1
|
Shanmugam SR, Farahmanzdad N, Drabold ET, Rudar M, Bourassa D, Higgins B. Upcycling nutrients from poultry slaughterhouse solid waste into value-added bioproducts using black soldier fly larvae cultivation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 379:124856. [PMID: 40056580 DOI: 10.1016/j.jenvman.2025.124856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 03/10/2025]
Abstract
The objective of this work was to test the hypothesis that black soldier fly larvae (BSFL) can be grown successfully on dissolved air flotation solids from poultry slaughterhouses by blending it with food waste. Dissolved air floatation (DAF) solids generated from poultry slaughterhouse wastewaters have high water content (>70%) and the solids are rich in fats (50-60%) and proteins (20-30%) on a dry weight basis. BSFL bioconversion of fat-rich wastes has been a challenge in the past and, in the current work, we have tested the effects of blending DAF solids with post-consumer food waste at different substrate ratios (1:0, 1:0.33, 1:1, 1:3, 0:1). The results indicate that BSFL conversion of DAF solids alone results in low bioconversion efficiency (BCE) (2.6%), substrate reduction (SR) (47.0%), biomass yield (BY) (10.4%), biomass gain (BG) (7.9 g) and feed conversion ratio (FCR) (9.8). However, BSFL reared on food waste and DAF solids at a ratio of 1:1 resulted in high BCE of 28.1%, SR of 82.7%, BY of 36.7%, BG of 58.8 g and a FCR of 2.7 which was better than BSFL growth on food waste alone. This suggests that DAF solids, despite their high fat content, may provide critical nutrients to BSFL. For example, BSFL accumulated higher levels of mono- and polyunsaturated fatty acids when DAF solids were incorporated into their diet. The results of this study enable a new valorization pathway for poultry DAF solids which are currently land-applied and are a nuisance to surrounding population centers.
Collapse
Affiliation(s)
| | - Navid Farahmanzdad
- Department of Biosystems Engineering, Auburn University, Auburn, AL, USA
| | - Edward T Drabold
- Department of Biosystems Engineering, Auburn University, Auburn, AL, USA
| | - Marko Rudar
- Department of Animal Sciences, Auburn University, Auburn, AL, USA
| | - Dianna Bourassa
- Department of Poultry Sciences, Auburn University, Auburn, AL, USA
| | - Brendan Higgins
- Department of Biosystems Engineering, Auburn University, Auburn, AL, USA
| |
Collapse
|
2
|
Xu L, Lin Q, Wang S, Chen S, Yang R, Liu C, Hu Q, Zhao Z, Cao Z. Efficacy of black soldier fly larvae in converting kitchen waste and the dynamic alterations of their gut microbiome. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124613. [PMID: 39986157 DOI: 10.1016/j.jenvman.2025.124613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/26/2025] [Accepted: 02/16/2025] [Indexed: 02/24/2025]
Abstract
The escalating demand for food, driven by population growth and improved living standards, has prompted the development of efficient and eco-friendly kitchen waste (KW) treatment technologies. This study focused on the feasibility of utilizing KW through the application of black soldier fly larvae (BSFL), with a specific interest in the dynamic changes in the intestinal bacterial community during the treatment process. After a 10-day KW processing period, BSFL gained an average of 0.84 g/hundred worms/day, achieving a conversion efficiency of 18.52% for KW. This demonstrated their capacity to efficiently utilize KW nutrients for good growth performance. Additionally, the bioconversion of KW by BSFL could markedly decrease the presence of potentially pathogenic bacteria in the feed matrix within one day (P < 0.001), including Escherichia coli, Shigella spp., Salmonella spp., and Staphylococcus aureus. Notably, the diversity of the intestinal bacterial community in BSFL increased with age and sustained KW consumption (P < 0.05), accompanied by enhanced stability. In particular, the average relative abundance of potential probiotic genera associated with nutrient absorption and antimicrobial compounds synthesis, including Fusobacterium, Phascolarctobacterium, Enterococcus, and Actinomyces, increased. Conversely, the prevalence of pathogenic genera like Morganella and Escherichia-Shigella, decreased. Co-occurrence network analysis identified Lactobacillus, Brevibacterium, Erythrobacter, and Enterobacteriaceae as keystone species. Despite their low abundance in the BSFL intestine, these species were potentially crucial for KW bioconversion. Our findings underscore the potential of BSFL for sustainable KW conversion, providing strong support for effective waste management strategies.
Collapse
Affiliation(s)
- Le Xu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China; Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Kunming, 650201, China
| | - Qiuye Lin
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Shengwen Wang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Shiyu Chen
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Rencan Yang
- Yunnan Animal Science and Veterinary Institute, Kunming, 650224, China
| | - Chen Liu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Qingquan Hu
- Yunnan Animal Science and Veterinary Institute, Kunming, 650224, China
| | - Zhiyong Zhao
- Yunnan Animal Science and Veterinary Institute, Kunming, 650224, China.
| | - Zhenhui Cao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China; Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Kunming, 650201, China.
| |
Collapse
|
3
|
Memon FU, Zhu Y, Cui Y, Feng X, Ahmad S, Zeng P, Nabi F, Hao D, Huang Z, Tettamanti G, Tian L. Gut microbial communities and transcriptional profiles of black soldier fly (Hermitia illucens) larvae fed on fermented sericulture waste. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 194:158-168. [PMID: 39805166 DOI: 10.1016/j.wasman.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/26/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
Sericulture waste poses significant challenges to industrial and environmental safety. Black soldier fly larvae (BSFL) offer a promising solution for organic waste management by converting it into insect protein. This study aimed to develop a microbial fermented method for utilizing sericulture waste to feed BSFL and explore the underlying mechanisms. Our results showed that all fermented sericulture waste groups had positive effects on body weight, survival rate, substrate consumption rate, and substrate conversion rate. Metagenomic analysis revealed a notable increase in the abundances of commensal genera, including Sedimentibacter, Clostridium, Enterococcus, Bacteroides, and Bacillus, in the gut of BSFL fed on sericulture waste fermented with the most effective combination of microbial strains (B. subtilis, B. licheniformis, and E. faecalis). In contrast, BSFL reared on unfermented sericulture waste exhibited higher abundances of potentially pathogenic and harmful genera, including Providencia, Klebsiella, Escherichia, Brucella, and Enterobacter. Clusters of orthologous genes (COG) analysis indicated that altered microbial communities in the fermented group mainly participated in metabolic pathways, defense mechanism, and signal transduction mechanism. Transcriptome analysis further revealed that the upregulated genes were functionally associated with key metabolic pathways and immune mechanisms in the fermented group. These findings underscore the pivotal role of selected microbial fermentation in utilizing sericulture waste as BSFL feed, providing a sustainable solution for organic waste management.
Collapse
Affiliation(s)
- Fareed Uddin Memon
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology/ Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546300, China
| | - Yanqing Zhu
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology/ Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546300, China
| | - Ying Cui
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology/ Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546300, China
| | - Xingbao Feng
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology/ Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546300, China
| | - Sheraz Ahmad
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology/ Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546300, China
| | - Peng Zeng
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology/ Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546300, China
| | - Farhan Nabi
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Dengjian Hao
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology/ Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546300, China
| | - Zhijun Huang
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology/ Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546300, China
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, Varese 21100, Italy; Interuniversity Center for Studies on Bioinspired Agro-environmental Technology (BAT Center), University of Napoli Federico II, 80055 Portici, Italy
| | - Ling Tian
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology/ Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546300, China.
| |
Collapse
|
4
|
Anush S, Singh S, Kolobe SD, Yudhistira B, Ahmad A, Mabelebele Monnye. RETRACTED: The role of black soldier fly (BSF) in eliminating the putrid odor of organic waste and its product application - A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:175956. [PMID: 39233065 DOI: 10.1016/j.scitotenv.2024.175956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/policies/article-withdrawal). This article has been retracted at the request of Editor. Post-publication, the editor discovered suspicious changes in authorship between the original submission and the revised version of this paper. In summary Ali Ahmad, who had not been part of the authorship of the original submission, was added as the new and only Corresponding Author. Shahida Anusha Siddiqui remained as part of the authorship, but no longer as sole Corresponding Author. These changes to the revised paper without explanation and without exceptional approval by the journal editor are contrary to the journal policy on changes to authorship. Both authors were contacted for an explanation. Shahida Anusha Siddiqui confirmed that sole corresponding authorship should be bestowed upon Ali Ahmad, but otherwise failed to provide a satisfactory explanation for these changes. Ali Ahmad did not respond. Overall, the editor feels that the findings of the manuscript cannot be relied upon and that the article needs to be retracted. The journal apologises for not having identified the problematic authorship changes during the review process and for any resulting inconvenience.
