1
|
Wang M, Ma M, Yu L, He K, Zhang T, Feng Y, Hu G, He D, Pan Y, Zhai Y. Characterization of IS26-bracketed bla CTX-M-65 resistance module on IncI1 and IncX1 plasmids in Escherichia coli ST224 isolated from a chicken in China. Vet Microbiol 2025; 303:110443. [PMID: 40022824 DOI: 10.1016/j.vetmic.2025.110443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
Antimicrobial resistance (AMR) poses a significant global health threat, particularly due to increasing bacterial resistance to β-lactam and aminoglycoside antibiotics, primarily mediated by extended-spectrum β-lactamases (ESBLs) and 16S rRNA methylases in Enterobacteriaceae. In this study, a multidrug resistant (MDR) E. coli strain HN257 isolated from chicken belonging to ST224 and serotype O88:H23 was characterized. SNP-based phylogenetic analysis revealed two distinct clades among poultry-associated E. coli ST224 in this study and others from Genbank, with strain HN257 closely related to chicken-derived E. coli YH17148 (serotype O78:H23), from China. The E. coli HN257 harbored four plasmids with 16 resistance determinants. Two blaCTX-M-65 genes were located on different plasmids with an IS26-bracketed resistance module IS26-traI-fip-∆ISEcp1-blaCTX-M-65-IS903D-iroN-IS26. The plasmid pHN257-2 belonged to the IncI1 ST71 epidemic lineage and carried blaCTX-M-65, blaTEM-1b, rmtB, fosA3, floR, aac(3)-IV and oqxAB, while plasmid pHN257-4 belonged to the non-conjugative IncX1 and carried blaCTX-M-65 and fosA3. Under experimental conditions, a rmtB-positive conjugative helper IncI1 ST136 plasmid could fuse with the non-conjugative pHN257-4 carrying blaCTX-M-65, resulting in the formation of a cointegrate pHN257-F mediated by IS26. Importantly, both single and fused plasmids in transconjugants showed minimal impact on bacterial growth. This study highlights the first identification of a non-conjugative IncX1 plasmid carrying blaCTX-M-65 and fosA3 in MDR E. coli ST224 from poultry, offering critical insights into the presence and transmission dynamics of blaCTX-M-65.
Collapse
Affiliation(s)
- Mengtao Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Mengjuan Ma
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Lijie Yu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Kun He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Tengli Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yiming Feng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Gongzheng Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Dandan He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.
| | - Yushan Pan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.
| | - Yajun Zhai
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
2
|
Britto GHS, Gomes LR, Pimenta JP, Sommerfeld S, Silva MVC, Peres PABM, Braga PFS, Costa LRM, Pedrosa IE, Bandarra MB, Knöbl T, Fonseca BB. Could Exotic Birds Play a Significant Role in the Emergence of Antibiotic-Resistant Microorganisms? Curr Microbiol 2025; 82:161. [PMID: 40021561 DOI: 10.1007/s00284-025-04134-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 02/12/2025] [Indexed: 03/03/2025]
Abstract
Despite limited studies, free-living birds are considered reservoirs of several diseases, including zoonotic diseases. Thus, we aimed to investigate the presence and characteristics of Campylobacter spp., Escherichia coli, and Salmonella spp. in wild birds assessing their potential risks to human and animal health. Fecal samples were collected from wild and exotic rescued birds, as well as exotic parrots from commercial breeding facilities. Campylobacter spp. and Salmonella spp. were not detected in the samples. E. coli was biochemically confirmed in 58.33% of the samples, resulting nine distinct isolates. PCR analysis identified no enteroinvasive or enteropathogenic E. coli strains, but two isolates were characterized as avian pathogenic E. coli (APEC). The isolates were inoculated into chicken embryos to determine their pathogenicity index, utilizing commensal and pathogenic E. coli strains as controls. All isolates demonstrated higher pathogenicity compared to probiotic bacteria and commensal E. coli. Specifically, two isolates exhibited pathogenicity levels comparable to the positive control (APEC ST131). Furthermore, for the minimum inhibitory concentration (MIC) test, we evaluated 7 antibiotics: ampicillin, ceftazidime, cefotaxime, ciprofloxacin, levofloxacin, colistin, and sulfamethoxazole combined with trimethoprim. Four isolates were classified as multidrug-resistant and the highest level of resistance was to fluoroquinolones. This work demonstrated that wild or captive exotic birds can excrete potentially pathogenic and/or multidrug-resistant E. coli, which may impact the health of other animals and humans.
Collapse
Affiliation(s)
- Gabriel H S Britto
- Postgraduate Program in Veterinary Sciences at the Federal University of Uberlândia, Av. Pará, 1720 Campus Umuarama, Bloco 2 E, Uberlândia, CEP 38405-320, Brazil
| | - Lara R Gomes
- Postgraduate Program in Veterinary Sciences at the Federal University of Uberlândia, Av. Pará, 1720 Campus Umuarama, Bloco 2 E, Uberlândia, CEP 38405-320, Brazil
| | - João P Pimenta
- President Antonio Carlos University, Avenida Cipriano Del Fávero, 991, Uberlândia, CEP 38400-106, Brazil
| | - Simone Sommerfeld
- Postgraduate Program in Veterinary Sciences at the Federal University of Uberlândia, Av. Pará, 1720 Campus Umuarama, Bloco 2 E, Uberlândia, CEP 38405-320, Brazil
| | - Maysa V C Silva
- Postgraduate Program in Veterinary Sciences at the Federal University of Uberlândia, Av. Pará, 1720 Campus Umuarama, Bloco 2 E, Uberlândia, CEP 38405-320, Brazil
| | - Phelipe A B M Peres
- Postgraduate Program in Genetics and Biochemistry at the Federal University of Uberlândia, Av. Pará, 1720 Campus Umuarama, Bloco 2 E, Uberlândia, CEP 38405-320, Brazil
| | - Paula F S Braga
- Postgraduate Program in Veterinary Sciences at the Federal University of Uberlândia, Av. Pará, 1720 Campus Umuarama, Bloco 2 E, Uberlândia, CEP 38405-320, Brazil
| | - Letícia R M Costa
- Postgraduate Program in Veterinary Sciences at the Federal University of Uberlândia, Av. Pará, 1720 Campus Umuarama, Bloco 2 E, Uberlândia, CEP 38405-320, Brazil
| | - Isabelle E Pedrosa
- Postgraduate Program in Veterinary Sciences at the Federal University of Uberlândia, Av. Pará, 1720 Campus Umuarama, Bloco 2 E, Uberlândia, CEP 38405-320, Brazil.
| | - Márcio B Bandarra
- Postgraduate Program in Veterinary Sciences at the Federal University of Uberlândia, Av. Pará, 1720 Campus Umuarama, Bloco 2 E, Uberlândia, CEP 38405-320, Brazil
| | - Terezinha Knöbl
- Postgraduate Program in Experimental and Comparative Pathology, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87 Cidade Universitária, São Paulo, 05508-270, São Paulo, Brazil
| | - Belchiolina B Fonseca
- Postgraduate Program in Veterinary Sciences at the Federal University of Uberlândia, Av. Pará, 1720 Campus Umuarama, Bloco 2 E, Uberlândia, CEP 38405-320, Brazil
- Postgraduate Program in Genetics and Biochemistry at the Federal University of Uberlândia, Av. Pará, 1720 Campus Umuarama, Bloco 2 E, Uberlândia, CEP 38405-320, Brazil
| |
Collapse
|
3
|
Kovarova A, Prole G, Farrell ML, Maguire M, Murphy LC, Chueiri A, O'Connor L, Miliotis G, Morris D, Burke LP. Antimicrobial resistant Enterobacterales of clinical importance in mute swans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 961:178400. [PMID: 39798462 DOI: 10.1016/j.scitotenv.2025.178400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/13/2024] [Accepted: 01/03/2025] [Indexed: 01/15/2025]
Abstract
Urban water environments, including canals, harbours and estuaries are susceptible to contamination with antimicrobials and drug-resistant bacteria through domestic and industrial wastewater discharges and storm water overflows. There is potential for wildlife using these waters to acquire and transmit drug-resistant bacteria and antimicrobial resistance genes (ARGs) of clinical importance. This study aimed to assess clinically important drug-resistant bacteria in urban waterfowl, particularly mute swans. Faecal samples were collected from 17 mute swans in the Greater Dublin Area, Ireland during July, August, October, and November of 2022. Samples were swabbed directly onto agars to select for carbapenem resistant, Extended-spectrum Beta-lactamase (ESBL)-producing, ciprofloxacin resistant and colistin resistant bacteria. Isolates identified by MALDI-TOF as Enterobacterales were tested for susceptibility to a panel of 16 antimicrobials and real-time PCR was employed to detect cefotaximase and carbapenemase genes (CRGs). Drug-resistant isolates were characterised by Whole Genome Sequencing (WGS), including long read sequencing for carbapenemase and mobile colistin resistance (mcr) gene-producing Enterobacterales isolates. Eleven of seventeen (65 %) swan samples were positive for the resistant organism(s) (n = 35), comprising Escherichia coli (n = 32; 82 %) and other Enterobacterales (n = 3). Twenty E. coli (63 %) produced ESBL, with 16/20 (80 %) identified as positive for blaCTX-M-group 1 enzymes, comprising CTX-M-15 (n = 13), CTX-M-55 (n = 2) and CTX-M-1 (n = 1) and 4/20 (20 %) positive for blaCTX-M-group 9 enzymes CTX-M-27 (n = 2) and CTX-M-9 (n = 2). Three E. coli isolates were phenotypically ertapenem resistant, one of which was an ST4450 isolate which carried plasmid encoded blaOXA-181 and blaCMY-141 with blaCTX-M-15 identified chromosomally. One colistin resistant E. coli bore the mcr-1 gene chromosomally. Bioinformatic analysis revealed high-risk pathogenic ESBL E. coli clones including ST38 (n = 3), ST69 (n = 3), and ST131 (n = 2). The study indicates mute swans are a reservoir for drug-resistant Enterobacterales and ARGs of clinical importance and may be a useful sentinel species for antimicrobial resistance (AMR) surveillance in wildlife.
Collapse
Affiliation(s)
- Aneta Kovarova
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Ireland; Centre for One Health, University of Galway, Ireland.
| | | | - Maeve Louise Farrell
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Ireland; Centre for One Health, University of Galway, Ireland
| | - Mark Maguire
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Ireland; Centre for One Health, University of Galway, Ireland
| | - Louise Catherine Murphy
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Ireland; Centre for One Health, University of Galway, Ireland
| | - Alexandra Chueiri
- Molecular Diagnostics Research Group, College of Science & Engineering, University of Galway, Ireland
| | - Louise O'Connor
- Molecular Diagnostics Research Group, College of Science & Engineering, University of Galway, Ireland
| | - Georgios Miliotis
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Ireland; Centre for One Health, University of Galway, Ireland
| | - Dearbháile Morris
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Ireland; Centre for One Health, University of Galway, Ireland
| | - Liam P Burke
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Ireland; Centre for One Health, University of Galway, Ireland
| |
Collapse
|
4
|
Quintelas M, Silva V, Araújo S, Tejedor-Junco MT, Pereira JE, Igrejas G, Poeta P. Klebsiella in Wildlife: Clonal Dynamics and Antibiotic Resistance Profiles, a Systematic Review. Pathogens 2024; 13:945. [PMID: 39599498 PMCID: PMC11597104 DOI: 10.3390/pathogens13110945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Klebsiella spp. are a genus of Gram-negative, opportunistic bacteria frequently found in the flora of the mucosal membranes of healthy animals and humans, and in the environment. Species of this group can cause serious infections (meningitis, sepsis, bacteraemia, urinary tract infections, liver damage) and possible death in immunocompromised organisms (and even in immunocompetent ones in the case of hypervirulent K. pneumoniae) that are exposed to them. K. pneumoniae is part of the ESKAPE organisms, and so it is important to understand this genus in terms of multidrug-resistant bacteria and as a carrier of antibiotic resistance mechanisms. As it is a durable bacterium, it survives well even in hostile environments, making it possible to colonize all kinds of habitats, even the mucosal flora of wildlife. This systematic review explores the prevalence of Klebsiella spp. bacteria in wild animals, and the possibility of transmission to humans according to the One Health perspective. The isolates found in this review proved to be resistant to betalactams (blaTEM, blaOXA-48…), aminoglycosides (strAB, aadA2…), fosfomycin, tetracyclines, sulphonamides, trimethoprim, phenicols (catB4), and polymyxins (mcr4).
Collapse
Affiliation(s)
- Micaela Quintelas
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal (S.A.); (J.E.P.)
| | - Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal (S.A.); (J.E.P.)
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Sara Araújo
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal (S.A.); (J.E.P.)
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Maria Teresa Tejedor-Junco
- Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria, Spain;
| | - José Eduardo Pereira
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal (S.A.); (J.E.P.)
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Gilberto Igrejas
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Patricia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal (S.A.); (J.E.P.)
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
5
|
Wang M, Li X, Guo G, Rehman MNU, Gao X, Fan L, Yang N, Zeng J, Zheng J. Emergence of highly virulent and multidrug-resistant Escherichia coli in breeding sheep with pneumonia, Hainan Province, China. Front Microbiol 2024; 15:1479759. [PMID: 39507338 PMCID: PMC11539166 DOI: 10.3389/fmicb.2024.1479759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/26/2024] [Indexed: 11/08/2024] Open
Abstract
Background Sheep are a rarely raised livestock in Hainan Island, China, because of the unfavorable tropical marine climate. Here, this article reports a severe pneumonia in the sheep breeding and domestication facility caused acute mortality during the winter 2021-2022. Methods Six sheep were clinically dissected and histopathologically observed. The bacteria were isolated and cultured by traditional methods and identified by 16S rRNA sequencing. The genotypes, serotypes, virulence genes and antimicrobial resistance genes were analyzed by PCR and whole genome sequencing. The pubMLST website was used for phylogenetic analysis of related strains. Kirby-Bauer disk diffusion method was used for antimicrobial susceptibility test. The antimicrobial susceptibility test standard was referred to the Clinical and Laboratory Standards Institute (CLSI). The virulence of bacteria was detected by mouse infection model. Results Etiology and histopathology examination of the pneumonia reveled pulmonary abscess and alveolar neutrophilia and pulmonary fibrinous exudates. Escherichia coli was the only bacterial species isolated, primarily from the lungs and blood of the six dead or moribund sheep, a total of 29 E. coli strains were isolated. Antimicrobial resistance profiling shows that all the isolates were resistant to six agents (penicillin, ampicillin, cephalothin, neomycin, erythromycin, and vancomycin) belonging to five classes of antibiotics, classifying them as multi drug resistant (MDR). Furthermore, genotyping analysis revealed all strains were common with 11-17 virulence factors indicating high pathogenicity. The lab mice infection model shows that all strains severely affect the health status particularly weight loss, lethargy, pneumonia and shortly lead to death. The molecular epidemiological analysis indicated most strains share the same genotype as previously reported strains in humans and other farmed animals this suggests a high possibility of cross-species transmission (CST) of virulent and MDR isolates. This CST could be from sheep to humans and other farmed animals or from humans and other farmed animals to sheep. Conclusion Therefore, this study indicates that E. coli is an emerging threat that causes sheep pneumonia in Hainan, and the quarantine of contacts is important to control the spread of virulent E. coli and the transmission of acquired resistance genes between humans and farmed animals such as sheep.
