1
|
Du X, Hua R, He X, Hou W, Li S, Yang A, Yang G. Echinococcus granulosus ubiquitin-conjugating enzymes (E2D2 and E2N) promote the formation of liver fibrosis in TGFβ1-induced LX-2 cells. Parasit Vectors 2024; 17:190. [PMID: 38643149 PMCID: PMC11031992 DOI: 10.1186/s13071-024-06222-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/29/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Cystic echinococcosis (CE) is a widespread zoonosis caused by the infection with Echinococcus granulosus sensu lato (E. granulosus s.l.). CE cysts mainly develop in the liver of intermediate hosts, characterized by the fibrotic tissue that separates host organ from parasite. However, precise mechanism underlying the formation of fibrotic tissue in CE remains unclear. METHODS To investigate the potential impact of ubiquitin-conjugating enzymes on liver fibrosis formation in CE, two members of ubiquitin-conjugating (UBC) enzyme of Echinococcus granulosus (EgE2D2 and EgE2N) were recombinantly expressed in Escherichia coli and analyzed for bioinformatics, immunogenicity, localization, and enzyme activity. In addition, the secretory pathway and their effects on the formation of liver fibrosis were also explored. RESULTS Both rEgE2D2 and rEgE2N possess intact UBC domains and active sites, exhibiting classical ubiquitin binding activity and strong immunoreactivity. Additionally, EgE2D2 and EgE2N were widely distributed in protoscoleces and germinal layer, with differences observed in their distribution in 25-day strobilated worms. Further, these two enzymes were secreted to the hydatid fluid and CE-infected sheep liver tissues via a non-classical secretory pathway. Notably, TGFβ1-induced LX-2 cells exposed to rEgE2D2 and rEgE2N resulted in increasing expression of fibrosis-related genes, enhancing cell proliferation, and facilitating cell migration. CONCLUSIONS Our findings suggest that EgE2D2 and EgE2N could secrete into the liver and may interact with hepatic stellate cells, thereby promoting the formation of liver fibrosis.
Collapse
Affiliation(s)
- Xiaodi Du
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ruiqi Hua
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xue He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei Hou
- Sichuan Center for Animal Disease Control and Prevention, Chengdu, 610041, China
| | - Shengqiong Li
- Sichuan Center for Animal Disease Control and Prevention, Chengdu, 610041, China
| | - Aiguo Yang
- Sichuan Center for Animal Disease Control and Prevention, Chengdu, 610041, China.
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
2
|
He X, Shao G, Du X, Hua R, Song H, Chen Y, Zhu X, Yang G. Molecular characterization and functional implications on mouse peripheral blood mononuclear cells of annexin proteins from Echinococcus granulosus sensu lato. Parasit Vectors 2023; 16:350. [PMID: 37803469 PMCID: PMC10559496 DOI: 10.1186/s13071-023-05967-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/09/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Cystic echinococcosis (CE) is a life-threatening zoonotic disease caused by the larval stage of Echinococcus granulosus sensu lato, which employs various strategies to evade the host immune system for survival. Recent advances have revealed the role of annexins as excretory/secretory products, providing new insights into the immune regulation by these proteins in the pathogenesis of CE. METHODS Echinococcus granulosus annexin B proteins EgANXB2, EgANXB18, EgANXB20, and EgANXB23 were cloned, expressed, and analyzed using bioinformatic tools. Membrane binding analysis was used to assess their bioactivity, while their immunoreactivity and tissue distribution characteristics were determined experimentally using western blotting and immunofluorescence staining, respectively. Furthermore, quantitative real-time reverse transcription PCR (qRT-PCR) was used to analyze the mRNA expression profiles of EgANXBs in different developmental stages of E. granulosus. Finally, immunofluorescence staining, cell counting kit 8 assays, flow cytometry, transwell migration assays, and qRT-PCR were used to evaluate the functional effects of rEgANXB18 and rEgANXB20 on mouse peripheral blood mononuclear cells (PBMCs). RESULTS In this study, we identified four EgANXBs with conserved protein structures and calcium-dependent phospholipid binding activities. rEgANXBs were recognized by serum from sheep infected with E. granulosus and distributed in the germinal layer of fertile cysts. Interestingly, transcription levels of the four EgANXBs were significantly higher in protoscoleces than in 28-day strobilated worms. Moreover, we demonstrated that rEgANXB18 and rEgANXB20 were secretory proteins that could bind to PBMCs and regulate their function. Specifically, rEgANXB18 inhibited cell proliferation and migration while promoting cell apoptosis, NO production, and cytokine profile shifting. In contrast, rEgANXB20 showed limited effects on apoptosis but inhibited NO production. CONCLUSIONS Our findings suggested that among the four identified EgANXBs, EgANXB2 and EgANXB23 might play a pivotal role for the development of protoscoleces, while EgANXB18 and EgANXB20, as secretory proteins, appeared to participate in the host-parasite interaction by regulating the function of immune cells.
