1
|
Freitas D, Colom J, Gómez-Mascaraque LG, Simon A, Rea K, Winger A, Buckley M, Deaton J, Brodkorb A. Food microstructure and protein digestion in the human gastrointestinal tract: an ileostomy study focusing on interindividual variability in gluten digestibility. Food Funct 2025; 16:4172-4188. [PMID: 40326566 DOI: 10.1039/d4fo04508d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
The degree of digestion of gluten proteins is thought to be directly linked to their capacity to elicit immune-mediated responses in predisposed individuals. Levels and timing of detection of gluten epitopes in stool samples exhibit high interindividual variability. However, the reasons behind this variability remain unclear and existing data do not allow distinctions between the effects of the upper gastrointestinal tract and colonic fermentation. This ileostomy study aimed to analyse the structural and biochemical degradation of a gluten-containing meal in the terminal ileum and to investigate interindividual variability. Eleven participants consumed the test meal (oat porridge and a wheat breakfast cereal) and ileal effluent was collected once every hour over eight hours for quantification of soluble protein, free amines, potentially immunogenic gliadin fragments, and insoluble nitrogen. The molecular weight distribution of soluble proteins was assessed by SEC-HPLC. Microstructural features were studied using scanning electron and confocal laser scanning microscopy. Total ileal effluent output exhibited a relatively high interindividual coefficient of variation (CV) (40.2%, range: 169.4 to 553.1 g), similar to protein and free amines (46.0% and 40.2%, respectively). The ratios of protein to ileal effluent and of free amines to protein exhibited lower CVs (26.9% and 18.6%, respectively). In contrast, potentially immunogenic gliadin fractions exhibited markedly higher variability (CV = 69.4%, range: 3.1 to 65.7 mg of gliadin equivalents), even after normalization by the gliadin-to-soluble-protein ratio (CV = 63.1%, range: 0.8 to 15.1 mg g-1 of protein). Amino acid sequences recognized by the R5 antibody were detected in both 60% ethanol and aqueous extracts, with water-soluble components dominating gliadin output for almost all participants. The disproportionately higher variability in gliadin excretion compared to total nitrogen, protein, and free amines, suggests that interindividual differences in gluten hydrolysis originate primarily in the upper gastrointestinal tract, indicating that individual characteristics likely modulate the specific capacity to degrade gluten proteins.
Collapse
Affiliation(s)
| | - Joan Colom
- ADM Cork H&W Limited, University College Cork, Cork, Ireland
| | | | - Annie Simon
- ADM Cork H&W Limited, University College Cork, Cork, Ireland
| | - Kieran Rea
- ADM Cork H&W Limited, University College Cork, Cork, Ireland
| | - Alison Winger
- ADM Cork H&W Limited, University College Cork, Cork, Ireland
| | | | - John Deaton
- ADM Deerland Probiotics and Enzymes, Kennesaw, GA, USA
| | - André Brodkorb
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland.
| |
Collapse
|
2
|
Davoodbasha M, Mani A, Arunachalam K, Jagadeesan A, Kamli MR, Kim JW, Thajuddin N. Isolation and Characterization of Probiotic Bacteria from Traditional Foods. Appl Biochem Biotechnol 2025; 197:2197-2215. [PMID: 39714558 DOI: 10.1007/s12010-024-05125-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2024] [Indexed: 12/24/2024]
Abstract
A probiotic is a live bacterium that, when given in sufficient proportions, helps to improve the host's gut health. Kimchi and pearl millet, two traditional foods, were used to isolate probiotic bacterial strains. This study's primary goals were to isolate, identify and analyse the microorganisms for potential probiotic traits, tolerance to gastrointestinal environments, and antimicrobial activity, and produce probiotic capsule. The present investigation resulted with identification of two probiotic strains (KAC1 and PAC1) from conventional foods, such as kimchi and pearl millet porridge. The isolated probiotics were identified as Enterobacteriaceae family by 16S rRNA sequencing and are deposited in GenBank (NCBI), accession numbers OQ629827 (KAC1) and OQ629828 (PAC1), respectively. These strains exhibited the characteristics of possible probiotic traits, such as the ability to tolerate simulated gastric juice, inhibits the growth of pathogenic bacteria, auto-aggregation, co-aggregation, and hydrophobicity. Furthermore, spectroscopic analysis divulges some critical findings which corroborate the results obtained. Finally, capsules containing freeze-dried probiotics was successfully produced.
Collapse
Affiliation(s)
- MubarakAli Davoodbasha
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, India.
- Crescent Global Outreach Mission (CGOM): Research & Development, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, India.
| | - Abinaya Mani
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, India
| | - Kannappan Arunachalam
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Arunkumar Jagadeesan
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25701, USA
| | - Majid Rasool Kamli
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
- Center of Excellence in Bionanoscience Research, King AbdulAziz University, Jeddah, 21589, Saudi Arabia
| | - Jung-Wan Kim
- Division of Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Nooruddin Thajuddin
- Crescent Global Outreach Mission (CGOM): Research & Development, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, India
| |
Collapse
|
3
|
Liang J, Bai M, Bi Y, Jian X, Wang S, Jiang S, Zhao Y, Ma W, Yin S, Zhang W. Heyndrickxia coagulans spore-based nanoparticle generator for improved oral insulin delivery and hypoglycemic therapy. J Control Release 2025; 378:103-115. [PMID: 39657890 DOI: 10.1016/j.jconrel.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/15/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024]
Abstract
Due to the two major physiological barriers restricted by mucus penetration and epithelia transport, oral insulin therapy using nano-delivery system remains challenging. Heyndrickxia coagulans spores can survive the harsh conditions of gastrointestinal tract (GIT), and penetrate in the mucus through germination to probiotics with their amphipathic proteinaceous coat shedding in the gut epithelium, which makes it possible to be functionalized with hydrophilic peptide/protein and form nanoparticles (NPs) in vivo. Inspired by the natural physiological properties of spores, novel deoxycholic acid-modified Heyndrickxia coagulans spores loaded with insulin (DA-Spore/Ins) as the generators of autonomous bio-based nanoparticles were designed to solve these absorption barriers to enhance oral insulin delivery. The DA-Spore/Ins delivery system achieved preferable drug protection and rapid mucus penetration through its germination in the intestinal microenvironment. Meanwhile, DA-Spore/Ins NPs could be spontaneously formed by the self-assembly of the disintegrated DA-covalently amphipathic protein coat and the hydrophilic protein/peptides drug. This can efficiently transport through the epithelial cells through the bile acid pathway. In vivo studies indicated that DA-Spore/Ins delivery system achieved an oral relative bioavailability of 15.1 % and superior hypoglycemic effect in type I diabetic rats characterized by good biocompatibility. These studies suggested that the intrinsic biological characteristics of Heyndrickxia coagulans spore-based nanogenerators rendered their promising application in oral insulin or other protein drug therapy.
Collapse
Affiliation(s)
- Jinying Liang
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; Xinxiang Key Laboratory for Epigenetic Molecular Pharmacology, Xinxiang 453003, China.
| | - Mengxin Bai
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; People's Hospital of Kaifeng, Kaifeng 475002, China
| | - Yarong Bi
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Xiangjie Jian
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Siyan Wang
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Shang Jiang
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Ying Zhao
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; Xinxiang Key Laboratory for Epigenetic Molecular Pharmacology, Xinxiang 453003, China
| | - Weiwei Ma
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Shaoping Yin
- School of Pharmacy, Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wenli Zhang
- Development of pharmaceutics, China Pharmaceutical University, Nangjing 210009, China.
| |
Collapse
|
4
|
Song JC, Peng Z, Ning YQ, Refaie A, Wang CF, Liu M, Sun LH. A novel zearalenone lactonase can effectively mitigate zearalenone-induced reproductive toxicity in gilts. Toxicon 2025; 255:108257. [PMID: 39832570 DOI: 10.1016/j.toxicon.2025.108257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
Zymdetox Z-2000 is a novel zearalenone (ZEN) lactonase produced by Bacillus subtilis that can biodegrade ZEN to hydrolyzed ZEN and decarboxylated hydrolyzed ZEN with much lower estrogenic activity. This study aims to evaluate the efficacy of Zymdetox Z-2000 in mitigating the adverse effects of ZEN on the growth performance and reproductive health of gilts. A total of 80 crossbred Landrace × Yorkshire gilts (9.82 ± 0.79 kg) were allocated into five groups and received a basal diet (BD; CON), BD supplemented with 0.4 mg/kg ZEN (ZEN), BD plus ZEN with 0.01% Zymdetox Z-2000 (ZEN-Zym), BD plus ZEN with 0.01% coated Zymdetox Z-2000 (ZEN-CoZym), and BD plus ZEN with 0.1% B. subtilis (ZEN-Bs), respectively, for 28 days. Compared to the CON group, ZEN treatment reduced the body weight gain of the gilts, increased vulva area and vaginal and uterus indices, and increased serum aspartate aminotransferase (AST) activity and estradiol (E2) concentration. ZEN treatment also induced ovaries histopathology changes, decreased the total antioxidant capacity (T-AOC) in uterus but increased T-AOC in ovaries, and increased ZEN concentration in stomach and duodenum than those of the CON group. Interestingly, dietary supplementation with the three products effectively alleviated these ZEN-induced adverse effects, as Zymdetox Z-2000 and coated Zymdetox Z-2000 showed better mitigating effects than B. subtilis. In conclusion, ZEN exposure impaired the growth and reproductive health of gilts, while dietary supplementation with Zymdetox Z-2000 and coated Zymdetox Z-2000 can effectively alleviate ZEN-induced reproductive toxicity in gilts.
