of the forces driving change in the landscape is the clonal expansion of infected CD4 T cells, which presents a key obstacle to HIV eradication. Potential mechanisms of clonal expansion include general immune activation, antigenic stimulation, homeostatic proliferation, and provirus-driven clonal expansion, each of which likely contributes in varying, and largely unmeasured, amounts to maintaining the reservoir. The role of clinical events, such as infections or neoplasms, in driving these mechanisms remains uncertain, but characterizing these forces may shed light on approaches to effectively eradicate HIV. A limited number of individuals have been cured of HIV infection in the setting of bone marrow transplant; information from these and other studies may identify the means to eradicate or control the virus without ART. In this review, we describe the mechanisms of HIV-1 persistence and clonal expansion, along with the attempts to modify these factors as part of reservoir reduction and cure strategies.
Collapse
Affiliation(s)
- Chuen-Yen Lau
- HIV Dynamics and Replication Program, NCI, NIH, Bethesda, MD 20892, USA; (C.-Y.L.); (M.A.A.)
| | - Matthew A. Adan
- HIV Dynamics and Replication Program, NCI, NIH, Bethesda, MD 20892, USA; (C.-Y.L.); (M.A.A.)
- Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Frank Maldarelli
- HIV Dynamics and Replication Program, NCI, NIH, Bethesda, MD 20892, USA; (C.-Y.L.); (M.A.A.)
| |
Collapse
|
27
|
Suzuki K, Levert A, Yeung J, Starr M, Cameron J, Williams R, Rismanto N, Stark T, Druery D, Prasad S, Ferrarini C, Hanafi I, McNally LP, Cunningham P, Liu Z, Ishida T, Huang CS, Oswald V, Evans L, Symonds G, Brew BJ, Zaunders J. HIV-1 viral blips are associated with repeated and increasingly high levels of cell-associated HIV-1 RNA transcriptional activity. AIDS 2021; 35:2095-2103. [PMID: 34148986 PMCID: PMC8505147 DOI: 10.1097/qad.0000000000003001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Some HIV+ patients, virally suppressed on ART, show occasional 'blips' of detectable HIV-1 plasma RNA. We used a new highly sensitive assay of cell-associated HIV-1 RNA to measure transcriptional activity in PBMCs and production of infectious virus from the viral reservoir, in patients with and without 'blips'. DESIGN/METHODS RNA and DNA extracted from cells in 6 ml of peripheral blood, from suppressed patients with one to two 'blip' episodes over the past 2 years of ART (n = 55), or no 'blips' (n = 52), were assayed for HIV-1 RNA transcripts and proviral DNA targeting the highly conserved 'R' region of the LTR. Follow-up samples were also collected. Purified CD4+ T cells were cultured with anti-CD3/CD28/CD2 T-cell activator to amplify transcription and measure replication competent virus. RESULTS HIV-1 RNA transcripts ranged from 1.3 to 5415 copies/106 white blood cells. 'Blip' patients had significantly higher levels vs. without blips (median 192 vs. 49; P = 0.0007), which correlated with: higher levels of inducible transcripts after activation in vitro, sustained higher HIV-1 transcription levels in follow-up samples along with increasing HIV-1 DNA in some, and production of replication-competent HIV-1. CONCLUSION Viral 'blips' are significant reflecting higher transcriptional activity from the reservoir and contribute to the reservoir over time. This sensitive assay can be used in monitoring the size and activity of the HIV-1 reservoir and will be useful in HIV-1 cure strategies.
Collapse
Affiliation(s)
- Kazuo Suzuki
- St Vincent's Centre for Applied Medical Research, NSW State Reference laboratory for HIV
| | - Angelique Levert
- St Vincent's Centre for Applied Medical Research, NSW State Reference laboratory for HIV
| | - Julie Yeung
- St Vincent's Centre for Applied Medical Research, NSW State Reference laboratory for HIV
| | - Mitchell Starr
- St Vincent's Centre for Applied Medical Research, NSW State Reference laboratory for HIV
| | - Jane Cameron
- St Vincent's Centre for Applied Medical Research, NSW State Reference laboratory for HIV
| | - Raffaella Williams
- St Vincent's Centre for Applied Medical Research, NSW State Reference laboratory for HIV
| | - Nikolas Rismanto
- St Vincent's Centre for Applied Medical Research, NSW State Reference laboratory for HIV
| | - Tayla Stark
- St Vincent's Centre for Applied Medical Research, NSW State Reference laboratory for HIV
| | - Dylan Druery
- St Vincent's Centre for Applied Medical Research, NSW State Reference laboratory for HIV
| | - Salzeena Prasad
- St Vincent's Centre for Applied Medical Research, NSW State Reference laboratory for HIV
| | - Cristina Ferrarini
- St Vincent's Centre for Applied Medical Research, NSW State Reference laboratory for HIV
| | - Imelda Hanafi
- St Vincent's Centre for Applied Medical Research, NSW State Reference laboratory for HIV
| | - Leon Patrick McNally
- St Vincent's Centre for Applied Medical Research, NSW State Reference laboratory for HIV
| | - Philip Cunningham
- St Vincent's Centre for Applied Medical Research, NSW State Reference laboratory for HIV
| | - Zhixin Liu
- Stats Central, University of New South Wales, Sydney, NSW, Australia
| | | | | | - Velma Oswald
- Clinical Immunology and HIV Medicine, Liverpool Hospital
| | - Louise Evans
- Clinical Immunology and HIV Medicine, Liverpool Hospital
- University of New South Wales
| | | | - Bruce James Brew
- Departments of Neurology and Immunology
- Peter Duncan Neurosciences Unit, St Vincent's Centre for Applied Medical Research, and University of Notre Dame
- Department of HIV Medicine, St Vincent's Hospital
- St Vincent's Clinical School, Delacy Building, University of New South Wales, Sydney, NSW, Australia
| | - John Zaunders
- St Vincent's Centre for Applied Medical Research, NSW State Reference laboratory for HIV
| |
Collapse
|
28
|
Vignoles M, Andrade V, Noguera M, Brander C, Mavian C, Salemi M, Paredes R, Sharkey M, Stevenson M. Persistent HIV-1 transcription in CD4 + T cells from ART-suppressed individuals can originate from biologically competent proviruses. J Virus Erad 2021; 7:100053. [PMID: 34621530 PMCID: PMC8479831 DOI: 10.1016/j.jve.2021.100053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 11/23/2022] Open
Abstract
HIV-1 is able to persist in the face of potent antiretroviral therapy (ART). A number of strategies are being explored to allow ART-free viral remission or viral eradication. In order to gauge the progress of these strategies, assays with which to measure viral reservoir size and activity are needed. In a large percentage of aviremic individuals on suppressive ART, viral transcripts can be detected in peripheral blood CD4+ T cells. While this cell-associated RNA has been considered as a marker of viral reservoir activity, it is unclear whether cell-associated viral transcripts in aviremic individuals originate from biologically competent proviruses as opposed to being a product of abortive transcription from defective proviruses. We assessed whether cell-associated viral RNA in peripheral blood CD4+ T cells from aviremic individuals on ART originated from biologically competent proviruses. We demonstrate that cell-associated viral RNA transcripts were highly related to viral sequences obtained by ex vivo outgrowth. This relationship was also observed when viral transcription in the outgrowth cultures was limited to donor CD4+ T cells. Our study indicates that cell-associated viral RNA warrants further consideration as a viral reservoir surrogate in individuals on suppressive ART.
