1
|
Zhang N, Sun L, Chen L, Liu E, Guo Y, Gong K. Study on the prebiotic effects of insoluble crude and fine fibers of wheat bran after simulated digestion in vitro. Int J Biol Macromol 2024; 279:135197. [PMID: 39216561 DOI: 10.1016/j.ijbiomac.2024.135197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/14/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
This study aims to evaluate the probiotic effects of insoluble crude and fine fibers of wheat bran on the intestine after simulated in vitro digestion. It was found that the particle size distribution of modified fine wheat bran (MWB) was significantly smaller than that of natural crude wheat bran (NWB). MWB had a looser texture and more porous structure. The dry matter digestibility and organic matter digestibility of MWB were 58.60 % and 59.05 %, which were significantly higher than that of NWB (53.64 % and 54.13 %). More SDF and free polyphenol were released from the MWB. At 12 h of fermentation, the SDF content of the MWB was 3.76 g/100 g, significantly higher than NWB (3.40 g/100 g), and the free polyphenol was 9.43 mg/g, significantly higher than NWB (9.01 mg/g). The content of short-chain fatty acids including formic acid, acetic acid, propionic acid, butyrate acid and valerate acid in the samples were significantly higher in MWB than in NWB. Analysis of the microbial flora structure and diversity of the fermentation samples revealed that the relative abundance of Lactobacillus was higher in the MWB group, and was closer to the oligofructose group (FOS) in terms of functional predictions.
Collapse
Affiliation(s)
- Nana Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Linlin Sun
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Lirong Chen
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Encan Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yuqiu Guo
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Kuijie Gong
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| |
Collapse
|
2
|
Wang Y, Du G, Zhang Y, Yu H, Liu S, Wang Z, Ma X, Wei X, Wen B, Li Z, Fan S, Xin F. Distinct Adjacent Substrate Binding Pocket Regulates the Activity of a Decameric Feruloyl Esterase from Bacteroides thetaiotaomicron. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23554-23566. [PMID: 39370616 DOI: 10.1021/acs.jafc.4c06286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Understanding how the human gut microbiota contribute to the metabolism of dietary carbohydrates is of great interest, particularly those with ferulic acid (FA) decorations that have manifold health benefits. Here, we report the crystal structure of a decameric feruloyl esterase (BtFae) from Bacteroides thetaiotaomicron in complex with methyl ferulate (MFA), revealing that MFA is situated in a noncatalytic substrate binding pocket adjacent to the catalytic pocket. Molecular docking and mutagenesis studies further demonstrated that the adjacent pocket affects substrate binding in the active site and negatively regulates the BtFae activity on both synthetic and natural xylan substrates. Additionally, quantum mechanics (QM) calculations were employed to investigate the catalytic process of BtFae from substrate binding to product release, and identified TS_2 in the acylation step is rate-limiting. Collectively, this study unmasks a novel regulatory mechanism of FAE activity, which may contribute to further investigation of FA-conjugated polysaccharides metabolism in the human gut.
Collapse
Affiliation(s)
- Yulu Wang
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Institute of Food Science Technology Nutrition and Health (Cangzhou), Chinese Academy of Agricultural Sciences, Cangzhou 061001, China
| | - Guoming Du
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuebin Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Haiyan Yu
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shujun Liu
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Institute of Food Science Technology Nutrition and Health (Cangzhou), Chinese Academy of Agricultural Sciences, Cangzhou 061001, China
| | - Zhaoxing Wang
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| | - Xiaochen Ma
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xue Wei
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Boting Wen
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Institute of Food Science Technology Nutrition and Health (Cangzhou), Chinese Academy of Agricultural Sciences, Cangzhou 061001, China
| | - Zhen Li
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Institute of Food Science Technology Nutrition and Health (Cangzhou), Chinese Academy of Agricultural Sciences, Cangzhou 061001, China
| | - Shilong Fan
- Key Laboratory of Ministry of Education for Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Fengjiao Xin
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Institute of Food Science Technology Nutrition and Health (Cangzhou), Chinese Academy of Agricultural Sciences, Cangzhou 061001, China
| |
Collapse
|
3
|
Hosseini SS, Sudaagar M, Zakariaee H, Paknejad H, Baruah K, Norouzitalab P. Evaluation of the synbiotic effects of Saccharomyces cerevisiae and mushroom extract on the growth performance, digestive enzyme activity, and immune status of zebrafish danio rerio. BMC Microbiol 2024; 24:331. [PMID: 39245724 PMCID: PMC11382455 DOI: 10.1186/s12866-024-03459-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 08/09/2024] [Indexed: 09/10/2024] Open
Abstract
BACKGROUND The quest for candidate probiotics and prebiotics to develop novel synbiotics for sustainable and profitable fish farming remains a major focus for various stakeholders. In this study, we examined the effects of combining two fungal probiotics, Saccharomyces cerevisiae and Aspergillus niger with extracts of Jerusalem artichoke and white button mushroom to develop a synbiotic formulation to improve the growth and health status of zebrafish (Danio rerio). An initial in vitro study determined the most effective synbiotic combination, which was then tested in a 60-day in vivo nutritional trial using zebrafish (80 ± 1.0 mg) as a model animal. Four experimental diets were prepared: a control diet (basal diet), a prebiotic diet with 100% selected mushroom extract, a probiotic diet with 107 CFU of S. cerevisiae/g of diet, and a synbiotic diet with 107 CFU of S. cerevisiae/g of diet and 100% mushroom extract. As readouts, growth performance, survival, digestive enzyme activity and innate immune responses were evaluated. RESULTS In vitro results showed that the S. cerevisiae cultured in a medium containing 100% mushroom extract exhibited the maximum specific growth rate and shortest doubling time. In the in vivo test with zebrafish, feeding them with a synbiotic diet, developed with S. cerevisiae and mushroom extract, led to a significant improvement in the growth performance of zebrafish (P < 0.05). The group of zebrafish fed with the synbiotic diet showed significantly higher levels of digestive enzyme activity and immune responses compared to the control group (P < 0.05). CONCLUSION Taken together, these results indicated that the combination of S. cerevisiae and mushroom extract forms an effective synbiotic, capable of enhancing growth performance and immune response in zebrafish.
Collapse
Affiliation(s)
- Seyedeh Sedigheh Hosseini
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, 4934174515, Iran.