Collapse
Affiliation(s)
- Mengqi Wang
- Lab of Microbiological Engineering (Infection and Immunity), School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, China
- Hainan International One Health Institute, Hainan University, Haikou, China
| | - Xuesong Li
- Lab of Microbiological Engineering (Infection and Immunity), School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, China
- Hainan International One Health Institute, Hainan University, Haikou, China
| | - Guiying Guo
- Lab of Microbiological Engineering (Infection and Immunity), School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, China
- Hainan International One Health Institute, Hainan University, Haikou, China
- School of Chemical Engineering and Technology, Hainan University, Haikou, China
| | - Muhammad Nafees Ur Rehman
- Lab of Microbiological Engineering (Infection and Immunity), School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, China
| | - Xiaomeng Gao
- Lab of Microbiological Engineering (Infection and Immunity), School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, China
| | - Lixia Fan
- Lab of Microbiological Engineering (Infection and Immunity), School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, China
- Hainan International One Health Institute, Hainan University, Haikou, China
| | - Nuo Yang
- Lab of Microbiological Engineering (Infection and Immunity), School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, China
- Hainan International One Health Institute, Hainan University, Haikou, China
| | - Jifeng Zeng
- Lab of Microbiological Engineering (Infection and Immunity), School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, China
| | - Jiping Zheng
- Lab of Microbiological Engineering (Infection and Immunity), School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, China
- Hainan International One Health Institute, Hainan University, Haikou, China
| |
Collapse
|
6
|
Sabença C, Romero-Rivera M, Barbero-Herranz R, Sargo R, Sousa L, Silva F, Lopes F, Abrantes AC, Vieira-Pinto M, Torres C, Igrejas G, del Campo R, Poeta P. Molecular Characterization of Multidrug-Resistant Escherichia coli from Fecal Samples of Wild Animals. Vet Sci 2024; 11:469. [PMID: 39453061 PMCID: PMC11512376 DOI: 10.3390/vetsci11100469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
Antimicrobial resistance (AMR) surveillance in fecal Escherichia coli isolates from wildlife is crucial for monitoring the spread of this microorganism in the environment and for developing effective AMR control strategies. Wildlife can act as carriers of AMR bacteria and spread them to other wildlife, domestic animals, and humans; thus, they have public health implications. A total of 128 Escherichia coli isolates were obtained from 66 of 217 fecal samples obtained from different wild animals using media without antibiotic supplementation. Antibiograms were performed for 17 antibiotics to determine the phenotypic resistance profile in these isolates. Extended-spectrum β-lactamase (ESBL) production was tested using the double-disc synergy test, and 29 E. coli strains were selected for whole genome sequencing. In total, 22.1% of the wild animals tested carried multidrug-resistant E. coli isolates, and 0.93% (2/217) of these wild animals carried E. coli isolates with ESBL-encoding genes (blaCTX-M-65, blaCTX-M-55, and blaEC-1982). The E. coli isolates showed the highest resistance rates to ampicillin and were fully susceptible to amikacin, meropenem, ertapenem, and imipenem. Multiple resistance and virulence genes were detected, as well as different plasmids. The relatively high frequency of multidrug-resistant E. coli isolates in wildlife, with some of them being ESBL producers, raises some concern regarding the potential transmission of antibiotic-resistant bacteria among these animals. Gaining insights into antibiotic resistance patterns in wildlife can be vital in shaping conservation initiatives and developing effective strategies for responsible antibiotic use.
Collapse
Affiliation(s)
- Carolina Sabença
- MicroART-Antibiotic Resistance Team, Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry, University NOVA of Lisbon, 1099-085 Caparica, Portugal
| | - Mario Romero-Rivera
- Department of Microbiology, University Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (M.R.-R.); (R.B.-H.); (R.d.C.)
| | - Raquel Barbero-Herranz
- Department of Microbiology, University Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (M.R.-R.); (R.B.-H.); (R.d.C.)
| | - Roberto Sargo
- CRAS—Center for the Recovery of Wild Animals, Veterinary Hospital, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.S.); (L.S.); (F.S.)
| | - Luís Sousa
- CRAS—Center for the Recovery of Wild Animals, Veterinary Hospital, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.S.); (L.S.); (F.S.)
| | - Filipe Silva
- CRAS—Center for the Recovery of Wild Animals, Veterinary Hospital, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.S.); (L.S.); (F.S.)
| | - Filipa Lopes
- LxCRAS—Centro de Recuperação de Animais Silvestres de Lisboa, 1500-068 Lisboa, Portugal;
| | - Ana Carolina Abrantes
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (A.C.A.); (M.V.-P.)
| | - Madalena Vieira-Pinto
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (A.C.A.); (M.V.-P.)
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 5000-801 Vila Real, Portugal
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain;
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry, University NOVA of Lisbon, 1099-085 Caparica, Portugal
| | - Rosa del Campo
- Department of Microbiology, University Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (M.R.-R.); (R.B.-H.); (R.d.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28040 Madrid, Spain
- Facultad de Ciencias de la Salud, Universidad Alfonso X El Sabio, 28691 Villanueva de la Cañada, Spain
| | - Patrícia Poeta
- MicroART-Antibiotic Resistance Team, Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Associated Laboratory for Green Chemistry, University NOVA of Lisbon, 1099-085 Caparica, Portugal
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (A.C.A.); (M.V.-P.)
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 5000-801 Vila Real, Portugal
| |
Collapse
|
7
|
Zając M, Skarżyńska M, Lalak A, Iwan E, Wasyl D. Detection of Salmonella Mbandaka Carrying the blaCTX-M-8 Gene Located on IncI1 Plasmid Isolated from a Broiler Flock Environment. Pathogens 2024; 13:723. [PMID: 39338915 PMCID: PMC11435008 DOI: 10.3390/pathogens13090723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Salmonella Mbandaka is one of the most globally widespread serovars, occurring in many sources and included among twenty serovars that contribute to human salmonellosis in Europe. In Poland, it has been noted in non-human sources since 1996, being found firstly in feeds and later in waterfowl and chicken. Over the years, it gained epidemiological importance, being isolated from a wide range of animal species, including livestock. Generally, it is characterized by sensitivity to most antimicrobials and the ability to form biofilms. The occurrence of cephalosporin-resistant Salmonella in non-human sources is an extremely rare phenomenon in Poland. In this report, we characterized the full genome of the ESBL-producing S. Mbandaka strain isolated from a broiler farm environment (boot swab sample) in Poland in 2022. The isolate was serotyped as S. Mbandaka according to the White-Kaufmann-Le Minor scheme. Antimicrobial susceptibility testing performed with the microbroth dilution method showed its resistance to ampicillin, cefotaxime, ceftazidime, ciprofloxacin, and nalidixic acid. The whole-genome sequence was reconstructed using short and long reads and assembled into the complete chromosome and three plasmids: IncI1 pST113 (89,439 bp), Col(pHAD28) (2699 bp), and Col440 (2495 bp). The strain belonged to sequence type ST413. Plasmid analysis showed blaCTX-M-8 mobilization on IncI1(alpha) surrounded with insertion sequences. The analyzed genome content draws attention to the possibility of the horizontal spread of the resistance genes. To the best of our knowledge, this is the first report of blaCTX-M-8-positive Salmonella in Poland.
Collapse
Affiliation(s)
- Magdalena Zając
- Department of Microbiology, National Veterinary Research Institute, 24-100 Pulawy, Poland; (M.S.); (A.L.); (D.W.)
| | - Magdalena Skarżyńska
- Department of Microbiology, National Veterinary Research Institute, 24-100 Pulawy, Poland; (M.S.); (A.L.); (D.W.)
| | - Anna Lalak
- Department of Microbiology, National Veterinary Research Institute, 24-100 Pulawy, Poland; (M.S.); (A.L.); (D.W.)
| | - Ewelina Iwan
- Department of Omics Analyses, National Veterinary Research Institute, 24-100 Pulawy, Poland;
| | - Dariusz Wasyl
- Department of Microbiology, National Veterinary Research Institute, 24-100 Pulawy, Poland; (M.S.); (A.L.); (D.W.)
| |
Collapse
|
8
|
Zhao J, Feng T, An X, Chen X, Han N, Wang J, Chang G, Hou X. Livestock grazing is associated with the gut microbiota and antibiotic resistance genes in sympatric plateau pika (Ochotona curzoniae). Integr Zool 2024; 19:646-661. [PMID: 37828802 DOI: 10.1111/1749-4877.12778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
With the overuse of antibiotics in health care and animal husbandry, antibiotic resistance becomes a serious threat to public health. Antibiotic residues from veterinary medicine have increased the dissemination of antibiotic resistance genes (ARGs) by horizontal gene transfer globally, leading to the enrichment of ARGs in wildlife. Plateau pika (Ochotona curzoniae) is a small herbivore endemic to the Qinghai-Tibetan Plateau. Previous studies reveal that pika evolves a coprophagy behavior toward cohabitated yak, which makes the pika population a potential reservoir of ARGs. Yet, little is known about the resistome of pika under different grazing intensities. Here, we sampled the cecum content of pika from three different grazing intensity areas in the Qinghai-Tibetan Plateau to evaluate the effect of grazing on its gut microbiota and resistome. By using the 16S full-length amplicon and metagenomic sequencing, our study revealed that livestock grazing significantly altered the gut microbial community of plateau pika as compared to prohibited grazing areas. We found bacterial lineage Prevotellaceae, Lachnospirales, and RF39 increased in grazing areas. Analysis of the resistome revealed that pika from continuous grazing areas enriched a higher abundance of colistin (MCR) and streptogramin (vat) resistance genes. Moreover, we observed significant correlations between the gut microbial community, ARGs, and mobile genetic element profiles, hinting that pika gut microbiota was an important shaping force of the resistome. In future studies, the continuous monitoring of wildlife gut resistome and environmental antibiotic residues is imperative for a better understanding and for tackling the horizontal gene transfer of ARGs across the wildlife-livestock interface.
Collapse
Affiliation(s)
- Jidong Zhao
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi'an, P. R. China
| | - Tuo Feng
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi'an, P. R. China
| | - Xiaolei An
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi'an, P. R. China
| | - Xiaoning Chen
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi'an, P. R. China
| | - Ning Han
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi'an, P. R. China
| | - Jing Wang
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi'an, P. R. China
| | - Gang Chang
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi'an, P. R. China
| | - Xiang Hou
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi'an, P. R. China
| |
Collapse
|
9
|
Glushakova A, Kachalkin A. Wild and partially synanthropic bird yeast diversity, in vitro virulence, and antifungal susceptibility of Candida parapsilosis and Candida tropicalis strains isolated from feces. Int Microbiol 2024; 27:883-897. [PMID: 37874524 DOI: 10.1007/s10123-023-00437-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/20/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
Yeast complexes in the fecal samples of wild (Dendrocopos major, Picus viridis) and partially synanthropic (Bombycilla garrulus, Garrulus glandarius, Pica pica, and Pyrrhula pyrrhula) birds were studied in a forest ecosystem during winter. A total of 18 yeast species were identified: 16 ascomycetes and two basidiomycetes belonging to five subphyla of fungi: Saccharomycotina (15), Pezizomycotina (1), Agaricomycotina (1), and Pucciniomycotina (1). Most yeast species were found in the fecal samples of P. pyrrhula (Candida parapsilosis, C. zeylanoides, Debaryomyces hansenii, Hanseniaspora uvarum, Metschnikowia pulcherrima, Meyerozyma carpophila, M. guilliermondii, Rhodotorula mucilaginosa); the lowest number of yeast species was observed in the feces of B. garrulus (C. parapsilosis, C. zeylanoides, Met. pulcherrima, and Rh. mucilaginosa). The opportunistic species of the genus Candida were found only in feces of partially synanthropic birds: C. parapsilosis was observed in the feces of B. garrulus, G. glandarius, P. pica, and P. pyrrhula; its relative abundance was 69.3%, 49.1%, 10.5%, and 1.1%, respectively; C. tropicalis was observed in the feces of P. pica and G. glandarius; its relative abundance was 54.6% and 7.1%, respectively. Strains of C. parapsilosis and C. tropicalis isolated from the feces of partially synanthropic birds were evaluated for their susceptibility to conventional antifungal agents (fluconazole, voriconazole, amphotericin B) and hydrolytic activity. A total of 160 strains were studied. Resistance to fluconazole was detected in 86.8% of C. parapsilosis strains and in 87% of C. tropicalis strains; resistance to voriconazole was detected in 71.7% of C. parapsilosis and in 66.7% of C. tropicalis strains, and the lowest percentage of resistant strains was detected to amphotericin B, 2.8% and 3.7% in C. parapsilosis and C. tropicalis strains, respectively. Multiresistance was detected in one strain of C. parapsilosis isolated from P. pica feces and in one strain of C. tropicalis isolated from G. glandarius feces. Phospholipase and hemolysin activities in the strains of C. parapsilosis were low (mean Pz values of 0.93 and 0.91, respectively); protease activity was moderate (mean Pz value of 0.53). The ability to produce hydrolytic enzymes was higher in the isolated strains of C. tropicalis. The mean Pz values of phospholipase and hemolysin activities were moderate (mean Pz values of 0.63 and 0.60, respectively), whereas protease activity was high (mean Pz value of 0.32). Thus, wild and partially synanthropic birds play an important role in disseminating of various yeast species. These yeasts can enter the topsoil via feces and contribute to the formation of allochthonous and uneven soil yeast diversity in natural ecosystems. In addition, partially synanthropic birds can be vectors of virulent strains of opportunistic Candida species from urban environments to natural biotopes.
Collapse
Affiliation(s)
- Anna Glushakova
- Soil Science Faculty, Lomonosov Moscow State University, 119991, Moscow, Russia.
- I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, 105064, Russia.
| | - Aleksey Kachalkin
- Soil Science Faculty, Lomonosov Moscow State University, 119991, Moscow, Russia
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of RAS, Pushchino, 142290, Russia
| |
Collapse
|
10
|
Sacristán-Soriano O, Jarma D, Sánchez MI, Romero N, Alonso E, Green AJ, Sànchez-Melsió A, Hortas F, Balcázar JL, Peralta-Sánchez JM, Borrego CM. Winged resistance: Storks and gulls increase carriage of antibiotic resistance by shifting from paddy fields to landfills. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169946. [PMID: 38199372 DOI: 10.1016/j.scitotenv.2024.169946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Waterbirds are vectors for the dissemination of antimicrobial resistance across environments, with some species increasingly reliant on highly anthropized habitats for feeding. However, data on the impact of their feeding habits on the carriage of antibiotic resistance genes (ARGs) are still scarce. To fill this gap, we examined the microbiota (16S rRNA amplicon gene sequencing) and the prevalence of ARG (high-throughput qPCR of 47 genes) in faeces from white storks (Ciconia ciconia) and lesser black-backed gulls (Larus fuscus) feeding in highly (landfill) and less (paddy fields) polluted habitats. Faecal bacterial richness and diversity were higher in gulls feeding upon landfills and showed a greater abundance of potential pathogens, such as Staphylococcus. In contrast, faecal bacterial communities from storks were similar regardless of habitat preferences, maybe due to a less intense habitat use compared to gulls. In addition, birds feeding in the landfill carried a higher burden of ARGs compared to the surrounding soil and surface waters. Network analysis revealed strong correlations between ARGs and potential pathogens, particularly between tetM (resistance to tetracyclines), blaCMY (beta-lactam resistance), sul1 (sulfonamide resistance) and members of the genera Streptococcus, Peptostreptococcus, and Peptoclostridium. Our work demonstrates how transitioning from paddy fields to landfills fosters the carriage of ARGs and potential pathogens in the bird gut, shedding light on the ecological role of these avian vectors in antimicrobial resistance dissemination.