Collapse
Affiliation(s)
- Jun-Chao Song
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Key Laboratory of Smart Farming Technology for Agricultural Animals of Ministry of Agriculture and Rural Affairs, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhe Peng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Key Laboratory of Smart Farming Technology for Agricultural Animals of Ministry of Agriculture and Rural Affairs, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yan-Qi Ning
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Key Laboratory of Smart Farming Technology for Agricultural Animals of Ministry of Agriculture and Rural Affairs, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Alainaa Refaie
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Key Laboratory of Smart Farming Technology for Agricultural Animals of Ministry of Agriculture and Rural Affairs, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Cheng-Fei Wang
- Jiangsu Aomai Bio-Technology Co., Ltd., Nanjing, 211226, China
| | - Meng Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Key Laboratory of Smart Farming Technology for Agricultural Animals of Ministry of Agriculture and Rural Affairs, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Lv-Hui Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Key Laboratory of Smart Farming Technology for Agricultural Animals of Ministry of Agriculture and Rural Affairs, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
5
|
K N V, Bamne SS, Crasta J, Kumar C S, Bhat RM, Shuster BM, Oliver JWK, Abbott ZD. Bacillus subtilis ZB423: 90-Day repeat dose oral (gavage) toxicity study in Wistar rats. J Appl Toxicol 2024; 44:1874-1885. [PMID: 39168852 DOI: 10.1002/jat.4677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 08/23/2024]
Abstract
The novel genetically modified probiotic Bacillus subtilis ZB423 was assessed in a 90-day repeated-dose oral toxicity study adhering to Good Laboratory Practice (GLP) and Organization for Economic Cooperation and Development (OECD) guidelines. Spray-dried spores at a concentration of 1.1E12 CFU/g were administered at doses of 130, 260, and 519 mg/kg body weight/day correlating to 1.43 × 1011, 2.86 × 1011, and 5.71 × 1011 CFU/kg/day, respectively, by oral gavage to Wistar rats for a period of 90 consecutive days. Results showed no toxicologically relevant findings for B. subtilis ZB423 from measured parameters. The no observed adverse effect level (NOAEL) of B. subtilis ZB423 is 519 mg/kg body weight/day corresponding to 5.71 × 1011 CFU/kg/day for lyophilized B. subtilis ZB423 spores under the test conditions employed.
Collapse
Affiliation(s)
- Vijayakumar K N
- Adgyl Lifesciences Private Limited (Formerly Department of Safety Assessment, Eurofins Advinus Limited), Bengaluru, Karnataka, India
| | - Swati S Bamne
- Adgyl Lifesciences Private Limited (Formerly Department of Safety Assessment, Eurofins Advinus Limited), Bengaluru, Karnataka, India
| | - Johnson Crasta
- Adgyl Lifesciences Private Limited (Formerly Department of Safety Assessment, Eurofins Advinus Limited), Bengaluru, Karnataka, India
| | - Satish Kumar C
- Adgyl Lifesciences Private Limited (Formerly Department of Safety Assessment, Eurofins Advinus Limited), Bengaluru, Karnataka, India
| | - Ramakrishna M Bhat
- Adgyl Lifesciences Private Limited (Formerly Department of Safety Assessment, Eurofins Advinus Limited), Bengaluru, Karnataka, India
| | | | | | | |
Collapse
|
6
|
Hassan-Casarez C, Ryan V, Shuster BM, Oliver JWK, Abbott ZD. Engineering a probiotic Bacillus subtilis for acetaldehyde removal: A hag locus integration to robustly express acetaldehyde dehydrogenase. PLoS One 2024; 19:e0312457. [PMID: 39509360 PMCID: PMC11542774 DOI: 10.1371/journal.pone.0312457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/07/2024] [Indexed: 11/15/2024] Open
Abstract
We have addressed critical challenges in probiotic design to develop a commercially viable bacterial strain capable of removing the intestinal toxin, acetaldehyde. In this study, we report the engineering of the hag locus, a σD-dependent flagellin expression site, as a stable location for robust enzyme production. We demonstrate constitutive gene expression in relevant conditions driven by the endogenous hag promoter, following a deletion of the gene encoding a post-translational regulator of σD, FlgM, and a point mutation to abrogate the binding of the translational inhibitor CsrA. Reporter constructs demonstrate activity at the hag locus after germination, with a steady increase in heterologous expression throughout outgrowth and vegetative growth. To evaluate the chassis as a spore-based probiotic solution, we identified the physiologically relevant ethanol metabolic pathway and the subsequent accumulation of gut-derived acetaldehyde following alcohol consumption. We integrated a Cupriavidus necator aldehyde dehydrogenase gene (acoD) into the hag locus under the control of the flagellin promoter and observed a rapid reduction in acetaldehyde levels in gut-simulated conditions post-germination. This work demonstrates a promising approach for the development of genetically engineered spore-based probiotics.
Collapse
Affiliation(s)
| | - Valerie Ryan
- ZBiotics Company, San Francisco, CA, United States of America
| | | | | | | |
Collapse
|
7
|
Vieco-Saiz N, Prévéraud DP, Pinloche E, Morat A, Govindin P, Blottière HM, Matthieu E, Devillard E, Consuegra J. Unraveling the benefits of Bacillus subtilis DSM 29784 poultry probiotic through its secreted metabolites: an in vitro approach. Microbiol Spectr 2024; 12:e0017724. [PMID: 39287453 PMCID: PMC11537077 DOI: 10.1128/spectrum.00177-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 08/04/2024] [Indexed: 09/19/2024] Open
Abstract
The probiotic Bacillus subtilis 29784 (Bs29784) sustains chicken's intestinal health, enhancing animal resilience and performance through the production of the bioactive metabolites hypoxanthine (HPX), niacin (NIA), and pantothenate (PTH). Here, using enterocyte in vitro models, we determine the functional link between these metabolites and the three pillars of intestinal resilience: immune response, intestinal barrier, and microbiota. We evaluated in vitro the capacity of Bs29784 vegetative cells, spores, and metabolites to modulate global immune regulators (using HT-29-NF-κB and HT-29-AP-1 reporter cells), intestinal integrity (HT-29-MUC2 reporter cells and Caco-2 cells), and cytokine production (Caco-2 cells). Finally, we simulated intestinal fermentations using chicken's intestinal contents as inocula to determine the effect of Bs29784 metabolites on the microbiota and their fermentation profile. Bs29784 vegetative cells reduced the inflammatory response more effectively than spores, indicating that their benefit is linked to metabolic activity. To assess this hypothesis, we studied Bs29784 metabolites individually. The results showed that each metabolite had different beneficial effects. PTH and NIA reduced the activation of the pro-inflammatory pathways AP-1 and NF-κB. HPX upregulated mucin production by enhancing MUC2 expression. HPX, NIA, and PTH increased cell proliferation. PTH and HPX increased epithelial resilience to an inflammatory challenge by limiting permeability increase. In cecal fermentations, NIA increased acetate, HPX increased butyrate, whereas PTH increased acetate, butyrate, and propionate. In ileal fermentations, PTH increased butyrate. All molecules modulated microbiota, explaining the different fermentation patterns. Altogether, we show that Bs29784 influences intestinal health by acting on the three lines of resilience via its secreted metabolites. IMPORTANCE Probiotics provide beneficial metabolites to its host. Here, we describe the mode of action of a commonly used probiotic in poultry, Bs29784. By using in vitro cellular techniques and simulated chickens' intestinal model, we show the functional link between Bs29784 metabolites and the three lines of animal resilience. Indeed, both Bs29784 vegetative cells and its metabolites stimulate cellular anti-inflammatory responses, strengthen intestinal barrier, and positively modulate microbiota composition and fermentative profile. Taken together, these results strengthen our understanding of the effect of Bs29784 on its host and explain, at least partly, its positive effects on animal health, resilience, and performance.