Collapse
Affiliation(s)
- Xue He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Guoqing Shao
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Xiaodi Du
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Ruiqi Hua
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Hongyu Song
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Yanxin Chen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Xiaowei Zhu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, People's Republic of China.
| |
Collapse
|
3
|
Shao G, Hua R, Song H, Chen Y, Zhu X, Hou W, Li S, Yang A, Yang G. Protective efficacy of six recombinant proteins as vaccine candidates against Echinococcus granulosus in dogs. PLoS Negl Trop Dis 2023; 17:e0011709. [PMID: 37871121 PMCID: PMC10621941 DOI: 10.1371/journal.pntd.0011709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/02/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Cystic echinococcosis (CE) is caused by the infection of Echinococcus granulosus sensu lato (E. granulosus s.l.), one of the most harmful zoonotic helminths worldwide. Infected dogs are the major source of CE transmission. While praziquantel-based deworming is a main measure employed to control dog infections, its efficacy is at times compromised by the persistent high rate of dog re-infection and the copious discharge of E. granulosus eggs into the environment. Therefore, the dog vaccine is a welcome development, as it offers a substantial reduction in the biomass of E. granulosus. This study aimed to use previous insights into E. granulosus functional genes to further assess the protective efficacy of six recombinant proteins in dogs using a two-time injection vaccination strategy. METHODS We expressed and combined recombinant E. granulosus triosephosphate isomerase (rEgTIM) with annexin B3 (rEgANXB3), adenylate kinase 1 (rEgADK1) with Echinococcus protoscolex calcium binding protein 1 (rEgEPC1), and fatty acid-binding protein (rEgFABP) with paramyosin (rEgA31). Beagle dogs received two subcutaneous vaccinations mixed with Quil-A adjuvant, and subsequently orally challenged with protoscoleces two weeks after booster vaccination. All dogs were sacrificed for counting and measuring E. granulosus tapeworms at 28 days post-infection, and the level of serum IgG was detected by ELISA. RESULTS Dogs vaccinated with rEgTIM&rEgANXB3, rEgADK1&rEgEPC1, and rEgFABP-EgA31 protein groups exhibited significant protectiveness, with a worm reduction rate of 71%, 57%, and 67%, respectively, compared to the control group (P < 0.05). Additionally, the vaccinated groups exhibited an inhibition of worm growth, as evidenced by a reduction in body length and width (P < 0.05). Furthermore, the level of IgG in the vaccinated dogs was significantly higher than that of the control dogs (P < 0.05). CONCLUSION These verified candidates may be promising vaccines for the prevention of E. granulosus infection in dogs following two injections. The rEgTIM&rEgANXB3 co-administrated vaccine underscored the potential for the highest protective efficacy and superior protection stability for controlling E. granulosus infections in dogs.