Collapse
Affiliation(s)
| | - Dayana Jarma
- Departamento de Biología de la Conservación y Cambio Global, Estación Biológica de Doñana EBD-CSIC, Avda. Américo Vespucio 26, 41092, Sevilla, Spain; Departamento de Biología, Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, Avda. República Saharaui, s/n, 11510, Puerto Real, Cádiz, Spain.
| | - Marta I Sánchez
- Departamento de Biología de la Conservación y Cambio Global, Estación Biológica de Doñana EBD-CSIC, Avda. Américo Vespucio 26, 41092, Sevilla, Spain
| | - Noelia Romero
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
| | - Esteban Alonso
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/Virgen de África, 7, 41011 Sevilla, Spain
| | - Andy J Green
- Departamento de Biología de la Conservación y Cambio Global, Estación Biológica de Doñana EBD-CSIC, Avda. Américo Vespucio 26, 41092, Sevilla, Spain
| | | | - Francisco Hortas
- Departamento de Biología, Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, Avda. República Saharaui, s/n, 11510, Puerto Real, Cádiz, Spain
| | - José Luis Balcázar
- Institut Català de Recerca de l'Aigua (ICRA), Emili Grahit 101, E-17003 Girona, Spain
| | - Juan Manuel Peralta-Sánchez
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain; Departamento de Zoología, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
| | - Carles M Borrego
- Institut Català de Recerca de l'Aigua (ICRA), Emili Grahit 101, E-17003 Girona, Spain; Grup d'Ecologia Microbiana Molecular, Institut d'Ecologia Aquàtica, Universitat de Girona, Campus de Montilivi, E-17003 Girona, Spain
| |
Collapse
|
11
|
de Lagarde M, Fairbrother JM, Archambault M, Dufour S, Francoz D, Massé J, Lardé H, Aenishaenslin C, Paradis ME, Terrat Y, Roy JP. Clonal and plasmidic dissemination of critical antimicrobial resistance genes through clinically relevant ExPEC and APEC-like lineages (ST) in the dairy cattle population of Québec, Canada. Front Microbiol 2024; 14:1304678. [PMID: 38304859 PMCID: PMC10830774 DOI: 10.3389/fmicb.2023.1304678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/18/2023] [Indexed: 02/03/2024] Open
Abstract
Antimicrobial resistance can be effectively limited by improving the judicious use of antimicrobials in food production. However, its effect on the spread of AMR genes in animal populations is not well described. In the province of Québec, Canada, a new legislation implemented in 2019 has led to an unprecedented reduction in the use of critical antimicrobials in dairy production. We aimed to investigate the potential link between ESBL/AmpC E. coli isolated before and after legislation and to determine the presence of plasmids carrying genes responsible for critical AMR. We collected fecal samples from calves, cows, and manure pit from 87 Québec dairy farms approximately 2 years before and 2 years after the legislation came into effect. The whole genomes of 183 presumptive ESBL/AmpC E. coli isolated after cefotaxime enrichment were sequenced. Their phylogenetic characteristics (MLST, serogroup, cgMLST) and the presence of virulence and resistance genes and replicons were examined. A maximum likelihood phylogenetic tree was constructed based on single nucleotide polymorphism (SNPs). We identified 10 clonal lineages (same cgMLST) and 7 clones (SNPs ≤ 52). Isolates belonging to these clones could be found on different farms before and after the legislation, strongly suggesting a clonal spread of AMR genes in the population during this 4-year period. All isolates were multidrug resistant (MDR), with clone 2 being notable for the presence of macrolide, fluoroquinolone, and third-generation cephalosporin resistance genes. We also identified clinically relevant ExPEC (ST10) and APEC-like lineages (ST117, ST58, ST88) associated with the presence of ExPEC and APEC virulence genes, respectively. Our data also suggests the presence of one epidemic plasmid belonging to the IncY incompatibility group and carrying qnrs1 and blaCTX-M-15. We demonstrated that AMR genes spread through farms and can persist over a 4-year period in the dairy cattle population through both plasmids and E. coli clones, despite the restriction of critical antimicrobial use. MDR ExPEC and APEC-like STs are present in the normal microbiota of cattle (more frequently in calves). These data increase our knowledge on gene dissemination dynamics and highlight the fact that biosecurity measures should be enhanced in this industry to limit such dissemination.
Collapse
Affiliation(s)
- Maud de Lagarde
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Regroupement Front de Recherche du Québec – Nature et Technologie (FRQNT) Op+lait, Saint-Hyacinthe, QC, Canada
| | - John Morris Fairbrother
- World Organization of Animal Health Reference Laboratory for Escherichia coli, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Swine and Poultry Infectious Diseases Research Center (CRIPA-FQRNT), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Marie Archambault
- Regroupement Front de Recherche du Québec – Nature et Technologie (FRQNT) Op+lait, Saint-Hyacinthe, QC, Canada
- Swine and Poultry Infectious Diseases Research Center (CRIPA-FQRNT), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Simon Dufour
- Regroupement Front de Recherche du Québec – Nature et Technologie (FRQNT) Op+lait, Saint-Hyacinthe, QC, Canada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - David Francoz
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Regroupement Front de Recherche du Québec – Nature et Technologie (FRQNT) Op+lait, Saint-Hyacinthe, QC, Canada
| | - Jonathan Massé
- Regroupement Front de Recherche du Québec – Nature et Technologie (FRQNT) Op+lait, Saint-Hyacinthe, QC, Canada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Hélène Lardé
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Regroupement Front de Recherche du Québec – Nature et Technologie (FRQNT) Op+lait, Saint-Hyacinthe, QC, Canada
- Department of Clinical Sciences, Ross University School of Veterinary Medicine, St. Kitts, St. Kitts and Nevis
| | - Cécile Aenishaenslin
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Groupe de Recherche en Épidémiologie des Zoonoses et Santé Publique, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Centre de recherche en santé publique de l’Université de Montréal et du Centre Intégré Universitaire de Santé et de Service Sociaux (CIUSSS) du Centre-Sud-de-l’Île-de-Montréal, Montréal, QC, Canada
| | - Marie-Eve Paradis
- Association des médecins vétérinaires praticiens du Québec, Saint-Hyacinthe, QC, Canada
| | - Yves Terrat
- Consortium Santé Numérique de l’Université de Montréal, Montréal, QC, Canada
| | - Jean-Philippe Roy
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Regroupement Front de Recherche du Québec – Nature et Technologie (FRQNT) Op+lait, Saint-Hyacinthe, QC, Canada
| |
Collapse
|
12
|
Smoglica C, Graziosi G, De Angelis D, Lupini C, Festino A, Catelli E, Vergara A, Di Francesco CE. Wild Birds as Drivers of Salmonella Braenderup and Multidrug Resistant Bacteria in Wetlands of Northern Italy. Transbound Emerg Dis 2024; 2024:6462849. [PMID: 40303189 PMCID: PMC12016999 DOI: 10.1155/2024/6462849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/27/2023] [Accepted: 12/27/2023] [Indexed: 05/02/2025]
Abstract
In this study, the antimicrobial resistance profiles of bacterial strains obtained from wild avian species recovered in wetlands of Northern Italy were described. Cloacal swabs collected from 67 aquatic birds, hunted or found dead in two private hunting grounds, were submitted to microbiological investigations and antimicrobial susceptibility testing using the Vitek 2 system, while specific PCR protocols were applied to screen for genes associated with the resistance. One hundred fifty-seven bacterial strains were characterized. The most frequent isolates were Enterococcus faecalis (36/157; 22.9%) and Escherichia coli (23/157; 14.6%). Seventy-seven isolates (77/157; 49%) were resulted resistant to at least one antibiotic, and eight isolates (8/157; 5%) were classified as multidrug resistant bacteria. Resistance for critically important antibiotics (linezolid, vancomycin, carbapenems, third-generation cephalosporins, and fluoroquinolones) was also described. Salmonella spp. was obtained from a Eurasian teal (Anas crecca), and it was subsequently analyzed by whole genome sequencing, revealing the serovar Salmonella Braenderup ST22. The phylogenetic analysis, performed with all ST22 described in 2021 and 2022, placed the strain under study in a large clade associated with human salmonellosis cases. These results suggest that migratory aquatic birds may be considered as relevant carriers of critically important antibiotic resistant bacteria and zoonotic food-borne pathogens potentially able to impact public health.
Collapse
Affiliation(s)
- Camilla Smoglica
- Department of Veterinary Medicine, University of Teramo, Piano D'Accio, Teramo 64100, Italy
| | - Giulia Graziosi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Damiano De Angelis
- Department of Veterinary Medicine, University of Teramo, Piano D'Accio, Teramo 64100, Italy
| | - Caterina Lupini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Annarita Festino
- Department of Veterinary Medicine, University of Teramo, Piano D'Accio, Teramo 64100, Italy
| | - Elena Catelli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Alberto Vergara
- Department of Veterinary Medicine, University of Teramo, Piano D'Accio, Teramo 64100, Italy
| | | |
Collapse
|
13
|
Moura Q, Fernandes MR, Sellera FP, Cardoso B, Nascimento CL, Dutra GHP, Lincopan N. Genomic Features of an MDR Escherichia coli ST5506 Harboring an IncHI2/In 229/ blaCTX-M-2 Array Isolated from a Migratory Black Skimmer. Pathogens 2024; 13:63. [PMID: 38251370 PMCID: PMC10821149 DOI: 10.3390/pathogens13010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/25/2023] [Accepted: 12/05/2023] [Indexed: 01/23/2024] Open
Abstract
Migratory birds have contributed to the dissemination of multidrug-resistant (MDR) bacteria across the continents. A CTX-M-2-producing Escherichia coli was isolated from a black skimmer (Rynchops niger) in Southeast Brazil. The whole genome was sequenced using the Illumina NextSeq platform and de novo assembled by CLC. Bioinformatic analyses were carried out using tools from the Center for Genomic Epidemiology. The genome size was estimated at 4.9 Mb, with 4790 coding sequences. A wide resistome was detected, with genes encoding resistance to several clinically significant antimicrobials, heavy metals, and biocides. The blaCTX-M-2 gene was inserted in an In229 class 1 integron inside a ∆TnAs3 transposon located in an IncHI2/ST2 plasmid. The strain was assigned to ST5506, CH type fumC19/fimH32, serotype O8:K87, and phylogroup B1. Virulence genes associated with survival in acid conditions, increased serum survival, and adherence were also identified. These data highlight the role of migratory seabirds as reservoirs and carriers of antimicrobial resistance determinants and can help to elucidate the antimicrobial resistance dynamics under a One Health perspective.
Collapse
Affiliation(s)
- Quézia Moura
- Federal Institute of Espírito Santo, Vila Velha 29106-010, Brazil
- Postgraduate Program in Infectious Diseases, Federal University of Espírito Santo, Vitória 29047-105, Brazil
| | - Miriam R. Fernandes
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-9760, USA;
| | - Fábio P. Sellera
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil;
- School of Veterinary Medicine, Metropolitan University of Santos, Santos 11045-002, Brazil
| | - Brenda Cardoso
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil;
- One Health Brazilian Resistance Project (OneBR), São Paulo 05508-000, Brazil
| | | | - Gustavo H. P. Dutra
- Veterinary Unit of Santos Aquarium, Santos 11030-600, Brazil; (C.L.N.); (G.H.P.D.)
| | - Nilton Lincopan
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil;
- One Health Brazilian Resistance Project (OneBR), São Paulo 05508-000, Brazil
- Department of Clinical Analysis, Faculty of Pharmacy, University of São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
14
|
Ahmed NA, Gulhan T. Determination of antibiotic resistance patterns and genotypes of Escherichia coli isolated from wild birds. MICROBIOME 2024; 12:8. [PMID: 38191447 PMCID: PMC10773086 DOI: 10.1186/s40168-023-01729-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/21/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Curbing the potential negative impact of antibiotic resistance, one of our era's growing global public health crises, requires regular monitoring of the resistance situations, including the reservoir of resistance genes. Wild birds, a possible bioindicator of antibiotic resistance, have been suggested to play a role in the dissemination of antibiotic-resistant bacteria. Therefore, this study was conducted with the objective of determining the phenotypic and genotypic antibiotic resistance profiles of 100 Escherichia coli isolates of gull and pigeon origin by using the Kirby-Bauer disk diffusion method and PCR. Furthermore, the genetic relationships of the isolates were determined by RAPD-PCR. RESULTS Phenotypic antibiotic susceptibility testing revealed that 63% (63/100) and 29% (29/100) of E. coli isolates were resistant to at least one antibiotic and multidrug-resistant (MDR), respectively. With the exception of cephalothin, to which the E. coli isolates were 100% susceptible, tetracycline (52%), kanamycin (38%), streptomycin (37%), ampicillin (28%), chloramphenicol (21%), trimethoprim/sulfamethoxazole (19%), gentamicin (13%), enrofloxacin (12%) and ciprofloxacin (12%) resistances were detected at varying degrees. Among the investigated resistance genes, tet(B) (66%), tet(A) (63%), aphA1 (48%), sul3 (34%), sul2 (26%), strA/strB (24%) and sul1 (16%) were detected. Regarding the genetic diversity of the isolates, the RAPD-PCR-based dendrograms divided both pigeon and gull isolates into five different clusters based on a 70% similarity threshold. Dendrogram analysis revealed 47-100% similarities among pigeon-origin strains and 40-100% similarities among gull-origin E.coli strains. CONCLUSIONS This study revealed that gulls and pigeons carry MDR E. coli isolates, which may pose a risk to animal and human health by contaminating the environment with their feces. However, a large-scale epidemiological study investigating the genetic relationship of the strains from a "one health" point of view is warranted to determine the possible transmission patterns of antibiotic-resistant bacteria between wild birds, the environment, humans, and other hosts. Video Abstract.
Collapse
Affiliation(s)
- Nejash A Ahmed
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey.
- Daro Lebu District Agriculture Office, Mechara-Micheta, Ethiopia.
| | - Timur Gulhan
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
15
|
Shahzad S, Willcox MDP, Rayamajhee B. A Review of Resistance to Polymyxins and Evolving Mobile Colistin Resistance Gene ( mcr) among Pathogens of Clinical Significance. Antibiotics (Basel) 2023; 12:1597. [PMID: 37998799 PMCID: PMC10668746 DOI: 10.3390/antibiotics12111597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/26/2023] [Accepted: 11/04/2023] [Indexed: 11/25/2023] Open
Abstract
The global rise in antibiotic resistance in bacteria poses a major challenge in treating infectious diseases. Polymyxins (e.g., polymyxin B and colistin) are last-resort antibiotics against resistant Gram-negative bacteria, but the effectiveness of polymyxins is decreasing due to widespread resistance among clinical isolates. The aim of this literature review was to decipher the evolving mechanisms of resistance to polymyxins among pathogens of clinical significance. We deciphered the molecular determinants of polymyxin resistance, including distinct intrinsic molecular pathways of resistance as well as evolutionary characteristics of mobile colistin resistance. Among clinical isolates, Acinetobacter stains represent a diversified evolution of resistance, with distinct molecular mechanisms of intrinsic resistance including naxD, lpxACD, and stkR gene deletion. On the other hand, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa are usually resistant via the PhoP-PhoQ and PmrA-PmrB pathways. Molecular evolutionary analysis of mcr genes was undertaken to show relative relatedness across the ten main lineages. Understanding the molecular determinants of resistance to polymyxins may help develop suitable and effective methods for detecting polymyxin resistance determinants and the development of novel antimicrobial molecules.
