1
|
Matsumura E, Kato H, Hara S, Ohbayashi T, Ito K, Shingubara R, Kawakami T, Mitsunobu S, Saeki T, Tsuda S, Minamisawa K, Wagai R. Single-cell genomics of single soil aggregates: methodological assessment and potential implications with a focus on nitrogen metabolism. Front Microbiol 2025; 16:1557188. [PMID: 40260087 PMCID: PMC12010503 DOI: 10.3389/fmicb.2025.1557188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/05/2025] [Indexed: 04/23/2025] Open
Abstract
Soil particles in plant rooting zones are largely clustered to form porous structural units called aggregates where highly diverse microorganisms inhabit and drive biogeochemical cycling. The complete extraction of microbial cells and DNA from soil is a substantial task as certain microorganisms exhibit strong adhesion to soil surfaces and/or inhabit deep within aggregates. However, the degree of aggregate dispersion and the efficacy of extraction have rarely been examined, and thus, adequate cell extraction methods from soil remain unclear. We aimed to develop an optimal method of cell extraction for single-cell genomics (SCG) analysis of single soil aggregates by focusing on water-stable macroaggregates (diameter: 5.6-8.2 mm) from the topsoil of cultivated Acrisol. We postulated that the extraction of microorganisms with distinct taxonomy and functions could be achieved depending on the degree of soil aggregate dispersion. To test this idea, we used six individual aggregates and performed both SCG sequencing and amplicon analysis. While both bead-vortexing and sonication dispersion techniques improved the extractability of bacterial cells compared to previous ones, the sonication technique led to more efficient dispersion and yielded a higher number and more diverse microorganisms than the bead technique. Furthermore, the analyses of nitrogen cycling and exopolysaccharides-related genes suggested that the sonication-assisted extraction led to the greater recovery of microorganisms strongly attached to soil particles and/or inhabited the aggregate subunits that were more physically stable (e.g., aggregate core). Further SCG analysis revealed that all six aggregates held intact microorganisms holding the genes (potentials) to convert nitrate into all possible nitrogen forms while some low-abundance genes showed inter-aggregate heterogeneity. Overall, all six aggregates studied showed similarities in pore characteristics, phylum-level composition, and microbial functional redundancy. Together, these results suggest that water-stable macroaggregates may act as a functional unit in soil and show potential as a useful experimental unit in soil microbial ecology. Our study also suggests that conventional methods employed for the extraction of cells and DNA may not be optimal. The findings of this study emphasize the necessity of advancing extraction methodologies to facilitate a more comprehensive understanding of microbial diversity and function in soil environments.
Collapse
Affiliation(s)
- Emi Matsumura
- Institute for Agro-Environmental Sciences (NIAES), National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Hiromi Kato
- Graduate School of Life Science, Tohoku University, Sendai, Japan
| | - Shintaro Hara
- Institute for Agro-Environmental Sciences (NIAES), National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Tsubasa Ohbayashi
- Institute for Agro-Environmental Sciences (NIAES), National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Koji Ito
- Institute for Agro-Environmental Sciences (NIAES), National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Ryo Shingubara
- Research Center for Advanced Analysis (NAAC), National Agriculture and Food Research Organization (NARO), Sendai, Japan
| | - Tomoya Kawakami
- Institute for Agro-Environmental Sciences (NIAES), National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | | | | | | | | | - Rota Wagai
- Institute for Agro-Environmental Sciences (NIAES), National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| |
Collapse
|
2
|
Delgado-Baquerizo M, Eldridge DJ, Liu YR, Liu ZW, Coleine C, Trivedi P. Soil biodiversity and function under global change. PLoS Biol 2025; 23:e3003093. [PMID: 40146744 DOI: 10.1371/journal.pbio.3003093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/28/2025] [Indexed: 03/29/2025] Open
Abstract
Soil organisms represent the most abundant and diverse organisms on the planet and support almost every ecosystem function we know, and thus impact our daily lives. Some of these impacts have been well-documented, such as the role of soil organisms in regulating soil fertility and carbon sequestration; processes that have direct implications for essential ecosystem services including food security and climate change mitigation. Moreover, soil biodiversity also plays a critical role in supporting other aspects from One Health-the combined health of humans, animals, and the environment-to the conservation of historic structures such as monuments. Unfortunately, soil biodiversity is also highly vulnerable to a growing number of stressors associated with global environmental change. Understanding how and when soil biodiversity supports these functions, and how it will adapt to changing environmental conditions, is crucial for conserving soils and maintaining soil processes for future generations. In this Essay, we discuss the fundamental importance of soil biodiversity for supporting multiple ecosystem services and One Health, and further highlight essential knowledge gaps that need to be addressed to conserve soil biodiversity for the next generations.