Collapse
Affiliation(s)
| | - Shreya Singh
- Department of Agriculture, Ramlalit Singh Mahavidyalaya, Kailhat, Chunar, Mirzapur, Uttar Pradesh, 231305, India
| | - Sekobane Daniel Kolobe
- University of South Africa, Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, Florida, 1710, South Africa
| | - Bara Yudhistira
- Department of Food Science and Technology, Faculty of Agriculture, Sebelas Maret University, Surakarta, 57126, Indonesia.
| | - Ali Ahmad
- University of Duisburg-Essen, Universitätsstraße 2, 45141, Essen, Germany
| | - Mabelebele Monnye
- University of South Africa, Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, Florida, 1710, South Africa.
| |
Collapse
|
5
|
Klüber P, Gurusinga FF, Hurka S, Vilcinskas A, Tegtmeier D. Turning trash into treasure: Hermetia illucens microbiome and biodegradation of industrial side streams. Appl Environ Microbiol 2024; 90:e0099124. [PMID: 39436059 DOI: 10.1128/aem.00991-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/10/2024] [Indexed: 10/23/2024] Open
Abstract
Black soldier fly larvae (BSFL) have attracted attention due to their ability to upcycle various biological side streams into valuable biomass, such as proteins, lipids, and chitin. In this study, we investigated the impact of high-fiber diets on larval growth performance and the shift of microbes in the gut. We tested empty fruit bunches (EFB), potato pulp (PP), and cottonseed press cake (CPC), with chicken feed (CF) used as a control diet. We found that larvae reared on the EFB, PP, and CPC were smaller than control larvae at the end of development due to the low nutritional value of the diets. However, survival rates of more than 90% were observed regardless of the diet. We used a cultivation-dependent approach to analyze the microbial community in the gut of BSFL, isolated, and identified a total of 329 bacterial strains. Bacillaceae were most frequently isolated from larvae reared on the high-fiber EFB diet. These isolates were predicted to degrade cellulose in silico and this was subsequently confirmed in vitro using the Congo Red assay. Whereas the members of Enterobacteriaceae and Morganellaceae were mostly found in guts of larvae reared on the high-protein diets CPC and CF. We conclude that the gut microbiome plays a crucial role in the digestion of fiber-rich plant organic material, thereby enabling the BSFL to successfully complete their life cycle also on substrates with low nutritional value. As a result, BSFL convert industrial side streams into valuable biomass, reducing waste and promoting sustainability. IMPORTANCE Organic side streams from various industries pose a challenge to the environment. They are often present in huge amounts and are mostly discarded, incinerated, used for biogas production, or as feed for ruminant animals. Many plant-based side streams contain difficult-to-digest fiber as well as anti-nutritional or even insecticidal compounds that could harm the animals. These challenges can be addressed using black soldier fly larvae, which are known to degrade various organic substrates and convert them into valuable biomass. This will help mitigate agro-industrial side streams via efficient waste management and will contribute to the more economical and sustainable farming of insects.
Collapse
Affiliation(s)
- Patrick Klüber
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany
| | - Friscasari F Gurusinga
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany
- BMBF Junior Research Group in Bioeconomy (BioKreativ) "SymBioÖkonomie", Giessen, Germany
| | - Sabine Hurka
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany
- BMBF Junior Research Group in Bioeconomy (BioKreativ) "SymBioÖkonomie", Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Germany
| | - Andreas Vilcinskas
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Germany
- Institute for Insect Biotechnology, Justus Liebig University, Giessen, Germany
| | - Dorothee Tegtmeier
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany
- BMBF Junior Research Group in Bioeconomy (BioKreativ) "SymBioÖkonomie", Giessen, Germany
| |
Collapse
|
6
|
Lin SW, Shelomi M. Black Soldier Fly ( Hermetia illucens) Microbiome and Microbe Interactions: A Scoping Review. Animals (Basel) 2024; 14:3183. [PMID: 39595236 PMCID: PMC11590926 DOI: 10.3390/ani14223183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Black soldier fly (Hermetia illucens, BSF) is farmed worldwide to convert organic waste into usable biomaterials. Studies on the larval microbiome have been carried out to check for symbiotic or pathogenic microbes and their respective functions and fates. Some studies tested these microbes for industrial applications, while others tested the effects of exogenous microbes as probiotics or for substrate pre-processing to improve larval fitness, bioconversion rates, or nutritional qualities. This review examined all peer-reviewed literature on these topics to consolidate many disparate findings together. It followed the PRISMA guidelines for scoping reviews. The results found no evidence of globally conserved core microbes, as diet strongly correlated with gut microbiome, but some genera appeared most frequently in BSF larval guts worldwide regardless of diet. The gut microbes undoubtably assist in digestion, including pathogen suppression, and so microbial probiotics show promise for future investigations. However, the common gut microbes have not been explored as probiotics themselves, which would be a promising direction for future work. The impacts of BSF bioconversion on pathogens varied, so each rearing facility should investigate and manage their pathogen risks independently. The data summarized in this study provide useful reference points for future investigations into BSF-microbe interactions.
Collapse
Affiliation(s)
| | - Matan Shelomi
- Department of Entomology, National Taiwan University, No 1 Sec 4 Roosevelt Rd, Taipei 106319, Taiwan
| |
Collapse
|
7
|
Tepper K, Edwards O, Sunna A, Paulsen IT, Maselko M. Diverting organic waste from landfills via insect biomanufacturing using engineered black soldier flies (Hermetia illucens). Commun Biol 2024; 7:862. [PMID: 39048665 PMCID: PMC11269589 DOI: 10.1038/s42003-024-06516-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
A major roadblock towards the realisation of a circular economy are the lack of high-value products that can be generated from waste. Black soldier flies (BSF; Hermetia illucens) are gaining traction for their ability to rapidly consume large quantities of organic wastes. However, these are primarily used to produce a small variety of products, such as animal feed ingredients and fertiliser. Using synthetic biology, BSF could be developed into a novel sustainable biomanufacturing platform to valorise a broader variety of organic waste feedstocks into enhanced animal feeds, a large variety of high-value biomolecules including industrial enzymes and lipids, and improved fertiliser.
Collapse
Affiliation(s)
- Kate Tepper
- Applied BioSciences, Macquarie University, Sydney, NSW, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
- EntoZyme PTY LTD, Sydney, NSW, Australia
| | | | - Anwar Sunna
- School of Natural Sciences, Mascquarie University, Sydney, NSW, Australia
- Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW, Australia
| | - Ian T Paulsen
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
- School of Natural Sciences, Mascquarie University, Sydney, NSW, Australia
- Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW, Australia
| | - Maciej Maselko
- Applied BioSciences, Macquarie University, Sydney, NSW, Australia.
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia.
- EntoZyme PTY LTD, Sydney, NSW, Australia.
- Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
8
|
Kofroňová J, Melliti A, Vurm R. Biogas Digestate and Sewage Sludge as Suitable Feeds for Black Soldier Fly ( Hermetia illucens) Larvae. TOXICS 2024; 12:414. [PMID: 38922094 PMCID: PMC11209106 DOI: 10.3390/toxics12060414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024]
Abstract
Hermetia illucens larvae can use organic wastes as a substrate, which makes them an interesting potential feed. However, waste may contain heavy metals, which are limited in feed. Here, we investigated the ability of H. illucens to grow on organic wastes and measured their heavy metal bioaccumulation. The larvae were fed with food waste, biogas digestates, and sewage sludge. When the first adult fly was visible, the tests were stopped and the larvae immediately processed. The samples (wastes before use, larvae after feeding) were analysed for mineral nutrient and heavy metal content using AAS and ICP-OES, respectively. The results show that the weight of the larvae fed with food waste increased sevenfold, which was broadly in line with expectations. Those fed with sewage sludge and digestate from biogas station increased threefold. While the larvae fed with sewage sludge exceeded the limits for heavy metals, particularly Cd and Pb, in feedstock, those fed with biogas digestate and food waste did not. These findings add to the literature showing the suitability of different wastes as H. illucens feed, and the importance of excluding waste contaminated with heavy metals from larvae intended for use as animal feed, or else diverting these larvae to non-feed uses.