- Department of Laboratory Sciences, Faculty of Para-medicine, Golestan University of Medical Sciences, Gorgan, 4934174515, Iran.
| | - Mohammad Sudaagar
- Department of Aquaculture, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 4918943464, Iran
| | - Hamideh Zakariaee
- Department of Aquaculture, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 4918943464, Iran
| | - Hamed Paknejad
- Department of Aquaculture, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 4918943464, Iran
| | - Kartik Baruah
- Department of Applied Animal Science and Welfare, Faculty of Veterinary Medicine and Animal Sciences, Swedish University of Agricultural Sciences, Uppsala, 7070, SE-750 07, Sweden
| | - Parisa Norouzitalab
- Department of Applied Animal Science and Welfare, Faculty of Veterinary Medicine and Animal Sciences, Swedish University of Agricultural Sciences, Uppsala, 7070, SE-750 07, Sweden
| |
Collapse
|
4
|
Zhao X, Ying J, Wang Z, Wang Y, Li Z, Gu T, Liu S, Li Y, Liu B, Xin F, Wen B. In vitro digestive properties and the bioactive effect of walnut green husk on human gut microbiota. Front Microbiol 2024; 15:1392774. [PMID: 39224223 PMCID: PMC11367867 DOI: 10.3389/fmicb.2024.1392774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Walnut green husk (WGH) is a waste byproduct from walnut industry. However, it is not well-known about its bioactive effect on human gut health. Methods This study conducted in vitro digestion and fermentation experiments to study the bioactive effect of WGH. Results Microbial fermentation was the primary mechanism to efficiently release phenolics and flavonoids, resulting in more excellent antioxidant capacities (DPPH, ABTS, and FRAP assays), which reached a highest value with 14.82 ± 0.01 mg VcE/g DW, 3.47 ± 0.01 mmol TE/g DW, and 0.96 ± 0.07 mmol FeSO4·7H2O/g DW, respectively. The surface microstructure of WGH became loose and fragmented after microbial fermentation. The analytical results of gut microbiota demonstrated that WGH could significantly increase the relative abundance of Proteobacteria in phylum level and Phascolarctobacterium in genus level while certain pro-inflammatory bacteria (such as Clostridium_sensu_stricto_1, Dorea, Alistipes, and Bilophila) was inhibited. Additionally, 1,373 differential metabolites were identified and enriched in 283 KEGG pathways. Of which some metabolites were significantly upregulated including ferulic acid, chlorogenic acid, umbelliferone, scopolin, muricholic acid, and so forth. Discussion These results indicated that WGH could have antioxidant and anti-inflammatory activities in the human gut, which could improve the economical value of WGH in the food industry.
Collapse
Affiliation(s)
- Xiaolan Zhao
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Jiabao Ying
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Zhuochen Wang
- Institute of Agro-Products Processing, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yulu Wang
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Zhen Li
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Tianyi Gu
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Shujun Liu
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yulong Li
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Bing Liu
- Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Fengjiao Xin
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Laboratory of Biomanufacturing and Food Engineering, Institute of Agricultural Product Processing and Nutritional Health, Chinese Academy of Agricultural Sciences (CAAS), Cangzhou, China
| | - Boting Wen
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Laboratory of Biomanufacturing and Food Engineering, Institute of Agricultural Product Processing and Nutritional Health, Chinese Academy of Agricultural Sciences (CAAS), Cangzhou, China
| |
Collapse
|
5
|
Bai J, Wang J, Fan M, Li Y, Huang L, Wang L. In vitro fermentation reveals an interplay relationship between oat β-glucan and human gut Bacteroides and their potential role in regulating gut cytokines. Food Funct 2024; 15:7794-7811. [PMID: 38920001 DOI: 10.1039/d4fo00775a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Dietary oat β-glucan regulates the gut microbial composition and structure; however, the interplay relationship between oat β-glucan and the gut microbiota is unclear. In this study, we aim to investigate the interaction between oat β-glucan and human gut Bacteroides, a versatile carbohydrate utilizer, and explore the effect of their interaction on gut immunity homeostasis. The results of in vitro fermentation showed that oat β-glucan significantly increased the abundance of gut Bacteroides at the genus level. Then, Bacteroides strains were isolated from human gut microbiota and 9 strains of Bacteroides could grow on oat β-glucan and degrade oat β-glucan to reducing sugars. Notably, strains Bacteroides xylanisolvens Bac02 and Bacteroides koreensis Bac08 possessed the strongest degradation capacity towards oat β-glucan. Genome analysis and functional annotations suggested that B. xylanisolvens Bac02 and B. koreensis Bac08 contained abundant genes encoding glycoside hydrolases family 3 (GH3) and GH16, which might be responsible for β-glucan degradation. Moreover, cell experiments revealed that the metabolites from oat β-glucan fermentation by these 9 strains of Bacteroides could regulate the polarization of macrophages and maintain gut immunity homeostasis. Our study provides a novel insight into research on the interplay between dietary compounds and the gut microbiota.
Collapse
Affiliation(s)
- Junying Bai
- Citrus Research Institute, Southwest University, 2 Tiansheng Road, Chongqing 400712, China.
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China.
- National Citrus Engineering Research Center, Chongqing, 400712, China
| | - Jing Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China.
| | - Mingcong Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China.
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China.
| | - Linhua Huang
- Citrus Research Institute, Southwest University, 2 Tiansheng Road, Chongqing 400712, China.
- National Citrus Engineering Research Center, Chongqing, 400712, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
6
|
Luo C, Duan J, Zhong R, Liu L, Gao Q, Liu X, Chen L, Zhang H. In vitro fermentation characteristics of different types of fiber-rich ingredients by pig fecal inoculum. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5296-5304. [PMID: 38308576 DOI: 10.1002/jsfa.13355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/12/2023] [Accepted: 02/01/2024] [Indexed: 02/05/2024]
Abstract
BACKGROUND Dietary fibers with varying physicochemical properties have different fermentation characteristics, which may differently impact host health. The present study aimed to determine the fermentation characteristics including gas production kinetics, short-chain fatty acids (SCFAs) production and microbial composition of different fibrous ingredients using in vitro fermentation by fecal microbiota. RESULTS Sugar beet pule (SBP), wheat bran (WB), dried corn distillers grains with solubles (DDGS), rice bran (RB) and alfalfa meal (AM) were selected to fermentation in vitro for 36 h. The results showed that SBP had the greatest gas production. SBP had the highest in vitro dry matter fermentability (IVDMF) and production of acetate, propionate and total SCFAs, followed by WB, which were all greater than DDGS, AM and RB. The alpha-diversity was higher in the DDGS, AM and RB groups than in the WB and SBP groups. Differences in microbial community composition were observed among groups. The relative abundance of Treponema was highest in WB group. RB group showed lower Prevotella abundance than other groups but had higher Succinivibrio abundance. Interestingly, the Lactobacillus reached the highest abundances in the DDGS group. Correlation analysis indicated that the relative abundance of Treponema and Prevotella was positively associated with the gas production, IVDMF and SCFAs, whereas norank_f_Muribaculaceae, Rikenellaceae_RC9_gut_group, Lysinibacillus and Succinivibrio were the opposite. CONCLUSION Collectively, WB and SBP were fermented rapidly by fecal microbiota compared to DDGS, AM and RB. Different fiber sources have different fiber compositions and fermentation properties that affect the microbial compositins and SCFAs production. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chengzeng Luo
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Jiujun Duan
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Liu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingtao Gao
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuelan Liu
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
7
|
Tahiri M, Johnsrud C, Steffensen IL. Evidence and hypotheses on adverse effects of the food additives carrageenan (E 407)/processed Eucheuma seaweed (E 407a) and carboxymethylcellulose (E 466) on the intestines: a scoping review. Crit Rev Toxicol 2023; 53:521-571. [PMID: 38032203 DOI: 10.1080/10408444.2023.2270574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023]
Abstract
This scoping review provides an overview of publications reporting adverse effects on the intestines of the food additives carrageenan (CGN) (E 407)/processed Eucheuma seaweed (PES) (E 407a) and carboxymethylcellulose (CMC) (E 466). It includes evidence from human, experimental mammal and in vitro research publications, and other evidence. The databases Medline, Embase, Scopus, Web of Science Core Collection, Cochrane Database of Systematic Reviews and Epistemonikos were searched without time limits, in addition to grey literature. The publications retrieved were screened against predefined criteria. From two literature searches, 2572 records were screened, of which 224 records were included, as well as 38 records from grey literature, making a total of 262 included publications, 196 on CGN and 101 on CMC. These publications were coded and analyzed in Eppi-Reviewer and data gaps presented in interactive maps. For CGN, five, 69 and 33 research publications on humans, experimental mammals and in vitro experiments were found, further separated as degraded or native (non-degraded) CGN. For CMC, three human, 20 animal and 14 in vitro research publications were obtained. The most studied adverse effects on the intestines were for both additives inflammation, the gut microbiome, including fermentation, intestinal permeability, and cancer and metabolic effects, and immune effects for CGN. Further studies should focus on native CGN, in the form and molecular weight used as food additive. For both additives, randomized controlled trials of sufficient power and with realistic dietary exposure levels of single additives, performed in persons of all ages, including potentially vulnerable groups, are needed.