Collapse
Affiliation(s)
- Shakeel Shahzad
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia;
| | - Mark D. P. Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia;
| | | |
Collapse
|
16
|
Zhang S, Guo X, Wang Y, Zhong Z, Wang M, Jia R, Chen S, Liu M, Zhu D, Zhao X, Wu Y, Yang Q, Huang J, Ou X, Mao S, Gao Q, Sun D, Tian B, Cheng A. Implications of different waterfowl farming on cephalosporin resistance: Investigating the role of bla CTX-M-55. Poult Sci 2023; 102:102929. [PMID: 37562134 PMCID: PMC10432832 DOI: 10.1016/j.psj.2023.102929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 08/12/2023] Open
Abstract
We investigated the cephalosporin resistance of Escherichia coli from waterfowl among different breeding mode farms. In 2021, we isolated 200 strains of E. coli from waterfowl feces samples collected from Sichuan, Heilongjiang, and Anhui provinces. The key findings are: Out of the 200 strains, 80, 80, and 40 strains were isolated from waterfowl feces samples in intensive, courtyard, and outdoor breeding mode farms, respectively. The overall positive rate of the ESBL phenotype, detecting by the double disk diffusion method, was 68.00% (136/200). In particular, the rates for intensive, courtyard, and outdoor breeding modes were 98.75%, 36.25%, and 70.00%, respectively. Results of MIC test showed drug resistance rates in the intensive breeding mode: 100.00% for cephalothin, 38.75% for cefoxitin, 100.00% for cefotaxime, and 100.00% for cefepime. In courtyard breeding mode, the corresponding rates were 100.00%, 40.00%, 63.75%, and 45.00%, respectively. In outdoor breeding mode, the corresponding rates were 100.00%, 52.50%, 82.50%, and 77.50%, respectively. The PCR results for blaCTX-M, blaTEM, blaOXA, and blaSHV showed the detection rate of blaCTX-M was highest at 75.50%, with blaCTX-M-55 is the main subtype gene, followed by blaTEM at 73.50%. We screened 58 donor strains carrying blaCTX-M-55, including 52 strains from the intensive breeding mode. These donor bacteria can transfer different plasmids to recipient E. coli J53, resulting in recipient bacteria acquiring cephalosporin resistance, and the conjugational transfer frequency ranged from 1.01 × 10-5 to 6.56 × 10-2. The transferred plasmids remained stable in recipient bacteria for up to several days without significant adaptation costs observed. During molecular typing of E. coli with conjugational transfer ability, the blaCTX-M-55 was found to be widely present in different ST strains with several phylogenetic groups. In summary, cephalosporin resistance of E. coli carried by waterfowl birds in intensive breeding mode farm was significantly higher than in courtyard and outdoor mode farms. The blaCTX-M-55 subtype gene was the prevalent ARGs and can be horizontally transferred through plasmids, which plays a key role in the spread of cephalosporin drug resistance.
Collapse
Affiliation(s)
- Shaqiu Zhang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu 611130, P.R. China
| | - Xiangyuan Guo
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Yuwei Wang
- Mianyang Academy of Agricultural Sciences, Mianyang 621023, P.R. China
| | - Zhijun Zhong
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu 611130, P.R. China
| | - Mingshu Wang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu 611130, P.R. China
| | - Renyong Jia
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu 611130, P.R. China
| | - Shun Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu 611130, P.R. China
| | - Mafeng Liu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu 611130, P.R. China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu 611130, P.R. China
| | - Xinxin Zhao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu 611130, P.R. China
| | - Ying Wu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu 611130, P.R. China
| | - Qiao Yang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu 611130, P.R. China
| | - Juan Huang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu 611130, P.R. China
| | - Xumin Ou
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu 611130, P.R. China
| | - Sai Mao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu 611130, P.R. China
| | - Qun Gao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu 611130, P.R. China
| | - Di Sun
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu 611130, P.R. China
| | - Bin Tian
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu 611130, P.R. China
| | - Anchun Cheng
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu 611130, P.R. China.
| |
Collapse
|
17
|
Sakaguchi K, Tanabe M, Takizawa S, Kasahara S, Denda T, Koide S, Hayashi W, Nagano Y, Nagano N. Zoonotic potential and antimicrobial resistance of Escherichia spp. in urban crows in Japan-first detection of E. marmotae and E. ruysiae. Comp Immunol Microbiol Infect Dis 2023; 100:102040. [PMID: 37619490 DOI: 10.1016/j.cimid.2023.102040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023]
Abstract
Little is known about the prevalence of antimicrobial-resistant bacteria and pathogenic Escherichia coli in crows (carrion and jungle crows). We studied the phylogeny, virulence and antimicrobial resistance gene profiles of crow E. coli isolates to investigate their zoonotic potential and molecular epidemiology. During the winter of 2021-2022, 34 putative E. coli isolates were recovered from 27 of the 65 fresh fecal samples collected in urban areas. Three strains of the B1-O88:H8-ST446-fimH54 lineage, classified as extraintestinal pathogenic E. coli (ExPEC) and necrotoxigenic E. coli type 2, were colistin-resistant and harbored mcr-1.1-carrying IncI2 plasmids. The blaCTX-M-55 was identified in a multidrug-resistant B1-O non-typeable:H23-ST224-fimH39 strain. In phylogroup B2, two lineages of O6:H1-ST73-fimH30 and O6:H5-ST83-fimH21 were classified as ExPEC, uropathogenic E. coli, and necrotoxigenic E. coli type 1 (O6:H5-ST83-fimH21), and contained several virulence genes associated with avian pathogenic E. coli. Noteworthy is that three isolates, identified as E. coli by MALDI-TOF MS, were confirmed to be two Escherichia marmotae (cryptic clade V) and one Escherichia ruysiae (cryptic clade III) based on ANI and dDDH analyses. Our results provide the first evidence of these new species in crows. E. marmotae and E. ruysiae isolates in this study were classified as ExPEC and contained the enteroaggregative E. coli heat-stable toxin 1 gene. In addition, these two E. marmotae isolates displayed a close genetic relationship with human isolates associated with septicemia. This study provides the first insights into the prevalence and zoonotic significance of Escherichia spp. in urban crows in Japan, posing a significant risk for their transmission to humans.
Collapse
Affiliation(s)
- Kanae Sakaguchi
- Department of Health and Medical Sciences, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Mizuki Tanabe
- Department of Health and Medical Sciences, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Shino Takizawa
- Department of Health and Medical Sciences, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Satoe Kasahara
- Suwa Hydrobiological Station, Faculty of Science, Shinshu University, 5-2-4 Kogan-dori, Suwa, Nagano 392-0027, Japan
| | - Tomohiro Denda
- Department of Health and Medical Sciences, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Shota Koide
- Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Wataru Hayashi
- Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Yukiko Nagano
- Department of Health and Medical Sciences, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Noriyuki Nagano
- Department of Health and Medical Sciences, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan.
| |
Collapse
|
18
|
Mitchell J. Antimicrobial resistance (AMR) as a form of human-wildlife conflict: Why and how nondomesticated species should be incorporated into AMR guidance. Ecol Evol 2023; 13:e10421. [PMID: 37664497 PMCID: PMC10468991 DOI: 10.1002/ece3.10421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
The challenge of antimicrobial resistance (AMR) continues to receive significant global attention as common infections become increasingly resistant to the drugs used to treat them. Once an infectious microbe has developed a mechanism of resistance, it can cause longer, more damaging infections which are more costly, time-consuming, and sometimes impossible to treat. Such impacts occur across the health of humans, animals, plants, and the environment. Thus, AMR is considered a One Health issue. However, current narratives on AMR focus on humans, food-producing animals, crops, and their immediate environments. Very little attention is given to wildlife in terms of the impact of AMR on their health, nor their role in the evolution and spread of AMR. This article (1) discusses an absence of wildlife in current AMR guidance, (2) suggests how this absence of wildlife could limit understanding of, and action on, AMR, (3) proposes that considering AMR as a form of human-wildlife conflict could enable AMR guidance to better incorporate wildlife into action planning and create a truly One Health approach to tackle AMR.
Collapse
Affiliation(s)
- Jessica Mitchell
- Nuffield Centre for International Health and Development, Leeds Institute for Health Sciences, Faculty of Medicine and HealthUniversity of LeedsLeedsUK
| |
Collapse
|
19
|
Tarabai H, Krejci S, Karyakin I, Bitar I, Literak I, Dolejska M. Clinically relevant antibiotic resistance in Escherichia coli from black kites in southwestern Siberia: a genetic and phenotypic investigation. mSphere 2023; 8:e0009923. [PMID: 37310717 PMCID: PMC10449506 DOI: 10.1128/msphere.00099-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/27/2023] [Indexed: 06/14/2023] Open
Abstract
Wild birds including raptors can act as vectors of clinically relevant bacteria with antibiotic resistance. The aim of this study was to investigate the occurrence of antibiotic-resistant Escherichia coli in black kites (Milvus migrans) inhabiting localities in proximity to human-influenced environments in southwestern Siberia and investigate their virulence and plasmid contents. A total of 51 E. coli isolates mostly with multidrug resistance (MDR) profiles were obtained from cloacal swabs of 35 (64%, n = 55) kites. Genomic analyses of 36 whole genome sequenced E. coli isolates showed: (i) high prevalence and diversity of their antibiotic resistance genes (ARGs) and common association with ESBL/AmpC production (27/36, 75%), (ii) carriage of mcr-1 for colistin resistance on IncI2 plasmids in kites residing in proximity of two large cities, (iii) frequent association with class one integrase (IntI1, 22/36, 61%), and (iv) presence of sequence types (STs) linked to avian-pathogenic (APEC) and extra-intestinal pathogenic E. coli (ExPEC). Notably, numerous isolates had significant virulence content. One E. coli with APEC-associated ST354 carried qnrE1 encoding fluoroquinolone resistance on IncHI2-ST3 plasmid, the first detection of such a gene in E. coli from wildlife. Our results implicate black kites in southwestern Siberia as reservoirs for antibiotic-resistant E. coli. It also highlights the existing link between proximity of wildlife to human activities and their carriage of MDR bacteria including pathogenic STs with significant and clinically relevant antibiotic resistance determinants. IMPORTANCE Migratory birds have the potential to acquire and disperse clinically relevant antibiotic-resistant bacteria (ARB) and their associated antibiotic resistance genes (ARGs) through vast geographical regions. The opportunistic feeding behavior associated with some raptors including black kites and the growing anthropogenic influence on their natural habitats increase the transmission risk of multidrug resistance (MDR) and pathogenic bacteria from human and agricultural sources into the environment and wildlife. Thus, monitoring studies investigating antibiotic resistance in raptors may provide essential data that facilitate understanding the fate and evolution of ARB and ARGs in the environment and possible health risks for humans and animals associated with the acquisition of these resistance determinants by wildlife.
Collapse
Affiliation(s)
- Hassan Tarabai
- Central European Institute of Technology (CEITEC), University of Veterinary Sciences, Brno, Czech Republic
- Department of Parasitology, Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Simon Krejci
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czech Republic
| | | | - Ibrahim Bitar
- Biomedical Center, Charles University, Prague, Czech Republic
| | - Ivan Literak
- Central European Institute of Technology (CEITEC), University of Veterinary Sciences, Brno, Czech Republic
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czech Republic
| | - Monika Dolejska
- Central European Institute of Technology (CEITEC), University of Veterinary Sciences, Brno, Czech Republic
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czech Republic
- Biomedical Center, Charles University, Prague, Czech Republic
- Department of Clinical Microbiology and Immunology, Institute of Laboratory Medicine, The University Hospital, Brno, Czech Republic
| |
Collapse
|
20
|
Furmanek-Blaszk B, Sektas M, Rybak B. High Prevalence of Plasmid-Mediated Quinolone Resistance among ESBL/AmpC-Producing Enterobacterales from Free-Living Birds in Poland. Int J Mol Sci 2023; 24:12804. [PMID: 37628984 PMCID: PMC10454011 DOI: 10.3390/ijms241612804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
In this study, we investigated the occurrence of plasmid-mediated quinolone resistance (PMQR) in extended-spectrum β-lactamase- (ESBL) and/or AmpC-type β-lactamase-producing Enterobacterales isolates from free-living birds in Poland. The prevalence of the qnrB19 gene was 63%, and the distribution of isolates in terms of bacterial species was as follows: 67% (22/33) corresponded to Escherichia coli, 83% (5/6) to Rahnella aquatilis, 44% (4/9) to Enterobacter cloacae and 33% (1/3) to Klebsiella pneumoniae. The qnrB19 gene was also found in a single isolate of Citrobacter freundii. The molecular characteristics of qnrB19-positive isolates pointed to extended-spectrum beta lactamase CTX-M as the most prevalent one (89%) followed by TEM (47%), AmpC (37%) and SHV (16%). This study demonstrates the widespread occurrence of PMQR-positive and ESBL/AmpC-producing Enterobacterales isolates in fecal samples from wild birds. In this work, plasmid pAM1 isolated from Escherichia coli strain SN25556 was completely sequenced. This plasmid is 3191 nucleotides long and carries the qnrB19 gene, which mediates decreased susceptibility to quinolones. It shares extensive homology with other previously described small qnrB19-harboring plasmids. The nucleotide sequence of pAM1 showed a variable region flanked by an oriT locus and a Xer recombination site. The presence of a putative recombination site was detected, suggesting that interplasmid recombination events might have played a role in the development of pAM1. Our results highlight the broad geographical spread of ColE-type Qnr resistance plasmids in clinical and environmental isolates of Enterobacterales. As expected from the results of phenotypic susceptibility testing, no resistance genes other than qnrB19 were identified.
Collapse
Affiliation(s)
- Beata Furmanek-Blaszk
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland;
| | - Marian Sektas
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland;
| | - Bartosz Rybak
- Department of Environmental Toxicology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Debowa Str. 23A, 80-204 Gdansk, Poland;
| |
Collapse
|
21
|
Ibrahim GA, Salah-Eldein AM, Al-Zaban MI, El-Oksh ASA, Ahmed EM, Farid DS, Saad EM. Monitoring the genetic variation of some Escherichia coli strains in wild birds and cattle. Onderstepoort J Vet Res 2023; 90:e1-e10. [PMID: 37526530 PMCID: PMC10483432 DOI: 10.4102/ojvr.v90i1.2085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 08/02/2023] Open
Abstract
To date, there is limited data about the genetic relationship of Escherichia coli between wild birds and cattle because these birds act as silent vectors for many zoonotic bacteria. This study aimed to elucidate the role of rooming wild birds in the vicinity of cattle farm in transmission of the same pathogenic E. coli variants, identifying their virulence, resistance traits and genetic similarities of fimH virulence gene. About 240 faecal/cloacal swabs were collected from both species and examined bacteriologically. Escherichia coli was yielded in 45.8% and 32.5%, respectively, of examined cattle and wild birds. The most prevalent detected E. coli serovar was O26. High tetracycline and chloramphenicol resistance were recorded; however, gentamycin and ciprofloxacin exhibited the highest sensitivity rates. Polymerase chain reaction (PCR) conserved genotypic resistance (tetA and blaCTX-M) and virulence attributes (fimH, stx1, eaeA and ompA) of E. coli isolates were discussed in detail. The fimH gene revealed 100% sequence similarity when comparing with different E. coli isolates globally and locally. Finally, a close genetic association of E. coli with both wild birds and cattle was detected, thus strengthening its role in the dissemination of the infection via environment. Prevention and conservative policy should be carried as E. coli constitute enormous significant zoonotic risks to livestock and animal workers. Also, further studies to the whole genome sequencing of fimH, other virulence and resistance genes of E. coli are recommended trying to limit the possibilities of co-infection and transfer among different species.Contribution: The current study recorded updated data about the critical infectious role of wild birds to livestock, including cattle farms in Egypt. It also delivered some recommendations for good hygienic practices in cattle farms which must be implemented for handling animal manure.