Collapse
Affiliation(s)
- Guoqing Shao
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China
| | - Ruiqi Hua
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China
| | - Hongyu Song
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China
| | - Yanxin Chen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China
| | - Xiaowei Zhu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China
| | - Wei Hou
- Sichuan Center for Animal Disease Prevention and Control, Chengdu, Sichuan Province, P. R. China
| | - Shengqiong Li
- Sichuan Center for Animal Disease Prevention and Control, Chengdu, Sichuan Province, P. R. China
| | - Aiguo Yang
- Sichuan Center for Animal Disease Prevention and Control, Chengdu, Sichuan Province, P. R. China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China
| |
Collapse
|
4
|
Song HY, Zhan JF, Hua RQ, He X, Du XD, Xu J, He R, Xie Y, Gu XB, Peng XR, Yang GY. Molecular characterization and immunological properties of Echinococcus granulosus sensu stricto (G1) ADK1 and ADK8. Parasitol Res 2023:10.1007/s00436-023-07857-9. [PMID: 37148368 DOI: 10.1007/s00436-023-07857-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 04/24/2023] [Indexed: 05/08/2023]
Abstract
Adenylate kinases (ADKs) are one of the important enzymes regulating adenosine triphosphate (ATP) metabolism in Echinococcus granulosus sensu lato. The objective of the present study was to explore the molecular characteristics and immunological properties of E. granulosus sensu stricto (G1) adenylate kinase 1 (EgADK1) and adenylate kinase 8 (EgADK8). EgADK1 and EgADK8 were cloned and expressed, and the molecular characteristics of EgADK1 and EgADK8 were analyzed through different bioinformatics tools. Western blotting was used to examine the reactogenicity of recombinant adenylate kinase 1 (rEgADK1) and recombinant adenylate kinase 8 (rEgADK8) and to evaluate their diagnostic value. The expression profiles of EgADK1 and EgADK8 in 18-day-old strobilated worms and protoscoleces were analyzed by quantitative real-time PCR, and their distribution in 18-day-old strobilated worms, the germinal layer, and protoscoleces was determined by immunofluorescence localization. EgADK1 and EgADK8 were successfully cloned and expressed. Bioinformatics analysis predicted that EgADK1 and EgADK8 have multiple phosphorylation sites and B-cell epitopes. Compared with EgADK8, EgADK1 and other parasite ADKs have higher sequence similarity. In addition, both cystic echinococcosis (CE)-positive sheep sera and Cysticercus tenuicollis-infected goat sera could recognize rEgADK1 and rEgADK8. EgADK1 and EgADK8 were localized in protoscoleces, the germinal layer, and 18-day-old strobilated worms. EgADK1 and EgADK8 showed no significant difference in their transcription level in 18-day-old strobilated worms and protoscoleces, suggesting that EgADK1 and EgADK8 may play an important role in the growth and development of E. granulosus sensu lato. Since EgADK1 and EgADK8 can be recognized by other parasite-positive sera, they are not suitable as candidate antigens for the diagnosis of CE.
Collapse
Affiliation(s)
- Hong-Yu Song
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Jia-Fei Zhan
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Rui-Qi Hua
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Xue He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Xiao-Di Du
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Jing Xu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Ran He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Xiao-Bin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Xue-Rong Peng
- Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Guang-You Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
| |
Collapse
|
5
|
Xian J, Wang N, Zhao P, Zhang Y, Meng J, Ma X, Guo X, Wang Z, Bo X. Molecular characterization and immune protection of the 3-hydroxyacyl-CoA dehydrogenase gene in Echinococcus granulosus. Parasit Vectors 2021; 14:489. [PMID: 34556147 PMCID: PMC8460197 DOI: 10.1186/s13071-021-05001-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/08/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Cystic echinococcosis (CE) is a serious parasitic zoonosis caused by the larvae of the tapeworm Echinococcus granulosus. The development of an effective vaccine is one of the most promising strategies for controlling CE. METHODS The E. granulosus 3-hydroxyacyl-CoA dehydrogenase (EgHCDH) gene was cloned and expressed in Escherichia coli. The distribution of EgHCDH in protoscoleces (PSCs) and adult worms was analyzed using immunofluorescence. The transcript levels of EgHCDH in PSCs and adult worms were analyzed using quantitative real-time reverse transcription PCR (RT-qPCR). The immune protective effects of the rEgHCDH were evaluated. RESULTS The 924-bp open reading frame sequence of EgHCDH, which encodes a protein of approximately 34 kDa, was obtained. RT-qPCR analysis revealed that EgHCDH was expressed in both the PSCs and adult worms of E. granulosus. Immunofluorescence analysis showed that EgHCDH was mainly localized in the tegument of PSCs and adult worms. Western blot analysis showed that the recombinant protein was recognized by E. granulosus-infected dog sera. Animal challenge experiments demonstrated that dogs immunized with recombinant (r)EgHCDH had significantly higher serum IgG, interferon gamma and interleukin-4 concentrations than the phosphate-buffered saline (PBS) control group. The rEgHCDH vaccine was able to significantly reduce the number of E. granulosus and inhibit the segmental development of E. granulosus compared to the PBS control group. CONCLUSIONS The results suggest that rEgHCDH can induce partial immune protection against infection with E. granulosus and could be an effective candidate for the development of new vaccines.