Collapse
Affiliation(s)
- Mirlinda Tahiri
- Department of Food Safety, Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Celine Johnsrud
- Department of Food Safety, Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Inger-Lise Steffensen
- Department of Food Safety, Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
8
|
Agamennone V, van den Broek TJ, de Kat Angelino-Bart A, Hoevenaars FPM, van der Kamp JW, Schuren FHJ. Individual and Group-Based Effects of In Vitro Fiber Interventions on the Fecal Microbiota. Microorganisms 2023; 11:2001. [PMID: 37630561 PMCID: PMC10459671 DOI: 10.3390/microorganisms11082001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
The development of microbiome-targeted strategies is limited by individual differences in gut microbiome composition and metabolic responses to interventions. In vitro models that can replicate this variation allow us to conduct pre-clinical studies and assess efficacy. This study describes the exposure of 16 individual fecal microbiota samples to 5 different fibers using an in vitro system for the anaerobic cultivation of bacteria. The individual microbiota differed in composition and metabolite profiles (short-chain fatty acids and branched-chain fatty acids) after incubation with the fibers. Furthermore, microbiota composition after fiber incubation was significantly different between subjects with good intestinal health and subjects with Inflammatory Bowel Disease (IBD). α-diversity was differently affected by dietary fibers; for example, exposure to psyllium resulted in increased diversity in the healthy group and in decreased diversity in the IBD group. Instead, the functional metabolic profile did not differ between the two groups. Finally, the combination of all fibers, tested on the microbiota from IBD subjects, resulted in stronger overall effects on both microbiota composition and metabolite production compared to the single fibers. These results confirm that incubation with dietary fiber results in different compositional and functional effects on individual microbiota and that in vitro models represent successful tools for studying individual fiber effects.
Collapse
Affiliation(s)
| | | | | | | | | | - Frank H. J. Schuren
- Microbiology and Systems Biology Group, TNO, 2333 BE Leiden, The Netherlands
| |
Collapse
|
9
|
Yu L, Gao Y, Ye Z, Duan H, Zhao J, Zhang H, Narbad A, Tian F, Zhai Q, Chen W. Interaction of beta-glucans with gut microbiota: Dietary origins, structures, degradation, metabolism, and beneficial function. Crit Rev Food Sci Nutr 2023; 64:9884-9909. [PMID: 37272431 DOI: 10.1080/10408398.2023.2217727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Beta-glucan (BG), a polysaccharide comprised of interfacing glucose monomers joined via beta-glycosidic linkages, can be defined as a type of dietary fiber with high specificity based on its interaction with the gut microbiota. It can induce similar interindividual microbiota responses, thereby having beneficial effects on the human body. In this paper, we review the four main sources of BG (cereals, fungi, algae, and bacteria) and their differences in structure and content. The interaction of BG with gut microbiota and the resulting health effects have been highlighted, including immune enhancement, regulation of serum cholesterol and insulin levels, alleviation of obesity and improvement of cognitive disorders. Finally, the application of BG in food products and its beneficial effects on the gut microbiota of consumers were discussed. Although some of the mechanisms of action remain unclear, revealing the beneficial functions of BG from the perspective of gut microbiota can help provide theoretical support for the development of diets that target the regulation of microbiota.
Collapse
Affiliation(s)
- Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
| | - Yuhang Gao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Zi Ye
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hui Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Arjan Narbad
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
- Gut Health and Microbiome Institute Strategic Programme, Quadram Institute Bioscience, Norwich, UK
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
10
|
Cuervo-Zanatta D, Syeda T, Sánchez-Valle V, Irene-Fierro M, Torres-Aguilar P, Torres-Ramos MA, Shibayama-Salas M, Silva-Olivares A, Noriega LG, Torres N, Tovar AR, Ruminot I, Barros LF, García-Mena J, Perez-Cruz C. Dietary Fiber Modulates the Release of Gut Bacterial Products Preventing Cognitive Decline in an Alzheimer's Mouse Model. Cell Mol Neurobiol 2023; 43:1595-1618. [PMID: 35953741 PMCID: PMC11412426 DOI: 10.1007/s10571-022-01268-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/28/2022] [Indexed: 12/11/2022]
Abstract
Fiber intake is associated with a lower risk for Alzheimer´s disease (AD) in older adults. Intake of plant-based diets rich in soluble fiber promotes the production of short-chain fatty acids (SCFAs: butyrate, acetate, propionate) by gut bacteria. Butyrate administration has antiinflammatory actions, but propionate promotes neuroinflammation. In AD patients, gut microbiota dysbiosis is a common feature even in the prodromal stages of the disease. It is unclear whether the neuroprotective effects of fiber intake rely on gut microbiota modifications and specific actions of SCFAs in brain cells. Here, we show that restoration of the gut microbiota dysbiosis through the intake of soluble fiber resulted in lower propionate and higher butyrate production, reduced astrocyte activation and improved cognitive function in 6-month-old male APP/PS1 mice. The neuroprotective effects were lost in antibiotic-treated mice. Moreover, propionate promoted higher glycolysis and mitochondrial respiration in astrocytes, while butyrate induced a more quiescent metabolism. Therefore, fiber intake neuroprotective action depends on the modulation of butyrate/propionate production by gut bacteria. Our data further support and provide a mechanism to explain the beneficial effects of dietary interventions rich in soluble fiber to prevent dementia and AD. Fiber intake restored the concentration of propionate and butyrate by modulating the composition of gut microbiota in male transgenic (Tg) mice with Alzheimer´s disease. Gut dysbiosis was associated with intestinal damage and high propionate levels in control diet fed-Tg mice. Fiber-rich diet restored intestinal integrity and promoted the abundance of butyrate-producing bacteria. Butyrate concentration was associated with better cognitive performance in fiber-fed Tg mice. A fiber-rich diet may prevent the development of a dysbiotic microbiome and the related cognitive dysfunction in people at risk of developing Alzheimer´s disease.