Collapse
Affiliation(s)
- Jana Kofroňová
- Department of Environmental Chemistry, Faculty of Environmental Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (A.M.); (R.V.)
| | | | | |
Collapse
|
9
|
Wang Y, Quan J, Cheng X, Li C, Yuan Z. Relationship of black soldier fly larvae (BSFL) gut microbiota and bioconversion efficiency with properties of substrates. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 180:106-114. [PMID: 38564911 DOI: 10.1016/j.wasman.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
Treating food waste using black soldier fly larvae (BSFL) is widely regarded as a promising nature-based measure. This study explored the influence of food waste particle sizes on substrate properties and its subsequent effects on bioconversion efficiency and gut microbiota. The results indicated that particle sizes mainly ranging from 4 mm to 10 mm (T1) significantly increased the weight loss rate of food waste by 35 % and larval biomass by 38 % compared to those in T4 (particle sizes mostly less than 2 mm) and promoted the bioconversion of carbon and nitrogen into larvae and gases. Investigation of substrates properties indicated that the final pH value of T1 was 7.79 ± 0.10, with Anaerococcus as the predominant substrate microorganism (relative abundance: 57.4 %), while T4 exhibited a final pH value of 5.71 ± 0.24, with Lactobacillus as the dominant microorganism (relative abundance: 95.2 %). Correlation analysis between substrate chemical properties and microbial community structure unveiled a strong relationship between substrate pH and the relative abundance of Anaerococcus and Lactobacillus. Furthermore, beneficial microorganisms such as Lactobacillus and Enterococcus colonized the BSFL gut of T1, while pathogenic bacterium Morganella, detrimental to BSFL gut function, was enriched in T4 (relative abundance: 60.9 %). Nevertheless, PCA analysis indicated that alterations in the gut microbial community structure may not be attributed to the substrate microorganisms. This study establishes particle size as a crucial parameter for BSFL bioconversion and advances understanding of the relationship between gut microbiota and substrate microbiota.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jiawei Quan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiang Cheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chunxing Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Lishui Institute of Ecology and Environment, Nanjing University, Nanjing 212200, China
| | - Zengwei Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Lishui Institute of Ecology and Environment, Nanjing University, Nanjing 212200, China; Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
10
|
Eriksen NT. Metabolic performance and feed efficiency of black soldier fly larvae. Front Bioeng Biotechnol 2024; 12:1397108. [PMID: 38745846 PMCID: PMC11091318 DOI: 10.3389/fbioe.2024.1397108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/08/2024] [Indexed: 05/16/2024] Open
Abstract
The black soldier fly (BSF), Hermetia illucens, is used in entomoremediation processes because its larvae can use a variety of organic residues with high efficiency. However, feed efficiencies are variable and characterized by uncertainties. Recently developed growth and metabolic performance models have predicted across different studies that BSF larvae have used 53%-58% of the feed components they have assimilated, in terms of carbon equivalents, for growth throughout their lifetime when reared on chicken feed. This is termed their average net growth efficiency. The remainder of the carbon has been lost as CO2. However, mass balances made under similar conditions show that the weight gained by BSF larvae corresponds to only 14%-48% of the feed substrates removed, indicating substrate conversion efficiency. Both performance indicators show even greater variability if more feed substrates are considered. Feed assimilation and growth rates, costs of growth, maintenance, and larval lifespan have been shown to affect how efficiently BSF larvae convert feed into growth. The differences between average net growth efficiencies and substrate conversion efficiencies further indicate that feed is often not used optimally in entomoremediation processes and that the overall yield of such processes is not determined by larval performance alone but is the result of processes and interactions between larvae, substrates, microbes, and their physical environment. The purpose of this study is to illustrate how quantification of the metabolic performance of BSF larvae can help improve our understanding of the role of the larvae in entomoremediation processes.
Collapse
|
11
|
Qiu Y, Wang P, Guo Y, Zhang L, Lu J, Ren L. Enhancing food waste reduction efficiency and high-value biomass production in Hermetia illucens rearing through bioaugmentation with gut bacterial agent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166488. [PMID: 37611705 DOI: 10.1016/j.scitotenv.2023.166488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/22/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
The black soldier fly (BSF) rearing technology has been a promising bioconversion method for food waste (FW) disposal. However, when used independently, it currently only achieves low efficiency and biomass transformation rates (BTR). This study screened and identified two strains of gut beneficial bacteria, Bacillus cereus and Bacterium YC-LK-LKJ45. The efficiency of a complex culture formulated by these strains was investigated, focusing on enhancing FW reduction and high-value biomass production during the rearing of BSF larvae. The coculture agent group (G1-10%, with two strains in 1:1 volume ratio at a 10 % dosage) exhibited higher larval yield (627.67 g·kg-1), BTR (47.90 %), FW reduction efficiency (80.67 %), and total protein and fat yield (261.99 g·kg-1and 46.24 g·kg-1) compared to the control and the monoculture agent group (which added a single gut beneficial bacteria agent, either Bacillus cereus or Bacterium YC-LK-LKJ45). The bacterial agent altered the richness and diversity of the gut microbial community of BSF, increasing the relative abundance of beneficial bacteria such as Bacillus, Oceano bacillus, and Akkermansia, while decreasing pathogenic bacteria, such as Acinetobacter and Escherichia-Shigella. Structural equation model quantification revealed that α-diversity (λ = 0.897, p < 0.001) and BTR (λ = 0.747, p < 0.001) are crucial drivers for enhancing high-value biomass during bioaugmentation rearing. This investigation provides a theoretical framework for the effective management of food waste using BSF, enhancing its decomposition and transformation into higher-value biomass.
Collapse
Affiliation(s)
- Yizhan Qiu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Pan Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Yuwen Guo
- AnronX Technology (Beijing) Joint Stock Co., Ltd., Beijing 100086, China
| | - Luxi Zhang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Jiaxin Lu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Lianhai Ren
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
12
|
Zhang J, Luo Z, Li N, Yu Y, Cai M, Zheng L, Zhu F, Huang F, K Tomberlin J, Rehman KU, Yu Z, Zhang J. Cellulose-degrading bacteria improve conversion efficiency in the co-digestion of dairy and chicken manure by black soldier fly larvae. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119156. [PMID: 37837764 DOI: 10.1016/j.jenvman.2023.119156] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/14/2023] [Accepted: 09/24/2023] [Indexed: 10/16/2023]
Abstract
Black soldier fly larvae (BSFL) have potential utility in converting livestock manure into larval biomass as a protein source for livestock feed. However, BSFL have limited ability to convert dairy manure (DM) rich in lignocellulose. Our previous research demonstrated that feeding BSFL with mixtures of 40% dairy manure and 60% chicken manure (DM40) provides a novel strategy for significantly improving their efficiency in converting DM. However, the mechanisms underlying the efficient conversion of DM40 by BSFL are unclear. In this study, we conducted a holistic study on the taxonomic stucture and potential functions of microbiota in the larval gut and manure during the DM and DM40 conversion by BSFL, as well as the effects of BSFL on cellulosic biodegradation and biomass production. Results showed that BSFL can consume cellulose and other nutrients more effectively and harvest more biomass in a shorter conversion cycle in the DM40 system. The larval gut in the DM40 system yielded a higher microbiota complexity. Bacillus and Amphibacillus in the BSFL gut were strongly correlated with the larval cellulose degradation capacity. Furthermore, in vitro screening results for culturable cellulolytic microbes from the larval guts showed that the DM40 system isolated more cellulolytic microbes. A key bacterial strain (DM40L-LB110; Bacillus subtilis) with high cellulase activity from the larval gut of DM40 was validated for potential industrial applications. Therefore, mixing an appropriate proportion of chicken manure into DM increased the abundance of intestinal bacteria (Bacillus and Amphibacillus) producing cellulase and improved the digestion ability (particularly cellulose degradation) of BSFL to cellulose-rich manure through changes in microbial communities composition in intestine. This study reveals the microecological mechanisms underlying the high-efficiency conversion of cellulose-rich manure by BSFL and provide potential applications for the large-scale cellulose-rich wastes conversion by intestinal microbes combined with BSFL.
