1
|
He T, Deng Y, Zhang F, Zhang J, Zhu L, Wang Q, Ning J, Wu H, Yuan H, Li B, Wu C. Characteristics of Norovirus capsid protein-specific CD8 + T-Cell responses in previously infected individuals. Virulence 2024; 15:2360133. [PMID: 38803081 PMCID: PMC11141469 DOI: 10.1080/21505594.2024.2360133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024] Open
Abstract
Norovirus (NV) infection causes acute gastroenteritis in children and adults. Upon infection with NV, specific CD8+ T cells, which play an important role in anti-infective immunity, are activated in the host. Owing to the NV's wide genotypic variability, it is challenging to develop vaccines with cross-protective abilities against infection. To aid effective vaccine development, we examined specific CD8+ T-cell responses towards viral-structural protein (VP) epitopes, which enable binding to host susceptibility receptors. We isolated peripheral blood mononuclear cells from 196 participants to screen and identify predominant core peptides towards NV main and small envelope proteins using ex vivo and in vitro intracellular cytokine staining assays. Human leukocyte antigen (HLA) restriction characteristics were detected using next-generation sequencing. Three conservative immunodominant VP-derived CD8+ T-cell epitopes, VP294-102 (TDAARGAIN), VP2153-161 (RGPSNKSSN), and VP1141-148 (FPHIIVDV), were identified and restrictively presented by HLA-Cw * 0102, HLA-Cw * 0702, and HLA-A *1101 alleles, separately. Our findings provide useful insights into the development of future vaccines and treatments for NV infection.
Collapse
Affiliation(s)
- Taojun He
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yilin Deng
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Fang Zhang
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jin Zhang
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Luhong Zhu
- Department of Gastroenterology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Qinjin Wang
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jie Ning
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Hui Wu
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Hanmei Yuan
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Bin Li
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Chao Wu
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
da Costa JN, Siqueira JAM, Teixeira DM, Lobo PDS, Guerra SDFDS, Souza IM, Cardoso BTM, Farias LSS, Resque HR, Gabbay YB, da Silva LD. Epidemiological and molecular surveillance of norovirus in the Brazilian Amazon: description of recombinant genotypes and improvement of evolutionary analysis. Rev Inst Med Trop Sao Paulo 2024; 66:e22. [PMID: 38656038 PMCID: PMC11027490 DOI: 10.1590/s1678-9946202466022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/12/2024] [Indexed: 04/26/2024] Open
Abstract
Noroviruses are highly infectious, genetically diverse viruses. Global outbreaks occur frequently, making molecular surveillance important for infection monitoring. This cross-sectional descriptive study aimed to monitor cases of norovirus gastroenteritis in the Brazilian Amazon. Fecal samples were tested by immunoenzymatic assay, RT-PCR and genetic sequencing for the ORF1/ORF2 and protease regions. Bayesian inference with a molecular clock was employed to construct the phylogeny. The norovirus prevalence was 25.8%, with a higher positivity rate among children aged 0-24 months. Genogroup GII accounted for 98.1% of the sequenced samples, while GI accounted for 1.9% of them. The GII.P16/GII.4 genotype was the most prevalent, with an evolution rate of 2.87x10-3 and TMRCA estimated in 2012. This study demonstrates that norovirus is a primary causative agent of gastroenteritis and provides data on viral genetic diversity that may facilitate infection surveillance and vaccine development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hugo Reis Resque
- Instituto Evandro Chagas, Seção de Virologia, Ananindeua, Pará, Brazil
| | | | | |
Collapse
|
3
|
Wang L, Ji L, Li H, Xu D, Chen L, Zhang P, Wang W. Early evolution and transmission of GII.P16-GII.2 norovirus in China. G3 (BETHESDA, MD.) 2022; 12:jkac250. [PMID: 36124949 PMCID: PMC9635637 DOI: 10.1093/g3journal/jkac250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
Norovirus is the most common cause of acute gastroenteritis worldwide. During 2016-2017, a novel recombinant GII.P16-GII.2 genotype of norovirus suddenly appeared and over the next several years became the predominant strain in both China and worldwide. To better understand the origin and diffusion of the GII.P16-GII.2 genotype in China, we conducted molecular evolutionary analyses, including phylodynamics and phylogeography. Moreover, to trace person-to-person transmission of GII.P16-GII.2 norovirus, we applied the novel method, TransPhylo, to a historical phylogeny using sequences obtained from a publicly available database. A time-scaled phylogenetic tree indicated that the time to the most recent common ancestor of the GII.P16-GII.2 major capsid protein (VP1) gene diverged from the GII.P2-GII.2 VP1 gene at 2,001.03 with an evolutionary rate of 3.32 × 10-3 substitutions/site/year. The time to the most recent common ancestor of the GII.P16-GII.2 RNA-dependent RNA polymerase region diverged from the GII.P16-GII.4 RNA-dependent RNA polymerase region at 2,013.28 with an evolutionary rate of 9.44 × 10-3 substitutions/site/year. Of these 2 genomic regions, VP1 gene sequence variations were the most influenced by selective pressure. A phylogeographic analysis showed that GII.P16-GII.2 strains in China communicated most frequently with those in the United States, Australia, Thailand, and Russia, suggesting import from Australia to Taiwan and from the United States to Guangdong. TransPhylo analyses indicated that the basic reproductive number (R0) and sampling proportion (pi) of GII.P16-GII.2 norovirus were 1.99 (95% confidence interval: 1.58-2.44) and 0.76 (95% confidence interval: 0.63-0.88), respectively. Strains from the United States and Australia were responsible for large spread during the evolution and transmission of the virus. Coastal cities and places with high population densities should be closely monitored for norovirus.