Collapse
Affiliation(s)
- Jinwen Xian
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production/Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, 832000 Shihezi, China
- College of Animal Science and Technology, Shihezi University, Shihezi, 832000 China
| | - Ning Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production/Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, 832000 Shihezi, China
- College of Animal Science and Technology, Shihezi University, Shihezi, 832000 China
| | - Pengpeng Zhao
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production/Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, 832000 Shihezi, China
- College of Animal Science and Technology, Shihezi University, Shihezi, 832000 China
| | - Yanyan Zhang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production/Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, 832000 Shihezi, China
| | - Jimeng Meng
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production/Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, 832000 Shihezi, China
| | - Xun Ma
- College of Animal Science and Technology, Shihezi University, Shihezi, 832000 China
| | - Xiaola Guo
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production/Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, 832000 Shihezi, China
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Gansu, 730046 China
| | - Zhengrong Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production/Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, 832000 Shihezi, China
| | - Xinwen Bo
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production/Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, 832000 Shihezi, China
| |
Collapse
|
6
|
Song H, He X, Du X, Hua R, Xu J, He R, Xie Y, Gu X, Peng X, Yang G. Molecular characterization and expression analysis of annexin B3 and B38 as secretory proteins in Echinococcus granulosus. Parasit Vectors 2021; 14:103. [PMID: 33557917 PMCID: PMC7869467 DOI: 10.1186/s13071-021-04596-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/13/2021] [Indexed: 11/18/2022] Open
Abstract
Background Cystic echinococcosis is a parasitic zoonotic disease, which poses a threat to public health and animal husbandry, and causes significant economic losses. Annexins are a family of phospholipid-binding proteins with calcium ion-binding activity, which have many functions. Methods Two annexin protein family genes [Echinococcus granulosus annexin B3 (EgAnxB3) and EgAnxB38] were cloned and molecularly characterized using bioinformatic analysis. The immunoreactivity of recombinant EgAnxB3 (rEgAnxB3) and rEgAnxB38 was investigated using western blotting. The distribution of EgAnxB3 and EgAnxB38 in protoscoleces (PSCs), the germinal layer, 18-day strobilated worms and 45-day adult worms was analyzed by immunofluorescence localization, and their secretory characteristics were analyzed preliminarily; in addition, quantitative real-time reverse transcription polymerase chain reaction was used to analyze their transcript levels in PSCs and 28-day strobilated worms stages. The phospholipid-binding activities of rEgAnxB3 and rEgAnxB38 were also analyzed. Results EgAnxB3 and EgAnxB38 are conserved and contain calcium-binding sites. Both rEgAnxB3 and rEgAnxB38 could be specifically recognized by the serum samples from E. granulosus-infected sheep, indicating that they had strong immunoreactivity. EgAnxB3 and EgAnxB38 were distributed in all stages of E. granulosus, and their transcript levels were high in the 28-day strobilated worms. They were found in liver tissues near the cysts. In addition, rEgAnxB3 has Ca2+-dependent phospholipid-binding properties. Conclusions EgAnxB3 and EgAnxB38 contain calcium-binding sites, and rEgAnxB3 has Ca2+-dependent phospholipid-binding properties. EgAnxB3 and EgAnxB38 were transcribed in PSCs and 28-day strobilated worms. They were expressed in all stages of E. granulosus, and distributed in the liver tissues near the hydatid cyst, indicating that they are secreted proteins that play a crucial role in the development of E. granulosus. ![]()
Collapse
Affiliation(s)
- Hongyu Song
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Xue He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Xiaodi Du
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Ruiqi Hua
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Jing Xu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Ran He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Xiaobin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Xuerong Peng
- Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.