Collapse
Affiliation(s)
- Jia Zhang
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Zhijun Luo
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Nan Li
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Yongqiang Yu
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Minmin Cai
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Longyu Zheng
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Fengling Zhu
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Feng Huang
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China.
| | | | - Kashif Ur Rehman
- Department of Microbiology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Punjab, Pakistan
| | - Ziniu Yu
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Jibin Zhang
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
13
|
Vandeweyer D, Bruno D, Bonelli M, IJdema F, Lievens B, Crauwels S, Casartelli M, Tettamanti G, De Smet J. Bacterial biota composition in gut regions of black soldier fly larvae reared on industrial residual streams: revealing community dynamics along its intestinal tract. Front Microbiol 2023; 14:1276187. [PMID: 38107863 PMCID: PMC10722301 DOI: 10.3389/fmicb.2023.1276187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/30/2023] [Indexed: 12/19/2023] Open
Abstract
Some insect species have gained attention as efficient bioconverters of low-value organic substrates (i.e., residual streams) into high-value biomass. Black soldier fly (BSF) (Hermetia illucens) larvae are particularly interesting for bioconversion due to their ability to grow on a wide range of substrates, including low-value industrial residual streams. This is in part due to the plasticity of the gut microbiota of polyphagous insects, like BSF. Gut microbiota composition varies depending on rearing substrates, via a mechanism that might support the recruitment of microorganisms that facilitate digestion of a specific substrate. At the same time, specific microbial genera do persist on different substrates via unknown mechanisms. This study aimed to offer insights on this microbial plasticity by investigating how the composition of the bacterial community present in the gut of BSF larvae responds to two industrial residual streams: swill (a mixture of catering and supermarket leftovers) and distiller's dried grains with solubles. The bacterial biota composition of substrates, whole larvae at the beginning of the rearing period and at harvest, rearing residues, and larval gut regions were investigated through 16S rRNA gene sequencing. It was observed that both substrate and insect development influenced the bacterial composition of the whole larvae. Zooming in on the gut regions, there was a clear shift in community composition from a higher to a lower diversity between the anterior/middle midgut and the posterior midgut/hindgut, indicating a selective pressure occurring in the middle midgut region. Additionally, the abundance of the bacterial biota was always high in the hindgut, while its diversity was relatively low. Even more, the bacterial community in the hindgut was found to be relatively more conserved over the different substrates, harboring members of the BSF core microbiota. We postulate a potential role of the hindgut as a reservoir for insect-associated microbes. This warrants further research on that underexplored region of the intestinal tract. Overall, these findings contribute to our understanding of the bacterial biota structure and dynamics along the intestinal tract, which can aid microbiome engineering efforts to enhance larval performance on (industrial) residual streams.
Collapse
Affiliation(s)
- Dries Vandeweyer
- Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems, KU Leuven, Geel, Belgium
| | - Daniele Bruno
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Marco Bonelli
- Department of Biosciences, University of Milan, Milan, Italy
| | - Freek IJdema
- Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems, KU Leuven, Geel, Belgium
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Sam Crauwels
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Morena Casartelli
- Department of Biosciences, University of Milan, Milan, Italy
- Interuniversity Center for Studies on Bioinspired Agro-environmental Technology, University of Naples Federico II, Portici, Italy
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Interuniversity Center for Studies on Bioinspired Agro-environmental Technology, University of Naples Federico II, Portici, Italy
| | - Jeroen De Smet
- Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems, KU Leuven, Geel, Belgium
| |
Collapse
|
14
|
Heussler CD, Dittmann IL, Egger B, Robra S, Klammsteiner T. A Comparative Study of Effects of Biodegradable and Non-biodegradable Microplastics on the Growth and Development of Black Soldier Fly Larvae ( Hermetia illucens). WASTE AND BIOMASS VALORIZATION 2023; 15:2313-2322. [PMID: 38623455 PMCID: PMC11016124 DOI: 10.1007/s12649-023-02296-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/24/2023] [Indexed: 04/17/2024]
Abstract
Purpose This study aimed to investigate the digestion process of biodegradable and non-biodegradable microplastics (MPs) within black soldier fly larvae (BSFL) and assess their impact on larval growth and development. The goal was to understand the fate of MPs within BSFL, considering their potential for waste conversion polluted with MPs. Methods BSFL were exposed to two types of MPs, and their growth, development, potential accumulation and excretion of MPs were monitored. Results The findings revealed that the MPs accumulated solely in the larval gut and had no adverse effects on the growth and development of BSFL. Larvae efficiently excreted MPs before reaching the pupation stage. Conclusion This research emphasizes the potential of BSFL as a bioconversion agent for organic waste, even in the presence of MPs. The effective excretion of MPs by BSFL before pupation suggests their ability to mitigate potential harm caused by MP accumulation. The fact that BSFL may excrete MPs before pupation would contribute to their safe use as animal feedstock. A careful evaluation of the effects of using BSFL reared on contaminated substrates especially containing visually non-detectable residuals like nanoplastics, chemicals or toxic metals and further examination of the broader implications for waste management and sustainable livestock farming remains important. Graphical Abstract Experimental design outlining the workflow for the analyses used to investigate the effect of two types of microplastics, polyamide (PA), and polylactic acid (PLA), on growth and development of black soldier fly larvae.
Collapse
Affiliation(s)
| | | | - Bernhard Egger
- Department of Zoology, Universität Innsbruck, 6020 Innsbruck, Austria
| | - Sabine Robra
- Department of Waste Treatment and Resource Management, Universität Innsbruck, 6020 Innsbruck, Austria
- Gopa Worldwide Consultants, 61348 Bad Homburg vor der Höhe, Germany
| | - Thomas Klammsteiner
- Department of Ecology, Universität Innsbruck, 6020 Innsbruck, Austria
- Department of Microbiology, Universität Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
15
|
Quan J, Wang Y, Cheng X, Li C, Yuan Z. Revealing the effects of fermented food waste on the growth and intestinal microorganisms of black soldier fly (Hermetia illucens) larvae. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 171:580-589. [PMID: 37820415 DOI: 10.1016/j.wasman.2023.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023]
Abstract
The escalating global food waste (FW) issues necessitate sustainable management strategies. Black soldier fly larvae (BSFL) offer a promising solution for FW management by converting organic matter into insect protein. However, the fermentation of FW during production, collection, and transportation induces changes in FW's physicochemical properties and bacterial communities, requiring further exploration of its impact on BSFL growth and gut microbiota. The results showed that feeding FW fermented for different durations (0-10 d) slightly affected the BSFL yield. Feeding FW fermented for 8 d, characterized by a lower pH and higher biodiversity, resulted in a slight increase in larval biomass (222 mg/larvae). Nearly all groups harvested the peak larval biomass after 10 day's bioconversion. The fermentation significantly altered the microbial community of FW, with an increase in the abundance of unclassified_f_Clostridiaceae and a decrease in Lactobacillus abundance. As bioconversion progressed, intricate and mutualistic microbial interactions likely occurred between the BSFL gut and FW substrate, restructuring each other's microbial community. Specifically, the abundance of unclassified_f_Clostridiaceae increased in the BSFL gut, while its abundance in the initial larval gut was extremely low (<1 %). Despite the substrate microbial changes and interactions, a stable core gut microbiota was identified across all BSFL samples, primarily composed of nine genera dominated by Enterococcus and Klebsiella. This core gut microbiome may play a crucial role in facilitating the adaptation of BSFL to various environmental conditions and maintaining efficient FW bioconversion. These findings enhance our understanding of the role of BSFL gut microbiota in FW bioconversion.
Collapse
Affiliation(s)
- Jiawei Quan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiang Cheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chunxing Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Lishui Institute of Ecology and Environment, Nanjing University, Nanjing 212200, China
| | - Zengwei Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Lishui Institute of Ecology and Environment, Nanjing University, Nanjing 212200, China; Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
16
|
Eke M, Tougeron K, Hamidovic A, Tinkeu LSN, Hance T, Renoz F. Deciphering the functional diversity of the gut microbiota of the black soldier fly (Hermetia illucens): recent advances and future challenges. Anim Microbiome 2023; 5:40. [PMID: 37653468 PMCID: PMC10472620 DOI: 10.1186/s42523-023-00261-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023] Open
Abstract
Bioconversion using insects is a promising strategy to convert organic waste (catering leftovers, harvest waste, food processing byproducts, etc.) into biomass that can be used for multiple applications, turned into high added-value products, and address environmental, societal and economic concerns. Due to its ability to feed on a tremendous variety of organic wastes, the black soldier fly (Hermetia illucens) has recently emerged as a promising insect for bioconversion of organic wastes on an industrial scale. A growing number of studies have highlighted the pivotal role of the gut microbiota in the performance and health of this insect species. This review aims to provide a critical overview of current knowledge regarding the functional diversity of the gut microbiota of H. illucens, highlighting its importance for bioconversion, food safety and the development of new biotechnological tools. After providing an overview of the different strategies that have been used to outline the microbial communities of H. illucens, we discuss the diversity of these gut microbes and the beneficial services they can provide to their insect host. Emphasis is placed on technical strategies and aspects of host biology that require special attention in the near future of research. We also argue that the singular digestive capabilities and complex gut microbiota of H. illucens make this insect species a valuable model for addressing fundamental questions regarding the interactions that insects have evolved with microorganisms. By proposing new avenues of research, this review aims to stimulate research on the microbiota of a promising insect to address the challenges of bioconversion, but also fundamental questions regarding bacterial symbiosis in insects.