Collapse
Affiliation(s)
- Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - David J Eldridge
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Yu-Rong Liu
- State Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Zhong-Wen Liu
- State Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Claudia Coleine
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Pankaj Trivedi
- Microbiome Network and Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, United States of America
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, Texas, United States of America
| |
Collapse
|
3
|
Ruben MO, Akinsanola AB, Okon ME, Shitu T, Jagunna II. Emerging challenges in aquaculture: Current perspectives and human health implications. Vet World 2025; 18:15-28. [PMID: 40041520 PMCID: PMC11873385 DOI: 10.14202/vetworld.2025.15-28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/04/2024] [Indexed: 03/06/2025] Open
Abstract
Aquaculture, the cultivation of aquatic organisms for human consumption, has become an essential contributor to global food security. However, it faces numerous challenges that threaten its sustainability and capacity to meet the growing demand for animal protein. This review investigates these challenges, with a particular focus on environmental degradation, public health risks, and ethical dilemmas posed by genetic interventions in fish breeding. Despite the promise of genetically modified organisms (GMOs) in enhancing fish production, their integration into aquaculture remains controversial due to potential risks and unresolved ethical questions. This study aims to provide a comprehensive understanding of these pressing issues and propose pathways for sustainable aquaculture development. With the global population increasing and the demand for animal protein intensifying, aquaculture holds great potential as a sustainable food source. However, its contribution to global protein demand remains minimal, projected to decline to as low as 4% in the coming decades. Furthermore, aquaculture's environmental impact, including pollution of water bodies and ecosystem disruption, poses serious threats to biodiversity and public health. Addressing these challenges is critical for ensuring the long-term viability of aquaculture. By exploring the intersection of sustainability, ethics, and innovation, this review provides valuable insights for policymakers, industry stakeholders, and researchers seeking to advance sustainable aquaculture practices. This study aims to evaluate the current state of aquaculture and identify key challenges related to environmental sustainability, public health, and ethical considerations. It seeks to explore the potential of sustainable practices and genetic interventions to address these challenges while balancing the need for increased production and societal acceptance. The ultimate goal is to offer practical recommendations for fostering a resilient and ethical aquaculture industry capable of meeting future global food demands.
Collapse
Affiliation(s)
- M. Oghenebrorhie Ruben
- Landmark University SDG 2 (Zero Hunger), Landmark University, Omu-Aran, Nigeria
- Department of Animal Science, Landmark University, Omu-Aran, Nigeria
| | | | - M. Ekemini Okon
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Teslim Shitu
- Department of Microbiology, University of Ilorin, Kwara State, Nigeria
| | | |
Collapse
|
4
|
Fu Q, Ma K, Zhao J, Li J, Wang X, Zhao M, Fu X, Huang D, Chen H. Metagenomics unravel distinct taxonomic and functional diversities between terrestrial and aquatic biomes. iScience 2024; 27:111047. [PMID: 39435150 PMCID: PMC11492093 DOI: 10.1016/j.isci.2024.111047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/28/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
Microbes in terrestrial and aquatic ecosystems play crucial roles in driving ecosystem functions, but currently, there is a lack of comparison regarding their taxonomic and functional diversities. Here, we conducted a global analysis to investigate the disparities in microbial taxonomy and microbial-mediated biogeochemical cycles between terrestrial and aquatic ecosystems. Results showed a higher relative abundance of bacteria, especially Actinobacteria and Acidobacteria, in soil than water metagenomes, leading to a greater proportion of genes related to membrane transport, regulatory, and cellular signaling. Moreover, there was a higher abundance of genes associated with carbohydrate, sulfur, and potassium metabolisms in the soil, while those involved in nitrogen and iron metabolisms were more prevalent in the water. Thus, both soil and water microbiomes exhibited unique taxonomic and functional properties associated with biogeochemical processes, providing valuable insights into predicting and understanding the adaptation of microbes in different ecosystems in the face of climate change.