Collapse
Affiliation(s)
- Nuria Vieco-Saiz
- European Laboratory of Innovation Science & Expertise (ELISE). Adisseo France S.A.S., Saint Fons, France
| | | | - Eric Pinloche
- European Laboratory of Innovation Science & Expertise (ELISE). Adisseo France S.A.S., Saint Fons, France
| | - Aurélien Morat
- MGP Metagenopolis, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Pauline Govindin
- MGP Metagenopolis, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Hervé M. Blottière
- MGP Metagenopolis, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
- Nantes Université, INRAE, UMR 1280, PhAN, Nantes, France
| | - Elliot Matthieu
- MGP Metagenopolis, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Estelle Devillard
- European Laboratory of Innovation Science & Expertise (ELISE). Adisseo France S.A.S., Saint Fons, France
| | - Jessika Consuegra
- European Laboratory of Innovation Science & Expertise (ELISE). Adisseo France S.A.S., Saint Fons, France
| |
Collapse
|
8
|
Maruyama S, Matsuoka T, Hosomi K, Park J, Murakami H, Miyachi M, Kawashima H, Mizuguchi K, Kobayashi T, Ooka T, Yamagata Z, Kunisawa J. High barley intake in non-obese individuals is associated with high natto consumption and abundance of butyrate-producing bacteria in the gut: a cross-sectional study. Front Nutr 2024; 11:1434150. [PMID: 39545049 PMCID: PMC11562852 DOI: 10.3389/fnut.2024.1434150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/16/2024] [Indexed: 11/17/2024] Open
Abstract
Objective Barley, abundant in β-glucan, a soluble dietary fiber, holds promise in obesity prevention. Given the microbial metabolism of dietary fiber in the gastrointestinal tract, we investigated the role of gut microbiota in non-obese individuals consuming high levels of barley. Methods Our study enrolled 185 participants from "The cohort study on barley and the intestinal environment (UMIN000033479)." Comprehensive physical examinations, including blood tests, were conducted, along with separate assessments of gut microbiome profiling and dietary intake. Participants were categorized into high and low barley consumption groups based on the median intake, with non-obese individuals in the high intake group identified as barley responders while participants with obesity were designated as non-responders. We compared the relative abundance of intestinal bacteria between these groups and used multivariate analysis to assess the association between intestinal bacteria and barley responders while controlling for confounding factors. Results and discussion Among the fermented food choices, responders exhibited notably higher consumption of natto (fermented soybeans) than non-responders. Moreover, after adjusting for confounders, Butyricicoccus and Subdoligranulum were found to be significantly more prevalent in the intestines of responders. Given natto's inclusion of Bacillus subtilis, a glycolytic bacterium, and the butyrate-producing capabilities of Butyricicoccus and Subdoligranulum, it is hypothesized that fiber degradation and butyrate production are likely to be enhanced within the digestive tract of barley responders.
Collapse
Affiliation(s)
- Satoko Maruyama
- Department of Research and Development, Hakubaku Co., Ltd., Yamanashi, Japan
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Tsubasa Matsuoka
- Department of Research and Development, Hakubaku Co., Ltd., Yamanashi, Japan
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Koji Hosomi
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Jonguk Park
- Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Haruka Murakami
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Motohiko Miyachi
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Hitoshi Kawashima
- Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Kenji Mizuguchi
- Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Toshiki Kobayashi
- Department of Research and Development, Hakubaku Co., Ltd., Yamanashi, Japan
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Tadao Ooka
- Department of Health Sciences, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Zentaro Yamagata
- Department of Health Sciences, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Department of Microbiology and Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
- Graduate Schools of Medicine, Osaka University, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Graduate Schools of Science, Osaka University, Osaka, Japan
- Graduate School of Dentistry, Osaka University, Osaka, Japan
- International Vaccine Design Center, The University of Tokyo, Tokyo, Japan
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
| |
Collapse
|
9
|
Payne J, Bellmer D, Jadeja R, Muriana P. The Potential of Bacillus Species as Probiotics in the Food Industry: A Review. Foods 2024; 13:2444. [PMID: 39123635 PMCID: PMC11312092 DOI: 10.3390/foods13152444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
The demand for probiotics is increasing, providing opportunities for food and beverage products to incorporate and market these foods as a source of additional benefits. The most commonly used probiotics belong to the genera of Lactobacillus and Bifidobacterium, and traditionally these bacteria have been incorporated into dairy products, where they have a wider history and can readily survive. More recently, there has been a desire to incorporate probiotics into various food products, including baked goods. In recent years, interest in the use of Bacillus species as probiotics has greatly increased. The spores of various Bacillus species such as Bacillus coagulans and Bacillus subtilis, have significantly improved viability and stability under harsher conditions during heat processing. These characteristics make them very valuable as probiotics. In this review, factors that could affect the stability of Bacillus probiotics in food products are highlighted. Additionally, this review features the existing research and food products that use Bacillus probiotics, as well as future research opportunities.
Collapse
Affiliation(s)
- Jessie Payne
- Department of Animal and Food Science, Oklahoma State University, Stillwater, OK 74078, USA; (R.J.); (P.M.)
- Robert M. Kerr Food and Agricultural Products Center, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Danielle Bellmer
- Robert M. Kerr Food and Agricultural Products Center, Oklahoma State University, Stillwater, OK 74078, USA;
- Department of Biosystems and Agricultural Engineering, Oklahoma State University, Stillwater, OK 74078, USA
| | - Ravi Jadeja
- Department of Animal and Food Science, Oklahoma State University, Stillwater, OK 74078, USA; (R.J.); (P.M.)
- Robert M. Kerr Food and Agricultural Products Center, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Peter Muriana
- Department of Animal and Food Science, Oklahoma State University, Stillwater, OK 74078, USA; (R.J.); (P.M.)
- Robert M. Kerr Food and Agricultural Products Center, Oklahoma State University, Stillwater, OK 74078, USA;
| |
Collapse
|
10
|
Mazhar S, Simon A, Colom J, Khokhlova E, Buckley M, Phipps C, Deaton J, Rea K. Acute physiological effects on macromolecule digestion following oral ingestion of the enzyme blend Elevase® in individuals that had undergone an ileostomy, but were otherwise healthy-a randomized, double blinded, placebo-controlled exploratory study. Front Nutr 2024; 11:1357803. [PMID: 39091678 PMCID: PMC11292951 DOI: 10.3389/fnut.2024.1357803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/24/2024] [Indexed: 08/04/2024] Open
Abstract
Digestive enzymes can selectively degrade proteins, carbohydrates and lipids; and their supplementation alongside food may accelerate the breakdown of complex food matrices, facilitate greater nutrient absorption, decrease food sensitivities and aid in the management of certain disease states. Several intrinsic and extrinsic factors govern food digestion and for every individual this phenomenon is unique. This study was conducted as a randomized, crossover, placebo-controlled design where each participant served as their own control. This post-hoc analysis investigated the impact of a dietary enzyme supplementation blend known as Elevase® on dietary macromolecule digestion in samples from otherwise healthy participants that had previously undergone a small bowel resection, resulting in an ileostomy (NCT04489810). This is the first time this study-paradigm has been used for the assessment of in vivo dietary breakdown following enzyme supplementation. Arguably, this technique offers superior data when compared to that generated in artificial gut digestion models, preclinical animal models, or indeed conventional clinical studies using stool analyses, as it allows real-time access to samples in situ in the small intestine where the majority of nutritional absorption takes place. It was demonstrated that after 4 h, Elevase® significantly increased monosaccharide levels (predominantly glucose and fructose) in the ileostomy samples taken from the same individuals on the same diet on a different day. In addition, the bile salt taurohyodeoxycholic acid was also increased, suggesting a physiological host response to the macromolecule digestion induced by the enzymatic blend. Overall, these findings suggest Elevase® could accelerate food digestion and potentially increase nutrient availability from the diet.
Collapse
Affiliation(s)
| | - Annie Simon
- ADM Cork H&W Limited, University College Cork, Cork, Ireland
| | - Joan Colom
- ADM Cork H&W Limited, University College Cork, Cork, Ireland
| | | | | | | | - John Deaton
- ADM Deerland Probiotics and Enzymes, Kennesaw, GA, United States
| | - Kieran Rea
- ADM Cork H&W Limited, University College Cork, Cork, Ireland
| |
Collapse
|
11
|
Perotti S, Mantegazza G, Pierallini E, Kirika N, Duncan R, Telesca N, Sarrica A, Guglielmetti S. Human in vivo assessment of the survival and germination of Heyndrickxia coagulans SNZ1969 spores delivered via gummy candies. Curr Res Food Sci 2024; 9:100793. [PMID: 39071473 PMCID: PMC11278553 DOI: 10.1016/j.crfs.2024.100793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/05/2024] [Accepted: 06/15/2024] [Indexed: 07/30/2024] Open
Abstract
Confectionary products hold promise as unconventional food carriers for probiotic microorganisms. This study explored the delivery of Heyndrickxia coagulans SNZ1969, a spore-forming probiotic, using gummy candies. In this study, we prepared gummy candies containing bacterial spores with a viable count that remained stable during a 24-month shelf-life period, meeting the label claim of at least one billion CFUs per serving (24 g). Then, we carried out an intervention trial involving 24 healthy adults who consumed one serving per day for two weeks followed by an additional two weeks of follow-up. Fecal samples were collected and analyzed with a protocol that allowed the viable counts of SNZ1969, both in spore and vegetative forms. The obtained results revealed that bacterial spores germinated in all volunteers. SNZ1969 persistence in the gut was monitored for two weeks after the end of gummy candy consumption, indicating its potential for prolonged colonization. These findings highlight the potential of unconventional food carriers for probiotic delivery and suggest that spore-forming probiotics can be metabolically active in the human intestine. These findings provide information for the development of food products containing spore-forming probiotics and their potential benefits in promoting gastrointestinal health.