Collapse
Affiliation(s)
- Maurielle Eke
- Biodiversity Research Centre, Earth and Life Institute, UCLouvain, 1348, Louvain-la-Neuve, Belgium
- Department of Biological Sciences, University of Ngaoundéré, PO BOX 454, Ngaoundéré, Cameroon
| | - Kévin Tougeron
- UMR CNRS 7058 EDYSAN (Ecologie et Dynamique des Systèmes Anthropisés), Université de Picardie Jules Verne, Amiens, 80039 France
- Research Institute in Bioscience, Université de Mons, Mons, 7000 Belgium
| | - Alisa Hamidovic
- Biodiversity Research Centre, Earth and Life Institute, UCLouvain, 1348, Louvain-la-Neuve, Belgium
| | - Leonard S. Ngamo Tinkeu
- Department of Biological Sciences, University of Ngaoundéré, PO BOX 454, Ngaoundéré, Cameroon
| | - Thierry Hance
- Biodiversity Research Centre, Earth and Life Institute, UCLouvain, 1348, Louvain-la-Neuve, Belgium
| | - François Renoz
- Biodiversity Research Centre, Earth and Life Institute, UCLouvain, 1348, Louvain-la-Neuve, Belgium
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, 305-8634 Japan
| |
Collapse
|
17
|
Lu H, Liu Y, Shen W, Zhou Y, Ma X, Sun S, Dong X, Ji F, Tong H, Xu J, He G, Xu W. Yeast enrichment facilitated lipid removal and bioconversion by black soldier fly larvae in the food waste treatment. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 166:152-162. [PMID: 37172516 DOI: 10.1016/j.wasman.2023.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/21/2023] [Accepted: 04/02/2023] [Indexed: 05/15/2023]
Abstract
Food waste can be converted into insectile fatty acids (FAs) by the larvae of black soldier fly (BSFL), Hermetia illucens, for use in the feed sector or as a source of biodiesel. However, waste oil was less decomposed than carbohydrate or protein in frass due to the limitation of larval lipid metabolism. In this study, 10 yeast strains were screened, corresponding to six species, to examine their capacity of improving lipid transformation performance by BSFL. The species of Candida lipolytica was superior to the other five species, which exhibited significantly higher lipid reduction rate (95.0-97.1 %) than the control (88.7 %), and the larval FA yields achieved 82.3-115.5 % of the food waste FA matters, suggesting that BSFL not only transformed waste oil but also biosynthesized FAs from waste carbohydrate and other substances. Further, the CL2 strain of Candida lipolytica was examined for treating food waste containing high lipid content (16-32 %). The lipid removal rate was found improved from 21.4 to 42.3 % (control) to 80.5-93.3% in the waste containing 20-32 % lipid. The upper limit of lipid content that could be endured by BSFL was ≈16 %, and the CL2-enrichment elevated the upper limit to ≈24 %. Fungal community analysis indicated that Candida spp. accounted for the lipid removal improvement. The Candida spp. CL2 strain may facilitate the lipid reduction and transformation by BSFL through microbial catabolizing and assimilation of waste FAs. Altogether, this study suggests that yeast enrichment is feasible in improving lipid transformation by BSFL especially for food waste exhibiting high lipid content.
Collapse
Affiliation(s)
- Hongxu Lu
- School of Ocean Science and Technology & Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China
| | - Yanxia Liu
- School of Ocean Science and Technology & Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China
| | - Wenyue Shen
- School of Ocean Science and Technology & Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China
| | - Yang Zhou
- School of Ocean Science and Technology & Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China; School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang 111003, China
| | - Xiangwei Ma
- School of Ocean Science and Technology & Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China
| | - Shibo Sun
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124221, China
| | - Xiaoying Dong
- School of Ocean Science and Technology & Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China; School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang 111003, China
| | - Fengyun Ji
- School of Ocean Science and Technology & Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China
| | - Huiyan Tong
- School of Ocean Science and Technology & Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China
| | - Jianqiang Xu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124221, China
| | - Gaohong He
- School of Ocean Science and Technology & Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China; State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Weiping Xu
- School of Ocean Science and Technology & Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China.
| |
Collapse
|
18
|
Michishita R, Shimoda M, Furukawa S, Uehara T. Inoculation with black soldier fly larvae alters the microbiome and volatile organic compound profile of decomposing food waste. Sci Rep 2023; 13:4297. [PMID: 36922572 PMCID: PMC10017687 DOI: 10.1038/s41598-023-31388-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
The black soldier fly (BSF; Hermetia illucens) is used in sustainable processing of many types of organic waste. However, organic waste being decomposed by BSF produces strong odors, hindering more widespread application. The odor components and how they are produced have yet to be characterized. We found that digestion of food waste by BSF significantly alters the microbial flora, based on metagenomic analyses, and the odor components generated, as shown by thermal desorption gas chromatography mass spectrometry analysis. Inoculation with BSF significantly decreased production of volatile organic sulfur compounds (dimethyl disulfide and dimethyl trisulfide), which are known to be released during methionine and cysteine metabolism by Lactobacillus and Enterococcus bacteria. BSF inoculation significantly changed the abundance of Lactobacillus and Enterococcus and decreased microbial diversity overall. These findings may help in optimizing use of BSF for deodorization of composting food waste.
Collapse
Affiliation(s)
- Rena Michishita
- Division of Insect Sciences, Institute of Agrobiological Sciences, NARO, Tsukuba, Ibaraki, 305-8634, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Masami Shimoda
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Seiichi Furukawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Takuya Uehara
- Division of Insect Sciences, Institute of Agrobiological Sciences, NARO, Tsukuba, Ibaraki, 305-8634, Japan.
| |
Collapse
|
19
|
Bose U, Juhasz A, Stockwell S, Escobar-Correas S, Marcora A, Paull C, Broadbent JA, Wijffels G. Unpacking the Proteome and Metaproteome of the Black Soldier Fly Larvae: Efficacy and Complementarity of Multiple Protein Extraction Protocols. ACS OMEGA 2023; 8:7319-7330. [PMID: 36872973 PMCID: PMC9979371 DOI: 10.1021/acsomega.2c04462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
The larvae of the black soldier fly (BSF), Hermetia illucens (Diptera: Stratiomyidae), have demonstrated the ability to efficiently bioconvert organic waste into a sustainable source of food and feed, but fundamental biology remains to be discovered to exploit their full biodegradative potential. Herein, LC-MS/MS was used to assess the efficiency of eight differing extraction protocols to build foundational knowledge regarding the proteome landscape of both the BSF larvae body and gut. Each protocol yielded complementary information to improve BSF proteome coverage. Protocol 8 (liquid nitrogen, defatting, and urea/thiourea/chaps) was better than all other protocols for the protein extraction from larvae gut samples, and the exclusion of defatting steps yielded the highest number of proteins for the larval body samples. Protocol-specific functional annotation using protein level information has shown that the selection of extraction buffer can affect protein detection and their associated functional classes within the measured BSF larval gut proteome. A targeted LC-MRM-MS experiment was performed on the selected enzyme subclasses to assess the influence of protocol composition using peptide abundance measurements. Metaproteome analysis of the BSF larvae gut has uncovered the prevalence of two bacterial phyla: actinobacteria and proteobacteria. We envisage that using complementary extraction protocols and investigating the proteome from the BSF body and gut separately will expand the fundamental knowledge of the BSF proteome and thereby provide translational opportunities for future research to enhance their efficiency for waste degradation and contribution to the circular economy.