Collapse
Affiliation(s)
- Qi Fu
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Kayan Ma
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Jiayi Zhao
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Jiaxin Li
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Xueying Wang
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Meiqi Zhao
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Xianheng Fu
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Dandan Huang
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Huaihai Chen
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| |
Collapse
|
5
|
Meng J, Diao C, Cui Z, Li Z, Zhao J, Zhang H, Hu M, Xu J, Jiang Y, Haider G, Yang D, Shan S, Chen H. Unravelling the influence of microplastics with/without additives on radish (Raphanus sativus) and microbiota in two agricultural soils differing in pH. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135535. [PMID: 39153301 DOI: 10.1016/j.jhazmat.2024.135535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Here we investigated the effects of three types of microplastics (MPs), i.e., PS (P), ABS (B), PVC (V), and each with additive (MPAs) (PA, BA, and VA), on soil health, microbial community, and plant growth in two acidic and slightly alkaline soils. Incubation experiment revealed that although MPs and MPAs consistently stimulated soil nutrients and heavy metals (e.g., Mn, Cu) in weakly alkaline soils, only BA and VA led to increase in soil nutrients and heavy metals in acidic soils. This suggests distinct response patterns in the two soils depending on their initial pH. Concerning microorganisms, MPs and MPAs reduced the assembly degree of bacteria in acidic soils, with a reduction of Chloroflexi and Acidobacteriota but an increase of WPS-2 in VA. Culture experiment showed consistent positive or negative responses in radish seed germination, roots, and antioxidant activity across MPs and MPAs types in both soils, while the responses of seed heavy metals (e.g., Cr, Cd) were consistent in acidic soils but dependent on MPs and MPAs types in alkaline soils. Therefore, our study strongly suggests that the effects of MPs on soil-microbial-plant systems were highly dependent on initial soil characteristics and the types of MPs with plastic additives.
Collapse
Affiliation(s)
- Jun Meng
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Chengmei Diao
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Zhonghua Cui
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Zhangtao Li
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Jiayi Zhao
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| | - Haibo Zhang
- School of Environment and Resources, Zhejiang A&F Forestry University, Hangzhou 311300, China
| | - Minjun Hu
- Agricultural Technology Extension Center, Agriculture and Rural Affairs Bureau of Fuyang District, Hangzhou 311499, China
| | - Jun Xu
- Agricultural Technology Extension Center, Agriculture and Rural Affairs Bureau of Fuyang District, Hangzhou 311499, China
| | - Yugen Jiang
- Agricultural Technology Extension Center, Agriculture and Rural Affairs Bureau of Fuyang District, Hangzhou 311499, China
| | - Ghulam Haider
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Dong Yang
- Quality and Fertilizer Administration Bureau of Zhejiang Province, Hangzhou 310020, China
| | - Shengdao Shan
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Huaihai Chen
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
6
|
Qiu Y, Fu Q, Yang Y, Zhao J, Li J, Yi F, Fu X, Huang Y, Tian Z, Heitman JL, Yao Z, Dai Z, Qiu Y, Chen H. Soil and stone terraces offset the negative impacts of sloping cultivation on soil microbial diversity and functioning by protecting soil carbon. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122339. [PMID: 39222589 DOI: 10.1016/j.jenvman.2024.122339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/26/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Cultivation of sloping land is a main cause for soil erosion. Conservation practices, such as soil and stone terraces, may reduce the impacts of erosion but their impacts on soil microbial diversity and functioning related to carbon (C) and nutrient metabolisms remain unclear. This study was conducted to evaluate the effects of slope gradients (5°, 8°, 15°, 25°) and conservation practices (cultivated, uncultivated, soil terrace, and stone terrace) on bacterial and fungal diversities, metagenomic and metabolomic functioning associated with basic soil properties. Our results showed that steep slopes at 25° significantly decreased soil pH, silt percentage, and bacterial and fungal abundances, but that soil and stone terraces increased soil organic C (SOC), silt and clay contents, and fungal abundance compared to sloping cultivated lands. In addition, soil and stone terraces increased both bacterial and fungal alpha diversities, and relative abundances of Crenarchaeota, Nitrospirota, and Latescibacterota, but reduced the proportions of Actinobacteriota and Patescibacteria, thus shifting microbial beta diversities, which were significantly associated with increased SOC and silt content. For metagenomics, soil and stone terraces greatly increased the relative abundance of functional genes related to Respiration, Virulence, disease and defense, Stress response, and nitrogen and potassium metabolisms, such as Denitrification and Potassium homeostasis. For soil metabolomics, a total of 22 soil metabolites was enriched by soil and stone terraces, such as Lipids and lipid-like molecules (Arachidonic acid, Gamma-Linolenic acid, and Pentadecanoic acid), and Organoheterocyclic compounds (Adenine, Laudanosine, Methylpyrazine, and Nicotinic acid). To sum up, soil and stone terraces could reduce some of the negative impacts of steep slope cultivation on soil microbial diversity as well as their metagenomic and metabolomic functioning related to C and nutrient metabolism useful for soil health improvement, potentially bolstering the impact of sustainable practices in erosion hotspots around the world.