Collapse
Affiliation(s)
- M. Vignoles
- Department of Medicine, University of Miami Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - V. Andrade
- Department of Medicine, University of Miami Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - M. Noguera
- Institut de Recerca de La SIDA - IrsiCaixa Hospital Universitari Germans Trias i Pujol, Crta. De Canyet S/n, Planta 2a, 08916, Badalona, Catalonia, Spain
| | - C. Brander
- Institut de Recerca de La SIDA - IrsiCaixa Hospital Universitari Germans Trias i Pujol, Crta. De Canyet S/n, Planta 2a, 08916, Badalona, Catalonia, Spain
| | - C. Mavian
- Emerging Pathogens Institute, Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - M. Salemi
- Emerging Pathogens Institute, Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - R. Paredes
- Institut de Recerca de La SIDA - IrsiCaixa Hospital Universitari Germans Trias i Pujol, Crta. De Canyet S/n, Planta 2a, 08916, Badalona, Catalonia, Spain
| | - M. Sharkey
- Department of Medicine, University of Miami Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - M. Stevenson
- Department of Medicine, University of Miami Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Despite decades of suppressive antiretroviral therapy (ART), HIV-1 reservoirs persist and fuel viral rebound if therapy is interrupted. The persistence of viral reservoirs in infected individuals is the main obstacle to achieving HIV-1 eradication or a long-term remission. Accurate assessment of the viral reservoir size is necessary for monitoring the effectiveness of the curative interventions. Here, we review the recent progress in the development of assays to measure HIV-1 persistence, highlighting their key advantages and limitations. RECENT FINDINGS To estimate the viral reservoir size, a number of assays have been developed that assess different aspects of HIV-1 persistence in ART-treated individuals. These include viral outgrowth assays to measure proviral replication competence, sequencing-based assays to measure genetic intactness of HIV-1 proviruses, and diverse techniques that measure the ability of proviruses to produce viral RNA and/or proteins (transcription and translation competence), with or without ex vivo stimulation. Recent years have seen the development of next-generation reservoir assays that, in addition to measuring viral persistence markers, assess the proviral integration sites and characterize the HIV-1 reservoir cells on the single-cell level. SUMMARY Although no assay yet can measure the HIV-1 reservoir with 100% accuracy, recent technical advances allow reliable estimation of its size and composition.
Collapse
|
30
|
Ismail SD, Pankrac J, Ndashimye E, Prodger JL, Abrahams MR, Mann JFS, Redd AD, Arts EJ. Addressing an HIV cure in LMIC. Retrovirology 2021; 18:21. [PMID: 34344423 PMCID: PMC8330180 DOI: 10.1186/s12977-021-00565-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022] Open
Abstract
HIV-1 persists in infected individuals despite years of antiretroviral therapy (ART), due to the formation of a stable and long-lived latent viral reservoir. Early ART can reduce the latent reservoir and is associated with post-treatment control in people living with HIV (PLWH). However, even in post-treatment controllers, ART cessation after a period of time inevitably results in rebound of plasma viraemia, thus lifelong treatment for viral suppression is indicated. Due to the difficulties of sustained life-long treatment in the millions of PLWH worldwide, a cure is undeniably necessary. This requires an in-depth understanding of reservoir formation and dynamics. Differences exist in treatment guidelines and accessibility to treatment as well as social stigma between low- and-middle income countries (LMICs) and high-income countries. In addition, demographic differences exist in PLWH from different geographical regions such as infecting viral subtype and host genetics, which can contribute to differences in the viral reservoir between different populations. Here, we review topics relevant to HIV-1 cure research in LMICs, with a focus on sub-Saharan Africa, the region of the world bearing the greatest burden of HIV-1. We present a summary of ART in LMICs, highlighting challenges that may be experienced in implementing a HIV-1 cure therapeutic. Furthermore, we discuss current research on the HIV-1 latent reservoir in different populations, highlighting research in LMIC and gaps in the research that may facilitate a global cure. Finally, we discuss current experimental cure strategies in the context of their potential application in LMICs.
Collapse
Affiliation(s)
- Sherazaan D Ismail
- Division of Medical Virology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, 7925, South Africa
| | - Joshua Pankrac
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A5C1, Canada
| | - Emmanuel Ndashimye
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A5C1, Canada
- Center for AIDS Research Uganda Laboratories, Joint Clinical Research Centre, Kampala, Uganda
| | - Jessica L Prodger
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A5C1, Canada
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Melissa-Rose Abrahams
- Division of Medical Virology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, 7925, South Africa
| | - Jamie F S Mann
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A5C1, Canada
- Bristol Veterinary School, University of Bristol, Langford House, Langford, Bristol, BS40 5DU, UK
| | - Andrew D Redd
- Division of Medical Virology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, 7925, South Africa
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Eric J Arts
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A5C1, Canada.
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
31
|
Brandt L, Cristinelli S, Ciuffi A. Single-Cell Analysis Reveals Heterogeneity of Virus Infection, Pathogenicity, and Host Responses: HIV as a Pioneering Example. Annu Rev Virol 2021; 7:333-350. [PMID: 32991268 DOI: 10.1146/annurev-virology-021820-102458] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
While analyses of cell populations provide averaged information about viral infections, single-cell analyses offer individual consideration, thereby revealing a broad spectrum of diversity as well as identifying extreme phenotypes that can be exploited to further understand the complex virus-host interplay. Single-cell technologies applied in the context of human immunodeficiency virus (HIV) infection proved to be valuable tools to help uncover specific biomarkers as well as novel candidate players in virus-host interactions. This review aims at providing an updated overview of single-cell analyses in the field of HIV and acquired knowledge on HIV infection, latency, and host response. Although HIV is a pioneering example, similar single-cell approaches have proven to be valuable for elucidating the behavior and virus-host interplay in a range of other viruses.