Collapse
Affiliation(s)
- Daniel Cuervo-Zanatta
- Laboratorio de Neuroplasticidad y Neurodegeneración, Departamento de Farmacologia, Centro de Investigación y de Estudios Avanzados del I.P.N. (Cinvestav), Av. IPN 2508, Ciudad de Mexico, 07360, México
- Laboratorio de Referencia y Soporte Para Genomas, Transcriptomas y Caracterización de Microbiomas, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N. (Cinvestav), Av. IPN 2508, Ciudad de Mexico, 07360, México
| | - Tauqeerunnisa Syeda
- Laboratorio de Neuroplasticidad y Neurodegeneración, Departamento de Farmacologia, Centro de Investigación y de Estudios Avanzados del I.P.N. (Cinvestav), Av. IPN 2508, Ciudad de Mexico, 07360, México
| | - Vicente Sánchez-Valle
- Laboratorio de Neuroplasticidad y Neurodegeneración, Departamento de Farmacologia, Centro de Investigación y de Estudios Avanzados del I.P.N. (Cinvestav), Av. IPN 2508, Ciudad de Mexico, 07360, México
| | - Mariangel Irene-Fierro
- Laboratorio de Neuroplasticidad y Neurodegeneración, Departamento de Farmacologia, Centro de Investigación y de Estudios Avanzados del I.P.N. (Cinvestav), Av. IPN 2508, Ciudad de Mexico, 07360, México
| | - Pablo Torres-Aguilar
- Unidad Periférica de Neurociencias, Instituto de Neurología y Neurocirugía Manuel Velasco Suárez (INNNMVS), Ciudad de Mexico, 14269, México
| | - Mónica Adriana Torres-Ramos
- Unidad Periférica de Neurociencias, Instituto de Neurología y Neurocirugía Manuel Velasco Suárez (INNNMVS), Ciudad de Mexico, 14269, México
| | - Mineko Shibayama-Salas
- Departmento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N. (Cinvestav), Av. IPN 2508, 07360, Ciudad de Mexico, Mexico
| | - Angélica Silva-Olivares
- Departmento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N. (Cinvestav), Av. IPN 2508, 07360, Ciudad de Mexico, Mexico
| | - Lilia G Noriega
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y de la Nutrición "Salvador Zubiran" (INCMNSZ), 14080, Ciudad de México, Mexico
| | - Nimbe Torres
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y de la Nutrición "Salvador Zubiran" (INCMNSZ), 14080, Ciudad de México, Mexico
| | - Armando R Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y de la Nutrición "Salvador Zubiran" (INCMNSZ), 14080, Ciudad de México, Mexico
| | - Iván Ruminot
- Universidad San Sebastián, Facultad de Medicina y Ciencia, Centro de Estudios Científicos-CECs, Valdivia, Chile
| | - L Felipe Barros
- Universidad San Sebastián, Facultad de Medicina y Ciencia, Centro de Estudios Científicos-CECs, Valdivia, Chile
| | - Jaime García-Mena
- Laboratorio de Referencia y Soporte Para Genomas, Transcriptomas y Caracterización de Microbiomas, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N. (Cinvestav), Av. IPN 2508, Ciudad de Mexico, 07360, México.
| | - Claudia Perez-Cruz
- Laboratorio de Neuroplasticidad y Neurodegeneración, Departamento de Farmacologia, Centro de Investigación y de Estudios Avanzados del I.P.N. (Cinvestav), Av. IPN 2508, Ciudad de Mexico, 07360, México.
| |
Collapse
|
11
|
Karimi R, Homayoonfal M, Malekjani N, Kharazmi MS, Jafari SM. Interaction between β-glucans and gut microbiota: a comprehensive review. Crit Rev Food Sci Nutr 2023; 64:7804-7835. [PMID: 36975759 DOI: 10.1080/10408398.2023.2192281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Gut microbiota (GMB) in humans plays a crucial role in health and diseases. Diet can regulate the composition and function of GMB which are associated with different human diseases. Dietary fibers can induce different health benefits through stimulation of beneficial GMB. β-glucans (BGs) as dietary fibers have gained much interest due to their various functional properties. They can have therapeutic roles on gut health based on modulation of GMB, intestinal fermentation, production of different metabolites, and so on. There is an increasing interest in food industries in commercial application of BG as a bioactive substance into food formulations. The aim of this review is considering the metabolizing of BGs by GMB, effects of BGs on the variation of GMB population, influence of BGs on the gut infections, prebiotic effects of BGs in the gut, in vivo and in vitro fermentation of BGs and effects of processing on BG fermentability.
Collapse
Affiliation(s)
- Reza Karimi
- Department of Food Science and Technology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Narjes Malekjani
- Department of Food Science and Technology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
12
|
Sun F, Li H, Sun Z, Liu L, Zhang X, Zhao J. Effect of Arabinoxylan and Xylo-Oligosaccharide on Growth Performance and Intestinal Barrier Function in Weaned Piglets. Animals (Basel) 2023; 13:ani13060964. [PMID: 36978506 PMCID: PMC10044045 DOI: 10.3390/ani13060964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
The purpose of this study was to explore the effects of xylose with different polymerizations on growth performance, intestinal barrier function, and gut microbial composition in weaned piglets. A total of 144 weaned piglets were assigned to 3 dietary treatments in a completely randomized design according to their body weight and sex. Dietary treatments included a corn-soybean meal basal diet (CON) and 2 additional diets formulated with 1% arabinoxylan (AX) and 1% xylo-oligosaccharide (XOS), respectively. Results showed that dietary supplementation of XOS or AX reduced diarrhea incidence of weaned piglets compared with the CON group (p < 0.05). XOS or AX increased the ileal villus height and intestinal activity of antioxidases in weaned piglets compared with the CON group (p < 0.05). XOS or AX reduced the ileal and colonic IL-6 content and increased the colonic sIgA and IL-10 concentrations in weaned piglets compared with the CON group (p < 0.05). XOS or AX increased the total organic acids concentrations in the ileum and in vitro fermentation (p < 0.05). XOS increased the abundance of Lactobacillus and Bifidobacterium in the ileal digesta (p < 0.05), while AX increased the population of Lactobacillus in the ileal digesta and the abundance of Bifidobacterium in the colonic digesta of weaned piglets (p < 0.05). In conclusion, both XOS and AX reduce diarrhea incidence and improve antioxidant capacity, immune function, and populations of beneficial bacteria, while microbial fermentation of XOS with a lower polymerization and molecular mass can produce more organic acids and an increased abundance of Lactobacillus and Bifidobacterium in the upper gut of weaned pigs compared with AX.
Collapse
Affiliation(s)
- Feize Sun
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Huahui Li
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Zhiqiang Sun
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ling Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiujun Zhang
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
13
|
Jafari M, Boskabaday MH, Rezaee SA, Rezaeian S, Behrouz S, Ramezannejad R, Pourianfar HR. Lentinan and β-glucan extract from shiitake mushroom, Lentinula edodes, alleviate acute LPS-induced hematological changes in mice. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:836-842. [PMID: 37396940 PMCID: PMC10311971 DOI: 10.22038/ijbms.2023.67669.14820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 03/18/2023] [Indexed: 07/04/2023]
Abstract
Objectives Immunomodulatory activity of β-glucans of shiitake mushroom (Lentinula edodes) has been known. We investigated whether β-glucans from L. edodes would attenuate the acute effects of lipopolysaccharides (LPS) on peripheral hematological parameters in mice. Materials and Methods An in-house β-glucans extract (BG) prepared from fruiting bodies of shiitake mushroom L. edodes was chemically measured and characterized using spectrophotometry and HPLC. Male BALB/c mice directly inhaled aerosolized LPS of 3 mg/ml and were treated with BG or commercial β-glucan (known as lentinan; LNT) (10 mg/kg bw) at 1 hr before or 6 hr after LPS inhalation. The blood samples were collected by cardiac puncture from euthanized mice at 16 hr post-treatment. Results The results showed a significant reduction in levels of blood parameters, including red blood cells (RBC), hemoglobin (HGB), hematocrit (HCT), and platelets (PLT); and a significant increase in blood lymphocyte counts in LPS-treated mice as compared with the control mice (P≤0.05). Total white blood cells, neutrophils, and monocyte counts did not show any significant difference among the groups. Treatment of LPS-challenged mice with LNT or BG significantly increased the levels of RBC, HGB, HCT, and PLT; and reduced blood lymphocyte counts as compared with LPS-treated mice (P≤0.05). Conclusion These findings suggest that β-glucans from L. edodes might be effective in attenuating the effects of inhaled LPS on peripheral blood parameters. Thus, these findings might be useful in acute inflammatory diseases particularly pulmonary infectious diseases in which the hematological parameters would be affected.