Collapse
Affiliation(s)
- Utpal Bose
- CSIRO
Agriculture and Food, 306 Carmody Road, St Lucia, Queensland 4067, Australia
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, School of Science, Edith
Cowan University, Joondalup, Western Australia 6027, Australia
- School
of Pharmacy, The University of Queensland, Brisbane, Queensland 4067, Australia
| | - Angela Juhasz
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, School of Science, Edith
Cowan University, Joondalup, Western Australia 6027, Australia
| | - Sally Stockwell
- CSIRO
Agriculture and Food, 306 Carmody Road, St Lucia, Queensland 4067, Australia
| | - Sophia Escobar-Correas
- CSIRO
Agriculture and Food, 306 Carmody Road, St Lucia, Queensland 4067, Australia
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, School of Science, Edith
Cowan University, Joondalup, Western Australia 6027, Australia
- CSIRO
Agriculture and Food, Boggo Road, Dutton Park, Brisbane, Queensland 4001, Australia
| | - Anna Marcora
- School
of Pharmacy, The University of Queensland, Brisbane, Queensland 4067, Australia
| | - Cate Paull
- School
of Pharmacy, The University of Queensland, Brisbane, Queensland 4067, Australia
| | - James A. Broadbent
- CSIRO
Agriculture and Food, 306 Carmody Road, St Lucia, Queensland 4067, Australia
| | - Gene Wijffels
- CSIRO
Agriculture and Food, 306 Carmody Road, St Lucia, Queensland 4067, Australia
| |
Collapse
|
20
|
Liu Y, Liu J, He J, Lu H, Sun S, Ji F, Dong X, Bao Y, Xu J, He G, Xu W. Chronological and Carbohydrate-Dependent Transformation of Fatty Acids in the Larvae of Black Soldier Fly Following Food Waste Treatment. Molecules 2023; 28:molecules28041903. [PMID: 36838890 PMCID: PMC9963906 DOI: 10.3390/molecules28041903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/19/2023] Open
Abstract
Although black soldier fly larvae (BSFL) can convert food waste into insectile fatty acids (FAs), the chronological and diet-dependent transformation of larval FAs has yet to be determined. This study focused on the dynamics of larval FA profiles following food waste treatment and characterized factors that may drive FA composition and bioaccumulation. Larval FA matters peaked on Day 11 as 7.7 ± 0.7% of food waste dry matter, maintained stably from Day 11-19, and decreased slightly from Day 19-21. The BSFL primarily utilized waste carbohydrates for FA bioconversion (Day 0-11) and shifted to waste FAs (Day 7-17) when the carbohydrates were close to depletion. The optimal time window for larvae harvest was Days 17-19, which fulfilled both targets of waste oil removal and larval FA transformation. Larval FAs were dominated by C12:0, followed by C18:2, C18:1, and C16:0. The waste-reducing carbohydrate primarily accounted for larval FA bioaccumulation (r = -0.947, p < 0.001). The increase in diet carbohydrate ratio resulted in the elevation of larval C12:0 yield, which indicated that larval C12:0-FA was primarily biosynthesized from carbohydrates and further transformed from ≥C16 FAs. This study elucidates the bioaccumulation process of larval FAs for food waste treatment and highlights the importance of waste carbohydrates for both the composition and transformation of larval FAs.
Collapse
Affiliation(s)
- Yanxia Liu
- School of Ocean Science and Technology (OST) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin 124221, China
| | - Junliang Liu
- School of Ocean Science and Technology (OST) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin 124221, China
| | - Jinwen He
- School of Ocean Science and Technology (OST) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin 124221, China
| | - Hongxu Lu
- School of Ocean Science and Technology (OST) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin 124221, China
| | - Shibo Sun
- School of Life and Pharmaceutical Sciences (LPS), Dalian University of Technology, Panjin 124221, China
| | - Fengyun Ji
- School of Ocean Science and Technology (OST) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin 124221, China
| | - Xiaoying Dong
- School of Ocean Science and Technology (OST) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin 124221, China
| | - Yongming Bao
- School of Ocean Science and Technology (OST) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin 124221, China
| | - Jianqiang Xu
- School of Life and Pharmaceutical Sciences (LPS), Dalian University of Technology, Panjin 124221, China
- Correspondence: (J.X.); (W.X.)
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Weiping Xu
- School of Ocean Science and Technology (OST) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin 124221, China
- Correspondence: (J.X.); (W.X.)
| |
Collapse
|
21
|
IJdema F, De Smet J, Crauwels S, Lievens B, Van Campenhout L. Meta-analysis of larvae of the black soldier fly (Hermetia illucens) microbiota based on 16S rRNA gene amplicon sequencing. FEMS Microbiol Ecol 2022; 98:fiac094. [PMID: 35977400 PMCID: PMC9453823 DOI: 10.1093/femsec/fiac094] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/16/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Black soldier fly larvae (BSFL) belong to the most widely reared insects as an alternative protein source at industrial scale. Bacteria in the larval gut can provide benefits for the animal, though some bacteria can also be pathogenic for the insect. Accurate characterization of the BSFL microbiota is important for the production of BSFL in terms of yield and microbiological safety. In this study, 16S ribosomal RNA gene sequence data sets from 11 studies were re-analysed to gain better insights in the BSFL gut microbiota, potential factors that influence their composition, and differences between the gut and the whole larvae microbiota. A core gut microbiota was found consisting of members of Enterococcus, Klebsiella, Morganella, Providencia, and Scrofimicrobium. Further, the factors 'Study', 'Age' and 'Feed' (i.e. rearing substrate of the larvae) significantly affected the microbiota gut composition. When compared to whole larvae, a significantly lower diversity was found for gut samples, suggesting that the larvae harboured additional microbes on their cuticle or in the insect body. Universal choices in insect sample type, primer selection and bio-informatics analysis pipeline can strengthen future meta-analyses and improve our understanding of the BSFL gut microbiota towards the optimization of insect rearing conditions and substrates.
Collapse
Affiliation(s)
- Freek IJdema
- CLMT Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems (MS), KU Leuven, B-3001, Campus Geel, Geel, B-2440, Belgium
- KU Leuven, Leuven Food Science and Nutrition Research Centre (LFoRCe), Leuven, B-3001, Belgium
| | - Jeroen De Smet
- CLMT Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems (MS), KU Leuven, B-3001, Campus Geel, Geel, B-2440, Belgium
- KU Leuven, Leuven Food Science and Nutrition Research Centre (LFoRCe), Leuven, B-3001, Belgium
| | - Sam Crauwels
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M²S), KU Leuven, Leuven, B-3001, Belgium
| | - Bart Lievens
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M²S), KU Leuven, Leuven, B-3001, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Leuven, B-3001, Belgium
| | - Leen Van Campenhout
- CLMT Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems (MS), KU Leuven, B-3001, Campus Geel, Geel, B-2440, Belgium
- KU Leuven, Leuven Food Science and Nutrition Research Centre (LFoRCe), Leuven, B-3001, Belgium
| |
Collapse
|
22
|
Liu T, Klammsteiner T, Dregulo AM, Kumar V, Zhou Y, Zhang Z, Awasthi MK. Black soldier fly larvae for organic manure recycling and its potential for a circular bioeconomy: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155122. [PMID: 35405225 DOI: 10.1016/j.scitotenv.2022.155122] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Livestock farming and its products provide a diverse range of benefits for our day-to-day life. However, the ever-increasing demand for farmed animals has raised concerns about waste management and its impact on the environment. Worldwide, cattle produce enormous amounts of manure, which is detrimental to soil properties if poorly managed. Waste management with insect larvae is considered one of the most efficient techniques for resource recovery from manure. In recent years, the use of black soldier fly larvae (BSFL) for resource recovery has emerged as an effective method. Using BSFL has several advantages over traditional methods, as the larvae produce a safe compost and extract trace elements like Cu and Zn. This paper is a comprehensive review of the potential of BSFL for recycling organic wastes from livestock farming, manure bioconversion, parameters affecting the BSFL application on organic farming, and process performance of biomolecule degradation. The last part discusses the economic feasibility, lifecycle assessment, and circular bioeconomy of the BSFL in manure recycling. Moreover, it discusses the future perspectives associated with the application of BSFL. Specifically, this review discusses BSFL cultivation and its impact on the larvae's physiology, gut biochemical physiology, gut microbes and metabolic pathways, nutrient conservation and global warming potential, microbial decomposition of organic nutrients, total and pathogenic microbial dynamics, and recycling of rearing residues as fertilizer.
Collapse
Affiliation(s)
- Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Thomas Klammsteiner
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25d, 6020 Innsbruck, Austria
| | - Andrei Mikhailovich Dregulo
- Federal State Budgetary Educational Institution of Higher Education "Saint-Petersburg State University" 7-9 Universitetskaya emb., 199034, Saint- Petersburg, Russia.