Collapse
Affiliation(s)
- Ludivine Brandt
- Institute of Microbiology, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland;
| | - Sara Cristinelli
- Institute of Microbiology, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland;
| | - Angela Ciuffi
- Institute of Microbiology, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland;
| |
Collapse
|
32
|
Kojabad AA, Farzanehpour M, Galeh HEG, Dorostkar R, Jafarpour A, Bolandian M, Nodooshan MM. Droplet digital PCR of viral DNA/RNA, current progress, challenges, and future perspectives. J Med Virol 2021; 93:4182-4197. [PMID: 33538349 PMCID: PMC8013307 DOI: 10.1002/jmv.26846] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/01/2021] [Indexed: 12/18/2022]
Abstract
High-throughput droplet-based digital PCR (ddPCR) is a refinement of the conventional polymerase chain reaction (PCR) methods. In ddPCR, DNA/RNA is encapsulated stochastically inside the microdroplets as reaction chambers. A small percentage of the reaction chamber contains one or fewer copies of the DNA or RNA. After PCR amplification, concentrations are determined based on the proportion of nonfluorescent partitions through the Poisson distribution. Some of the main features of ddPCR include high sensitivity and specificity, absolute quantification without a standard curve, high reproducibility, good tolerance to PCR inhibitor, and high efficacy compared to conventional molecular methods. These advantages make ddPCR a valuable addition to the virologist's toolbox. The following review outlines the recent technological advances in ddPCR methods and their applications in viral identification.
Collapse
Affiliation(s)
- Amir Asri Kojabad
- Applied Virology Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | - Mahdieh Farzanehpour
- Applied Virology Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | | | - Ruhollah Dorostkar
- Applied Virology Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | - Ali Jafarpour
- Research Center for Clinical VirologyTehran University of Medical SciencesTehranIran
| | - Masoumeh Bolandian
- Applied Virology Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | | |
Collapse
|
33
|
Yue Y, Li Y, Cui Y, Wang N, Huang Y, Cao W, Han Y, Zhu T, Lyu W, Xie J, Song X, Li Y, Wang T, Zhu T, Li T. Therapeutic prediction of HIV-1 DNA decay: a multicenter longitudinal cohort study. BMC Infect Dis 2021; 21:592. [PMID: 34157979 PMCID: PMC8218450 DOI: 10.1186/s12879-021-06267-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Factors predicting peripheral blood total HIV-1 DNA size in chronically infected patients with successfully suppressed viremia remain unclear. Prognostic power of such factors are of clinical significance for making clinical decisions. METHODS Two sets of study populations were included: 490 China AIDS Clinical Trial (CACT) participants (Training cohort, followed up for 144 to 288 weeks) and 117 outpatients from Peking Union Medical College Hospital (PUMCH) (Validation cohort, followed up for more than 96 weeks). All patients were chronically HIV-1-infected and achieved successful HIV-1 plasma RNA suppression within week 48. Total HIV-1 DNA in blood at baseline, 12, 24, 48, 96, 144 and 288 weeks after combined antiretroviral therapy (cART) initiation were quantified. Generalized estimating equations and logistic regression methods were used to derive and validate a predictive model of total HIV-1 DNA after 96 weeks of cART. RESULTS The total HIV-1 DNA rapidly decreased from baseline [median = 3.00 log10 copies/106 peripheral blood mononuclear cells (PBMCs)] to week 24 (median = 2.55 log10 copies/106 PBMCs), and leveled off afterwards. Of the 490 patients who had successful HIV-1 plasma RNA suppression by 96 w post-cART, 92 (18.8%) had a low total HIV-1 DNA count (< 100 copies/106 PBMCs) at week 96. In the predictive model, lower baseline total HIV-1 DNA [risk ratio (RR) = 0.08, per 1 log10 copies/106 PBMCs, P < 0.001] and higher baseline CD4+ T cell count (RR = 1.72, per 100 cells/μL, P < 0.001) were significantly associated with a low total HIV-1 DNA count at week 96. In an independent cohort of 117 patients, this model achieved a sensitivity of 75.00% and specificity of 69.52%. CONCLUSIONS Baseline total HIV-1 DNA and CD4+ T cell count are two independent predictors of total HIV-1 DNA after treatment. The derived model based on these two baseline factors provides a useful prognostic tool in predicting HIV-1 DNA reservoir control during cART.
Collapse
Affiliation(s)
- Yongsong Yue
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China.,Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Department of Infectious Diseases and Clinical Microbiology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Yijia Li
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China.,Division of Infectious Diseases, Massachusetts General Hospital and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yizhi Cui
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Nidan Wang
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China.,Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yunda Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Global Health, University of Washington, Seattle, WA, USA
| | - Wei Cao
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China.,Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yang Han
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China.,Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ting Zhu
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China.,Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wei Lyu
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China.,Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jing Xie
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China.,Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaojing Song
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China.,Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yanling Li
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China.,Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tong Wang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Tuofu Zhu
- Department of Laboratory Medicine, School of Medicine, University of Washington, 325 Ninth Ave, Seattle, WA, 98104-2499, USA.
| | - Taisheng Li
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China. .,Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
34
|
Lungu C, Banga R, Gruters RA, Procopio FA. Inducible HIV-1 Reservoir Quantification: Clinical Relevance, Applications and Advancements of TILDA. Front Microbiol 2021; 12:686690. [PMID: 34211450 PMCID: PMC8239294 DOI: 10.3389/fmicb.2021.686690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/21/2021] [Indexed: 01/07/2023] Open
Abstract
The presence of a stable HIV-1 reservoir persisting over time despite effective antiretroviral suppression therapy precludes a cure for HIV-1. Characterizing and quantifying this residual reservoir is considered an essential prerequisite to develop and validate curative strategies. However, a sensitive, reproducible, cost-effective, and easily executable test is still needed. The quantitative viral outgrowth assay is considered the gold standard approach to quantify the reservoir in HIV-1-infected patients on suppressive ART, but it has several limitations. An alternative method to quantify the viral reservoir following the reactivation of latent HIV-1 provirus detects multiply-spliced tat/rev RNA (msRNA) molecules by real-time PCR [tat/rev induced limiting dilution assay (TILDA)]. This article provides a perspective overview of the clinical relevance, various applications, recent advancements of TILDA, and how the assay has contributed to our understanding of the HIV-1 reservoir.