Collapse
Affiliation(s)
- Mojdeh Jafari
- School of Medicine, Mashhad University of Medical Sciences, Inflammation and Inflammatory Diseases Research Centre, Mashhad, Iran
| | | | - Seyed Abdolrahim Rezaee
- School of Medicine, Mashhad University of Medical Sciences, Inflammation and Inflammatory Diseases Research Centre, Mashhad, Iran
| | - Sharareh Rezaeian
- Industrial Fungi Biotechnology Research Department, Research Institute for Industrial Biotechnology, Academic Center for Education, Culture and Research (ACECR)- Khorasan Razavi Branch, Mashhad, Iran
| | - Sepideh Behrouz
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rezvan Ramezannejad
- Industrial Fungi Biotechnology Research Department, Research Institute for Industrial Biotechnology, Academic Center for Education, Culture and Research (ACECR)- Khorasan Razavi Branch, Mashhad, Iran
| | - Hamid Reza Pourianfar
- Industrial Fungi Biotechnology Research Department, Research Institute for Industrial Biotechnology, Academic Center for Education, Culture and Research (ACECR)- Khorasan Razavi Branch, Mashhad, Iran
| |
Collapse
|
14
|
Ma X, Liu S, Wang H, Wang Y, Li Z, Gu T, Li Y, Xin F, Wen B. In Vitro Fermentation of Beechwood Lignin-Carbohydrate Complexes Provides Evidence for Utilization by Gut Bacteria. Nutrients 2023; 15:nu15010220. [PMID: 36615876 PMCID: PMC9824187 DOI: 10.3390/nu15010220] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Lignin-carbohydrate complexes (LCCs) are emerging as a new and natural product with pharmacological and nutraceutical potential. It is uncertain, however, whether LCCs have a positive effect on the microbiota of the gut based on the current evidence. Here, the LCC extracted from beechwood (BW-LCC) was used as a substrate for in vitro fermentation. The lignin in BW-LCC consisted of guaiacyl (G) and syringyl (S) units, which are mainly linked by β-O-4 bonds. After 24 h of in vitro fermentation, the pH had evidently declined. The concentrations of acetic acid and propionic acid, the two main short-chain fatty acids (SCFAs), were significantly higher than in the control group (CK). In addition, BW-LCC altered the microbial diversity and composition of gut microbes, including a reduction in the relative abundance of Firmicutes and an increase in the relative abundance of Proteobacteria and Bacteroidetes. The relative abundance of Escherichia coli-Shigella and Bacteroides were the most variable at the genus level. The genes of carbohydrate-active enzymes (CAZymes) also changed significantly with the fermentation and were related to the changes in microbes. Notably, the auxiliary actives (AAs), especially AA1, AA2, and AA3_2, play important roles in lignin degradation and were significantly enriched and concentrated in Proteobacteria. From this study, we are able to provide new perspectives on how gut microbes utilize LCC.
Collapse
Affiliation(s)
- Xiaochen Ma
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shujun Liu
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hongliang Wang
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yulu Wang
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhen Li
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tianyi Gu
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yulong Li
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengjiao Xin
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (F.X.); (B.W.)
| | - Boting Wen
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (F.X.); (B.W.)
| |
Collapse
|
15
|
Saad S, Dávila I, Morales A, Labidi J, Moussaoui Y. Cross-Linked Carboxymethylcellulose Adsorbtion Membranes from Ziziphus lotus for the Removal of Organic Dye Pollutants. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8760. [PMID: 36556565 PMCID: PMC9785501 DOI: 10.3390/ma15248760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
The goal of this study is to assess Ziziphus lotus's potential for producing carboxymethylcellulose adsorption membranes with the ability to adsorb methyl green from wastewaters by the revalorization of its cellulosic fraction. The cellulose from this feedstock was extracted by an alkaline process and TAPPI standard technique T 203 cm-99 and afterwards they were carboxymethylated. The obtained carboxymethylcelluloses were deeply characterized, being observed that the carboxymethylcellulose produced from the alkaline cellulose presented the higher solubility due to its lower crystallinity degree (53.31 vs. 59.4%) and its higher substitution degree (0.85 vs. 0.74). This carboxymethylcellulose was cross-linked with citric acid in an aqueous treatment in order to form an adsorption membrane. The citric acid provided rigidity to the membrane and although it was hydrophilic it was not soluble in water. By evaluating the potential of the produced membrane for the removal of pollutant dyes from wastewater, it was observed that the adsorption membrane prepared from the carboxymethylcellulose's produced from the Ziziphus lotus was able to remove 99% of the dye, methyl green, present in the wastewater. Thus, this work demonstrates the potential of the Ziziphus lotus for the production of a novel and cost-effective carboxymethylcellulose adsorption membrane with high capacity to treat wastewaters.
Collapse
Affiliation(s)
- Sara Saad
- Laboratory for the Application of Materials to the Environment, Water and Energy (LR21ES15), Faculty of Sciences of Gafsa, University of Gafsa, Gafsa 2112, Tunisia
- Department of Chemical and Environmental Engineering, University of the Basque Country, UPV/EHU Plaza Europa 1, 20018 San Sebastián, Spain
- Faculty of Sciences of Gafsa, University of Gafsa, Gafsa 2112, Tunisia
| | - Izaskun Dávila
- Department of Chemical and Environmental Engineering, University of the Basque Country, UPV/EHU Plaza Europa 1, 20018 San Sebastián, Spain
- Department of Chemical and Environmental Engineering, University of the Basque Country, UPV/EHU Calle Nieves Cano 12, 01006 Vitoria-Gasteiz, Spain
| | - Amaia Morales
- Department of Chemical and Environmental Engineering, University of the Basque Country, UPV/EHU Plaza Europa 1, 20018 San Sebastián, Spain
| | - Jalel Labidi
- Department of Chemical and Environmental Engineering, University of the Basque Country, UPV/EHU Plaza Europa 1, 20018 San Sebastián, Spain
| | - Younes Moussaoui
- Faculty of Sciences of Gafsa, University of Gafsa, Gafsa 2112, Tunisia
- Organic Chemistry Laboratory (LR17ES08), Faculty of Sciences of Sfax, University of Sfax, Sfax 3029, Tunisia
| |
Collapse
|
16
|
Yao D, Wu M, Dong Y, Ma L, Wang X, Xu L, Yu Q, Zheng X. In vitro fermentation of fructooligosaccharide and galactooligosaccharide and their effects on gut microbiota and SCFAs in infants. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
17
|
Bhanja A, Sutar PP, Mishra M. Inulin-A polysaccharide: Review on its functional and prebiotic efficacy. J Food Biochem 2022; 46:e14386. [PMID: 36166490 DOI: 10.1111/jfbc.14386] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/23/2022] [Indexed: 01/13/2023]
Abstract
The intake of dietary fibers in the regular diet results in boosting the gut microbiome and health of the host in several ways. The misapprehension about such dietary fibers of being only an indigestible product has changed into indispensable ingredient that has to be included in every healthy diet. Inulin is considered to be an important naturally occurring fructan classified under such dietary fibers. The present review intends to provide a thorough knowledge on inulin in maintaining the gut microbiome of the human, supported by several studies conducted on the Drosophila melanogaster, mice, rat models as well as effect on human being. The extraction process of inulin has also been described in this review that would provide a brief knowledge about its stability and the conditions that have been optimized by the researchers in order to obtain a stable product. PRACTICAL APPLICATIONS: In order to meet the consumers demand, the food industries are trying to come up with new products that could eventually replace or lower the utilization of medically avail drugs and satisfy consumers by providing them with health benefits. The availability of functional food is the new trend that can improve health of the consumers with minimal use of the drugs. Therefore, inulin as a prebiotic can be utilized to produce several functional food products that could promote health benefits to the consumers. Apart from this, the review also justifies the efficacy of inulin as a fat replacer, stabilizer, and humectant in cosmetic industries. Research also suggests that inulin has also been used as nanoparticles in pharmaceutical industries. The overall review also depicts the different extraction process of inulin from different sources.