Collapse
Affiliation(s)
- Yingbo Qiu
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Qi Fu
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Yihang Yang
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Jiayi Zhao
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Jiaxin Li
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Fan Yi
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Xianheng Fu
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Yu Huang
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Zhengchao Tian
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Joshua L Heitman
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Zhiyuan Yao
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Zhongmin Dai
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yunpeng Qiu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Huaihai Chen
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
7
|
García-Estrada DA, Selem-Mojica N, Martínez-Hernández A, Lara-Reyna J, Dávila-Ramos S, Verdel-Aranda K. Diversity of bacterial communities in wetlands of Calakmul Biosphere Reserve: a comparative analysis between conserved and semi-urbanized zones in pre-Mayan Train era. BMC Microbiol 2024; 24:376. [PMID: 39342129 PMCID: PMC11437969 DOI: 10.1186/s12866-024-03523-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND The Calakmul Biosphere Reserve (CBR) is known for its rich animal and plant biodiversity, yet its microbial communities remain largely unknown. The reserve does not possess permanent bodies of water; nevertheless, seasonal depressions associated with fractures create wetlands, known locally as aguadas. Given the recent construction of the Maya train that crosses the CRB, it is essential to assess the biodiversity of its microorganisms and recognize their potential as a valuable source of goods. This evaluation is pivotal in mitigating potential mismanagement of the forest ecosystem. To enhance comprehension of microbial communities, we characterized the microbiota in three different wetlands. Ag-UD1 and Ag-UD2 wetlands are located in a zone without human disturbances, while the third, Ag-SU3, is in a semi-urbanized zone. Sampling was carried out over three years (2017, 2018, and 2019), enabling the monitoring of spatiotemporal variations in bacterial community diversity. The characterization of microbiome composition was conducted using 16S rRNA metabarcoding. Concurrently, the genomic potential of select samples was examined through shotgun metagenomics. RESULTS Statistical analysis of alpha and beta diversity indices showed significant differences among the bacterial communities found in undisturbed sites Ag-UD1 and Ag-UD2 compared to Ag-SU3. However, no significant differences were observed among sites belonging to the undisturbed area. Furthermore, a comparative analysis at the zone level reveals substantial divergence among the communities, indicating that the geographic location of the samples significantly influences these patterns. The bacterial communities in the CBR wetlands predominantly consist of genera from phyla Actinobacteria, Acidobacteria, and Proteobacteria. CONCLUSION This characterization has identified the composition of microbial communities and provided the initial overview of the metabolic capacities of the microbiomes inhabiting the aguadas across diverse conservation zones. The three sites exhibit distinct microbial compositions, suggesting that variables such as chemical composition, natural and anthropogenic disturbances, vegetation, and fauna may play a pivotal role in determining the microbial structure of the aguadas. This study establishes a foundational baseline for evaluating the impact of climatic factors and human interventions on critical environments such as wetlands.
Collapse
Affiliation(s)
- David Alberto García-Estrada
- Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, Mexico
| | - Nelly Selem-Mojica
- Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México (UNAM), Morelia, Michoacán, Mexico
| | | | - Joel Lara-Reyna
- Colegio de Postgraduados Campus Campeche, Sihochac, Champotón, Campeche, Mexico.
| | - Sonia Dávila-Ramos
- Centro de Investigación en Dinámica Celular, IICBA, Universidad Autónoma del Estado de Morelos (UAEM), Cuernavaca, Morelos, Mexico
| | - Karina Verdel-Aranda
- Conahcyt-Colegio de Postgraduados Campus Campeche, Sihochac, Champotón, Campeche, Mexico.