Collapse
Affiliation(s)
- Cynthia Lungu
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Riddhima Banga
- Department of Immunology and Allergy, Lausanne University Hospital, Lausanne, Switzerland
| | - Rob A. Gruters
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Francesco A. Procopio
- Department of Immunology and Allergy, Lausanne University Hospital, Lausanne, Switzerland,*Correspondence: Francesco A. Procopio,
| |
Collapse
|
35
|
Abstract
Quantification of cell associated HIV RNA (ca-RNA) is one of the most important and commonly used methods to evaluate the performance of latency-reversing agents (LRAs). Copies of HIV RNA measured by qPCR, are often normalized to the input RNA or cell number. However, these could be affected by biological variability and/or technical errors, which can be avoided by using an internal reference gene. To obtain reliable data, it is essential to select stable reference genes (RGs) of which the expression is not influenced by biological variability, the type of cells, or the LRAs used. However, to date, no study has carefully evaluated RG stability following LRA exposure. We analyzed the stability of six widely used RGs (GAPDH, TBP, YWHAZ, UBE2D2, HPRT1 and RPL27A) in human PBMC and CD4+ T cells. LRA exposure significantly influenced the stability of these RGs. Overall, TBP, UBE2D2, and RPL27A were the most stable RGs in all tested conditions. TBP was generally the most stable RG whereas GAPDH varied the most. Finally, we evaluated the impact of applying different RG normalizers to host genes and HIV ca-RNA data. Altered results were observed both in host and HIV gene expression when unstable RGs were used. Our data underline the importance of testing the stability of RGs utilized to evaluate LRA-induced HIV ca-RNA expression. To our knowledge, this is the first careful evaluation of the stability of RGs after LRA exposure and will significantly contribute to the quality of data analysis in regard to gene expression.IMPORTANCELatency-reversing agents (LRAs) are ubiquitously used in the "shock-and-kill" HIV cure strategy and their performance is often evaluated by ex-vivo quantification of cell associated HIV RNA. HIV RNA, measured by qPCR, is often normalized to internal reference genes, but the expression of these genes should not be influenced by the experimental settings. We found that treatment of human PBMC and CD4+ T cells with LRAs significantly altered the expression of several commonly used reference genes, such as GAPDH. Finally, we evaluate the impact of different reference genes on normalization of host genes and HIV cell associated RNA expression and demonstrated that using unstable reference genes dramatically altered experimental outcome. Our data highlight the importance of using reference genes that are unaffected by LRAs under study to correctly evaluate host gene and cell associated HIV RNA expression induced by latency-reversing agents.
Collapse
|
36
|
Wu G, Cheney C, Huang Q, Hazuda DJ, Howell BJ, Zuck P. Improved Detection of HIV Gag p24 Protein Using a Combined Immunoprecipitation and Digital ELISA Method. Front Microbiol 2021; 12:636703. [PMID: 33796087 PMCID: PMC8007784 DOI: 10.3389/fmicb.2021.636703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/08/2021] [Indexed: 11/13/2022] Open
Abstract
Greater than 90% of HIV-1 proviruses are thought to be defective and incapable of viral replication. While replication competent proviruses are of primary concern with respect to disease progression or transmission, studies have shown that even defective proviruses are not silent and can produce viral proteins, which may contribute to inflammation and immune responses. Viral protein expression also has implications for immune-based HIV-1 clearance strategies, which rely on antigen recognition. Thus, sensitive assays aimed at quantifying both replication-competent proviruses and defective, yet translationally competent proviruses are needed to understand the contribution of viral protein to HIV-1 pathogenesis and determine the effectiveness of HIV-1 cure interventions. Previously, we reported a modified HIV-1 gag p24 digital enzyme-linked immunosorbent assay with single molecule array (Simoa) detection of cell-associated viral protein. Here we report a novel p24 protein enrichment method coupled with the digital immunoassay to further extend the sensitivity and specificity of viral protein detection. Immunocapture of HIV gag p24 followed by elution in a Simoa-compatible format resulted in higher protein recovery and lower background from various biological matrices and sample volumes. Quantification of as little as 1 fg of p24 protein from cell lysates from cells isolated from peripheral blood or tissues from ART-suppressed HIV participants, as well as simian-human immunodeficiency virus-infected non-human primates (NHPs), with high recovery and reproducibility is demonstrated here. The application of these enhanced methods to patient-derived samples has potential to further the study of the persistent HIV state and examine in vitro response to therapies, as well as ex vivo study of translationally competent cells from a variety of donors.
Collapse
Affiliation(s)
| | | | | | | | | | - Paul Zuck
- Department of Infectious Disease and Vaccines, Merck & Co. Inc., Kenilworth, NJ, United States
| |
Collapse
|
37
|
Gaebler C, Falcinelli SD, Stoffel E, Read J, Murtagh R, Oliveira TY, Ramos V, Lorenzi JCC, Kirchherr J, James KS, Allard B, Baker C, Kuruc JD, Caskey M, Archin NM, Siliciano RF, Margolis DM, Nussenzweig MC. Sequence Evaluation and Comparative Analysis of Novel Assays for Intact Proviral HIV-1 DNA. J Virol 2021; 95:e01986-20. [PMID: 33361426 PMCID: PMC8094944 DOI: 10.1128/jvi.01986-20] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
The HIV proviral reservoir is the major barrier to cure. The predominantly replication-defective proviral landscape makes the measurement of virus that is likely to cause rebound upon antiretroviral therapy (ART)-cessation challenging. To address this issue, novel assays to measure intact HIV proviruses have been developed. The intact proviral DNA assay (IPDA) is a high-throughput assay that uses two probes to exclude the majority of defective proviruses and determine the frequency of intact proviruses, albeit without sequence confirmation. Quadruplex PCR with four probes (Q4PCR) is a lower-throughput assay that uses limiting dilution long-distance PCR amplification followed by quantitative PCR (qPCR) and near-full-length genome sequencing (nFGS) to estimate the frequency of sequence-confirmed intact proviruses and provide insight into their clonal composition. To explore the advantages and limitations of these assays, we compared IPDA and Q4PCR measurements from 39 ART-suppressed people living with HIV. We found that IPDA and Q4PCR measurements correlated with one another, but frequencies of intact proviral DNA differed by approximately 19-fold. This difference may be in part due to inefficiencies in long-distance PCR amplification of proviruses in Q4PCR, leading to underestimates of intact proviral frequencies. In addition, nFGS analysis within Q4PCR explained that some of this difference is explained by proviruses that are classified as intact by IPDA but carry defects elsewhere in the genome. Taken together, this head-to-head comparison of novel intact proviral DNA assays provides important context for their interpretation in studies to deplete the HIV reservoir and shows that together the assays bracket true reservoir size.IMPORTANCE The intact proviral DNA assay (IPDA) and quadruplex PCR (Q4PCR) represent major advances in accurately quantifying and characterizing the replication-competent HIV reservoir. This study compares the two novel approaches for measuring intact HIV proviral DNA in samples from 39 antiretroviral therapy (ART)-suppressed people living with HIV, thereby informing ongoing efforts to deplete the HIV reservoir in cure-related trials.