Collapse
Affiliation(s)
- Susanna Perotti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Italy
| | - Giacomo Mantegazza
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Italy
| | - Elena Pierallini
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Italy
| | | | - Robin Duncan
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Italy
| | - Nicolò Telesca
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Italy
| | | | - Simone Guglielmetti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Italy
| |
Collapse
|
12
|
Pal J, Sharma M, Tiwari A, Tiwari V, Kumar M, Sharma A, Hassan Almalki W, Alzarea SI, Kazmi I, Gupta G, Kumarasamy V, Subramaniyan V. Oxidative Coupling and Self-Assembly of Polyphenols for the Development of Novel Biomaterials. ACS OMEGA 2024; 9:19741-19755. [PMID: 38737049 PMCID: PMC11080037 DOI: 10.1021/acsomega.3c08528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 05/14/2024]
Abstract
In recent years, the development of biomaterials from green organic sources with nontoxicity and hyposensitivity has been explored for a wide array of biotherapeutic applications. Polyphenolic compounds have unique structural features, and self-assembly by oxidative coupling allows molecular species to rearrange into complex biomaterial that can be used for multiple applications. Self-assembled polyphenolic structures, such as hollow spheres, can be designed to respond to various chemical and physical stimuli that can release therapeutic drugs smartly. The self-assembled metallic-phenol network (MPN) has been used for modulating interfacial properties and designing biomaterials, and there are several advantages and challenges associated with such biomaterials. This review comprehensively summarizes current challenges and prospects of self-assembled polyphenolic hollow spheres and MPN coatings and self-assembly for biomedical applications.
Collapse
Affiliation(s)
- Jyoti Pal
- Department
of Chemistry and Toxicology, National Forensic
Sciences University, Sector 3 Rohini, Delhi 110085 India
| | - Manu Sharma
- Department
of Chemistry and Toxicology, National Forensic
Sciences University, Sector 3 Rohini, Delhi 110085 India
| | - Abhishek Tiwari
- Pharmacy
Academy, IFTM University, Lodhipur-Rajput, Moradabad, U.P. 244102, India
| | - Varsha Tiwari
- Pharmacy
Academy, IFTM University, Lodhipur-Rajput, Moradabad, U.P. 244102, India
| | - Manish Kumar
- Department
of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab 142001, India
| | - Ajay Sharma
- School of
Pharmaceutical Sciences, Delhi Pharmaceutical
Sciences and Research University, Pushp Vihar, New Delhi 110017, India
| | - Waleed Hassan Almalki
- Department
of Pharmacology, College of Pharmacy, Umm
Al-Qura University, Makkah 21421, Saudi Arabia
| | - Sami I. Alzarea
- Department
of Pharmacology, College of Pharmacy, Jouf
University, Al-Jouf, Sakaka, 72388, Saudi Arabia
| | - Imran Kazmi
- Department
of Biochemistry, Faculty of Science, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Gaurav Gupta
- Centre for
Global Health Research, Saveetha Medical College, Saveetha Institute
of Medical and Technical Sciences, Saveetha
University, Chennai, Tamil Nadu 602105, India
- School of
Pharmacy, Graphic Era Hill University, Dehradun 248007, India
- School
of Pharmacy, Suresh Gyan Vihar University, Jagatpura, 302017 Jaipur, India
| | - Vinoth Kumarasamy
- Department
of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Vetriselvan Subramaniyan
- Pharmacology
Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia
| |
Collapse
|
13
|
Kim HS, Noh MH, White EM, Kandefer MV, Wright AF, Datta D, Lim HG, Smiggs E, Locklin JJ, Rahman MA, Feist AM, Pokorski JK. Biocomposite thermoplastic polyurethanes containing evolved bacterial spores as living fillers to facilitate polymer disintegration. Nat Commun 2024; 15:3338. [PMID: 38688899 PMCID: PMC11061138 DOI: 10.1038/s41467-024-47132-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/21/2024] [Indexed: 05/02/2024] Open
Abstract
The field of hybrid engineered living materials seeks to pair living organisms with synthetic materials to generate biocomposite materials with augmented function since living systems can provide highly-programmable and complex behavior. Engineered living materials have typically been fabricated using techniques in benign aqueous environments, limiting their application. In this work, biocomposite fabrication is demonstrated in which spores from polymer-degrading bacteria are incorporated into a thermoplastic polyurethane using high-temperature melt extrusion. Bacteria are engineered using adaptive laboratory evolution to improve their heat tolerance to ensure nearly complete cell survivability during manufacturing at 135 °C. Furthermore, the overall tensile properties of spore-filled thermoplastic polyurethanes are substantially improved, resulting in a significant improvement in toughness. The biocomposites facilitate disintegration in compost in the absence of a microbe-rich environment. Finally, embedded spores demonstrate a rationally programmed function, expressing green fluorescent protein. This research provides a scalable method to fabricate advanced biocomposite materials in industrially-compatible processes.
Collapse
Affiliation(s)
- Han Sol Kim
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Myung Hyun Noh
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 406-30 Jongga-ro, Ulsan, 44429, Republic of Korea
| | - Evan M White
- New Materials Institute, University of Georgia, Athens, GA, 30602, USA
| | | | - Austin F Wright
- New Materials Institute, University of Georgia, Athens, GA, 30602, USA
| | - Debika Datta
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Hyun Gyu Lim
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Ethan Smiggs
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Jason J Locklin
- New Materials Institute, University of Georgia, Athens, GA, 30602, USA
| | - Md Arifur Rahman
- Thermoplastic Polyurethane Research, BASF Corporation, 1609 Biddle Ave., Wyandotte, MI, 48192, USA.
| | - Adam M Feist
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA.
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs, Lyngby, Denmark.
| | - Jonathan K Pokorski
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA.
- Institute for Materials Discovery and Design, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA.
| |
Collapse
|
14
|
Thomas J, Roy P, Ghosh A, Mete M, Sil SK, Das D. Prebiotic levan type fructan from Bacillus subtilis PR-C18 as a potent antibiofilm agent: Structural elucidation and in silico analysis. Carbohydr Res 2024; 538:109075. [PMID: 38564901 DOI: 10.1016/j.carres.2024.109075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
The global demand for therapeutic prebiotics persuades the quest for novel exopolysaccharides that can retard the growth of pathobionts and healthcare-associated pathogens. In this regard, an exopolysaccharide (3.69 mg/mL) producing strain showing prebiotic and antibiofilm activity was isolated from indigenous pineapple pomace of Tripura and identified as Bacillus subtilis PR-C18. Zymogram analysis revealed EPS PR-C18 was synthesized by levansucrase (∼57 kDa) with a maximal activity of 4.62 U/mg. Chromatography techniques, FTIR, and NMR spectral data revealed the homopolymeric nature of purified EPS with a molecular weight of 3.40 × 104 Da. SEM and rheological study unveiled its microporous structure and shear-thinning effect. Furthermore, EPS PR-C18 showed remarkable emulsification, flocculation, water retention, water solubilization, and antioxidant activity. DSC-TGA data demonstrated its high thermostability and cytotoxicity analysis verified its nontoxic biocompatible nature. In addition, the antibiofilm activity of EPS PR-C18 was validated using molecular docking, molecular simulation, MM-GBSA and PCA studies, which exhibited its strong binding affinity (-20.79 kcal/moL) with PelD, a virulence factor from Pseudomonas aeruginosa. Together, these findings support the future exploitation of EPS PR-C18 as an additive or adjuvant in food and pharmaceutical sectors.