| |
Collapse
|
7
|
Rodrigues RRL, Nunes TAL, de Araújo AR, Marinho Filho JDB, da Silva MV, Carvalho FADA, Pessoa ODL, Freitas HPS, Rodrigues KADF, Araújo AJ. Antileishmanial activity of cordiaquinone E towards Leishmania (Leishmania) amazonensis. Int Immunopharmacol 2020; 90:107124. [PMID: 33168414 DOI: 10.1016/j.intimp.2020.107124] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 12/30/2022]
Abstract
Leishmaniasis is caused by several protozoan species of Leishmania, and being endemically present in 98 countries around the world, it is also a severe public-health problem. The available antileishmanial drugs are toxic and yet present risks of recurrent infection. Efforts to find new, effective, and safe oral agents for the treatment of leishmaniasis are continuing throughout the world. This work aimed to evaluate the antileishmania activity of cordiaquinone E (CORe), isolated from the roots of Cordia polycephala (Lam.) I. M. Johnston. Cytotoxicity, and possible mechanisms of action against promastigote and amastigote forms of Leishmania amazonensis were examined. CORe was effective in inhibiting promastigote (IC50 4.5 ± 0.3 µM) and axenic amastigote (IC50 2.89 ± 0.11 µM) growth in concentrations found non-toxic for the host cell (CC50 246.81 ± 14.5 µM). Our results revealed that CORe presents direct activity against the parasite, inducing cell death by apoptosis. CORe present greater activity against intracellular amastigotes (EC50 1.92 ± 0.2 µM), yet with much higher selectivity indexes than the reference drugs, being respectively more benign towards RAW 264.7 macrophages than meglumine antimoniate and amphotericin B, (respectively by 4.68 and 42.84 fold). The antiamastigote activity was associated with increased TNF-α, IL-12, NO, and ROS levels, as well as decreased IL-10 levels. These results encourage the progression of studies on this compound for the development of new leishmanicidal agents.
Collapse
Affiliation(s)
- Raiza Raianne Luz Rodrigues
- Laboratório de Doenças Infecciosas, Campus Ministro Reis Velloso, Universidade Federal do Delta do Parnaíba, 64202-020 Parnaíba, PI, Brazil
| | - Thaís Amanda Lima Nunes
- Laboratório de Doenças Infecciosas, Campus Ministro Reis Velloso, Universidade Federal do Delta do Parnaíba, 64202-020 Parnaíba, PI, Brazil
| | - Alyne Rodrigues de Araújo
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, Campus Ministro Reis Velloso, Universidade Federal do Delta do Parnaíba, 64202-020 Parnaíba, PI, Brazil
| | - José Delano Barreto Marinho Filho
- Laboratório de Cultura de Células do Delta, Campus Ministro Reis Velloso, Universidade Federal do Delta do Parnaíba, 64202-020 Parnaíba, PI, Brazil
| | - Marcos Vinícius da Silva
- Laboratório de Imunologia e Parasitologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, 38025-180 Uberaba, MG, Brazil
| | - Fernando Aécio de Amorim Carvalho
- Núcleo de Pesquisas em Plantas Medicinais, Campus Ministro Petrônio Portella, Universidade Federal do Piauí, Teresina 64049-550, Piauí, Brazil
| | | | | | | | - Ana Jérsia Araújo
- Laboratório de Cultura de Células do Delta, Campus Ministro Reis Velloso, Universidade Federal do Delta do Parnaíba, 64202-020 Parnaíba, PI, Brazil.
| |
Collapse
|