Collapse
Affiliation(s)
- Christian Gaebler
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
| | - Shane D Falcinelli
- UNC HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Elina Stoffel
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
| | - Jenna Read
- UNC HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ross Murtagh
- UNC HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Thiago Y Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
| | - Victor Ramos
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
| | - Julio C C Lorenzi
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
| | - Jennifer Kirchherr
- UNC HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Katherine S James
- UNC HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Brigitte Allard
- UNC HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Caroline Baker
- UNC HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - JoAnn D Kuruc
- UNC HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
| | - Nancie M Archin
- UNC HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Howard Hughes Medical Institute, Baltimore, Maryland, USA
| | - David M Margolis
- UNC HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York, USA
| |
Collapse
|
38
|
Increased Proviral DNA in Circulating Cells Correlates with Plasma Viral Rebound in Simian Immunodeficiency Virus-Infected Rhesus Macaques after Antiretroviral Therapy Interruption. J Virol 2021; 95:JVI.02064-20. [PMID: 33408173 PMCID: PMC8094949 DOI: 10.1128/jvi.02064-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/18/2020] [Indexed: 12/30/2022] Open
Abstract
Viral reservoirs are involved in persistent HIV infection, and a small number of mosaic latent cellular reservoirs promote viral rebound upon analytical treatment interruption, which is the major obstacle to a cure. However, early indicators that can predict resurgence of viremia after treatment interruption may aid treatment decisions in people living with HIV. The human immunodeficiency virus (HIV) reservoir is responsible for persistent viral infection, and a small number of mosaic latent cellular reservoirs promote viral rebound upon antiretroviral therapy interruption, which is the major obstacle to a cure. However, markers that determine effective therapy and viral rebound posttreatment interruption remain unclear. In this study, we comprehensively and longitudinally tracked dynamic decay of cell-associated viral RNA/DNA in systemic and lymphoid tissues in simian immunodeficiency virus (SIV)-infected rhesus macaques on prolonged combined antiretroviral therapy (cART) and evaluated predictors of viral rebound after treatment cessation. The results showed that suppressive ART substantially reduced plasma SIV RNA, cell-associated unspliced, and multiply spliced SIV RNA to undetectable levels, yet viral DNA remained detectable in systemic tissues and lymphoid compartments throughout cART. Intriguingly, a rapid increase of integrated proviral DNA in peripheral mononuclear cells was detected once treatment was withdrawn, accompanied by the emergence of detectable plasma viral load. Notably, the increase of peripheral proviral DNA after treatment interruption correlated with the emergence and degree of viral rebound. These findings suggest that measuring total viral DNA in SIV infection may be a relatively simple surrogate marker of reservoir size and may predict viral rebound after treatment interruption and inform treatment strategies. IMPORTANCE Viral reservoirs are involved in persistent HIV infection, and a small number of mosaic latent cellular reservoirs promote viral rebound upon analytical treatment interruption, which is the major obstacle to a cure. However, early indicators that can predict resurgence of viremia after treatment interruption may aid treatment decisions in people living with HIV. Utilizing the rhesus macaque model, we demonstrated that increased proviral DNA in peripheral cells after treatment interruption, rather than levels of proviral DNA, was a useful marker to predict the emergence and degree of viral rebound after treatment interruption, providing a rapid approach for monitoring HIV rebound and informing decisions.
Collapse
|
39
|
Wang X, Xu H. Residual Proviral Reservoirs: A High Risk for HIV Persistence and Driving Forces for Viral Rebound after Analytical Treatment Interruption. Viruses 2021; 13:335. [PMID: 33670027 PMCID: PMC7926539 DOI: 10.3390/v13020335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 12/17/2022] Open
Abstract
Antiretroviral therapy (ART) has dramatically suppressed human immunodeficiency virus (HIV) replication and become undetectable viremia. However, a small number of residual replication-competent HIV proviruses can still persist in a latent state even with lifelong ART, fueling viral rebound in HIV-infected patient subjects after treatment interruption. Therefore, the proviral reservoirs distributed in tissues in the body represent a major obstacle to a cure for HIV infection. Given unavailable HIV vaccine and a failure to eradicate HIV proviral reservoirs by current treatment, it is crucial to develop new therapeutic strategies to eliminate proviral reservoirs for ART-free HIV remission (functional cure), including a sterilizing cure (eradication of HIV reservoirs). This review highlights recent advances in the establishment and persistence of HIV proviral reservoirs, their detection, and potential eradication strategies.
Collapse
Affiliation(s)
| | - Huanbin Xu
- Tulane National Primate Research Center, Division of Comparative Pathology, Tulane University School of Medicine, 18703 Three Rivers Road, Covington, LA 70433, USA;
| |
Collapse
|
40
|
Falcinelli SD, Kilpatrick KW, Read J, Murtagh R, Allard B, Ghofrani S, Kirchherr J, James KS, Stuelke E, Baker C, Kuruc JD, Eron JJ, Hudgens MG, Gay CL, Margolis DM, Archin NM. Longitudinal Dynamics of Intact HIV Proviral DNA and Outgrowth Virus Frequencies in a Cohort of Individuals Receiving Antiretroviral Therapy. J Infect Dis 2020; 224:92-100. [PMID: 33216132 DOI: 10.1093/infdis/jiaa718] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/15/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The replication-competent human immunodeficiency virus (HIV) reservoir is the major barrier to cure. The quantitative viral outgrowth assay (QVOA), the gold-standard method to quantify replication-competent HIV, is resource intensive, which limits its application in large clinical trials. The intact proviral DNA assay (IPDA) requires minimal cell input relative to QVOA and quantifies both defective and intact proviral HIV DNA, the latter potentially serving as a surrogate marker for replication-competent provirus. However, there are limited cross-sectional and longitudinal data on the relationship between IPDA and QVOA measurements. METHODS QVOA and IPDA measurements were performed on 156 resting CD4 T-cell (rCD4) samples from 83 antiretroviral therapy-suppressed HIV-positive participants. Longitudinal QVOA and IPDA measurements were performed on rCD4 from 29 of these participants. RESULTS Frequencies of intact, defective, and total proviruses were positively associated with frequencies of replication-competent HIV. Longitudinally, decreases in intact proviral frequencies were strikingly similar to that of replication-competent virus in most participants. In contrast, defective proviral DNA frequencies appeared relatively stable over time in most individuals. CONCLUSIONS Changes in frequencies of IPDA-derived intact proviral DNA and replication-competent HIV measured by QVOA are similar. IPDA is a promising high-throughput approach to estimate changes in the frequency of the replication-competent reservoir.