Collapse
Affiliation(s)
- Juanit Thomas
- Department of Bioengineering, NIT Agartala, Tripura, 799046, India
| | - Payel Roy
- Department of Bioengineering, NIT Agartala, Tripura, 799046, India
| | - Arabinda Ghosh
- Department of Computational Biology and Biotechnology, Mahapurusha Srimanta Sankaradeva Viswavidyalaya, Assam, 781032, India
| | - Megha Mete
- Department of Bioengineering, NIT Agartala, Tripura, 799046, India
| | - Samir Kumar Sil
- Department of Human Physiology, Tripura University, Tripura, 799022, India
| | - Deeplina Das
- Department of Bioengineering, NIT Agartala, Tripura, 799046, India.
| |
Collapse
|
15
|
Zhao Z, Li W, Tran TT, Loo SCJ. Bacillus subtilis SOM8 isolated from sesame oil meal for potential probiotic application in inhibiting human enteropathogens. BMC Microbiol 2024; 24:104. [PMID: 38539071 PMCID: PMC11312844 DOI: 10.1186/s12866-024-03263-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/17/2024] [Indexed: 08/11/2024] Open
Abstract
BACKGROUND While particular strains within the Bacillus species, such as Bacillus subtilis, have been commercially utilised as probiotics, it is critical to implement screening assays and evaluate the safety to identify potential Bacillus probiotic strains before clinical trials. This is because some Bacillus species, including B. cereus and B. anthracis, can produce toxins that are harmful to humans. RESULTS In this study, we implemented a funnel-shaped approach to isolate and evaluate prospective probiotics from homogenised food waste - sesame oil meal (SOM). Of nine isolated strains with antipathogenic properties, B. subtilis SOM8 displayed the most promising activities against five listed human enteropathogens and was selected for further comprehensive assessment. B. subtilis SOM8 exhibited good tolerance when exposed to adverse stressors including acidity, bile salts, simulated gastric fluid (SGF), simulated intestinal fluid (SIF), and heat treatment. Additionally, B. subtilis SOM8 possesses host-associated benefits such as antioxidant and bile salt hydrolase (BSH) activity. Furthermore, B. subtilis SOM8 contains only haemolysin toxin genes but has been proved to display partial haemolysis in the test and low cytotoxicity in Caco-2 cell models for in vitro evaluation. Moreover, B. subtilis SOM8 intrinsically resists only streptomycin and lacks plasmids or other mobile genetic elements. Bioinformatic analyses also predicted B. subtilis SOM8 encodes various bioactives compound like fengycin and lichendicin that could enable further biomedical applications. CONCLUSIONS Our comprehensive evaluation revealed the substantial potential of B. subtilis SOM8 as a probiotic for targeting human enteropathogens, attributable to its exceptional performance across selection assays. Furthermore, our safety assessment, encompassing both phenotypic and genotypic analyses, showed B. subtilis SOM8 has a favourable preclinical safety profile, without significant threats to human health. Collectively, these findings highlight the promising prospects of B. subtilis SOM8 as a potent probiotic candidate for additional clinical development.
Collapse
Affiliation(s)
- Zhongtian Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Wenrui Li
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - The Thien Tran
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Say Chye Joachim Loo
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
16
|
Kolodkin-Gal I, Dash O, Rak R. Probiotic cultivated meat: bacterial-based scaffolds and products to improve cultivated meat. Trends Biotechnol 2024; 42:269-281. [PMID: 37805297 DOI: 10.1016/j.tibtech.2023.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 10/09/2023]
Abstract
Cultivated meat is emerging to replace traditional livestock industries, which have ecological costs, including land and water overuse and considerable carbon emissions. During cultivated meat production, mammalian cells can increase their numbers dramatically through self-renewal/proliferation and transform into mature cells, such as muscle or fat cells, through maturation/differentiation. Here, we address opportunities for introducing probiotic bacteria into the cultivated meat industry, including using them to produce renewable antimicrobials and scaffolding materials. We also offer solutions to challenges, including the growth of bacteria and mammalian cells, the effect of probiotic bacteria on production costs, and the effect of bacteria and their products on texture and taste. Our summary provides a promising framework for applying microbial composites in the cultivated meat industry.
Collapse
Affiliation(s)
- Ilana Kolodkin-Gal
- Scojen Institute for Synthetic Biology, Reichman University, Herzliya, Israel.
| | - Orit Dash
- Department of Animal Sciences, Faculty of Agriculture and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel; Institute of Animal Science, ARO, The Volcani Center, Rishon LeZion, Israel
| | - Roni Rak
- Institute of Animal Science, ARO, The Volcani Center, Rishon LeZion, Israel.
| |
Collapse
|
17
|
Mazhar S, Simon A, Khokhlova E, Colom J, Leeuwendaal N, Deaton J, Rea K. In vitro safety and functional characterization of the novel Bacillus coagulans strain CGI314. Front Microbiol 2024; 14:1302480. [PMID: 38274758 PMCID: PMC10809412 DOI: 10.3389/fmicb.2023.1302480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction Bacillus coagulans species have garnered much interest in health-related functional food research owing to their desirable probiotic properties, including pathogen exclusion, antioxidant, antimicrobial, immunomodulatory and food fermentation capabilities coupled with their tolerance of extreme environments (pH, temperature, gastric and bile acid resistance) and stability due to their endosporulation ability. Methods In this study, the novel strain Bacillus coagulans CGI314 was assessed for safety, and functional probiotic attributes including resistance to heat, gastric acid and bile salts, the ability to adhere to intestinal cells, aggregation properties, the ability to suppress the growth of human pathogens, enzymatic profile, antioxidant capacity using biochemical and cell-based methods, cholesterol assimilation, anti-inflammatory activity, and attenuation of hydrogen peroxide (H2O2)-induced disruption of the intestinal-epithelial barrier. Results B. coagulans CGI314 spores display resistance to high temperatures (40°C, 70°C, and 90°C), and gastric and bile acids [pH 3.0 and bile salt (0.3%)], demonstrating its ability to survive and remain viable under gastrointestinal conditions. Spores and the vegetative form of this strain were able to adhere to a mucous-producing intestinal cell line, demonstrated moderate auto-aggregation properties, and could co-aggregate with potentially pathogenic bacteria. Vegetative cells attenuated LPS-induced pro-inflammatory cytokine gene expression in HT-29 intestinal cell lines and demonstrated broad antagonistic activity toward numerous urinary tract, intestinal, oral, and skin pathogens. Metabolomic profiling demonstrated its ability to synthesize several amino acids, vitamins and short-chain fatty acids from the breakdown of complex molecules or by de novo synthesis. Additionally, B. coagulans CGI314's strong antioxidant capacity was demonstrated using enzyme-based methods and was further supported by its cytoprotective and antioxidant effects in HepG2 and HT-29 cell lines. Furthermore, B. coagulans CGI314 significantly increased the expression of tight junction proteins and partially ameliorated the detrimental effects of H2O2 induced intestinal-epithelial barrier integrity. Discussion Taken together these beneficial functional properties provide strong evidence for B. coagulans CGI314 as a promising potential probiotic candidate in food products.
Collapse
Affiliation(s)
- Shahneela Mazhar
- ADM Cork H&W Limited, Bio-Innovation Unit, University College Cork, Cork, Ireland
| | - Annie Simon
- ADM Cork H&W Limited, Bio-Innovation Unit, University College Cork, Cork, Ireland
| | - Ekaterina Khokhlova
- ADM Cork H&W Limited, Bio-Innovation Unit, University College Cork, Cork, Ireland
| | - Joan Colom
- ADM Cork H&W Limited, Bio-Innovation Unit, University College Cork, Cork, Ireland
| | - Natasha Leeuwendaal
- ADM Cork H&W Limited, Bio-Innovation Unit, University College Cork, Cork, Ireland
| | - John Deaton
- ADM Deerland Probiotics and Enzymes, Kennesaw, GA, United States
| | - Kieran Rea
- ADM Cork H&W Limited, Bio-Innovation Unit, University College Cork, Cork, Ireland
| |
Collapse
|
18
|
Jansma J, Chatziioannou AC, Castricum K, van Hemert S, El Aidy S. Metabolic network construction reveals probiotic-specific alterations in the metabolic activity of a synthetic small intestinal community. mSystems 2023; 8:e0033223. [PMID: 37668401 PMCID: PMC10654062 DOI: 10.1128/msystems.00332-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/13/2023] [Indexed: 09/06/2023] Open
Abstract
IMPORTANCE The development of probiotic therapies targeted at the small intestinal microbiota represents a significant advancement in the field of probiotic interventions. This region poses unique opportunities due to its low number of gut microbiota, along with the presence of heightened immune and metabolic host responses. However, progress in this area has been hindered by a lack of detailed understanding regarding the molecular mechanisms through which probiotics exert their effects in the small intestine. Our study, utilizing a synthetic community of three small intestinal bacterial strains and the addition of two different probiotic species, and kynurenine as a representative dietary or endogenously produced compound, highlights the importance of selecting probiotic species with diverse genetic capabilities that complement the functional capacity of the resident microbiota, or alternatively, constructing a multispecies formula. This approach holds great promise for the development of effective probiotic therapies and underscores the need to consider the functional capacity of probiotic species when designing interventions.
Collapse
Affiliation(s)
- Jack Jansma
- Host-Microbe Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, the Netherlands
| | | | | | | | - Sahar El Aidy
- Host-Microbe Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, the Netherlands
| |
Collapse
|
19
|
Zanditenas E, Trebicz-Geffen M, Kolli D, Domínguez-García L, Farhi E, Linde L, Romero D, Chapman M, Kolodkin-Gal I, Ankri S. Digestive exophagy of biofilms by intestinal amoeba and its impact on stress tolerance and cytotoxicity. NPJ Biofilms Microbiomes 2023; 9:77. [PMID: 37813896 PMCID: PMC10562373 DOI: 10.1038/s41522-023-00444-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023] Open
Abstract
The human protozoan parasite Entamoeba histolytica is responsible for amebiasis, a disease endemic to developing countries. E. histolytica trophozoites colonize the large intestine, primarily feeding on bacteria. However, in the gastrointestinal tract, bacterial cells form aggregates or structured communities called biofilms too large for phagocytosis. Remarkably, trophozoites are still able to invade and degrade established biofilms, utilizing a mechanism that mimics digestive exophagy. Digestive exophagy refers to the secretion of digestive enzymes that promote the digestion of objects too large for direct phagocytosis by phagocytes. E. histolytica cysteine proteinases (CPs) play a crucial role in the degradation process of Bacillus subtilis biofilm. These proteinases target TasA, a major component of the B. subtilis biofilm matrix, also contributing to the adhesion of the parasite to the biofilm. In addition, they are also involved in the degradation of biofilms formed by Gram-negative and Gram-positive enteric pathogens. Furthermore, biofilms also play an important role in protecting trophozoites against oxidative stress. This specific mechanism suggests that the amoeba has adapted to prey on biofilms, potentially serving as an untapped reservoir for novel therapeutic approaches to treat biofilms. Consistently, products derived from the amoeba have been shown to restore antibiotic sensitivity to biofilm cells. In addition, our findings reveal that probiotic biofilms can act as a protective shield for mammalian cells, hindering the progression of the parasite towards them.