Collapse
Affiliation(s)
- Ghada A Ibrahim
- Bacteriology Department, Agriculture Research Center (ARC), Animal Health Research Institute, Ismailia.
| | | | | | | | | | | | | |
Collapse
|
22
|
Mattioni Marchetti V, Hrabak J, Bitar I. Fosfomycin resistance mechanisms in Enterobacterales: an increasing threat. Front Cell Infect Microbiol 2023; 13:1178547. [PMID: 37469601 PMCID: PMC10352792 DOI: 10.3389/fcimb.2023.1178547] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/31/2023] [Indexed: 07/21/2023] Open
Abstract
Antimicrobial resistance is well-known to be a global health and development threat. Due to the decrease of effective antimicrobials, re-evaluation in clinical practice of old antibiotics, as fosfomycin (FOS), have been necessary. FOS is a phosphonic acid derivate that regained interest in clinical practice for the treatment of complicated infection by multi-drug resistant (MDR) bacteria. Globally, FOS resistant Gram-negative pathogens are raising, affecting the public health, and compromising the use of the antibiotic. In particular, the increased prevalence of FOS resistance (FOSR) profiles among Enterobacterales family is concerning. Decrease in FOS effectiveness can be caused by i) alteration of FOS influx inside bacterial cell or ii) acquiring antimicrobial resistance genes. In this review, we investigate the main components implicated in FOS flow and report specific mutations that affect FOS influx inside bacterial cell and, thus, its effectiveness. FosA enzymes were identified in 1980 from Serratia marcescens but only in recent years the scientific community has started studying their spread. We summarize the global epidemiology of FosA/C2/L1-2 enzymes among Enterobacterales family. To date, 11 different variants of FosA have been reported globally. Among acquired mechanisms, FosA3 is the most spread variant in Enterobacterales, followed by FosA7 and FosA5. Based on recently published studies, we clarify and represent the molecular and genetic composition of fosA/C2 genes enviroment, analyzing the mechanisms by which such genes are slowly transmitting in emerging and high-risk clones, such as E. coli ST69 and ST131, and K. pneumoniae ST11. FOS is indicated as first line option against uncomplicated urinary tract infections and shows remarkable qualities in combination with other antibiotics. A rapid and accurate identification of FOSR type in Enterobacterales is difficult to achieve due to the lack of commercial phenotypic susceptibility tests and of rapid systems for MIC detection.
Collapse
Affiliation(s)
- Vittoria Mattioni Marchetti
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czechia
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czechia
- Unit of Microbiology and Clinical Microbiology, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Jaroslav Hrabak
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czechia
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czechia
| | - Ibrahim Bitar
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czechia
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czechia
| |
Collapse
|
23
|
Massé J, Vanier G, Fairbrother JM, de Lagarde M, Arsenault J, Francoz D, Dufour S, Archambault M. Description of Antimicrobial-Resistant Escherichia coli and Their Dissemination Mechanisms on Dairy Farms. Vet Sci 2023; 10:vetsci10040242. [PMID: 37104397 PMCID: PMC10144642 DOI: 10.3390/vetsci10040242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/28/2023] Open
Abstract
Despite its importance in veterinary medicine, there is little information about antimicrobial resistance (AMR) and its transmission in dairy cattle. The aim of this work is to compare AMR phenotypes and genotypes in resistant Escherichia coli and to determine how the resistance genes spread among the E. coli population on dairy farms in Québec, Canada. From an existing culture collection of E. coli isolated from dairy manure, a convenient selection of the most resistant isolates (a high level of multidrug resistance or resistance to broad-spectrum β-lactams or fluoroquinolones) was analyzed (n = 118). An AMR phenotype profile was obtained for each isolate. Whole genome sequencing was used to determine the presence of resistance genes, point mutations, and mobile genetic elements. In addition, a subset of isolates from 86 farms was taken to investigate the phylogenetic relationship and geographic distribution of the isolates. The average agreement between AMR phenotypes and genotypes was 95%. A third-generation cephalosporin resistance gene (blaCTX-M-15), a resistance gene conferring reduced susceptibility to fluoroquinolones (qnrS1), and an insertion sequence (ISKpn19) were detected in the vicinity of each other on the genome. These genes were harbored in one triplet of clonal isolates from three farms located >100 km apart. Our study reveals the dissemination of resistant E. coli clones between dairy farms. Furthermore, these clones are resistant to broad-spectrum β-lactam and fluoroquinolone antimicrobials.
Collapse
Affiliation(s)
- Jonathan Massé
- Regroupement FRQNT Op+lait, Saint-Hyacinthe, QC J2S 2M2, Canada
- Groupe de Recherche sur les Maladies Infectieuses en Production Animale (GREMIP), Saint-Hyacinthe, QC J2S 2M2, Canada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Ghyslaine Vanier
- Groupe de Recherche sur les Maladies Infectieuses en Production Animale (GREMIP), Saint-Hyacinthe, QC J2S 2M2, Canada
- WOAH Reference Laboratory for Escherichia coli, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - John M Fairbrother
- Groupe de Recherche sur les Maladies Infectieuses en Production Animale (GREMIP), Saint-Hyacinthe, QC J2S 2M2, Canada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- WOAH Reference Laboratory for Escherichia coli, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Maud de Lagarde
- Regroupement FRQNT Op+lait, Saint-Hyacinthe, QC J2S 2M2, Canada
- Groupe de Recherche sur les Maladies Infectieuses en Production Animale (GREMIP), Saint-Hyacinthe, QC J2S 2M2, Canada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Julie Arsenault
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - David Francoz
- Regroupement FRQNT Op+lait, Saint-Hyacinthe, QC J2S 2M2, Canada
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Simon Dufour
- Regroupement FRQNT Op+lait, Saint-Hyacinthe, QC J2S 2M2, Canada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Marie Archambault
- Regroupement FRQNT Op+lait, Saint-Hyacinthe, QC J2S 2M2, Canada
- Groupe de Recherche sur les Maladies Infectieuses en Production Animale (GREMIP), Saint-Hyacinthe, QC J2S 2M2, Canada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
24
|
Perestrelo S, Amaro A, Brouwer MSM, Clemente L, Ribeiro Duarte AS, Kaesbohrer A, Karpíšková R, Lopez-Chavarrias V, Morris D, Prendergast D, Pista A, Silveira L, Skarżyńska M, Slowey R, Veldman KT, Zając M, Burgess C, Alvarez J. Building an International One Health Strain Level Database to Characterise the Epidemiology of AMR Threats: ESBL—AmpC Producing E. coli as An Example—Challenges and Perspectives. Antibiotics (Basel) 2023; 12:antibiotics12030552. [PMID: 36978419 PMCID: PMC10044432 DOI: 10.3390/antibiotics12030552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Antimicrobial resistance (AMR) is one of the top public health threats nowadays. Among the most important AMR pathogens, Escherichia coli resistant to extended spectrum cephalosporins (ESC-EC) is a perfect example of the One Health problem due to its global distribution in animal, human, and environmental sources and its resistant phenotype, derived from the carriage of plasmid-borne extended-spectrum and AmpC β-lactamases, which limits the choice of effective antimicrobial therapies. The epidemiology of ESC-EC infection is complex as a result of the multiple possible sources involved in its transmission, and its study would require databases ideally comprising information from animal (livestock, companion, wildlife), human, and environmental sources. Here, we present the steps taken to assemble a database with phenotypic and genetic information on 10,763 ESC-EC isolates retrieved from multiple sources provided by 13 partners located in eight European countries, in the frame of the DiSCoVeR Joint Research project funded by the One Health European Joint Programme (OH-EJP), along with its strengths and limitations. This database represents a first step to help in the assessment of different geographical and temporal trends and transmission dynamics in animals and humans. The work performed highlights aspects that should be considered in future international efforts, such as the one presented here.
Collapse
Affiliation(s)
- Sara Perestrelo
- Department of Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| | - Ana Amaro
- Laboratory of Bacteriology and Micology, National Institute of Agrarian and Veterinary Research, National Reference for Animal Health, 2780-157 Oeiras, Portugal
| | - Michael S. M. Brouwer
- Department of Bacteriology, Host Pathogen Interaction & Diagnostics, Wageningen Bioveterinary Research, Part of Wageningen University & Research, 8221 Lelystad, The Netherlands
| | - Lurdes Clemente
- Laboratory of Bacteriology and Micology, National Institute of Agrarian and Veterinary Research, National Reference for Animal Health, 2780-157 Oeiras, Portugal
| | | | - Annemarie Kaesbohrer
- Department of Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
- Veterinary Public Health and Epidemiology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Renata Karpíšková
- Department of Public Health, Medical Faculty, Masaryk University, 625 000 Brno, Czech Republic
| | | | - Dearbháile Morris
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, H91 TK33 Galway, Ireland
| | - Deirdre Prendergast
- Backweston Laboratory Campus, Department of Agriculture, Food and the Marine, W23 X3PH Celbridge, Ireland
| | - Angela Pista
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Leonor Silveira
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Magdalena Skarżyńska
- Department of Microbiology, National Veterinary Research Institute, 24-100 Pulawy, Poland
| | - Rosemarie Slowey
- Backweston Laboratory Campus, Department of Agriculture, Food and the Marine, W23 X3PH Celbridge, Ireland
| | - Kees T. Veldman
- Department of Bacteriology, Host Pathogen Interaction & Diagnostics, Wageningen Bioveterinary Research, Part of Wageningen University & Research, 8221 Lelystad, The Netherlands
| | - Magdalena Zając
- Department of Microbiology, National Veterinary Research Institute, 24-100 Pulawy, Poland
| | - Catherine Burgess
- Food Safety Department, Teagasc Food Research Centre Ashtown, D15 DY05 Dublin, Ireland
| | - Julio Alvarez
- VISAVET Health Surveillance Centre, Universidad Complutense, 28040 Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad Complutense, Avda. Puerta de Hierro S/N, 28040 Madrid, Spain
- Correspondence:
| |
Collapse
|
25
|
One health clones of multidrug-resistant Escherichia coli carried by synanthropic animals in Brazil. One Health 2022; 16:100476. [PMID: 36691392 PMCID: PMC9860340 DOI: 10.1016/j.onehlt.2022.100476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
WHO priority pathogens have disseminated beyond hospital settings and are now being detected in urban and wild animals worldwide. In this regard, synanthropic animals such as urban pigeons (Columba livia) and rodents (Rattus rattus, Rattus norvegicus and Mus musculus) are of interest to public health due to their role as reservoirs of pathogens that can cause severe diseases. These animals usually live in highly contaminated environments and have frequent interactions with humans, domestic animals, and food chain, becoming sentinels of anthropogenic activities. In this study, we report genomic data of Escherichia coli strains selected for ceftriaxone and ciprofloxacin resistance, isolated from pigeons and black rats. Genomic analysis revealed the occurrence of international clones belonging to ST10, ST155, ST224 and ST457, carrying a broad resistome to beta-lactams, aminoglycosides, trimethoprim/sulfamethoxazole, fluoroquinolones, tetracyclines and/or phenicols. SNP-based phylogenomic investigation confirmed clonal relatedness with high-risk lineages circulating at the human-animal-environmental interface globally. Our results confirm the dissemination of WHO priority CTX-M-positive E. coli in urban rodents and pigeons in Brazil, highlighting potential of these animals as infection sources and hotspot for dissemination of clinically relevant pathogens and their resistance genes, which is a critical issue within a One Health perspective.
Collapse
|
26
|
Emergence and Dissemination of Extraintestinal Pathogenic High-Risk International Clones of Escherichia coli. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122077. [PMID: 36556442 PMCID: PMC9780897 DOI: 10.3390/life12122077] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Multiresistant Escherichia coli has been disseminated worldwide, and it is one of the major causative agents of nosocomial infections. E. coli has a remarkable and complex genomic plasticity for taking up and accumulating genetic elements; thus, multiresistant high-risk clones can evolve. In this review, we summarise all available data about internationally disseminated extraintestinal pathogenic high-risk E. coli clones based on whole-genome sequence (WGS) data and confirmed outbreaks. Based on genetic markers, E. coli is clustered into eight phylogenetic groups. Nowadays, the E. coli ST131 clone from phylogenetic group B2 is the predominant high-risk clone worldwide. Currently, strains of the C1-M27 subclade within clade C of ST131 are circulating and becoming prominent in Canada, China, Germany, Hungary and Japan. The C1-M27 subclade is characterised by blaCTX-M-27. Recently, the ST1193 clone has been reported as an emerging high-risk clone from phylogenetic group B2. ST38 clone carrying blaOXA-244 (a blaOXA-48-like carbapenemase gene) caused several outbreaks in Germany and Switzerland. Further high-risk international E. coli clones include ST10, ST69, ST73, ST405, ST410, ST457. High-risk E. coli strains are present in different niches, in the human intestinal tract and in animals, and persist in environment. These strains can be transmitted easily within the community as well as in hospital settings. WGS analysis is a useful tool for tracking the dissemination of resistance determinants, the emergence of high-risk mulitresistant E. coli clones and to analyse changes in the E. coli population on a genomic level.
Collapse
|
27
|
Martín-Maldonado B, Rodríguez-Alcázar P, Fernández-Novo A, González F, Pastor N, López I, Suárez L, Moraleda V, Aranaz A. Urban Birds as Antimicrobial Resistance Sentinels: White Storks Showed Higher Multidrug-Resistant Escherichia coli Levels Than Seagulls in Central Spain. Animals (Basel) 2022; 12:2714. [PMID: 36230455 PMCID: PMC9558531 DOI: 10.3390/ani12192714] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 12/03/2022] Open
Abstract
The presence of AMR bacteria in the human-animal-environmental interface is a clear example of the One Health medicine. Several studies evidence the presence of resistant bacteria in wildlife, which can be used as a good indicator of anthropization level on the ecosystem. The fast increase in AMR in the environment in the last decade has been led by several factors as globalization and migration. Migratory birds can travel hundreds of kilometers and disseminate pathogens and AMR through different regions or even continents. The aim of this study was to compare the level of AMR in three migratory bird species: Ciconia ciconia, Larus fuscus and Chroicocephalus ridibundus. For this purpose, commensal Escherichia coli has been considered a useful indicator for AMR studies. After E. coli isolation from individual cloacal swabs, antimicrobial susceptibility tests were performed by the disk-diffusion method, including 17 different antibiotics. A total of 63.2% of gulls had resistant strains, in contrast to 31.6% of white storks. Out of all the resistant strains, 38.9% were considered multi-drug resistant (50% of white storks and 30% of seagulls). The antibiotic classes with the highest rate of AMR were betalactamics, quinolones and tetracyclines, the most commonly used antibiotic in human and veterinary medicine in Spain.