Collapse
Affiliation(s)
- Shane D Falcinelli
- University of North Carolina HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kayla W Kilpatrick
- Biostatistics Core, Center for AIDS Research, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jenna Read
- University of North Carolina HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ross Murtagh
- University of North Carolina HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Brigitte Allard
- University of North Carolina HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Simon Ghofrani
- University of North Carolina HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jennifer Kirchherr
- University of North Carolina HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Katherine S James
- University of North Carolina HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Erin Stuelke
- University of North Carolina HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Caroline Baker
- University of North Carolina HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - JoAnn D Kuruc
- University of North Carolina HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Joseph J Eron
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Michael G Hudgens
- Biostatistics Core, Center for AIDS Research, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Cynthia L Gay
- University of North Carolina HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - David M Margolis
- University of North Carolina HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Nancie M Archin
- University of North Carolina HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
41
|
Falcinelli SD, Shook-Sa BE, Dewey MG, Sridhar S, Read J, Kirchherr J, James KS, Allard B, Ghofrani S, Stuelke E, Baker C, Roan NR, Eron JJ, Kuruc JD, Ramirez C, Gay C, Mollan KR, Margolis DM, Adimora AA, Archin NM. Impact of Biological Sex on Immune Activation and Frequency of the Latent HIV Reservoir During Suppressive Antiretroviral Therapy. J Infect Dis 2020; 222:1843-1852. [PMID: 32496542 PMCID: PMC7653086 DOI: 10.1093/infdis/jiaa298] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/27/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Persistent HIV infection of long-lived resting CD4 T cells, despite antiretroviral therapy (ART), remains a barrier to HIV cure. Women have a more robust type 1 interferon response during HIV infection relative to men, contributing to lower initial plasma viremia. As lower viremia during acute infection is associated with reduced frequency of latent HIV infection, we hypothesized that women on ART would have a lower frequency of latent HIV compared to men. METHODS ART-suppressed, HIV seropositive women (n = 22) were matched 1:1 to 22 of 39 ART-suppressed men. We also compared the 22 women to all 39 men, adjusting for age and race as covariates. We measured the frequency of latent HIV using the quantitative viral outgrowth assay, the intact proviral DNA assay, and total HIV gag DNA. We also performed activation/exhaustion immunophenotyping on peripheral blood mononuclear cells and quantified interferon-stimulated gene (ISG) expression in CD4 T cells. RESULTS We did not observe evident sex differences in the frequency of persistent HIV in resting CD4 T cells. Immunophenotyping and CD4 T-cell ISG expression analysis revealed marginal differences across the sexes. CONCLUSIONS Differences in HIV reservoir frequency and immune activation appear to be small across sexes during long-term suppressive therapy.
Collapse
Affiliation(s)
- Shane D Falcinelli
- HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Bonnie E Shook-Sa
- Biostatistics Core, Center for AIDS Research, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Morgan G Dewey
- HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Sumati Sridhar
- Biostatistics Core, Center for AIDS Research, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jenna Read
- HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jennifer Kirchherr
- HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Katherine S James
- HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Brigitte Allard
- HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Simon Ghofrani
- HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Erin Stuelke
- HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Caroline Baker
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Nadia R Roan
- Department of Urology, University of California San Francisco, San Francisco, California, USA
- Gladstone Institutes, San Francisco, California, USA
| | - Joseph J Eron
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - JoAnn D Kuruc
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Catalina Ramirez
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Cynthia Gay
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Katie R Mollan
- Biostatistics Core, Center for AIDS Research, University of North Carolina, Chapel Hill, North Carolina, USA
| | - David M Margolis
- HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Adaora A Adimora
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Nancie M Archin
- HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
42
|
Fujinaga K, Cary DC. Experimental Systems for Measuring HIV Latency and Reactivation. Viruses 2020; 12:v12111279. [PMID: 33182414 PMCID: PMC7696534 DOI: 10.3390/v12111279] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
The final obstacle to achieving a cure to HIV/AIDS is the presence of latent HIV reservoirs scattered throughout the body. Although antiretroviral therapy maintains plasma viral loads below the levels of detection, upon cessation of therapy, the latent reservoir immediately produces infectious progeny viruses. This results in elevated plasma viremia, which leads to clinical progression to AIDS. Thus, if a HIV cure is ever to become a reality, it will be necessary to target and eliminate the latent reservoir. To this end, tremendous effort has been dedicated to locate the viral reservoir, understand the mechanisms contributing to latency, find optimal methods to reactivate HIV, and specifically kill latently infected cells. Although we have not yet identified a therapeutic approach to completely eliminate HIV from patients, these efforts have provided many technological breakthroughs in understanding the underlying mechanisms that regulate HIV latency and reactivation in vitro. In this review, we summarize and compare experimental systems which are frequently used to study HIV latency. While none of these models are a perfect proxy for the complex systems at work in HIV+ patients, each aim to replicate HIV latency in vitro.