| | - Vinay Kumar
- Department of Biotechnology, Indian Institute of Technology (IIT) Roorkee, Roorkee 247667, Uttarakhand, India
| | - Yuwen Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
23
|
Ribeiro N, Costa R, Ameixa OMCC. The Influence of Non-Optimal Rearing Conditions and Substrates on the Performance of the Black Soldier Fly ( Hermetia illucens). INSECTS 2022; 13:insects13070639. [PMID: 35886815 PMCID: PMC9320413 DOI: 10.3390/insects13070639] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 12/03/2022]
Abstract
Simple Summary The black soldier fly is one of the insect species most frequently reared as an alternative protein source. Even though many advances have been made in the last decade regarding environmental and process conditions, there are still several gaps that can delay the upscaling of industrial production systems. One of such gaps is related to the effect of suboptimal feeding regimes of mono-waste streams. This research aims to assess the development and bioconversion behaviour of black soldier fly larvae under suboptimal conditions. It was observed that specific types of vegetable and fruit wastes, such as apple, spinach and grape pomace, may contribute to achieve low insect biomass yields and, thus, reduce the efficiency of industrial operations. Abstract Among the insect species reared as alternative protein sources, Hermetia illucens (black soldier Fly, BSF) has shown a huge potential mostly due to its high protein content, its bioconversion rates, and versatility in using different feeding substrates. Insect rearing may use continuous or batch feeding regimes and, among the used substrates, supermarket feedstock waste has gained recent interest under a circular economy perspective, but several uncertainties remain regarding the heterogeneity and the potential effects of the quantity and quality of these substrates on BSF larvae (BSFL) development. In this experimental work, five replicates of a hundred BSFL were fed in a continuous feeding regime, using seven different isolated vegetables as substrates (wheat bran, pumpkin, apple, grape pomace, red onion, red cabbage, and spinach), at three different temperatures (20, 25, and 30 °C) and two substrate moisture conditions (natural and 70% substrate moisture), until 50% of the larvae achieved the prepupal stage. BSFL performance and bioconversion parameters were evaluated. Our results show that some substrates should be avoided when rearing Hermetia illucens on feedstocks. Among these, apple feed led to poorer and slower development performances with more than 100 days of larval stage, while grape pomace and spinach showed higher mortality rates, which may be due to some anti-nutritional compounds. Larvae fed on pumpkin, red cabbage, and red onion presented good bioconversion results with higher values of efficiency of conversion of digested feed between 14.4 and 25. This work delivers relevant results for black soldier fly reared on a continuous feeding system using vegetable feedstock substrates and their potential trade-offs.
Collapse
Affiliation(s)
- Nuno Ribeiro
- Ecomare, Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
- Research Centre for Natural Resources, Environment and Society (CERNAS), Coimbra Agriculture School, Bencanta, 3045-601 Coimbra, Portugal;
- Correspondence: (N.R.); (O.M.C.C.A.)
| | - Rui Costa
- Research Centre for Natural Resources, Environment and Society (CERNAS), Coimbra Agriculture School, Bencanta, 3045-601 Coimbra, Portugal;
- Polytechnic Institute of Coimbra (IPC), Coimbra Agriculture School, Bencanta, 3045-601 Coimbra, Portugal
| | - Olga M. C. C. Ameixa
- Ecomare, Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: (N.R.); (O.M.C.C.A.)
| |
Collapse
|
24
|
Li XY, Mei C, Luo XY, Wulamu D, Zhan S, Huang YP, Yang H. Dynamics of the intestinal bacterial community in black soldier fly larval guts and its influence on insect growth and development. INSECT SCIENCE 2022. [PMID: 35811567 DOI: 10.1111/1744-7917.13095] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 06/05/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Black soldier fly (BSF), Hermetia illucens (Diptera: Stratiomyidae), is a prominent insect for the bioconversion of various organic wastes. As a saprotrophic insect, the BSF inhabits microbe-rich environments. However, the influences of the intestinal microorganisms on BSF growth and development are not very clear. In this study, the dynamics of the intestinal bacterial community of BSF larvae (BSFL) were analyzed using pyrosequencing. Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria were the most prevalent bacterial phyla in the intestines of all larval instars. The dynamic changes in bacterial community compositions among different larval instars were striking at the genus level. Klebsiella, Clostridium, Providencia, and Dysgonomonas were the relatively most abundant bacteria in the 1st- to 4th-instar BSFL, respectively. Dysgonomonas and Providencia also dominated the 5th- and 6th-instar larvae, at ratios of 31.1% and 47.2%, respectively. In total, 148 bacterial strains affiliated with 20 genera were isolated on different media under aerobic and anaerobic conditions. Among them, 6 bacteria, BSF1-BSF6, were selected for further study. The inoculation of the 6 isolates independently into germ-free BSFL feeding on an artificial diet showed that all the bacteria, except BSF4, significantly promoted BSF growth and development compared with the germ-free control. Citrobacter, Dysgonomonas, Klebsiella, Ochrobactrum, and Providencia promoted BSF development significantly by increasing the weight gains of larvae and pupae, as well as increasing the prepupae and eclosion rates. In addition, Citrobacter, Klebsiella and Providencia shortened the BSF life cycle significantly. The results illustrate the promotive effects of intestinal bacteria on BSF growth and development.
Collapse
Affiliation(s)
- Xin-Yu Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Cheng Mei
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Xing-Yu Luo
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dilinuer Wulamu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Shuai Zhan
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yong-Ping Huang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hong Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|
25
|
Geng J, Sui Z, Dou W, Miao Y, Wang T, Wei X, Chen S, Zhang Z, Xiao J, Huang D. 16S rRNA Gene Sequencing Reveals Specific Gut Microbes Common to Medicinal Insects. Front Microbiol 2022; 13:892767. [PMID: 35651499 PMCID: PMC9149300 DOI: 10.3389/fmicb.2022.892767] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/27/2022] [Indexed: 11/24/2022] Open
Abstract
Insects have a long history of being used in medicine, with clear primary and secondary functions and less side effects, and the study and exploitation of medicinal insects have received increasing attention. Insects gut microbiota and their metabolites play an important role in protecting the hosts from other potentially harmful microbes, providing nutrients, promoting digestion and degradation, and regulating growth and metabolism of the hosts. However, there are still few studies linking the medicinal values of insects with their gut microbes. In this study, we focused on the specific gut microbiota common to medicinal insects, hoping to trace the potential connection between medicinal values and gut microbes of medicinal insects. Based on 16S rRNA gene sequencing data, we compared the gut microbiota of medicinal insects [Periplaneta americana, Protaetia (Liocola) brevitarsis (Lewis) and Musca domestica], in their medicinal stages, and non-medicinal insects (Hermetia illucens L., Tenebrio molitor, and Drosophila melanogaster), and found that the intestinal microbial richness of medicinal insects was higher, and there were significant differences in the microbial community structure between the two groups. We established a model using a random-forest method to preliminarily screen out several types of gut microbiota common to medicinal insects that may play medicinal values: Parabacteroides goldsteinii, Lactobacillus dextrinicus, Bifidobacterium longum subsp. infantis (B. infantis), and Vagococcus carniphilus. In particular, P. goldsteinii and B. infantis were most probably involved in the anti-inflammatory effects of medicinal insects. Our results revealed an association between medicinal insects and their gut microbes, providing new development directions and possibly potential tools for utilizing microbes to enhance the medicinal efficacy of medicinal insects.
Collapse
Affiliation(s)
- Jin Geng
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhuoxiao Sui
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Weihao Dou
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yunheng Miao
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Tao Wang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xunfan Wei
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Sicong Chen
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Zongqi Zhang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jinhua Xiao
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Dawei Huang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
26
|
Seyedalmoosavi MM, Mielenz M, Veldkamp T, Daş G, Metges CC. Growth efficiency, intestinal biology, and nutrient utilization and requirements of black soldier fly (Hermetia illucens) larvae compared to monogastric livestock species: a review. J Anim Sci Biotechnol 2022; 13:31. [PMID: 35509031 PMCID: PMC9069764 DOI: 10.1186/s40104-022-00682-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/17/2022] [Indexed: 11/17/2022] Open
Abstract
In recent years, interest in the larvae of black soldier fly (BSF) (Hermetia illucens) as a sustainable protein resource for livestock feed has increased considerably. However, knowledge on the nutritional and physiological aspects of this insect, especially compared to other conventional farmed animals is scarce. This review presents a critical comparison of data on the growth potential and efficiency of the BSF larvae (BSFL) compared to conventional monogastric livestock species. Advantages of BSFL over other monogastric livestock species includes their high growth rate and their ability to convert low-grade organic waste into high-quality protein and fat-rich biomass suitable for use in animal feed. Calculations using literature data suggest that BSFL are more efficient than broilers, pigs and fish in terms of conversion of substrate protein into body mass, but less efficient than broilers and fish in utilization of substrate gross energy to gain body mass. BSFL growth efficiency varies greatly depending on the nutrient quality of their dietary substrates. This might be associated with the function of their gastrointestinal tract, including the activity of digestive enzymes, the substrate particle characteristics, and their intestinal microbial community. The conceived advantage of BSFL having an environmental footprint better than conventional livestock is only true if BSFL is produced on low-grade organic waste and its protein would directly be used for human consumption. Therefore, their potential role as a new species to better close nutrient cycles in agro-ecological systems needs to be reconsidered, and we conclude that BSFL is a complementary livestock species efficiently utilizing organic waste that cannot be utilized by other livestock. In addition, we provide comparative insight into morpho-functional aspects of the gut, characterization of digestive enzymes, gut microbiota and fiber digestion. Finally, current knowledge on the nutritional utilization and requirements of BSFL in terms of macro- and micro-nutrients is reviewed and found to be rather limited. In addition, the research methods to determine nutritional requirements of conventional livestock are not applicable for BSFL. Thus, there is a great need for research on the nutrient requirements of BSFL.