- Present address: Tecnológico Nacional de México-Instituto Tecnológico de Chiná, Chiná, Campeche, Mexico.
| |
Collapse
|
8
|
Lumibao CY, Liu Y. Long-Term Contaminant Exposure Alters Functional Potential and Species Composition of Soil Bacterial Communities in Gulf Coast Prairies. Microorganisms 2024; 12:1460. [PMID: 39065226 PMCID: PMC11279120 DOI: 10.3390/microorganisms12071460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Environmental pollution is a persistent threat to coastal ecosystems worldwide, adversely affecting soil microbiota. Soil microbial communities perform critical functions in many coastal processes, yet they are increasingly subject to oil and heavy metal pollution. Here, we assessed how small-scale contamination by oil and heavy metal impacts the diversity and functional potential of native soil bacterial communities in the gulf coast prairie dunes of a barrier island in South Texas along the northern Gulf of Mexico. We analyzed the bacterial community structure and their predicted functional profiles according to contaminant history and examined linkages between species diversity and functional potential. Overall, contaminants altered bacterial community compositions without affecting richness, leading to strongly distinct bacterial communities that were accompanied by shifts in functional potential, i.e., changes in predicted metabolic pathways across oiled, metal, and uncontaminated environments. We also observed that exposure to different contaminants can either lead to strengthened or decoupled linkages between species diversity and functional potential. Taken together, these findings indicate that bacterial communities might recover their diversity levels after contaminant exposure, but with consequent shifts in community composition and function. Furthermore, the trajectory of bacterial communities can depend on the nature or type of disturbance.
Collapse
Affiliation(s)
- Candice Y. Lumibao
- Department of Life Sciences, Texas A&M University—Corpus Christi, Corpus Christi, TX 78412, USA;
| | | |
Collapse
|
9
|
Cai X, Long Z, Li Y, Cao Y, Wang B, Zhao B, Ren P, Zhao X, Huang Y, Lu X, Hu S, Xu G. Divergent assembly of soil microbial necromass from microbial and organic fertilizers in Chimonobambusa hejiangensis forest. Front Microbiol 2024; 15:1291947. [PMID: 38915301 PMCID: PMC11194398 DOI: 10.3389/fmicb.2024.1291947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 05/20/2024] [Indexed: 06/26/2024] Open
Abstract
Introduction Variability in microbial residues within soil aggregates are becoming progressively essential to the nutritive and sustainability of soils, and are therefore broadly regarded as an indispensable part of soil organic matter. It is unexplored how the widespread implementation of microbial fertilisers in agricultural production impacts soil organic nutrients, in particular the microbial residue fraction. Methods We performed a three-year field experiment to verify the distinct impacts of microbial and organic fertilizers on carbon accumulation in soil microbial leftovers among aggregate fractions. Results Microbial residual carbon was shown to decrease insignificantly during the application of microbial fertilizer and to rise marginally afterwards with the utilization of organic fertilizer. However, the combined effects of the two fertilizers had substantial impacts on the accumulation of microbial residual carbon. Changes in the structure of the fungi and bacteria shown in this study have implications for the short-term potential of microbial fertilizer shortages to permanent soil carbon sequestration. Additionally, our findings revealed variations in microbial residue accumulation across the microbial fertilizers, with Azotobacter chroococcum fertilizer being preferable to Bacillus mucilaginosus fertilizer due to its higher efficiency. In this scenario of nutrient addition, fungal residues may serve as the primary binding component or focal point for the production of new microaggregates, since the quantity of SOC provided by fungal residues increased while that supplied by bacterial residues decreased. Discussion Our findings collectively suggested that the mechanisms behind the observed bacterial and fungal MRC (microbial residue carbon) responses to microbial fertilizer or organic fertilizer in bamboo forest soils are likely to be distinct. The application of microbial fertilizers for a limited duration led to a decline soil stable carbon pool, potentially influencing the regulation of soil nutrients in such hilly bamboo forests.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Shanglian Hu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Gang Xu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| |
Collapse
|
10
|
Sweeney CJ, Kaushik R, Bottoms M. Considerations for the inclusion of metabarcoding data in the plant protection product risk assessment of the soil microbiome. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:337-358. [PMID: 37452668 DOI: 10.1002/ieam.4812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
There is increasing interest in further developing the plant protection product (PPP) environmental risk assessment, particularly within the European Union, to include the assessment of soil microbial community composition, as measured by metabarcoding approaches. However, to date, there has been little discussion as to how this could be implemented in a standardized, reliable, and robust manner suitable for regulatory decision-making. Introduction of metabarcoding-based assessments of the soil microbiome into the PPP risk assessment would represent a significant increase in the degree of complexity of the data that needs to be processed and analyzed in comparison to the existing risk assessment on in-soil organisms. The bioinformatics procedures to process DNA sequences into community compositional data sets currently lack standardization, while little information exists on how these data should be used to generate regulatory endpoints and the ways in which these endpoints should be interpreted. Through a thorough and critical review, we explore these challenges. We conclude that currently, we do not have a sufficient degree of standardization or understanding of the required bioinformatics and data analysis procedures to consider their use in an environmental risk assessment context. However, we highlight critical knowledge gaps and the further research required to understand whether metabarcoding-based assessments of the soil microbiome can be utilized in a statistically and ecologically relevant manner within a PPP risk assessment. Only once these challenges are addressed can we consider if and how we should use metabarcoding as a tool for regulatory decision-making to assess and monitor ecotoxicological effects on soil microorganisms within an environmental risk assessment of PPPs. Integr Environ Assess Manag 2024;20:337-358. © 2023 SETAC.