Collapse
Affiliation(s)
- Koh Fujinaga
- Division of Rheumatology, Department of Medicine, School of Medicine, University of California, San Francisco, CA 94143-0703, USA
- Correspondence: ; Tel.: +1-415-502-1908
| | - Daniele C. Cary
- Department of Medicine, Microbiology, and Immunology, School of Medicine, University of California, San Francisco, CA 94143-0703, USA;
| |
Collapse
|
43
|
Denaro F, Benedetti F, Worthington MD, Scapagnini G, Krauss CC, Williams S, Bryant J, Davis H, Latinovic OS, Zella D. The HIV-1 Transgenic Rat: Relevance for HIV Noninfectious Comorbidity Research. Microorganisms 2020; 8:microorganisms8111643. [PMID: 33114165 PMCID: PMC7690772 DOI: 10.3390/microorganisms8111643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
HIV noninfectious comorbidities (NICMs) are a current healthcare challenge. The situation is further complicated as there are very few effective models that can be used for NICM research. Previous research has supported the use of the HIV-1 transgenic rat (HIV-1TGR) as a model for the study of HIV/AIDS. However, additional studies are needed to confirm whether this model has features that would support NICM research. A demonstration of the utility of the HIV-1TGR model would be to show that the HIV-1TGR has cellular receptors able to bind HIV proteins, as this would be relevant for the study of cell-specific tissue pathology. In fact, an increased frequency of HIV receptors on a specific cell type may increase tissue vulnerability since binding to HIV proteins would eventually result in cell dysfunction and death. Evidence suggests that observations of selective cellular vulnerability in this model are consistent with some specific tissue vulnerabilities seen in NICMs. We identified CXCR4-expressing cells in the brain, while specific markers for neuronal degeneration demonstrated that the same neural types were dying. We also confirm the presence of gp120 and Tat by immunocytochemistry in the spleen, as previously reported. However, we observed very rare positive cells in the brain. This underscores the point that gp120, which has been reported as detected in the sera and CSF, is a likely source to which these CXCR4-positive cells are exposed. This alternative appears more probable than the local production of gp120. Further studies may indicate some level of local production, but that will not eliminate the role of receptor-mediated pathology. The binding of gp120 to the CXCR4 receptor on neurons and other neural cell types in the HIV-1TGR can thus explain the phenomena of selective cell death. Selective cellular vulnerability may be a contributing factor to the development of NICMs. Our data indicate that the HIV-1TGR can be an effective model for the studies of HIV NICMs because of the difference in the regional expression of CXCR4 in rat tissues, thus leading to specific organ pathology. This also suggests that the model can be used in the development of therapeutic options.
Collapse
Affiliation(s)
- Frank Denaro
- Department of Biology, Morgan State University, Baltimore, MD 21251, USA; (F.D.); (M.D.W.); (C.C.K.); (S.W.)
| | - Francesca Benedetti
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (F.B.); (J.B.); (H.D.); (O.S.L.)
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD 21201, USA
| | - Myla D. Worthington
- Department of Biology, Morgan State University, Baltimore, MD 21251, USA; (F.D.); (M.D.W.); (C.C.K.); (S.W.)
| | - Giovanni Scapagnini
- Department of Medicine and Health Science, University of Molise, Via F. De Sanctis, 86100 Campobasso, Italy;
| | - Christopher C. Krauss
- Department of Biology, Morgan State University, Baltimore, MD 21251, USA; (F.D.); (M.D.W.); (C.C.K.); (S.W.)
| | - Sumiko Williams
- Department of Biology, Morgan State University, Baltimore, MD 21251, USA; (F.D.); (M.D.W.); (C.C.K.); (S.W.)
- Institute of Human Virology-Animal Core Division, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Joseph Bryant
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (F.B.); (J.B.); (H.D.); (O.S.L.)
- Institute of Human Virology-Animal Core Division, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Harry Davis
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (F.B.); (J.B.); (H.D.); (O.S.L.)
- Institute of Human Virology-Animal Core Division, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Olga S. Latinovic
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (F.B.); (J.B.); (H.D.); (O.S.L.)
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD 21201, USA
| | - Davide Zella
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (F.B.); (J.B.); (H.D.); (O.S.L.)
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD 21201, USA
- Correspondence:
| |
Collapse
|
44
|
Stuelke EL, James KS, Kirchherr JL, Allard B, Baker C, Kuruc JD, Gay CL, Margolis DM, Archin NM. Measuring the Inducible, Replication-Competent HIV Reservoir Using an Ultra-Sensitive p24 Readout, the Digital ELISA Viral Outgrowth Assay. Front Immunol 2020; 11:1971. [PMID: 32849659 PMCID: PMC7423995 DOI: 10.3389/fimmu.2020.01971] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/21/2020] [Indexed: 12/16/2022] Open
Abstract
Quantifying the inducible HIV reservoir provides an estimate of the frequency of quiescent HIV-infected cells in humans as well as in animal models, and can help ascertain the efficacy of latency reversing agents (LRAs). The quantitative viral outgrowth assay (QVOA) is used to measure inducible, replication competent HIV and generate estimations of reservoir size. However, traditional QVOA is time and labor intensive and requires large amounts of lymphocytes. Given the importance of reproducible and accurate assessment of both reservoir size and LRA activity in cure strategies, efforts to streamline the QVOA are of high priority. We developed a modified QVOA, the Digital ELISA Viral Outgrowth or DEVO assay, with ultra-sensitive p24 readout, capable of femtogram detection of HIV p24 protein in contrast to the picogram limitations of traditional ELISA. For each DEVO assay, 8–12 × 106 resting CD4 + T cells from aviremic, ART-treated HIV + participants are plated in limiting dilution and maximally stimulated with PHA, IL-2 and uninfected allogeneic irradiated PBMC. CD8-depleted PHA blasts from an uninfected donor or HIV-permissive cells (e.g., Molt4/CCR5) are added to the cultures and virus allowed to amplify for 8–12 days. HIV p24 from culture supernatant is measured at day 8 by Simoa (single molecule array, ultra-sensitive p24 assay) confirmed at day 12, and infectious units per million CD4 + T cells (IUPM) are calculated using the maximum likelihood method. In all DEVO assays performed, HIV p24 was detected in the supernatant of cultures as early as 8 days post stimulation. Importantly, DEVO IUPM values at day 8 were comparable or higher than traditional QVOA IUPM values obtained at day 15. Interestingly, DEVO IUPM values were similar with or without the addition of allogeneic CD8-depleted target PHA blasts or HIV permissive cells traditionally used to expand virus. The DEVO assay uses fewer resting CD4 + T cells and provides an assessment of reservoir size in less time than standard QVOA. This assay offers a new platform to quantify replication competent HIV during limited cell availability. Other potential applications include evaluating LRA activity, and measuring clearance of infected cells during latency clearance assays.