Collapse
Affiliation(s)
- Bárbara Martín-Maldonado
- Deparment of Veterinary Medicine, School Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
- Wildlife Hospital, Grupo de Rehabilitación de la Fauna Autóctona y su Hábitat (GREFA), 28220 Majadahonda, Spain
- Grupo de Estudio de la Medicina y Conservación de la Fauna Silvestre (GEMAS), 28220 Majadahonda, Spain
| | - Pablo Rodríguez-Alcázar
- Wildlife Hospital, Grupo de Rehabilitación de la Fauna Autóctona y su Hábitat (GREFA), 28220 Majadahonda, Spain
- Department Animal Health, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Aitor Fernández-Novo
- Deparment of Veterinary Medicine, School Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
| | - Fernando González
- Wildlife Hospital, Grupo de Rehabilitación de la Fauna Autóctona y su Hábitat (GREFA), 28220 Majadahonda, Spain
- Grupo de Estudio de la Medicina y Conservación de la Fauna Silvestre (GEMAS), 28220 Majadahonda, Spain
| | - Natalia Pastor
- Wildlife Hospital, Grupo de Rehabilitación de la Fauna Autóctona y su Hábitat (GREFA), 28220 Majadahonda, Spain
- Grupo de Estudio de la Medicina y Conservación de la Fauna Silvestre (GEMAS), 28220 Majadahonda, Spain
| | - Irene López
- Wildlife Hospital, Grupo de Rehabilitación de la Fauna Autóctona y su Hábitat (GREFA), 28220 Majadahonda, Spain
- Grupo de Estudio de la Medicina y Conservación de la Fauna Silvestre (GEMAS), 28220 Majadahonda, Spain
| | - Laura Suárez
- Wildlife Hospital, Grupo de Rehabilitación de la Fauna Autóctona y su Hábitat (GREFA), 28220 Majadahonda, Spain
- Grupo de Estudio de la Medicina y Conservación de la Fauna Silvestre (GEMAS), 28220 Majadahonda, Spain
| | - Virginia Moraleda
- Wildlife Hospital, Grupo de Rehabilitación de la Fauna Autóctona y su Hábitat (GREFA), 28220 Majadahonda, Spain
- Grupo de Estudio de la Medicina y Conservación de la Fauna Silvestre (GEMAS), 28220 Majadahonda, Spain
| | - Alicia Aranaz
- Department Animal Health, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
28
|
Dreyer S, Globig A, Bachmann L, Schütz AK, Schaufler K, Homeier-Bachmann T. Longitudinal Study on Extended-Spectrum Beta-Lactamase- E. coli in Sentinel Mallard Ducks in an Important Baltic Stop-Over Site for Migratory Ducks in Germany. Microorganisms 2022; 10:1968. [PMID: 36296245 PMCID: PMC9612239 DOI: 10.3390/microorganisms10101968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 08/17/2023] Open
Abstract
Antimicrobial resistance (AMR) is a serious global health threat with extended-spectrum beta-lactamase (ESBL)-producing Enterobacterales as the most critical ones. Studies on AMR in wild birds imply a possible dissemination function and indicate their potential role as sentinel animals. This study aimed to gain a deeper insight into the AMR burden of wild waterfowl by sampling semi-wild mallard ducks used as sentinels and to identify if AMR bacteria could be recommended to be added to the pathogens of public health risks to be screened for. In total, 376 cloacal and pooled fecal samples were collected from the sentinel plant over a period of two years. Samples were screened for ESBL-carrying E. coli and isolates found further analyzed using antimicrobial susceptibility testing and whole-genome sequencing. Over the sampling period, 4.26% (16/376) of the samples were positive for ESBL-producing E. coli. BlaCTX-M-1 and blaCTX-M-32 were the most abundant CTX-M types. Although none of the top global sequence types (ST) could be detected, poultry-derived ST115 and non-poultry-related STs were found and could be followed over time. The current study revealed low cases of ESBL-producing E. coli in semi-wild mallard ducks, which proves the suitability of sentinel surveillance for AMR detection in water-associated wildlife.
Collapse
Affiliation(s)
- Sylvia Dreyer
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, 17493 Greifswald, Germany
| | - Anja Globig
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, 17493 Greifswald, Germany
| | - Lisa Bachmann
- Faculty of Agriculture and Food Science, University of Applied Science Neubrandenburg, 17033 Neubrandenburg, Germany
| | - Anne K. Schütz
- Institute of Epidemiology, Friedrich-Loeffler-Institut, 17493 Greifswald, Germany
| | - Katharina Schaufler
- Pharmaceutical Microbiology, Institute of Pharmacy, University of Greifswald, 17489 Greifswald, Germany
- Institute of Infection Medicine, Christian-Albrecht University Kiel and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | | |
Collapse
|
29
|
Gross S, Müller A, Seinige D, Wohlsein P, Oliveira M, Steinhagen D, Kehrenberg C, Siebert U. Occurrence of Antimicrobial-Resistant Escherichia coli in Marine Mammals of the North and Baltic Seas: Sentinels for Human Health. Antibiotics (Basel) 2022; 11:antibiotics11091248. [PMID: 36140027 PMCID: PMC9495373 DOI: 10.3390/antibiotics11091248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial resistance is a global health threat that involves complex, opaque transmission processes in the environment. In particular, wildlife appears to function as a reservoir and vector for antimicrobial-resistant bacteria as well as resistance genes. In the present study, the occurrence of antimicrobial-resistant Escherichia coli was determined in marine mammals and various fish species of the North and Baltic Seas. Rectal or faecal swabs were collected from 66 live-caught or stranded marine mammals and 40 fish specimens. The antimicrobial resistance phenotypes and genotypes of isolated E. coli were determined using disk diffusion tests and PCR assays. Furthermore, isolates were assigned to the four major phylogenetic groups of E. coli. Additionally, post mortem examinations were performed on 41 of the sampled marine mammals. The investigations revealed resistant E. coli in 39.4% of the marine mammal samples, while no resistant isolates were obtained from any of the fish samples. The obtained isolates most frequently exhibited resistance against aminoglycosides, followed by β-lactams. Of the isolates, 37.2% showed multidrug resistance. Harbour porpoises (Phocoena phocoena) mainly carried E. coli isolates belonging to the phylogenetic group B1, while seal isolates were most frequently assigned to group B2. Regarding antimicrobial resistance, no significant differences were seen between the two sampling areas or different health parameters, but multidrug-resistant isolates were more frequent in harbour porpoises than in the sampled seals. The presented results provide information on the distribution of antimicrobial-resistant bacteria in the North and Baltic Seas, and highlight the role of these resident marine mammal species as sentinels from a One Health perspective.
Collapse
Affiliation(s)
- Stephanie Gross
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstraße 6, 25761 Büsum, Germany
| | - Anja Müller
- Institute for Veterinary Food Science, Justus Liebig University Giessen, Frankfurter Str. 92, 35392 Giessen, Germany
| | - Diana Seinige
- Office for Veterinary Affairs and Consumer Protection, Ministry of Lower Saxony for Food, Agriculture and Consumer Protection, Alte Grenze 7, 29221 Celle, Germany
| | - Peter Wohlsein
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany
| | - Manuela Oliveira
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Dieter Steinhagen
- Fish Disease Research Unit, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany
| | - Corinna Kehrenberg
- Institute for Veterinary Food Science, Justus Liebig University Giessen, Frankfurter Str. 92, 35392 Giessen, Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstraße 6, 25761 Büsum, Germany
- Correspondence:
| |
Collapse
|
30
|
Williams NLR, Siboni N, McLellan SL, Potts J, Scanes P, Johnson C, James M, McCann V, Seymour JR. Rainfall leads to elevated levels of antibiotic resistance genes within seawater at an Australian beach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119456. [PMID: 35561796 DOI: 10.1016/j.envpol.2022.119456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/29/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Anthropogenic waste streams can be major sources of antibiotic resistant microbes within the environment, creating a potential risk to public health. We examined patterns in the occurrence of a suite of antibiotic resistance genes (ARGs) and their links to enteric bacteria at a popular swimming beach in Australia that experiences intermittent contamination by sewage, with potential points of input including stormwater drains and a coastal lagoon. Samples were collected throughout a significant rainfall event (40.8 mm over 3 days) and analysed using both qPCR and 16S rRNA amplicon sequencing. Before the rainfall event, low levels of faecal indicator bacteria and a microbial source tracking human faeces (sewage) marker (Lachno3) were observed. These levels increased over 10x following rainfall. Within lagoon, drain and seawater samples, levels of the ARGs sulI, dfrA1 and qnrS increased by between 1 and 2 orders of magnitude after 20.4 mm of rain, while levels of tetA increased by an order of magnitude after a total of 40.8 mm. After 40.8 mm of rain sulI, tetA and qnrS could be detected 300 m offshore with levels remaining high five days after the rain event. Highest levels of sewage markers and ARGs were observed adjacent to the lagoon (when opened) and in-front of the stormwater drains, pinpointing these as the points of ARG input. Significant positive correlations were observed between all ARGs, and a suite of Amplicon Sequence Variants that were identified as stormwater drain indicator taxa using 16S rRNA amplicon sequencing data. Of note, some stormwater drain indicator taxa, which exhibited correlations to ARG abundance, included the human pathogens Arcobacter butzleri and Bacteroides fragilis. Given that previous research has linked high levels of ARGs in recreationally used environments to antimicrobial resistant pathogen infections, the observed patterns indicate a potentially elevated human health risk at a popular swimming beach following significant rainfall events.
Collapse
Affiliation(s)
- Nathan L R Williams
- Climate Change Cluster Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Nachshon Siboni
- Climate Change Cluster Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Sandra L McLellan
- University of Wisconsin-Milwaukee, School of Freshwater Sciences, 600 E Greenfield Ave, Milwaukee, WI, USA
| | - Jaimie Potts
- Waters, Wetlands, Coasts Science Branch, NSW Department of Primary Industries and Environment, Lidcombe, NSW, 2141, Australia
| | - Peter Scanes
- Waters, Wetlands, Coasts Science Branch, NSW Department of Primary Industries and Environment, Lidcombe, NSW, 2141, Australia
| | - Colin Johnson
- Waters, Wetlands, Coasts Science Branch, NSW Department of Primary Industries and Environment, Lidcombe, NSW, 2141, Australia
| | - Melanie James
- Central Coast Council, Hely Street, Wyong, NSW, 2259, Australia
| | - Vanessa McCann
- Central Coast Council, Hely Street, Wyong, NSW, 2259, Australia
| | - Justin R Seymour
- Climate Change Cluster Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.
| |
Collapse
|
31
|
High Rates of Multidrug-Resistant Escherichia coli in Great Cormorants (Phalacrocorax carbo) of the German Baltic and North Sea Coasts: Indication of Environmental Contamination and a Potential Public Health Risk. Pathogens 2022; 11:pathogens11080836. [PMID: 36014957 PMCID: PMC9416030 DOI: 10.3390/pathogens11080836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023] Open
Abstract
Antimicrobial-resistant bacteria pose a serious global health risk for humans and animals, while the role of wildlife in the dynamic transmission processes of antimicrobial resistance in environmental settings is still unclear. This study determines the occurrence of antimicrobial-resistant Escherichia coli in the free-living great cormorants (Phalacrocorax carbo) of the North and Baltic Sea coasts of Schleswig-Holstein, Germany. For this, resistant E.coli were isolated from cloacal or faecal swabs and their antimicrobial resistance pheno- and genotypes were investigated using disk diffusion tests and PCR assays. The isolates were further assigned to the four major phylogenetic groups, and their affiliation to avian pathogenic E. coli (APEC) was tested. Resistant E. coli were isolated from 66.7% of the 33 samples, and 48.9% of all the resistant isolates showed a multidrug resistance profile. No spatial differences were seen between the different sampling locations with regard to the occurrence of antimicrobial resistance or multidrug resistance. Most commonly, resistance percentages occurred against streptomycin, followed by tetracycline and sulfonamides. More than half of the isolates belonged to the phylogenetic group B1. Of all the isolates, 24.4% were classified as APEC isolates, of which almost 82% were identified as multidrug-resistant. These results add information on the dispersal of antimicrobial-resistant bacteria in wild birds in Germany, thereby allowing conclusions on the degree of environmental contamination and potential public health concerns.
Collapse
|
32
|
Spread and Molecular Characteristics of
Enterobacteriaceae
Carrying
fosA
-Like Genes from Farms in China. Microbiol Spectr 2022; 10:e0054522. [PMID: 35852324 PMCID: PMC9431306 DOI: 10.1128/spectrum.00545-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we report the widespread and complex genetic environments of
fosA
-like genes in animal-derived strains in China. The
fosA7.5
gene was identified in this study and was found to confer resistance to fosfomycin.
Collapse
|
33
|
Wyrsch ER, Dolejska M, Djordjevic SP. Genomic Analysis of an I1 Plasmid Hosting a sul3-Class 1 Integron and blaSHV-12 within an Unusual Escherichia coli ST297 from Urban Wildlife. Microorganisms 2022; 10:microorganisms10071387. [PMID: 35889108 PMCID: PMC9319951 DOI: 10.3390/microorganisms10071387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Wild birds, particularly silver gulls (Chroicocephalus novaehollandiae) that nest near anthropogenic sites, often harbour bacteria resistant to multiple antibiotics, including those considered of clinical importance. Here, we describe the whole genome sequence of Escherichia coli isolate CE1867 from a silver gull chick sampled in 2012 that hosted an I1 pST25 plasmid with blaSHV-12, a β-lactamase gene that encodes the ability to hydrolyze oxyimino β-lactams, and other antibiotic resistance genes. Isolate CE1867 is an ST297 isolate, a phylogroup B1 lineage, and clustered with a large ST297 O130:H11 clade, which carry Shiga toxin genes. The I1 plasmid belongs to plasmid sequence type 25 and is notable for its carriage of an atypical sul3-class 1 integron with mefB∆260, a structure most frequently reported in Australia from swine. This integron is a typical example of a Tn21-derived element that captured sul3 in place of the standard sul1 structure. Interestingly, the mercury resistance (mer) module of Tn21 is missing and has been replaced with Tn2-blaTEM-1 and a blaSHV-12 encoding module flanked by direct copies of IS26. Comparisons to similar plasmids, however, demonstrate a closely related family of ARG-carrying plasmids that all host variants of the sul3-associated integron with conserved Tn21 insertion points and a variable presence of both mer and mefB truncations, but predominantly mefB∆260.
Collapse
Affiliation(s)
- Ethan R. Wyrsch
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Monika Dolejska
- CEITEC VETUNI, University of Veterinary Sciences Brno, 61242 Brno, Czech Republic;
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 61242 Brno, Czech Republic
- Department of Clinical Microbiology and Immunology, Institute of Laboratory Medicine, University Hospital Brno, 62500 Brno, Czech Republic
| | - Steven P. Djordjevic
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Ultimo, NSW 2007, Australia;
- Correspondence:
| |
Collapse
|
34
|
Sola M, Mani Y, Saras E, Drapeau A, Grami R, Aouni M, Madec JY, Haenni M, Mansour W. Prevalence and Characterization of Extended-Spectrum β-Lactamase- and Carbapenemase-Producing Enterobacterales from Tunisian Seafood. Microorganisms 2022; 10:microorganisms10071364. [PMID: 35889085 PMCID: PMC9323973 DOI: 10.3390/microorganisms10071364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 02/01/2023] Open
Abstract
Aquaculture is a rapidly expanding sector in which it is important to monitor the occurrence of multi-drug resistant (MDR) bacteria. The presence of extended-spectrum β-lactamase (ESBL-) or carbapenemase-producing Enterobacterales is a commonly used indicator of the resistance burden in a given sector. In this study, 641 pieces of farmed fish (sea bream and sea bass), as well as 1075 Mediterranean clams, were analyzed. All ESBL- and carbapenemase-producing Enterobacterales collected were whole-genome sequenced. The proportion of ESBL-producing Enterobacterales was 1.4% in fish and 1.6% in clams, carried by Escherichia coli (n = 23) and Klebsiella pneumoniae (n = 4). The ESBL phenotype was exclusively due to the presence of blaCTX-M genes, the most frequent one being blaCTX-M-15. The blaCTX-M-1 gene was also identified in six E. coli, among which four were carried by IncI1/pST3 plasmids, possibly betraying an animal origin. Carbapenemases were absent in fish but identified in two K. pneumoniae isolates from clams (blaNDM-1 and blaOXA-48). Several sequence types (STs) identified were associated with human MDR clones such as E. coli ST131 and ST617, or K. pneumoniae ST307 and ST147. Our results might indicate that bacteria from hospital or farm effluents can reach the open sea and contaminate seafood and fish that are living or raised nearby. Therefore, monitoring the quality of water discharged to the sea and the presence of MDR bacteria in seafood is mandatory to ensure the quality of fishery products.