Collapse
Affiliation(s)
- Amrita Bhanja
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Parag Prakash Sutar
- Department of Food Process Engineering, National Institute of Technology, Rourkela, India
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, India
| |
Collapse
|
18
|
You S, Ma Y, Yan B, Pei W, Wu Q, Ding C, Huang C. The promotion mechanism of prebiotics for probiotics: A review. Front Nutr 2022; 9:1000517. [PMID: 36276830 PMCID: PMC9581195 DOI: 10.3389/fnut.2022.1000517] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/31/2022] [Indexed: 12/18/2022] Open
Abstract
Prebiotics and probiotics play a positive role in promoting human nutrition and health. Prebiotics are compounds that cannot be digested by the host, but can be used and fermented by probiotics, so as to promote the reproduction and metabolism of intestinal probiotics for the health of body. It has been confirmed that probiotics have clinical or health care functions in preventing or controlling intestinal, respiratory, and urogenital infections, allergic reaction, inflammatory bowel disease, irritable bowel syndrome and other aspects. However, there are few systematic summaries of these types, mechanisms of action and the promotion relationship between prebiotics and probiotic. Therefore, we summarized the various types of prebiotics and probiotics, their individual action mechanisms, and the mechanism of prebiotics promoting probiotics in the intestinal tract. It is hoped this review can provide new ideas for the application of prebiotics and probiotics in the future.
Collapse
Affiliation(s)
- Siyong You
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Yuchen Ma
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Food Science and Technology Center, National University of Singapore (Suzhou) Research Institute, Suzhou, China
| | - Bowen Yan
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Wenhui Pei
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Qiming Wu
- Nutrilite Health Institute, Shanghai, China
- *Correspondence: Qiming Wu
| | - Chao Ding
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Chao Ding
| | - Caoxing Huang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Caoxing Huang
| |
Collapse
|
19
|
Nieto-Figueroa KH, Gaytán-Martínez M, Loarca-Piña MGF, Campos-Vega R. Effect of drying method on the production of in vitro short-chain fatty acids and histone deacetylase mediation of cocoa pod husk. J Food Sci 2022; 87:4476-4490. [PMID: 36102033 DOI: 10.1111/1750-3841.16309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/20/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022]
Abstract
We evaluated the effect of cocoa pod husk (CPH) processing (microwave [MW], forced-air drying [FAD], and FAD plus extrusion [FAD-E]), and in vitro gastrointestinal digestion on the in vitro human colonic fermentation metabolism, in vitro bioactivity on human HT-29 colon cancer cell, and the in silico mechanism of selected compounds. CPH as a substrate for human colonic microbiota significantly decrease local pH (MW -0.7, FAD -0.2, and FAD-E -0.3, 24 h) and modifies their metabolic activity (short-chain fatty acids [SCFAs] production). FAD-E generated the highest butyric (7.6 mM/L, 4 h) and FAD the highest acetic and propionic acid levels (71.4 and 36.7 mM/L, 24 h). The in vitro colonic fermented FAD-E sample (FE/FAD-E) caused HT-29 colorectal cancer cells death by inducing damage on membrane integrity and inhibiting (up to 92%) histone-deacetylase (HDAC) activity. In silico results showed that chlorogenic acid, (-)-epicatechin, and (+)-catechin, followed by butyric and propionic acids, are highly involved in the HDAC6 inhibitory activity. The results highlight the potential human health postbiotic benefits of CPH consumption, mediated by colonic microbiota-derived metabolites. PRACTICAL APPLICATION: The enormous amount of CPH (10 tons/1 ton of dry beans) generated by the cocoa industry can be used as a removable source of bioactive compounds with physicochemical functionality and health bioactivity. However, their potential applications and health benefits are insufficiently explored. CPH represents a serious disposal problem; practical and innovative ideas to use this highly available and affordable material are urgent. Research exploring their potential applications can increase the sustainability of the cocoa agro-industry. This paper highlights the value addition that can be achieved with this valuable industrial co-product, generating new functional products and ingredients.
Collapse
Affiliation(s)
- Karen Haydeé Nieto-Figueroa
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Santiago de Querétaro, Qro, México
| | - Marcela Gaytán-Martínez
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Santiago de Querétaro, Qro, México
| | - Ma Guadalupe Flavia Loarca-Piña
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Santiago de Querétaro, Qro, México
| | - Rocio Campos-Vega
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Santiago de Querétaro, Qro, México
| |
Collapse
|
20
|
Zhang DY, Cheng DC, Cao YN, Su Y, Chen L, Liu WY, Yu YX, Xu XM. The effect of dietary fiber supplement on prevention of gestational diabetes mellitus in women with pre-pregnancy overweight/obesity: A randomized controlled trial. Front Pharmacol 2022; 13:922015. [PMID: 36105207 PMCID: PMC9465204 DOI: 10.3389/fphar.2022.922015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: To investigate the effect of dietary fiber intake during pregnancy on the prevention of gestational diabetes mellitus (GDM) in women who are overweight/obese prior to pregnancy. Methods: This randomized controlled trial was conducted in Shanghai General Hospital from June 2021 to March 2022. A total of 98 women who reported BMI≥24 kg/m2 prior to pregnancy were recruited before their 20th gestational week, and randomly (simple random allocation) assigned to the fiber supplement group (12 g of dietary fiber power twice daily) and the control group (standard prenatal care) from 20 to 24+6 gestational weeks. Both groups received nutrition education and dietary advice during the study. GDM diagnosis was performed by an oral glucose tolerance test (OGTT) at 25–28 weeks’ gestation. Data are presented as means with SD, as medians with IQR, or as counts with percentages as appropriate. Comparisons were conducted using a t-test, Mann-Whitney U test, and χ2 test, respectively. Results: The incidence of GDM was significantly reduced in the fiber supplement group compared with the control group: 8.3 vs. 24.0% (χ2 = 4.40, p = 0.036). At OGTT, the mean fasting plasma glucose in the fiber supplement group was significantly lower than before the intervention (4.57 ± 0.38 mmol/L vs. 4.41 ± 0.29 mmol/L, p < 0.01) but not in the control group (4.48 ± 0.42 mmol/L vs. 4.37 ± 0.58 mmol/L, p = 0.150). Compared with the control group, the TG and TG/HDL-C ratio levels in the intervention group were significantly higher than those in the control group (2.19 ± 0.54 mmol/L vs. 2.70 ± 0.82 mmol/L and 1.19 ± 0.49 vs.1.63 ± 0.63, respectively, all P<0.05). The body weight gain was significantly lower in the fiber supplement group than the control group (1.99 ± 1.09 kg vs. 2.53 ± 1.20kg, p = 0.022). None of the women randomized to the fiber supplement group experienced preterm birth (<37 weeks gestation) compared with 12.0% in the control group (p = 0.040). Excessive weight gain (total weight gain >11.5 kg for overweight, and >9.0 kg for obesity) occurred in 46.7% of women in the fiber supplement group compared with 68.0% in the control group (p = 0.035). There were no differences in other maternal and neonatal outcomes. Conclusion: Increased dietary fiber intake in pregnant women who were overweight/obese prior to pregnancy may reduce the risk of GDM, excessive weight gain, and preterm birth, but it did not improve blood lipids.