Collapse
Affiliation(s)
- Mohammad M Seyedalmoosavi
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, 18196, Dummerstorf, Germany
| | - Manfred Mielenz
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, 18196, Dummerstorf, Germany
| | - Teun Veldkamp
- Wageningen UR, Livestock Research, P.O. Box 338, 6700AH, Wageningen, Netherlands
| | - Gürbüz Daş
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, 18196, Dummerstorf, Germany
| | - Cornelia C Metges
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, 18196, Dummerstorf, Germany.
| |
Collapse
|
27
|
Siddiqui SA, Ristow B, Rahayu T, Putra NS, Widya Yuwono N, Nisa' K, Mategeko B, Smetana S, Saki M, Nawaz A, Nagdalian A. Black soldier fly larvae (BSFL) and their affinity for organic waste processing. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 140:1-13. [PMID: 35030456 DOI: 10.1016/j.wasman.2021.12.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/21/2021] [Accepted: 12/31/2021] [Indexed: 05/12/2023]
Abstract
There are two major problems that we are facing currently. Firstly, a growing human population continues to contribute to the increased food demand. Secondly, the volume of organic waste produced will threaten human health and the quality of the environment. Recently, there is an increasing number of efforts placed into farming insect biomass to produce alternative feed ingredients. Black soldier fly larvae (BSFL), Hermetia illucens have proven to convert organic waste into high-quality nutrients for pet foods, fish and poultry feeds, as well as residue fertilizer for soil amendment. However, better BSFL feed formulation and feeding approaches are necessary for yielding a higher nutrient content of the insect body, and if performed efficiently, whilst converting waste into higher value biomass. Lastly, this paper reveals that BSFL, in fact, thrives in various ranges of organic matter composition and with simple rearing systems.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315 Straubing, Germany; German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing-Straβe 7, 49610 Quakenbrück, Germany.
| | - Bridget Ristow
- Nutritionhub (Pty) Ltd Consultancy Firm. Doornbosch Centre, R44, Strand Road, Stellenbosch, South Africa
| | - Teguh Rahayu
- CV HermetiaTech, Voza Premium Office 20th Floor, Jl. HR. Muhammad No. 31A, Putat Gede, Surabaya 60189, Jawa Timur, Indonesia.
| | - Nugroho Susetya Putra
- Universitas Gadjah Mada, Faculty of Agriculture, Department of Plant Protection, Jl. Flora No. 1, Bulaksumur, Yogyakarta 55281, Indonesia.
| | - Nasih Widya Yuwono
- Universitas Gadjah Mada, Faculty of Agriculture, Department of Soil Science, Jl. Flora No. 1, Bulaksumur, Yogyakarta 55281, Indonesia.
| | - Khoirun Nisa'
- Sepuluh November Institute of Technology, Department of Environmental Engineering, Sukolilo, Surabaya 60111, Jawa Timur, Indonesia
| | - Bosco Mategeko
- Rwandan Society of Food Science and Technology (RFST), Rwanda
| | - Sergiy Smetana
- German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing-Straβe 7, 49610 Quakenbrück, Germany.
| | - Morteza Saki
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Asad Nawaz
- Institute for Advanced Study, Shenzhen University, Shenzhen, PR China.
| | - Andrey Nagdalian
- Food Technology and Engineering Department, North-Caucasus Federal University, Pushkina Street 1, 355009 Stavropol, Russia; Saint Petersburg State Agrarian University, Peterburgskoe Highway 2, 196601, Pushkin, Saint Petersburg, Russia.
| |
Collapse
|
28
|
Li X, Zhou S, Zhang J, Zhou Z, Xiong Q. Directional Changes in the Intestinal Bacterial Community in Black Soldier Fly ( Hermetia illucens) Larvae. Animals (Basel) 2021; 11:ani11123475. [PMID: 34944253 PMCID: PMC8697953 DOI: 10.3390/ani11123475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 12/18/2022] Open
Abstract
Black soldier fly (BSF) larvae, Hermetia illucens (Diptera: Stratiomyidae) have emerged as an efficient system for the bioconversion of organic waste. Intestinal microorganisms are involved in several insect functions, including the development, nutrition, and physiology of the host. In order to transform the intestinal bacterial community of BSF directionally, six different potential functional strains (Lysinibacillus sphaericus, Proteus mirabilis, Citrobacter freundii, Pseudocitrobacter faecalis, Pseudocitrobacter anthropi, and Enterococcus faecalis) were added to aseptic food waste, and aseptic food waste was used without inoculants as a blank control to evaluate the changes in the intestinal microbiota of BSF under artificial intervention conditions. These six strains (which were isolated from the larval intestinal tract in selective media and then identified and screened) may be considered responsible for the functional characteristics of larvae. The results imply that the increase in the abundance of Lysinibacillus in the experimental group that was exposed to Lysinibacillus sphaericus was significantly different to the other groups (p < 0.05). The results revealed that it is feasible to transform the intestinal microbiota of BSF directionally; there are differences in the proliferation of different strains in the intestine of BSF.
Collapse
Affiliation(s)
- Xinfu Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China; (X.L.); (S.Z.); (Z.Z.)
| | - Shen Zhou
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China; (X.L.); (S.Z.); (Z.Z.)
| | - Jing Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China;
| | - Zhihao Zhou
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China; (X.L.); (S.Z.); (Z.Z.)
| | - Qiang Xiong
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China; (X.L.); (S.Z.); (Z.Z.)
- Correspondence:
| |
Collapse
|
29
|
Ho PN, Klanrit P, Hanboonsong Y, Yordpratum U, Suksawat M, Kulthawatsiri T, Jirahiranpat A, Deewai S, Mackawan P, Sermswan RW, Namwat N, Loilome W, Khampitak T, Wangwiwatsin A, Phetcharaburanin J. Bacterial challenge-associated metabolic phenotypes in Hermetia illucens defining nutritional and functional benefits. Sci Rep 2021; 11:23316. [PMID: 34857836 PMCID: PMC8639782 DOI: 10.1038/s41598-021-02752-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/18/2021] [Indexed: 01/18/2023] Open
Abstract
Black soldier fly (BSF, Hermetia illucens) is popular for its applications in animal feed, waste management and antimicrobial peptide source. The major advantages of BSF larva include their robust immune system and high nutritional content that can be further developed into more potential agricultural and medical applications. Several strategies are now being developed to exploit their fullest capabilities and one of these is the immunity modulation using bacterial challenges. The mechanism underlying metabolic responses of BSF to different bacteria has, however, remained unclear. In the current study, entometabolomics was employed to investigate the metabolic phenoconversion in response to either Escherichia coli, Staphylococcus aureus, or combined challenges in BSF larva. We have, thus far, characterised 37 metabolites in BSF larva challenged with different bacteria with the major biochemical groups consisting of amino acids, organic acids, and sugars. The distinct defense mechanism-specific metabolic phenotypes were clearly observed. The combined challenge contributed to the most significant metabolic phenoconversion in BSF larva with the dominant metabolic phenotypes induced by S. aureus. Our study suggested that the accumulation of energy-related metabolites provided by amino acid catabolism is the principal metabolic pathway regulating the defense mechanism. Therefore, combined challenge is strongly recommended for raising BSF immunity as it remarkably triggered amino acid metabolisms including arginine and proline metabolism and alanine, aspartate and glutamate metabolism along with purine metabolism and pyruvate metabolism that potentially result in the production of various nutritional and functional metabolites.
Collapse
Affiliation(s)
- Phuc N Ho
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Poramate Klanrit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.,Khon Kaen University International Phenome Laboratory, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Yupa Hanboonsong
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Umaporn Yordpratum
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Manida Suksawat
- Khon Kaen University International Phenome Laboratory, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Thanaporn Kulthawatsiri
- Khon Kaen University International Phenome Laboratory, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Anyarin Jirahiranpat
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Suthicha Deewai
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Panya Mackawan
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand.,Research and Development Center, Betagro Group, Klong Luang, Pathum Thani, 12120, Thailand
| | - Rasana W Sermswan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nisana Namwat
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.,Khon Kaen University International Phenome Laboratory, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Watcharin Loilome
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.,Khon Kaen University International Phenome Laboratory, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Tueanjit Khampitak
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Arporn Wangwiwatsin
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.,Khon Kaen University International Phenome Laboratory, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Jutarop Phetcharaburanin
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand. .,Khon Kaen University International Phenome Laboratory, Khon Kaen, 40002, Thailand. .,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand. .,Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|