Collapse
Affiliation(s)
- Mehdi Sola
- Laboratoire de Recherche Biophysique Métabolique et Pharmacologie Appliquée (LR12ES02), Faculté de Médecine Ibn Al Jazzar Sousse, Université de Sousse, Sousse 4002, Tunisia; (M.S.); (Y.M.); (R.G.); (W.M.)
| | - Yosra Mani
- Laboratoire de Recherche Biophysique Métabolique et Pharmacologie Appliquée (LR12ES02), Faculté de Médecine Ibn Al Jazzar Sousse, Université de Sousse, Sousse 4002, Tunisia; (M.S.); (Y.M.); (R.G.); (W.M.)
| | - Estelle Saras
- Unité Antibiorésistance et Virulence Bactériennes, ANSES Laboratoire de Lyon, Université de Lyon, 69007 Lyon, France; (E.S.); (A.D.); (J.-Y.M.)
| | - Antoine Drapeau
- Unité Antibiorésistance et Virulence Bactériennes, ANSES Laboratoire de Lyon, Université de Lyon, 69007 Lyon, France; (E.S.); (A.D.); (J.-Y.M.)
| | - Raoudha Grami
- Laboratoire de Recherche Biophysique Métabolique et Pharmacologie Appliquée (LR12ES02), Faculté de Médecine Ibn Al Jazzar Sousse, Université de Sousse, Sousse 4002, Tunisia; (M.S.); (Y.M.); (R.G.); (W.M.)
| | - Mahjoub Aouni
- Laboratoire des Maladies Transmissibles et Substances Biologiquement Actives, Faculté de Pharmacie de Monastir, Université de Monastir, Monastir 5000, Tunisia;
| | - Jean-Yves Madec
- Unité Antibiorésistance et Virulence Bactériennes, ANSES Laboratoire de Lyon, Université de Lyon, 69007 Lyon, France; (E.S.); (A.D.); (J.-Y.M.)
| | - Marisa Haenni
- Unité Antibiorésistance et Virulence Bactériennes, ANSES Laboratoire de Lyon, Université de Lyon, 69007 Lyon, France; (E.S.); (A.D.); (J.-Y.M.)
- Correspondence:
| | - Wejdene Mansour
- Laboratoire de Recherche Biophysique Métabolique et Pharmacologie Appliquée (LR12ES02), Faculté de Médecine Ibn Al Jazzar Sousse, Université de Sousse, Sousse 4002, Tunisia; (M.S.); (Y.M.); (R.G.); (W.M.)
| |
Collapse
|
35
|
Ribeiro-Almeida M, Mourão J, Novais Â, Pereira S, Freitas-Silva J, Ribeiro S, Martins da Costa P, Peixe L, Antunes P. High diversity of pathogenic Escherichia coli clones carrying mcr-1 among gulls underlines the need for strategies at the environment-livestock-human interface. Environ Microbiol 2022; 24:4702-4713. [PMID: 35726894 DOI: 10.1111/1462-2920.16111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 11/30/2022]
Abstract
The expansion of mcr-carrying bacteria is a well-recognized public health problem. Measures to contain mcr spread have mainly been focused on the food-animal production sector. Nevertheless, the spread of MCR-producers at the environmental interface particularly driven by the increasing population of gulls in coastal cities has been less explored. Occurrence of mcr-carrying Escherichia coli in gull's colonies faeces on a Portuguese beach was screened over 7-months. Cultural, molecular, and genomic approaches were used to characterize their diversity, mcr plasmids and adaptive features. Multidrug-resistant mcr-1-carrying E. coli were detected for three consecutive months. Over time, multiple strains were recovered, including zoonotic-related pathogenic E. coli clones (e.g., B2-ST131-H22, A-ST10, and B1-ST162). Diverse mcr-1.1 genetic environments were mainly associated with ST2/ST4-HI2 (ST10, ST131, ST162, ST354 and ST4204) but also IncI2 (ST12990) plasmids or in the chromosome (ST656). Whole-genome sequencing revealed enrichment of these strains on antibiotic resistance, virulence, and metal tolerance genes. Our results underscore gulls as important spreaders of high priority bacteria and genes that may affect the environment, food-animals and/or humans, potentially undermining One-Health strategies to reduce colistin resistance. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Marisa Ribeiro-Almeida
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal.,School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal
| | - Joana Mourão
- Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, Faro, Portugal
| | - Ângela Novais
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Sofia Pereira
- School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal
| | - Joana Freitas-Silva
- School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal.,CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| | - Sofia Ribeiro
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Paulo Martins da Costa
- School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal.,CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| | - Luísa Peixe
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Patrícia Antunes
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal.,Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
36
|
Hamame A, Davoust B, Cherak Z, Rolain JM, Diene SM. Mobile Colistin Resistance ( mcr) Genes in Cats and Dogs and Their Zoonotic Transmission Risks. Pathogens 2022; 11:698. [PMID: 35745552 PMCID: PMC9230929 DOI: 10.3390/pathogens11060698] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Pets, especially cats and dogs, represent a great potential for zoonotic transmission, leading to major health problems. The purpose of this systematic review was to present the latest developments concerning colistin resistance through mcr genes in pets. The current study also highlights the health risks of the transmission of colistin resistance between pets and humans. Methods: We conducted a systematic review on mcr-positive bacteria in pets and studies reporting their zoonotic transmission to humans. Bibliographic research queries were performed on the following databases: Google Scholar, PubMed, Scopus, Microsoft Academic, and Web of Science. Articles of interest were selected using the PRISMA guideline principles. Results: The analyzed articles from the investigated databases described the presence of mcr gene variants in pets including mcr-1, mcr-2, mcr-3, mcr-4, mcr-5, mcr-8, mcr-9, and mcr-10. Among these articles, four studies reported potential zoonotic transmission of mcr genes between pets and humans. The epidemiological analysis revealed that dogs and cats can be colonized by mcr genes that are beginning to spread in different countries worldwide. Overall, reported articles on this subject highlight the high risk of zoonotic transmission of colistin resistance genes between pets and their owners. Conclusions: This review demonstrated the spread of mcr genes in pets and their transmission to humans, indicating the need for further measures to control this significant threat to public health. Therefore, we suggest here some strategies against this threat such as avoiding zoonotic transmission.
Collapse
Affiliation(s)
- Afaf Hamame
- Faculté de Pharmacie, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille University, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France;
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France;
| | - Bernard Davoust
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France;
| | - Zineb Cherak
- Faculté des Sciences de la Nature et de la Vie, Université Batna-2, Route de Constantine, Fésdis, Batna 05078, Algeria;
| | - Jean-Marc Rolain
- Faculté de Pharmacie, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille University, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France;
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France;
| | - Seydina M. Diene
- Faculté de Pharmacie, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille University, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France;
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France;
| |
Collapse
|
37
|
Athanasakopoulou Z, Diezel C, Braun SD, Sofia M, Giannakopoulos A, Monecke S, Gary D, Krähmer D, Chatzopoulos DC, Touloudi A, Birtsas P, Palli M, Georgakopoulos G, Spyrou V, Petinaki E, Ehricht R, Billinis C. Occurrence and Characteristics of ESBL- and Carbapenemase- Producing Escherichia coli from Wild and Feral Birds in Greece. Microorganisms 2022; 10:1217. [PMID: 35744734 PMCID: PMC9227375 DOI: 10.3390/microorganisms10061217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/04/2022] [Accepted: 06/12/2022] [Indexed: 11/16/2022] Open
Abstract
Wild and feral birds are known to be involved in the maintenance and dissemination of clinically-important antimicrobial-resistant pathogens, such as extended-spectrum β-lactamase (ESBL) and carbapenemase-producing Enterobacteriaceae. The aim of our study was to evaluate the presence of ESBL- and carbapenemase-producing Escherichia coli among wild and feral birds from Greece and to describe their antimicrobial resistance characteristics. In this context, fecal samples of 362 birds were collected and cultured. Subsequently, the antimicrobial resistance pheno- and geno-type of all the obtained E. coli isolates were determined. A total of 12 multidrug-resistant (MDR), ESBL-producing E. coli were recovered from eight different wild bird species. Eleven of these isolates carried a blaCTX-M-1 group gene alone or in combination with blaTEM and one carried only blaTEM. AmpC, fluoroquinolone, trimethoprim/sulfamethoxazole, aminoglycoside and macrolide resistance genes were also detected. Additionally, one carbapenemase-producing E. coli was identified, harboring blaNDM along with a combination of additional resistance genes. This report describes the occurrence of ESBL- and carbapenemase-producing E. coli among wild avian species in Greece, emphasizing the importance of incorporating wild birds in the assessment of AMR circulation in non-clinical settings.
Collapse
Affiliation(s)
- Zoi Athanasakopoulou
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (Z.A.); (M.S.); (A.G.); (A.T.)
| | - Celia Diezel
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany; (C.D.); (S.D.B.); (S.M.); (R.E.)
- InfectoGnostics Research Campus, 07745 Jena, Germany
| | - Sascha D. Braun
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany; (C.D.); (S.D.B.); (S.M.); (R.E.)
- InfectoGnostics Research Campus, 07745 Jena, Germany
| | - Marina Sofia
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (Z.A.); (M.S.); (A.G.); (A.T.)
| | - Alexios Giannakopoulos
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (Z.A.); (M.S.); (A.G.); (A.T.)
| | - Stefan Monecke
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany; (C.D.); (S.D.B.); (S.M.); (R.E.)
- InfectoGnostics Research Campus, 07745 Jena, Germany
| | - Dominik Gary
- fzmb GmbH, Forschungszentrum für Medizintechnik und Biotechnologie, 99947 Bad Langensalza, Germany; (D.G.); (D.K.)
| | - Domenique Krähmer
- fzmb GmbH, Forschungszentrum für Medizintechnik und Biotechnologie, 99947 Bad Langensalza, Germany; (D.G.); (D.K.)
| | | | - Antonia Touloudi
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (Z.A.); (M.S.); (A.G.); (A.T.)
| | - Periklis Birtsas
- Faculty of Forestry, Wood Science and Design, 43100 Karditsa, Greece;
| | - Matina Palli
- Wildlife Protection & Rehabilitation Center, 24400 Gargalianoi, Greece; (M.P.); (G.G.)
| | | | - Vassiliki Spyrou
- Faculty of Animal Science, University of Thessaly, 41110 Larissa, Greece;
| | | | - Ralf Ehricht
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany; (C.D.); (S.D.B.); (S.M.); (R.E.)
- InfectoGnostics Research Campus, 07745 Jena, Germany
- Institute of Physical Chemistry, Friedrich-Schiller-University, 07745 Jena, Germany
| | - Charalambos Billinis
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (Z.A.); (M.S.); (A.G.); (A.T.)
- Faculty of Public and One Health, University of Thessaly, 43100 Karditsa, Greece;
| |
Collapse
|
38
|
Vogt NA, Hetman BM, Vogt AA, Pearl DL, Reid-Smith RJ, Parmley EJ, Kadykalo S, Ziebell K, Bharat A, Mulvey MR, Janecko N, Ricker N, Allen SE, Bondo KJ, Jardine CM. Using whole-genome sequence data to examine the epidemiology of antimicrobial resistance in Escherichia coli from wild meso-mammals and environmental sources on swine farms, conservation areas, and the Grand River watershed in southern Ontario, Canada. PLoS One 2022; 17:e0266829. [PMID: 35395054 PMCID: PMC8993012 DOI: 10.1371/journal.pone.0266829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/28/2022] [Indexed: 11/24/2022] Open
Abstract
Antimicrobial resistance (AMR) threatens the health of humans and animals and has repeatedly been detected in wild animal species across the world. This cross-sectional study integrates whole-genome sequence data from Escherichia coli isolates with demonstrated phenotypic resistance that originated from a previous longitudinal wildlife study in southern Ontario, as well as phenotypically resistant E. coli water isolates previously collected as part of a public health surveillance program. The objective of this work was to assess for evidence of possible transmission of antimicrobial resistance determinants between wild meso-mammals, swine manure pits, and environmental sources on a broad scale in the Grand River watershed, and at a local scale—for the subset of samples collected on both swine farms and conservation areas in the previous wildlife study. Logistic regression models were used to assess potential associations between sampling source, location type (swine farm vs. conservation area), and the occurrence of select resistance genes and predicted plasmids. In total, 200 isolates from the following sources were included: water (n = 20), wildlife (n = 73), swine manure pit (n = 31), soil (n = 73), and dumpsters (n = 3). Several genes and plasmid incompatibility types were significantly more likely to be identified on swine farms compared to conservation areas. Conversely, internationally distributed sequence types (e.g., ST131), extended-spectrum beta-lactamase- and AmpC-producing E. coli were isolated in lower prevalences (<10%) and were almost exclusively identified in water sources, or in raccoon and soil isolates obtained from conservation areas. Differences in the odds of detecting resistance genes and predicted plasmids among various sources and location types suggest different primary sources for individual AMR determinants, but, broadly, our findings suggest that raccoons, skunks and opossums in this region may be exposed to AMR pollution via water and agricultural sources, as well as anthropogenic sources in conservation areas.
Collapse
Affiliation(s)
- Nadine A. Vogt
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
- * E-mail:
| | - Benjamin M. Hetman
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Adam A. Vogt
- Independent Researcher, Mississauga, Ontario, Canada
| | - David L. Pearl
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Richard J. Reid-Smith
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - E. Jane Parmley
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Stefanie Kadykalo
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Kim Ziebell
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Amrita Bharat
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Michael R. Mulvey
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nicol Janecko
- Quadram Institute Bioscience, Norwich, United Kingdom
| | - Nicole Ricker
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Samantha E. Allen
- Wyoming Game and Fish Department, Laramie, Wyoming, United States of America
- Department of Veterinary Sciences, University of Wyoming, Laramie, Wyoming, United States of America
| | - Kristin J. Bondo
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Claire M. Jardine
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
- Canadian Wildlife Health Cooperative, Ontario Veterinary College, Guelph, Ontario, Canada
| |
Collapse
|
39
|
Sanz MB, De Belder D, de Mendieta JM, Faccone D, Poklepovich T, Lucero C, Rapoport M, Campos J, Tuduri E, Saavedra MO, Van der Ploeg C, Rogé A, Pasteran F, Corso A, Rosato AE, Gomez SA. Carbapenemase-Producing Extraintestinal Pathogenic Escherichia coli From Argentina: Clonal Diversity and Predominance of Hyperepidemic Clones CC10 and CC131. Front Microbiol 2022; 13:830209. [PMID: 35369469 PMCID: PMC8971848 DOI: 10.3389/fmicb.2022.830209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) causes infections outside the intestine. Particular ExPEC clones, such as clonal complex (CC)/sequence type (ST)131, have been known to sequentially accumulate antimicrobial resistance that starts with chromosomal mutations against fluoroquinolones, followed with the acquisition of blaCTX–M–15 and, more recently, carbapenemases. Here we aimed to investigate the distribution of global epidemic clones of carbapenemase-producing ExPEC from Argentina in representative clinical isolates recovered between July 2008 and March 2017. Carbapenemase-producing ExPEC (n = 160) were referred to the Argentinean reference laboratory. Of these, 71 were selected for genome sequencing. Phenotypic and microbiological studies confirmed the presence of carbapenemases confirmed as KPC-2 (n = 52), NDM-1 (n = 16), IMP-8 (n = 2), and VIM-1 (n = 1) producers. The isolates had been recovered mainly from urine, blood, and abdominal fluids among others, and some were from screening samples. After analyzing the virulence gene content, 76% of the isolates were considered ExPEC, although non-ExPEC isolates were also obtained from extraintestinal sites. Pan-genome phylogeny and clonal analysis showed great clonal diversity, although the first phylogroup in abundance was phylogroup A, harboring CC10 isolates, followed by phylogroup B2 with CC/ST131, mostly H30Rx, the subclone co-producing CTX-M-15. Phylogroups D, B1, C, F, and E were also detected with fewer strains. CC10 and CC/ST131 were found throughout the country. In addition, CC10 nucleated most metalloenzymes, such as NDM-1. Other relevant international clones were identified, such as CC/ST38, CC155, CC14/ST1193, and CC23. Two isolates co-produced KPC-2 and OXA-163 or OXA-439, a point mutation variant of OXA-163, and three isolates co-produced MCR-1 among other resistance genes. To conclude, in this work, we described the molecular epidemiology of carbapenemase-producing ExPEC in Argentina. Further studies are necessary to determine the plasmid families disseminating carbapenemases in ExPEC in this region.