Collapse
|
21
|
Frolova MS, Suvorova IA, Iablokov SN, Petrov SN, Rodionov DA. Genomic reconstruction of short-chain fatty acid production by the human gut microbiota. Front Mol Biosci 2022; 9:949563. [PMID: 36032669 PMCID: PMC9403272 DOI: 10.3389/fmolb.2022.949563] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/19/2022] [Indexed: 12/04/2022] Open
Abstract
Short-chain fatty acids (SCFAs) including acetate, formate, propionate, and butyrate are the end products of dietary fiber and host glycan fermentation by the human gut microbiota (HGM). SCFAs produced in the column are of utmost importance for host physiology and health. Butyrate and propionate improve gut health and play a key role in the neuroendocrine and immune systems. Prediction of HGM metabolic potential is important for understanding the influence of diet and HGM-produced metabolites on human health. We conducted a detailed metabolic reconstruction of pathways for the synthesis of SCFAs and L- and D-lactate, as additional fermentation products, in a reference set of 2,856 bacterial genomes representing strains of >800 known HGM species. The reconstructed butyrate and propionate pathways included four and three pathway variants, respectively, that start from different metabolic precursors. Altogether, we identified 48 metabolic enzymes, including five alternative enzymes in propionate pathways, and propagated their occurrences across all studied genomes. We established genomic signatures for reconstructed pathways and classified genomes according to their simplified binary phenotypes encoding the ability ("1") or inability ("0") of a given organism to produce SCFAs. The resulting binary phenotypes combined into a binary phenotype matrix were used to assess the SCFA synthesis potential of HGM samples from several public metagenomic studies. We report baseline and variance for Community Phenotype Indices calculated for SCFAs production capabilities in 16S metagenomic samples of intestinal microbiota from two large national cohorts (American Gut Project, UK twins), the Hadza hunter-gatherers, and the young children cohort of infants with high-risk for type 1 diabetes. We further linked the predicted SCFA metabolic capabilities with available SCFA concentrations both for in vivo fecal samples and in vitro fermentation samples from previous studies. Finally, we analyzed differential representation of individual SCFA pathway genes across several WGS metagenomic datasets. The obtained collection of SCFA pathway genes and phenotypes enables the predictive metabolic phenotype profiling of HGM datasets and enhances the in silico methodology to study cross-feeding interactions in the gut microbiomes.
Collapse
Affiliation(s)
- Maria S. Frolova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Inna A. Suvorova
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Stanislav N. Iablokov
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Sergei N. Petrov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry A. Rodionov
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| |
Collapse
|
22
|
Verhoeven J, Keller D, Verbruggen S, Abboud KY, Venema K. A blend of 3 mushrooms dose-dependently increases butyrate production by the gut microbiota. Benef Microbes 2021; 12:601-612. [PMID: 34590532 DOI: 10.3920/bm2021.0015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The gut microbiota has been indicated to play a crucial role in health and disease. Apart from changes in composition between healthy individuals and those with a disease or disorder, it has become clear that also microbial activity is important for health. For instance, butyrate has been proven to be beneficial for health, because, amongst others, it is a substrate for the colonocytes, and modulates the host's immune system and metabolism. Here, we studied the effect of a blend of three mushrooms (Ganoderma lucidum GL AM P-38, Grifola frondosa GF AM P36 and Pleurotus ostreatus PO AM-GP37)) on gut microbiota composition and activity in a validated, dynamic, computer-controlled in vitro model of the colon (TIM-2). Predigested mushroom blend at three doses (0.5, 1.0 and 1.5 g/day of ingested mushroom blend) was fed to a pooled microbiota of healthy adults for 72 h, and samples were taken every day for microbiota composition (sequencing of amplicons of the V3-V4 region of the 16S rRNA gene) and activity (short-chain fatty acid (SCFA) production). The butyrate producing genera Lachnospiraceae UCG-004, Lachnoclostridium, Ruminococcaceae UCG-002 and Ruminococcaceae NK4A214-group are all dose-dependently increased when the mushroom blend was fed. Entirely in line with the increase of these butyrate-producers, the cumulative amount of butyrate also dose-dependently increased, to roughly twice the amount compared to the control (medium without mushroom blend) on the high-dose mushroom blend. Butyrate proportionally made up 53.1% of the total SCFA upon feeding the high-dose mushroom blend, compared to 27% on the control medium. In conclusion, the (polysaccharides in the) mushroom blend led to substantial increase in butyrate by the gut microbiota. These results warrant future mechanistic research on the mushroom blend, as butyrate is considered to be one of the microbial metabolites that contributes to health, by increasing barrier function and modulating inflammation.
Collapse
Affiliation(s)
- J Verhoeven
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University - campus Venlo, Villafloraweg 1, 5928 SZ Venlo, the Netherlands
| | - D Keller
- Keller Consulting Group, 2417 Beachwood Blvd., Beachwood, OH 44122, USA
| | - S Verbruggen
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University - campus Venlo, Villafloraweg 1, 5928 SZ Venlo, the Netherlands
| | - K Youssef Abboud
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University - campus Venlo, Villafloraweg 1, 5928 SZ Venlo, the Netherlands
| | - K Venema
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University - campus Venlo, Villafloraweg 1, 5928 SZ Venlo, the Netherlands
| |
Collapse
|
23
|
Dietary Fiber Modulates the Fermentation Patterns of Cyanidin-3- O-Glucoside in a Fiber-Type Dependent Manner. Foods 2021; 10:foods10061386. [PMID: 34208433 PMCID: PMC8235204 DOI: 10.3390/foods10061386] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 01/01/2023] Open
Abstract
The interactions between cell-wall polysaccharides and polyphenols in the gastrointestinal tract have attracted extensive attention. We hypothesized that dietary fiber modulates the fermentation patterns of cyanidin-3-O-glucoside (C3G) in a fiber-type-dependent manner. In the present study, the effects of four dietary fibers (fructose-oligosaccharides, pectin, β-glucan and arabinoxylan) on the modulation of C3G fermentation patterns were investigated through in vitro fermentation inoculated with human feces. The changes in gas volume, pH, total carbohydrate content, metabolites of C3G, antioxidant activity, and microbial community distribution during in vitro fermentation were analyzed. After 24 h of fermentation, the gas volume and total carbohydrate contents of the four dietary-fiber-supplemented groups respectively increased and decreased to varying degrees. The results showed that the C3G metabolites after in vitro fermentation mainly included cyanidin, protocatechuic acid, 2,4,6-trihydroxybenzoic acid, and 2,4,6-trihydroxybenzaldehyde. Supplementation of dietary fibers changed the proportions of C3G metabolites depending on the structures. Dietary fibers increased the production of short-chain fatty acids and the relative abundance of gut microbiota Bifidobacterium and Lactobacillus, thus potentially maintaining colonic health to a certain extent. In conclusion, the used dietary fibers modulate the fermentation patterns of C3G in a fiber-type-dependent manner.