Collapse
Affiliation(s)
- Erin L Stuelke
- University of North Carolina HIV Cure Center, UNC Institute for Global Health and Infectious Diseases, Chapel Hill, NC, United States
| | - Katherine S James
- University of North Carolina HIV Cure Center, UNC Institute for Global Health and Infectious Diseases, Chapel Hill, NC, United States
| | - Jennifer L Kirchherr
- University of North Carolina HIV Cure Center, UNC Institute for Global Health and Infectious Diseases, Chapel Hill, NC, United States
| | - Brigitte Allard
- University of North Carolina HIV Cure Center, UNC Institute for Global Health and Infectious Diseases, Chapel Hill, NC, United States
| | - Caroline Baker
- University of North Carolina HIV Cure Center, UNC Institute for Global Health and Infectious Diseases, Chapel Hill, NC, United States
| | - Joann D Kuruc
- University of North Carolina HIV Cure Center, UNC Institute for Global Health and Infectious Diseases, Chapel Hill, NC, United States.,Department of Medicine, UNC Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Cindy L Gay
- University of North Carolina HIV Cure Center, UNC Institute for Global Health and Infectious Diseases, Chapel Hill, NC, United States.,Department of Medicine, UNC Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - David M Margolis
- University of North Carolina HIV Cure Center, UNC Institute for Global Health and Infectious Diseases, Chapel Hill, NC, United States.,Department of Medicine, UNC Chapel Hill School of Medicine, Chapel Hill, NC, United States.,Department of Microbiology and Immunology, UNC Chapel Hill School of Medicine, Chapel Hill, NC, United States.,Department of Epidemiology, UNC Chapel Hill School of Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Nancie M Archin
- University of North Carolina HIV Cure Center, UNC Institute for Global Health and Infectious Diseases, Chapel Hill, NC, United States.,Department of Medicine, UNC Chapel Hill School of Medicine, Chapel Hill, NC, United States
| |
Collapse
|
45
|
Mori L, Valente ST. Key Players in HIV-1 Transcriptional Regulation: Targets for a Functional Cure. Viruses 2020; 12:E529. [PMID: 32403278 PMCID: PMC7291152 DOI: 10.3390/v12050529] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/13/2022] Open
Abstract
HIV-1 establishes a life-long infection when proviral DNA integrates into the host genome. The provirus can then either actively transcribe RNA or enter a latent state, without viral production. The switch between these two states is governed in great part by the viral protein, Tat, which promotes RNA transcript elongation. Latency is also influenced by the availability of host transcription factors, integration site, and the surrounding chromatin environment. The latent reservoir is established in the first few days of infection and serves as the source of viral rebound upon treatment interruption. Despite effective suppression of HIV-1 replication by antiretroviral therapy (ART), to below the detection limit, ART is ineffective at reducing the latent reservoir size. Elimination of this reservoir has become a major goal of the HIV-1 cure field. However, aside from the ideal total HIV-1 eradication from the host genome, an HIV-1 remission or functional cure is probably more realistic. The "block-and-lock" approach aims at the transcriptional silencing of the viral reservoir, to render suppressed HIV-1 promoters extremely difficult to reactivate from latency. There are unfortunately no clinically available HIV-1 specific transcriptional inhibitors. Understanding the mechanisms that regulate latency is expected to provide novel targets to be explored in cure approaches.
Collapse
Affiliation(s)
| | - Susana T. Valente
- Department of Immunology and Microbiology, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA;
| |
Collapse
|
46
|
Thomas J, Ruggiero A, Paxton WA, Pollakis G. Measuring the Success of HIV-1 Cure Strategies. Front Cell Infect Microbiol 2020; 10:134. [PMID: 32318356 PMCID: PMC7154081 DOI: 10.3389/fcimb.2020.00134] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/13/2020] [Indexed: 01/10/2023] Open
Abstract
HIV-1 eradication strategies aim to achieve viral remission in the absence of antiretroviral therapy (ART). The development of an HIV-1 cure remains challenging due to the latent reservoir (LR): long-lived CD4 T cells that harbor transcriptionally silent HIV-1 provirus. The LR is stable despite years of suppressive ART and is the source of rebound viremia following therapy interruption. Cure strategies such as "shock and kill" aim to eliminate or reduce the LR by reversing latency, exposing the infected cells to clearance via the immune response or the viral cytopathic effect. Alternative strategies include therapeutic vaccination, which aims to prime the immune response to facilitate control of the virus in the absence of ART. Despite promising advances, these strategies have been unable to significantly reduce the LR or increase the time to viral rebound but have provided invaluable insight in the field of HIV-1 eradication. The development and assessment of an HIV-1 cure requires robust assays that can measure the LR with sufficient sensitivity to detect changes that may occur following treatment. The viral outgrowth assay (VOA) is considered the gold standard method for LR quantification due to its ability to distinguish intact and defective provirus. However, the VOA is time consuming and resource intensive, therefore several alternative assays have been developed to bridge the gap between practicality and accuracy. Whilst a cure for HIV-1 infection remains elusive, recent advances in our understanding of the LR and methods for its eradication have offered renewed hope regarding achieving ART free viral remission.
Collapse
Affiliation(s)
- Jordan Thomas
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Alessandra Ruggiero
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom.,Immune and Infectious Disease Division, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, Rome, Italy
| | - William A Paxton
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Georgios Pollakis
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
47
|
Kalidasan V, Theva Das K. Lessons Learned From Failures and Success Stories of HIV Breakthroughs: Are We Getting Closer to an HIV Cure? Front Microbiol 2020; 11:46. [PMID: 32082282 PMCID: PMC7005723 DOI: 10.3389/fmicb.2020.00046] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/10/2020] [Indexed: 12/19/2022] Open
Abstract
There is a continuous search for an HIV cure as the success of ART in blocking HIV replication and the role of CD4+ T cells in HIV pathogenesis and immunity do not entirely eradicate HIV. The Berlin patient, who is virus-free, serves as the best model for a 'sterilizing cure' and many experts are trying to mimic this approach in other patients. Although failures were reported among Boston and Essen patients, the setbacks have provided valuable lessons to strengthen cure strategies. Following the Berlin patient, two more patients known as London and Düsseldorf patients might be the second and third person to be cured of HIV. In all the cases, the patients underwent chemotherapy regimen due to malignancy and hematopoietic stem cell transplantation (HSCT) which required matching donors for CCR5Δ32 mutation - an approach that may not always be feasible. The emergence of newer technologies, such as long-acting slow-effective release ART (LASER ART) and CRISPR/Cas9 could potentially overcome the barriers due to HIV latency and persistency and eliminate the need for CCR5Δ32 mutation donor. Appreciating the failure and success stories learned from these HIV breakthroughs would provide some insight for future HIV eradication and cure strategies.
Collapse
Affiliation(s)
| | - Kumitaa Theva Das
- Infectomics Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| |
Collapse
|