Collapse
Affiliation(s)
- Eva Zanditenas
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Meirav Trebicz-Geffen
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Divya Kolli
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, USA
| | - Laura Domínguez-García
- Departamento de Microbiología, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Málaga, Spain
| | - Einan Farhi
- Technion Genomics Center, Technion - Israel Institute of Technology, Haifa, Israel
| | - Liat Linde
- Technion Genomics Center, Technion - Israel Institute of Technology, Haifa, Israel
| | - Diego Romero
- Departamento de Microbiología, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Málaga, Spain
| | - Matthew Chapman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, USA
| | - Ilana Kolodkin-Gal
- Department of Plant Pathology and Microbiology, the Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
- Scojen Institute for Synthetic Biology, Reichman University, Herzliya, Israel.
| | - Serge Ankri
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel.
| |
Collapse
|
20
|
Allenspach K, Sung CH, Ceron JJ, Peres Rubio C, Bourgois-Mochel A, Suchodolski JS, Yuan L, Kundu D, Colom Comas J, Rea K, Mochel JP. Effect of the Probiotic Bacillus subtilis DE-CA9 TM on Fecal Scores, Serum Oxidative Stress Markers and Fecal and Serum Metabolome in Healthy Dogs. Vet Sci 2023; 10:566. [PMID: 37756088 PMCID: PMC10537710 DOI: 10.3390/vetsci10090566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND There is increasing interest in the use of Bacillus species as probiotics since their spore-forming ability favors their survival in the acidic gastric environment over other probiotic species. The subsequent germination of B. subtilis to their vegetative form allows for their growth in the small intestine and may increase their beneficial effect on the host. B. subtilis strains have also previously been shown to have beneficial effects in humans and production animals, however, no reports are available so far on their use in companion animals. STUDY DESIGN The goal of this study was therefore to investigate the daily administration of 1 × 109 cfu DE-CA9TM orally per day versus placebo on health parameters, fecal scores, fecal microbiome, fecal metabolomics, as well as serum metabolomics and oxidative stress markers in ten healthy Beagle dogs in a parallel, randomized, prospective, placebo-controlled design over a period of 45 days. RESULTS DE-CA9TM decreased the oxidative status compared to controls for advanced oxidation protein products (AOPP), thiobarbituric acid reactive substances (TBARS) and reactive oxygen metabolites (d-ROMS), suggesting an antioxidant effect of the treatment. Fecal metabolomics revealed a significant reduction in metabolites associated with tryptophan metabolism in the DE-CA9TM-treated group. DE-CA9TM also significantly decreased phenylalanine and homocysteine and increased homoserine and threonine levels. Amino acid metabolism was also affected in the serum metabolome, with increased levels of urea and cadaverine, and reductions in N-acetylornithine in DE-CA9TM compared to controls. Similarly, changes in essential amino acids were observed, with a significant increase in tryptophan and lysine levels and a decrease in homocysteine. An increase in serum guanine and deoxyuridine was also detected, with a decrease in beta-alanine in the animals that ingested DE-CA9TM. CONCLUSIONS Data generated throughout this study suggest that the daily administration of 1 × 109 cfu of DE-CA9TM in healthy Beagle dogs is safe and does not affect markers of general health and fecal scores. Furthermore, DE-CA9TM administration had a potential positive effect on some serum markers of oxidative stress, and protein and lipid metabolism in serum and feces.
Collapse
Affiliation(s)
- Karin Allenspach
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA;
| | - Chi-Hsuan Sung
- The Gastrointestinal Laboratory, Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; (C.-H.S.); (J.S.S.)
| | - Jose Joaquin Ceron
- Department of Clinical Pathology, College of Veterinary Medicine, University of Murcia, 30100 Murcia, Spain; (J.J.C.); (C.P.R.); (L.Y.)
| | - Camila Peres Rubio
- Department of Clinical Pathology, College of Veterinary Medicine, University of Murcia, 30100 Murcia, Spain; (J.J.C.); (C.P.R.); (L.Y.)
| | - Agnes Bourgois-Mochel
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA;
| | - Jan S. Suchodolski
- The Gastrointestinal Laboratory, Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; (C.-H.S.); (J.S.S.)
| | - Lingnan Yuan
- Department of Clinical Pathology, College of Veterinary Medicine, University of Murcia, 30100 Murcia, Spain; (J.J.C.); (C.P.R.); (L.Y.)
| | - Debosmita Kundu
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA; (D.K.); (J.P.M.)
| | - Joan Colom Comas
- ADM Cork H&W Limited, Bioinnovation Unit, Food Science Building, College Road, University College Cork, T12 Y337 Cork, Ireland; (J.C.C.); (K.R.)
| | - Kieran Rea
- ADM Cork H&W Limited, Bioinnovation Unit, Food Science Building, College Road, University College Cork, T12 Y337 Cork, Ireland; (J.C.C.); (K.R.)
| | - Jonathan P. Mochel
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA; (D.K.); (J.P.M.)
| |
Collapse
|
21
|
Garvey SM, Emami NK, Guice JL, Sriranganathan N, Penet C, Rhoads RP, Spears JL, Dalloul RA, El-Kadi SW. The Probiotic Bacillus subtilis MB40 Improves Immunity in a Porcine Model of Listeriosis. Microorganisms 2023; 11:2110. [PMID: 37630670 PMCID: PMC10458092 DOI: 10.3390/microorganisms11082110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Probiotics for humans and direct-fed microbials for livestock are increasingly popular dietary ingredients for supporting immunity. The aim of this study was to determine the effects of dietary supplementation of Bacillus subtilis MB40 (MB40) on immunity in piglets challenged with the foodborne pathogen Listeria monocytogenes (LM). Three-week-old piglets (n = 32) were randomly assigned to four groups: (1) basal diet, (2) basal diet with LM challenge, (3) MB40-supplemented diet, and (4) MB40-supplemented diet with LM challenge. Experimental diets were provided throughout a 14-day (d) period. On d8, piglets in groups 2 and 4 were intraperitoneally inoculated with LM at 108 CFU/mL per piglet. Blood samples were collected at d1, d8, and d15 for biochemical and immune response profiling. Animals were euthanized and necropsied at d15 for liver and spleen bacterial counts and intestinal morphological analysis. At d15, LM challenge was associated with increased spleen weight (p = 0.017), greater circulating populations of neutrophils (p = 0.001) and monocytes (p = 0.008), and reduced ileal villus height to crypt depth ratio (p = 0.009), compared to non-challenged controls. MB40 supplementation reduced LM bacterial counts in the liver and spleen by 67% (p < 0.001) and 49% (p < 0.001), respectively, following the LM challenge, compared to the basal diet. MB40 supplementation was also associated with decreased circulating concentrations of monocytes (p = 0.007). Altogether, these data suggest that MB40 supplementation is a safe and well-tolerated approach to enhance immunity during systemic Listeria infection.
Collapse
Affiliation(s)
- Sean M. Garvey
- Department of Research and Development, BIO-CAT, Inc., Troy, VA 22974, USA
| | - Nima K. Emami
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Justin L. Guice
- Department of Research and Development, BIO-CAT, Inc., Troy, VA 22974, USA
| | | | - Christopher Penet
- Department of Research and Development, BIO-CAT, Inc., Troy, VA 22974, USA
| | - Robert P. Rhoads
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Jessica L. Spears
- Department of Research and Development, BIO-CAT Microbials, LLC, Shakopee, MN 55379, USA
| | - Rami A. Dalloul
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Samer W. El-Kadi
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
22
|
Colom J, Freitas D, Simon A, Khokhlova E, Mazhar S, Buckley M, Phipps C, Deaton J, Brodkorb A, Rea K. Acute physiological effects following Bacillus subtilis DE111 oral ingestion - a randomised, double blinded, placebo-controlled study. Benef Microbes 2023; 14:31-44. [PMID: 36790091 DOI: 10.3920/bm2022.0081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Previous studies using ileostomy samples from study participants demonstrated that the spore-forming probiotic Bacillus subtilis DE111® can germinate in the small intestine as early as 4 hours after ingestion. Metabolomics, proteomics and sequencing technologies, enabled further analysis of these samples for the presence of hypoglycaemic, hypolipidemic, antioxidant, anti-inflammatory and antihypertensive molecules. In the DE111 treatment group, the polyphenols trigonelline and 2,5-dihydroxybenzoic acid, orotic acid, the non-essential amino acid cystine and the lipokine 12,13-diHome were increased. DE111 also reduced acetylcholine levels in the ileostomy samples, and increased the expression of leucocyte recruiting proteins, antimicrobial peptides and intestinal alkaline phosphatases of the brush border in the small intestine. The combination of B. subtilis DE111 and the diet administered during the study increased the expression of the proteins phosphodiesterase ENPP7, ceramidase ASAH2 and the adipokine Zn-alpha-2-glycoprotein that are involved in fatty acid and lipid metabolism. Acute B. subtilis DE111 ingestion had limited detectable effect on the microbiome, with the main change being its increased presence. These findings support previous data suggesting a beneficial role of DE111 in digestion, metabolism, and immune health that appears to begin within hours of consumption.