Collapse
Affiliation(s)
| | | | - Hao Li
- School of Public Health, Fudan University, Shanghai 200437, China
| | - Deshun Xu
- Huzhou Center for Disease Control and Prevention, Huzhou 313000, China
| | - Liping Chen
- Huzhou Center for Disease Control and Prevention, Huzhou 313000, China
| | - Peng Zhang
- Corresponding author: Huzhou Center for Disease Control and Prevention, 999 Changxing Road, Huzhou 313000, Zhejiang, China. (PZ)
| | - Weibing Wang
- Corresponding author: School of Public Health & Key Laboratory of Public Health Safety (Ministry of Education), Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China. (WW)
| |
Collapse
|
4
|
Gómez-López VM, Jubinville E, Rodríguez-López MI, Trudel-Ferland M, Bouchard S, Jean J. Inactivation of Foodborne Viruses by UV Light: A Review. Foods 2021; 10:foods10123141. [PMID: 34945692 PMCID: PMC8701782 DOI: 10.3390/foods10123141] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/29/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022] Open
Abstract
Viruses on some foods can be inactivated by exposure to ultraviolet (UV) light. This green technology has little impact on product quality and, thus, could be used to increase food safety. While its bactericidal effect has been studied extensively, little is known about the viricidal effect of UV on foods. The mechanism of viral inactivation by UV results mainly from an alteration of the genetic material (DNA or RNA) within the viral capsid and, to a lesser extent, by modifying major and minor viral proteins of the capsid. In this review, we examine the potential of UV treatment as a means of inactivating viruses on food processing surfaces and different foods. The most common foodborne viruses and their laboratory surrogates; further explanation on the inactivation mechanism and its efficacy in water, liquid foods, meat products, fruits, and vegetables; and the prospects for the commercial application of this technology are discussed. Lastly, we describe UV’s limitations and legislation surrounding its use. Based on our review of the literature, viral inactivation in water seems to be particularly effective. While consistent inactivation through turbid liquid food or the entire surface of irregular food matrices is more challenging, some treatments on different food matrices seem promising.
Collapse
Affiliation(s)
- Vicente M. Gómez-López
- Catedra Alimentos para la Salud, Universidad Católica San Antonio de Murcia, Campus de los Jerónimos, E-30107 Murcia, Spain;
| | - Eric Jubinville
- Institute of Nutraceuticals and Functional Foods, Département des Sciences des Aliments, Université Laval, Québec, QC G1V 0A6, Canada; (E.J.); (M.T.-F.); (S.B.)
| | - María Isabel Rodríguez-López
- Departamento de Tecnología de la Alimentación y Nutrición, Universidad Católica San Antonio de Murcia, Campus de los Jerónimos, E-30107 Murcia, Spain;
| | - Mathilde Trudel-Ferland
- Institute of Nutraceuticals and Functional Foods, Département des Sciences des Aliments, Université Laval, Québec, QC G1V 0A6, Canada; (E.J.); (M.T.-F.); (S.B.)
| | - Simon Bouchard
- Institute of Nutraceuticals and Functional Foods, Département des Sciences des Aliments, Université Laval, Québec, QC G1V 0A6, Canada; (E.J.); (M.T.-F.); (S.B.)
| | - Julie Jean
- Institute of Nutraceuticals and Functional Foods, Département des Sciences des Aliments, Université Laval, Québec, QC G1V 0A6, Canada; (E.J.); (M.T.-F.); (S.B.)
- Correspondence: ; Tel.: +1-418-656-2131 (ext. 413849)
| |
Collapse
|
5
|
Zhao B, Hu L, Song Y, Patil K, Ramani S, Atmar RL, Estes MK, Prasad BVV. Norovirus Protease Structure and Antivirals Development. Viruses 2021; 13:v13102069. [PMID: 34696498 PMCID: PMC8537771 DOI: 10.3390/v13102069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 11/30/2022] Open
Abstract
Human norovirus (HuNoV) infection is a global health and economic burden. Currently, there are no licensed HuNoV vaccines or antiviral drugs available. The protease encoded by the HuNoV genome plays a critical role in virus replication by cleaving the polyprotein and is an excellent target for developing small-molecule inhibitors. The current strategy for developing HuNoV protease inhibitors is by targeting the enzyme’s active site and designing inhibitors that bind to the substrate-binding pockets located near the active site. However, subtle differential conformational flexibility in response to the different substrates in the polyprotein and structural differences in the active site and substrate-binding pockets across different genogroups, hamper the development of effective broad-spectrum inhibitors. A comparative analysis of the available HuNoV protease structures may provide valuable insight for identifying novel strategies for the design and development of such inhibitors. The goal of this review is to provide such analysis together with an overview of the current status of the design and development of HuNoV protease inhibitors.
Collapse
Affiliation(s)
- Boyang Zhao
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (B.Z.); (K.P.); (S.R.); (R.L.A.); (M.K.E.)
| | - Liya Hu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Yongcheng Song
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Ketki Patil
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (B.Z.); (K.P.); (S.R.); (R.L.A.); (M.K.E.)
| | - Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (B.Z.); (K.P.); (S.R.); (R.L.A.); (M.K.E.)
| | - Robert L. Atmar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (B.Z.); (K.P.); (S.R.); (R.L.A.); (M.K.E.)
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (B.Z.); (K.P.); (S.R.); (R.L.A.); (M.K.E.)
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - B. V. Venkataram Prasad
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (B.Z.); (K.P.); (S.R.); (R.L.A.); (M.K.E.)
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA;
- Correspondence: ; Tel.: +1-713-798-5686
| |
Collapse
|