Collapse
|
24
|
Wei X, Wang YL, Wen BT, Liu SJ, Wang L, Sun L, Gu TY, Li Z, Bao Y, Fan SL, Zhou H, Wang F, Xin F. The α-Helical Cap Domain of a Novel Esterase from Gut Alistipes shahii Shaping the Substrate-Binding Pocket. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6064-6072. [PMID: 33979121 DOI: 10.1021/acs.jafc.1c00940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The human gut microbiota regulates nutritional metabolism, especially by encoding specific ferulic acid esterases (FAEs) to release functional ferulic acid (FA) from dietary fiber. In our previous study, we observed seven upregulated FAE genes during in vitro fecal slurry fermentation using wheat bran. Here, a 29 kDa FAE (AsFAE) from Alistipes shahii of Bacteroides was characterized and identified as the type-A FAE. The X-ray structure of AsFAE has been determined, revealing a unique α-helical domain comprising five α-helices, which was first characterized in FAEs from the gut microbiota. Further molecular docking analysis and biochemical studies revealed that Tyr100, Thr122, Tyr219, and Ile220 are essential for substrate binding and catalytic efficiency. Additionally, Glu129 and Lys130 in the cap domain shaped the substrate-binding pocket and affected the substrate preference. This is the first report on A. shahii FAE, providing a theoretical basis for the dietary metabolism in the human gut.
Collapse
Affiliation(s)
- Xue Wei
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yu-Lu Wang
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bo-Ting Wen
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shu-Jun Liu
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Luyao Wang
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lichao Sun
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tian-Yi Gu
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhen Li
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuming Bao
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shi-Long Fan
- Key Laboratory of Ministry of Education for Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Huan Zhou
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Fengzhong Wang
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengjiao Xin
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
25
|
Source of gut microbiota determines oat β-glucan degradation and short chain fatty acid-producing pathway. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Teichmann J, Cockburn DW. In vitro Fermentation Reveals Changes in Butyrate Production Dependent on Resistant Starch Source and Microbiome Composition. Front Microbiol 2021; 12:640253. [PMID: 33995299 PMCID: PMC8117019 DOI: 10.3389/fmicb.2021.640253] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/06/2021] [Indexed: 12/31/2022] Open
Abstract
One of the primary benefits associated with dietary resistant starch (RS) is the production of butyrate by the gut microbiome during fermentation of this fiber in the large intestine. The ability to degrade RS is a relatively rare trait among microbes in the gut, seemingly confined to only a few species, none of which are butyrate producing organisms. Thus, production of butyrate during RS fermentation requires a network of interactions between RS degraders and butyrate producers. This is further complicated by the fact that there are multiple types of RS that differ in their structural properties and impacts on the microbiome. Human dietary intervention trials with RS have shown increases in fecal butyrate levels at the population level but with individual to individual differences. This suggests that interindividual differences in microbiome composition dictate butyrate response, but the factors driving this are still unknown. Furthermore, it is unknown whether a lack of increase in butyrate production upon supplementation with one RS is indicative of a lack of butyrate production with any RS. To shed some light on these issues we have undertaken an in vitro fermentation approach in an attempt to mimic RS fermentation in the colon. Fecal samples from 10 individuals were used as the inoculum for fermentation with 10 different starch sources. Butyrate production was heterogeneous across both fecal inocula and starch source, suggesting that a given microbiome is best suited to produce butyrate only from a subset of RS sources that differs between individuals. Interestingly, neither the total amount of RS degraders nor butyrate producers seemed to be limiting for any individual, rather the membership of these sub-populations was more important. While none of the RS degrading organisms were correlated with butyrate levels, Ruminococcus bromii was strongly positively correlated with many of the most important butyrate producers in the gut, though total butyrate production was strongly influenced by factors such as pH and lactate levels. Together these results suggest that the membership of the RS degrader and butyrate producer communities rather than their abundances determine the RS sources that will increase butyrate levels for a given microbiome.
Collapse
Affiliation(s)
- June Teichmann
- Department of Food Science, The Pennsylvania State University, University Park, PA, United States
| | - Darrell W Cockburn
- Department of Food Science, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
27
|
Effect of dietary supplementation with oat β-glucan for 3 months in subjects with type 2 diabetes: A randomized, double-blind, controlled clinical trial. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104311] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
28
|
Chen M, Liu S, Imam KMSU, Sun L, Wang Y, Gu T, Wen B, Xin F. The Effect of Xylooligosaccharide, Xylan, and Whole Wheat Bran on the Human Gut Bacteria. Front Microbiol 2021; 11:568457. [PMID: 33424778 PMCID: PMC7794011 DOI: 10.3389/fmicb.2020.568457] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/28/2020] [Indexed: 12/25/2022] Open
Abstract
Wheat bran is a cereal rich in dietary fibers that have high levels of ferulic acid, which has prebiotic effects on the intestinal microbiota and the host. Herein we explored the effect of xylooligosaccharide, xylan, and whole wheat bran on the human gut bacteria and screened for potential ferulic acid esterase genes. Using in vitro fermentation, we analyzed the air pressure, pH-value, and short-chain fatty acid levels. We also performed 16S rRNA gene and metagenomic sequencing. A Venn diagram analysis revealed that 80% of the core operational taxonomic units (OTUs) were shared among the samples, and most of the xylooligosaccharide treatment core OTUs (319/333 OTUs) were shared with the other two treatments’ core OTUs. A significant difference analysis revealed that the relative abundance of Dorea, Bilophila, and Sulfurovum in wheat bran treatment was higher than that in xylan and xylooligosaccharide treatments. The clusters of orthologous groups of proteins functional composition of all samples was similar to the microbiota composition of the control. Using metagenomic sequencing, we revealed seven genes containing the conserved residues, Gly-X-Ser-X-Gly, and the catalytic triad, Ser-His-Asp, which are thus potential ferulic acid esterase genes. All the results indicate that xylan and/or xylooligosaccharide, the main dietary fibers in wheat bran, plays a major role in in vitro fermentation by the human gut microbiota.
Collapse
Affiliation(s)
- Miao Chen
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shujun Liu
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Khandaker Md Sharif Uddin Imam
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lichao Sun
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yulu Wang
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tianyi Gu
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Boting Wen
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fengjiao Xin
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|