Collapse
Affiliation(s)
- María Belén Sanz
- Servicio Antimicrobianos, Laboratorio Nacional de Referencia en Resistencia a los Antimicrobianos (LNRRA), INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Denise De Belder
- Servicio Antimicrobianos, Laboratorio Nacional de Referencia en Resistencia a los Antimicrobianos (LNRRA), INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina.,Plataforma Genómica y Bioinformática (PLABIO), INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - J M de Mendieta
- Servicio Antimicrobianos, Laboratorio Nacional de Referencia en Resistencia a los Antimicrobianos (LNRRA), INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Diego Faccone
- Servicio Antimicrobianos, Laboratorio Nacional de Referencia en Resistencia a los Antimicrobianos (LNRRA), INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Tomás Poklepovich
- Plataforma Genómica y Bioinformática (PLABIO), INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Celeste Lucero
- Servicio Antimicrobianos, Laboratorio Nacional de Referencia en Resistencia a los Antimicrobianos (LNRRA), INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Melina Rapoport
- Servicio Antimicrobianos, Laboratorio Nacional de Referencia en Resistencia a los Antimicrobianos (LNRRA), INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Josefina Campos
- Plataforma Genómica y Bioinformática (PLABIO), INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Ezequiel Tuduri
- Servicio Antimicrobianos, Laboratorio Nacional de Referencia en Resistencia a los Antimicrobianos (LNRRA), INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina.,Plataforma Genómica y Bioinformática (PLABIO), INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Mathew O Saavedra
- Department of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Hospital, Houston Methodist Research Institute, Houston, TX, United States
| | - Claudia Van der Ploeg
- Servicio de Antígenos y Antisueros, INPB-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Ariel Rogé
- Servicio de Antígenos y Antisueros, INPB-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | | | - Fernando Pasteran
- Servicio Antimicrobianos, Laboratorio Nacional de Referencia en Resistencia a los Antimicrobianos (LNRRA), INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Alejandra Corso
- Servicio Antimicrobianos, Laboratorio Nacional de Referencia en Resistencia a los Antimicrobianos (LNRRA), INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Adriana E Rosato
- Department of Pathology and Molecular Microbiology Diagnostics-Research, Riverside University Health System, Moreno Valley, CA, United States.,School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Sonia A Gomez
- Servicio Antimicrobianos, Laboratorio Nacional de Referencia en Resistencia a los Antimicrobianos (LNRRA), INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
40
|
Vogt NA, Hetman BM, Vogt AA, Pearl DL, Reid-Smith RJ, Parmley EJ, Kadykalo S, Janecko N, Bharat A, Mulvey MR, Ziebell K, Robertson J, Nash J, Allen V, Majury A, Ricker N, Bondo KJ, Allen SE, Jardine CM. Rural Raccoons (Procyon lotor) Not Likely to Be a Major Driver of Antimicrobial Resistant Human Salmonella Cases in Southern Ontario, Canada: A One Health Epidemiological Assessment Using Whole-Genome Sequence Data. Front Vet Sci 2022; 9:840416. [PMID: 35280127 PMCID: PMC8914089 DOI: 10.3389/fvets.2022.840416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Non-typhoidal Salmonella infections represent a substantial burden of illness in humans, and the increasing prevalence of antimicrobial resistance among these infections is a growing concern. Using a combination of Salmonella isolate short-read whole-genome sequence data from select human cases, raccoons, livestock and environmental sources, and an epidemiological framework, our objective was to determine if there was evidence for potential transmission of Salmonella and associated antimicrobial resistance determinants between these different sources in the Grand River watershed in Ontario, Canada. Logistic regression models were used to assess the potential associations between source type and the presence of select resistance genes and plasmid incompatibility types. A total of 608 isolates were obtained from the following sources: humans (n = 58), raccoons (n = 92), livestock (n = 329), and environmental samples (n = 129). Resistance genes of public health importance, including blaCMY−2, were identified in humans, livestock, and environmental sources, but not in raccoons. Most resistance genes analyzed were significantly more likely to be identified in livestock and/or human isolates than in raccoon isolates. Based on a 3,002-loci core genome multi-locus sequence typing (cgMLST) scheme, human Salmonella isolates were often more similar to isolates from livestock and environmental sources, than with those from raccoons. Rare instances of serovars S. Heidelberg and S. Enteritidis in raccoons likely represent incidental infections and highlight possible acquisition and dissemination of predominantly poultry-associated Salmonella by raccoons within these ecosystems. Raccoon-predominant serovars were either not identified among human isolates (S. Agona, S. Thompson) or differed by more than 350 cgMLST loci (S. Newport). Collectively, our findings suggest that the rural population of raccoons on swine farms in the Grand River watershed are unlikely to be major contributors to antimicrobial resistant human Salmonella cases in this region.
Collapse
Affiliation(s)
- Nadine A. Vogt
- Department of Population Medicine, Ontario Veterinary College, Guelph, ON, Canada
- *Correspondence: Nadine A. Vogt
| | - Benjamin M. Hetman
- Department of Population Medicine, Ontario Veterinary College, Guelph, ON, Canada
| | | | - David L. Pearl
- Department of Population Medicine, Ontario Veterinary College, Guelph, ON, Canada
| | - Richard J. Reid-Smith
- Department of Population Medicine, Ontario Veterinary College, Guelph, ON, Canada
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON, Canada
| | - E. Jane Parmley
- Department of Population Medicine, Ontario Veterinary College, Guelph, ON, Canada
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON, Canada
| | - Stefanie Kadykalo
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON, Canada
| | - Nicol Janecko
- Quadram Institute Bioscience, Norwich, United Kingdom
| | - Amrita Bharat
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Michael R. Mulvey
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Kim Ziebell
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - James Robertson
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - John Nash
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | | | - Anna Majury
- Public Health Ontario, Kingston, ON, Canada
- Department of Biomedical and Molecular Science, Queen's University, Kingston, ON, Canada
| | - Nicole Ricker
- Department of Pathobiology, Ontario Veterinary College, Guelph, ON, Canada
| | - Kristin J. Bondo
- Department of Pathobiology, Ontario Veterinary College, Guelph, ON, Canada
| | - Samantha E. Allen
- Wyoming Game and Fish Department, Laramie, WY, United States
- Department of Veterinary Sciences, University of Wyoming, Laramie, WY, United States
| | - Claire M. Jardine
- Department of Pathobiology, Ontario Veterinary College, Guelph, ON, Canada
- Canadian Wildlife Health Cooperative, Ontario Veterinary College, Guelph, ON, Canada
| |
Collapse
|
41
|
Emergence and Spread of Cephalosporinases in Wildlife: A Review. Animals (Basel) 2021; 11:ani11061765. [PMID: 34204766 PMCID: PMC8231518 DOI: 10.3390/ani11061765] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Antimicrobial resistance (AMR) is one of the global public health challenges nowadays. AMR threatens the effective prevention and treatment of an ever-increasing range of infections, being present in healthcare settings but also detected across the whole ecosystem, including wildlife. This work compiles the available information about an important resistance mechanism that gives bacteria the ability to inactivate cephalosporin antibiotics, the cephalosporinases (extended-spectrum beta-lactamase (ESBL) and AmpC beta-lactamase), in wildlife. Through a rigorous systematic literature review in the Web of Science database, the available publications on this topic in the wildlife sphere were analysed. The emergence and spread of cephalosporinases in wildlife has been reported in 46 countries from all continents (52% in Europe), with descriptions mainly in birds and mammals. The most widely disseminated cephalosporinases in human-related settings (e.g. CTX-M-1, CTX-M-14, CTX-M-15 and CMY-2) are also the most reported in wildlife, suggesting that anthropogenic pressure upon natural environments have a strong impact on antimicrobial resistance spread, including the dissemination of genes encoding these enzymes. Our work highlights the urgence and importance of public and ecosystem health policies, including improved surveillance and control strategies that breakdown AMR transmission chains across wildlife, as part of an integrated strategy of the One Health approach. Abstract In the last decade, detection of antibiotic resistant bacteria from wildlife has received increasing interest, due to the potential risk posed by those bacteria to wild animals, livestock or humans at the interface with wildlife, and due to the ensuing contamination of the environment. According to World Health Organization, cephalosporins are critically important antibiotics to human health. However, acquired resistance to β-lactams is widely distributed and is mainly mediated by extended-spectrum beta-lactamase and AmpC beta-lactamases, such as cephalosporinases. This work thus aimed to compile and analyse the information available on the emergence and dissemination of cephalosporinases in wildlife worldwide. Results suggest a serious scenario, with reporting of cephalosporinases in 46 countries from all continents (52% in Europe), across 188 host species, mainly birds and mammals, especially gulls and ungulates. The most widely reported cephalosporinases, CTX-M-1, CTX-M-14, CTX-M-15 and CMY-2, were also the most common in wild animals, in agreement with their ubiquity in human settings, including their association to high-risk clones of Escherichia coli (E. coli), such as the worldwide distributed CTX-M-15/ST131 E. coli. Altogether, our findings show that anthropogenic activities affect the whole ecosystem and that public policies promoting animal and environmental surveillance, as well as mitigation measures to avoid antimicrobial misuse and AMR spread, are urgently needed to be out in practise.
Collapse
|
42
|
Grünzweil OM, Palmer L, Cabal A, Szostak MP, Ruppitsch W, Kornschober C, Korus M, Misic D, Bernreiter-Hofer T, Korath ADJ, Feßler AT, Allerberger F, Schwarz S, Spergser J, Müller E, Braun SD, Monecke S, Ehricht R, Walzer C, Smodlaka H, Loncaric I. Presence of β-Lactamase-producing Enterobacterales and Salmonella Isolates in Marine Mammals. Int J Mol Sci 2021; 22:ijms22115905. [PMID: 34072783 PMCID: PMC8199236 DOI: 10.3390/ijms22115905] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023] Open
Abstract
Marine mammals have been described as sentinels of the health of marine ecosystems. Therefore, the aim of this study was to investigate (i) the presence of extended-spectrum β-lactamase (ESBL)- and AmpC-producing Enterobacterales, which comprise several bacterial families important to the healthcare sector, as well as (ii) the presence of Salmonella in these coastal animals. The antimicrobial resistance pheno- and genotypes, as well as biocide susceptibility of Enterobacterales isolated from stranded marine mammals, were determined prior to their rehabilitation. All E. coli isolates (n = 27) were screened for virulence genes via DNA-based microarray, and twelve selected E. coli isolates were analyzed by whole-genome sequencing. Seventy-one percent of the Enterobacterales isolates exhibited a multidrug-resistant (MDR) pheno- and genotype. The gene blaCMY (n = 51) was the predominant β-lactamase gene. In addition, blaTEM-1 (n = 38), blaSHV-33 (n = 8), blaCTX-M-15 (n = 7), blaOXA-1 (n = 7), blaSHV-11 (n = 3), and blaDHA-1 (n = 2) were detected. The most prevalent non-β-lactamase genes were sul2 (n = 38), strA (n = 34), strB (n = 34), and tet(A) (n = 34). Escherichia coli isolates belonging to the pandemic sequence types (STs) ST38, ST167, and ST648 were identified. Among Salmonella isolates (n = 18), S. Havana was the most prevalent serotype. The present study revealed a high prevalence of MDR bacteria and the presence of pandemic high-risk clones, both of which are indicators of anthropogenic antimicrobial pollution, in marine mammals.
Collapse
Affiliation(s)
- Olivia M. Grünzweil
- Institute of Microbiology, University of Veterinary Medicine, 1210 Vienna, Austria; (O.M.G.); (M.P.S.); (T.B.-H.); (A.D.J.K.); (J.S.)
| | - Lauren Palmer
- Marine Mammal Care Center, Los Angeles, CA 90731, USA;
| | - Adriana Cabal
- Austrian Agency for Health and Food Safety (AGES), Institute of Medical Microbiology and Hygiene, 1090 Vienna, Austria; (A.C.); (W.R.); (F.A.)
| | - Michael P. Szostak
- Institute of Microbiology, University of Veterinary Medicine, 1210 Vienna, Austria; (O.M.G.); (M.P.S.); (T.B.-H.); (A.D.J.K.); (J.S.)
| | - Werner Ruppitsch
- Austrian Agency for Health and Food Safety (AGES), Institute of Medical Microbiology and Hygiene, 1090 Vienna, Austria; (A.C.); (W.R.); (F.A.)
| | - Christian Kornschober
- Austrian Agency for Health and Food Safety (AGES), National Reference Centre for Salmonella, 8010 Graz, Austria;
| | - Maciej Korus
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland; (M.K.); (D.M.)
| | - Dusan Misic
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland; (M.K.); (D.M.)
| | - Tanja Bernreiter-Hofer
- Institute of Microbiology, University of Veterinary Medicine, 1210 Vienna, Austria; (O.M.G.); (M.P.S.); (T.B.-H.); (A.D.J.K.); (J.S.)
- Department for Farm Animals and Veterinary Public Health, University Clinic for Swine, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Anna D. J. Korath
- Institute of Microbiology, University of Veterinary Medicine, 1210 Vienna, Austria; (O.M.G.); (M.P.S.); (T.B.-H.); (A.D.J.K.); (J.S.)
| | - Andrea T. Feßler
- Centre for Infection Medicine, Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, 14163 Berlin, Germany; (A.T.F.); (S.S.)
| | - Franz Allerberger
- Austrian Agency for Health and Food Safety (AGES), Institute of Medical Microbiology and Hygiene, 1090 Vienna, Austria; (A.C.); (W.R.); (F.A.)
| | - Stefan Schwarz
- Centre for Infection Medicine, Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, 14163 Berlin, Germany; (A.T.F.); (S.S.)
| | - Joachim Spergser
- Institute of Microbiology, University of Veterinary Medicine, 1210 Vienna, Austria; (O.M.G.); (M.P.S.); (T.B.-H.); (A.D.J.K.); (J.S.)
| | - Elke Müller
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany; (E.M.); (S.D.B.); (S.M.); (R.E.)
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Sascha D. Braun
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany; (E.M.); (S.D.B.); (S.M.); (R.E.)
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Stefan Monecke
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany; (E.M.); (S.D.B.); (S.M.); (R.E.)
- InfectoGnostics Research Campus, 07743 Jena, Germany
- Institute for Medical Microbiology and Hygiene, Technical University of Dresden, 01307 Dresden, Germany
| | - Ralf Ehricht
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany; (E.M.); (S.D.B.); (S.M.); (R.E.)
- InfectoGnostics Research Campus, 07743 Jena, Germany
- Institute of Physical Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Chris Walzer
- Research Institute of Wildlife Ecology, University of Veterinary Medicine, 1160 Vienna, Austria;
- Health Program, Wildlife Conservation Society, Bronx, New York City, NY 10460, USA
| | - Hrvoje Smodlaka
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA;
| | - Igor Loncaric
- Institute of Microbiology, University of Veterinary Medicine, 1210 Vienna, Austria; (O.M.G.); (M.P.S.); (T.B.-H.); (A.D.J.K.); (J.S.)
- Correspondence: ; Tel.: +43-125-077-2115
| |
Collapse
|