Collapse
Affiliation(s)
- J Colom
- Deerland Probiotics and Enzymes, Food Science Building, University College Cork, Cork, Ireland
| | - D Freitas
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - A Simon
- Deerland Probiotics and Enzymes, Food Science Building, University College Cork, Cork, Ireland
| | - E Khokhlova
- Deerland Probiotics and Enzymes, Food Science Building, University College Cork, Cork, Ireland
| | - S Mazhar
- Deerland Probiotics and Enzymes, Food Science Building, University College Cork, Cork, Ireland
| | - M Buckley
- Mercy University Hospital, Grenville PI, Cork, Ireland
| | - C Phipps
- Deerland Probiotics and Enzymes, 3800 Cobb International Boulevard Kennesaw, GA, USA 30152, USA
| | - J Deaton
- Deerland Probiotics and Enzymes, 3800 Cobb International Boulevard Kennesaw, GA, USA 30152, USA
| | - A Brodkorb
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - K Rea
- Deerland Probiotics and Enzymes, Food Science Building, University College Cork, Cork, Ireland
| |
Collapse
|
23
|
Khokhlova E, Colom J, Simon A, Mazhar S, García-Lainez G, Llopis S, Gonzalez N, Enrique-López M, Álvarez B, Martorell P, Tortajada M, Deaton J, Rea K. Immunomodulatory and Antioxidant Properties of a Novel Potential Probiotic Bacillus clausii CSI08. Microorganisms 2023; 11:microorganisms11020240. [PMID: 36838205 PMCID: PMC9962608 DOI: 10.3390/microorganisms11020240] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Spore-forming bacteria of the Bacillus genus have demonstrated potential as probiotics for human use. Bacillus clausii have been recognized as efficacious and safe agents for preventing and treating diarrhea in children and adults, with pronounced immunomodulatory properties during several in vitro and clinical studies. Herein, we characterize the novel strain of B. clausii CSI08 (Munispore®) for probiotic attributes including resistance to gastric acid and bile salts, the ability to suppress the growth of human pathogens, the capacity to assimilate wide range of carbohydrates and to produce potentially beneficial enzymes. Both spores and vegetative cells of this strain were able to adhere to a mucous-producing intestinal cell line and to attenuate the LPS- and Poly I:C-triggered pro-inflammatory cytokine gene expression in HT-29 intestinal cell line. Vegetative cells of B. clausii CSI08 were also able to elicit a robust immune response in U937-derived macrophages. Furthermore, B. clausii CSI08 demonstrated cytoprotective effects in in vitro cell culture and in vivo C. elegans models of oxidative stress. Taken together, these beneficial properties provide strong evidence for B. clausii CSI08 as a promising potential probiotic.
Collapse
Affiliation(s)
- Ekaterina Khokhlova
- Deerland Ireland R&D, Ltd., ADM, Bio-Innovation Unit, Rm. 331 Food Science Building, College Rd., University College Cork, T12 K8AF Cork, Ireland
| | - Joan Colom
- Deerland Ireland R&D, Ltd., ADM, Bio-Innovation Unit, Rm. 331 Food Science Building, College Rd., University College Cork, T12 K8AF Cork, Ireland
| | - Annie Simon
- Deerland Ireland R&D, Ltd., ADM, Bio-Innovation Unit, Rm. 331 Food Science Building, College Rd., University College Cork, T12 K8AF Cork, Ireland
| | - Shahneela Mazhar
- Deerland Ireland R&D, Ltd., ADM, Bio-Innovation Unit, Rm. 331 Food Science Building, College Rd., University College Cork, T12 K8AF Cork, Ireland
| | - Guillermo García-Lainez
- Archer Daniels Midland, Nutrition, Health&Wellness, Biopolis S.L. Parc Científic Universitat de València, C/ Catedrático Agustín Escardino Benlloch, 9, 46980 Paterna, Spain
| | - Silvia Llopis
- Archer Daniels Midland, Nutrition, Health&Wellness, Biopolis S.L. Parc Científic Universitat de València, C/ Catedrático Agustín Escardino Benlloch, 9, 46980 Paterna, Spain
| | - Nuria Gonzalez
- Archer Daniels Midland, Nutrition, Health&Wellness, Biopolis S.L. Parc Científic Universitat de València, C/ Catedrático Agustín Escardino Benlloch, 9, 46980 Paterna, Spain
| | - María Enrique-López
- Archer Daniels Midland, Nutrition, Health&Wellness, Biopolis S.L. Parc Científic Universitat de València, C/ Catedrático Agustín Escardino Benlloch, 9, 46980 Paterna, Spain
| | - Beatriz Álvarez
- Archer Daniels Midland, Nutrition, Health&Wellness, Biopolis S.L. Parc Científic Universitat de València, C/ Catedrático Agustín Escardino Benlloch, 9, 46980 Paterna, Spain
| | - Patricia Martorell
- Archer Daniels Midland, Nutrition, Health&Wellness, Biopolis S.L. Parc Científic Universitat de València, C/ Catedrático Agustín Escardino Benlloch, 9, 46980 Paterna, Spain
| | - Marta Tortajada
- Archer Daniels Midland, Nutrition, Health&Wellness, Biopolis S.L. Parc Científic Universitat de València, C/ Catedrático Agustín Escardino Benlloch, 9, 46980 Paterna, Spain
| | - John Deaton
- Deerland Probiotics & Enzymes, ADM, Science and Technology Department, 3800 Cobb International Blvd., Kennesaw, GA 30152, USA
| | - Kieran Rea
- Deerland Ireland R&D, Ltd., ADM, Bio-Innovation Unit, Rm. 331 Food Science Building, College Rd., University College Cork, T12 K8AF Cork, Ireland
- Correspondence:
| |
Collapse
|
24
|
Mazhar S, Khokhlova E, Colom J, Simon A, Deaton J, Rea K. In vitro and in silico assessment of probiotic and functional properties of Bacillus subtilis DE111 ®. Front Microbiol 2023; 13:1101144. [PMID: 36713219 PMCID: PMC9880548 DOI: 10.3389/fmicb.2022.1101144] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/21/2022] [Indexed: 01/14/2023] Open
Abstract
Bacillus subtilis DE111® is a safe, well-tolerated commercially available spore-forming probiotic that has been clinically shown to support a healthy gut microbiome, and to promote digestive and immune health in both adults and children. Recently it was shown that this spore-forming probiotic was capable of germinating in the gastrointestinal tract as early as 3 h after ingestion. However, a better understanding of the mechanisms involved in the efficacy of DE111® is required. Therefore, the present investigation was undertaken to elucidate the functional properties of DE111® through employing a combination of in vitro functional assays and genome analysis. DE111® genome mining revealed the presence of several genes encoding acid and stress tolerance mechanisms in addition to adhesion proteins required to survive and colonize harsh gastrointestinal environment including multi subunit ATPases, arginine deiminase (ADI) pathway genes (argBDR), stress (GroES/GroEL and DnaK/DnaJ) and extracellular polymeric substances (EPS) biosynthesis genes (pgsBCA). DE111® harbors several genes encoding enzymes involved in the metabolism of dietary molecules (protease, lipases, and carbohyrolases), antioxidant activity and genes associated with the synthesis of several B-vitamins (thiamine, riboflavin, pyridoxin, biotin, and folate), vitamin K2 (menaquinone) and seven amino acids including five essential amino acids (threonine, tryptophan, methionine, leucine, and lysine). Furthermore, a combined in silico analysis of bacteriocin producing genes with in vitro analysis highlighted a broad antagonistic activity of DE111® toward numerous urinary tract, intestinal, and skin pathogens. Enzymatic activities included proteases, peptidases, esterase's, and carbohydrate metabolism coupled with metabolomic analysis of DE111® fermented ultra-high temperature milk, revealed a high release of amino acids and beneficial short chain fatty acids (SCFAs). Together, this study demonstrates the genetic and phenotypic ability of DE111® for surviving harsh gastric transit and conferring health benefits to the host, in particular its efficacy in the metabolism of dietary molecules, and its potential to generate beneficial SCFAs, casein-derived bioactive peptides, as well as its high antioxidant and antimicrobial potential. Thus, supporting the use of DE111® as a nutrient supplement and its pottential use in the preparation of functional foods.
Collapse
Affiliation(s)
- Shahneela Mazhar
- Deerland Ireland R&D Ltd., ADM, Food Science Building, University College Cork, Cork, Ireland
| | - Ekaterina Khokhlova
- Deerland Ireland R&D Ltd., ADM, Food Science Building, University College Cork, Cork, Ireland
| | - Joan Colom
- Deerland Ireland R&D Ltd., ADM, Food Science Building, University College Cork, Cork, Ireland
| | - Annie Simon
- Deerland Ireland R&D Ltd., ADM, Food Science Building, University College Cork, Cork, Ireland
| | - John Deaton
- Deerland Probiotics and Enzymes, ADM, Kennesaw, GA, United States
| | - Kieran Rea
- Deerland Ireland R&D Ltd., ADM, Food Science Building, University College Cork, Cork, Ireland
| |
Collapse
|
25
|
Jansma J, Thome NU, Schwalbe M, Chatziioannou AC, Elsayed SS, van Wezel GP, van den Abbeele P, van Hemert S, El Aidy S. Dynamic effects of probiotic formula ecologic®825 on human small intestinal ileostoma microbiota: a network theory approach. Gut Microbes 2023; 15:2232506. [PMID: 37417553 PMCID: PMC10332219 DOI: 10.1080/19490976.2023.2232506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023] Open
Abstract
The gut microbiota plays a pivotal role in health and disease. The use of probiotics as microbiota-targeted therapies is a promising strategy to improve host health. However, the molecular mechanisms involved in such therapies are often not well understood, particularly when targeting the small intestinal microbiota. In this study, we investigated the effects of a probiotic formula (Ecologic®825) on the adult human small intestinal ileostoma microbiota. The results showed that supplementation with the probiotic formula led to a reduction in the growth of pathobionts, such as Enterococcaceae and Enterobacteriaceae, and a decrease in ethanol production. These changes were associated with significant alterations in nutrient utilization and resistance to perturbations. These probiotic mediated alterations which coincided with an initial increase in lactate production and decrease in pH were followed by a sharp increase in the levels of butyrate and propionate. Moreover, the probiotic formula increased the production of multiple N-acyl amino acids in the stoma samples. The study demonstrates the utility of network theory in identifying novel microbiota-targeted therapies and improving existing ones. Overall, the findings provide insights into the dynamic molecular mechanisms underlying probiotic therapies, which can aid in the development of more effective treatments for a range of conditions.
Collapse
Affiliation(s)
- Jack Jansma
- Host-Microbe Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| | - Nicola U. Thome
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Markus Schwalbe
- Host-Microbe Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| | | | - Somayah S. Elsayed
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Gilles P. van Wezel
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | | | | | - Sahar El Aidy
- Host-Microbe Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
26
|
Garvey SM, Mah E, Blonquist TM, Kaden VN, Spears JL. The probiotic Bacillus subtilis BS50 decreases gastrointestinal symptoms in healthy adults: a randomized, double-blind, placebo-controlled trial. Gut Microbes 2022; 14:2122668. [PMID: 36269141 PMCID: PMC9590435 DOI: 10.1080/19490976.2022.2122668] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
ABSTRACT Durable spore-forming probiotics are increasingly formulated into foods, beverages, and dietary supplements. To help meet this demand, the safety and efficacy of daily supplementation of Bacillus subtilis BS50 for 6 weeks was investigated in a randomized, double-blind, placebo-controlled, parallel clinical trial of 76 healthy adults. Before and during supplementation, gastrointestinal symptoms were recorded daily using a multi-symptom questionnaire. Clinical chemistry, hematology, plasma lipids, and intestinal permeability and inflammation markers were measured at baseline and end of study. Compared to placebo, 2 × 109 colony-forming units (CFU) BS50 per day increased the proportion of participants showing improvement from baseline to week 6 in the composite score for bloating, burping, and flatulence (47.4% vs. 22.2%), whereby the odds of detecting an improvement were higher with BS50 (OR [95% CI]: 3.2 [1.1, 8.7], p = .024). Analyses of individual gastrointestinal symptoms indicate that BS50 increased the proportion of participants showing an improvement at week 6 compared to placebo for burping (44.7% vs. 22.2%, p = .041) and bloating (31.6% vs. 13.9%, p = .071), without affecting other symptoms. There were no clinically meaningful changes in clinical chemistry, hematology, plasma lipids and intestinal permeability and other inflammation markers. In conclusion, the results suggest that dietary supplementation of 2 × 109 CFU Bacillus subtilis BS50 per day is a well-tolerated and safe strategy to alleviate gas-related gastrointestinal symptoms in healthy adults. ABBREVIATIONS AE adverse event; BHD bowel habits diary; BMI body mass index; BSS Bristol Stool Scale; CFU colony-forming unit; CRP C-reactive protein; FGID functional gastrointestinal disorder; GI gastrointestinal; GITQ Gastrointestinal Tolerance Questionnaire; GLP-1 glucagon-like peptide 1; GSRS Gastrointestinal Symptom Rating Scale; HDL-C high-density lipoprotein-cholesterol; IBS irritable bowel syndrome; IL-10 interleukin-10; ITT intent-to-treat; LBP lipopolysaccharide binding protein; LDL-C low-density lipoprotein-cholesterol; PP per protocol; PYY peptide YY; TG triglyceride; total-C total cholesterol.
Collapse
Affiliation(s)
- Sean M. Garvey
- BIO-CAT Microbials, LLC, Shakopee, MN, USA,BIO-CAT, Inc., Troy, VA, USA,Sean M. Garvey Department of Research and Development, BIO-CAT Microbials, LLC, 689 Canterbury Rd S, Shakopee, MN55379, USA
| | - Eunice Mah
- Biofortis Research, Inc., Addison, IL, USA
| | | | | | - Jessica L. Spears
- BIO-CAT Microbials, LLC, Shakopee, MN, USA,CONTACT Jessica L. Spears
| |
Collapse
|
27
|
Wasuwanich P, Fan G, Burke B, Furst AL. Metal-phenolic networks as tuneable spore coat mimetics. J Mater Chem B 2022; 10:7600-7606. [PMID: 35670267 DOI: 10.1039/d2tb00717g] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bacillus subtilis are important probiotic microbes currently formulated for delivery as spores, but their ability to germinate in the gut remains debatable. To optimize their application, cells should be delivered in their vegetative state, but the sensitivity of B. subtilis prevents this. Through the application of self-assembled metal-phenolic network (MPN) cellular coatings, B. subtilis are protected from lyophilization stresses. These MPNs are an important class of self-assembled materials comprised of polyphenols and metal ions, and the efficacy of MPN protection was found to be dependent on the MPN components used for assembly. Both the size of the polyphenol and stability of the metal-phenol coordination were important factors that influenced their cellular protection; the smallest polyphenol, gallic acid, and the most stable chelated ion, FeIII, were found to provide the highest level of protection. Further, delivery to the gut involves exposure to acidic conditions in the form of stomach acid and intestinal fluid. MPN coatings rapidly disassemble upon mild acid treatment but were found to protect B. subtilis from the negative impacts of the acid. Overall, optimized MPNs were found to protect vegetative B. subtilis cells from lyophilization stress and enable a more complete understanding of the role of each component in MPNs.
Collapse
Affiliation(s)
- Pris Wasuwanich
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Gang Fan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Benjamin Burke
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Ariel L Furst
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
28
|
Preclinical Safety Assessment of Bacillus subtilis BS50 for Probiotic and Food Applications. Microorganisms 2022; 10:microorganisms10051038. [PMID: 35630480 PMCID: PMC9144164 DOI: 10.3390/microorganisms10051038] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 12/12/2022] Open
Abstract
Despite the commercial rise of probiotics containing Bacillaceae spp., it remains important to assess the safety of each strain before clinical testing. Herein, we performed preclinical analyses to address the safety of Bacillus subtilis BS50. Using in silico analyses, we screened the 4.15 Mbp BS50 genome for genes encoding known Bacillus toxins, secondary metabolites, virulence factors, and antibiotic resistance. We also assessed the effects of BS50 lysates on the viability and permeability of cultured human intestinal epithelial cells (Caco-2). We found that the BS50 genome does not encode any known Bacillus toxins. The BS50 genome contains several gene clusters involved in the biosynthesis of secondary metabolites, but many of these antimicrobial metabolites (e.g., fengycin) are common to Bacillus spp. and may even confer health benefits related to gut microbiota health. BS50 was susceptible to seven of eight commonly prescribed antibiotics, and no antibiotic resistance genes were flanked by the complete mobile genetic elements that could enable a horizontal transfer. In cell culture, BS50 cell lysates did not diminish either Caco-2 viability or monolayer permeability. Altogether, BS50 exhibits a robust preclinical safety profile commensurate with commercial probiotic strains and likely poses no significant health risk to humans.
Collapse
|