Collapse
Affiliation(s)
- Christopher J Sweeney
- Syngenta, Jealott's Hill International Research Centre Bracknell, Bracknell, Berkshire, UK
| | - Rishabh Kaushik
- Syngenta, Jealott's Hill International Research Centre Bracknell, Bracknell, Berkshire, UK
| | - Melanie Bottoms
- Syngenta, Jealott's Hill International Research Centre Bracknell, Bracknell, Berkshire, UK
| |
Collapse
|
11
|
Meng J, Li W, Diao C, Li Z, Zhao J, Haider G, Zhang H, Xu J, Hu M, Shan S, Chen H. Microplastics drive microbial assembly, their interactions, and metagenomic functions in two soils with distinct pH and heavy metal availability. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131973. [PMID: 37406526 DOI: 10.1016/j.jhazmat.2023.131973] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/01/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023]
Abstract
Microplastics (MPs) have emerged as widely existing global environmental concerns in terrestrial ecosystems. However, the mechanisms that how MPs are affecting soil microbes and their metagenomic functioning is currently uncertain. Herein, we investigated the response mechanisms of bacterial and fungal communities as well as the metagenomic functions to the addition of MPs in two soils with distinct pH and heavy metals. In this study, the acidic soil (Xintong) and the neutral soil (Huanshan) contaminated by heavy metals were incubated with Polyvinyl Chloride (PVC) MPs at ratios of 2.5% and 5% on 60 and 120 days. We aimed to evaluate the responding, assembly, and interactions of the metagenomic taxonomy and function. Results showed that only in the acidic soil, PVC MPs significantly increased soil pH and decreased CaCl2-extractable heavy metals, and also reduced bacterial alpha diversity and interaction networks. The relative proportions of Proteobacteria and Bacteroidota in bacteria, and Mortierellomycota in fungi, were increased, but Chloroflexi and Acidobacteriota in bacteria, Ascomycota and Basidiomycota in fungi, were significantly decreased by PVC MPs. Metagenomic functions related to C cycling were repressed but the nutrient cycles were enriched with PVC MPs. In conclusion, our study suggests that the addition of PVC MPs could shift soil microbial community and metagenomic functioning, as well as increasing soil pH and reduced heavy metal availability.
Collapse
Affiliation(s)
- Jun Meng
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Wenjin Li
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Chengmei Diao
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Zhangtao Li
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Jiayi Zhao
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| | - Ghulam Haider
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Haibo Zhang
- Zhejiang Province Key Laboratory of Soil Contamination Bioremediation, School of Environment and Resources, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Jun Xu
- Agricultural Technology Extension Center of Fuyang District, Hangzhou, Zhejiang 311400, China
| | - Minjun Hu
- Agricultural Technology Extension Center of Fuyang District, Hangzhou, Zhejiang 311400, China
| | - Shengdao Shan
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Huaihai Chen
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
12
|
Xu M, Cheng K, Xiao B, Tong M, Cai Z, Jong MC, Chen G, Zhou J. Bacterial Communities Vary from Different Scleractinian Coral Species and between Bleached and Non-Bleached Corals. Microbiol Spectr 2023; 11:e0491022. [PMID: 37191552 PMCID: PMC10269541 DOI: 10.1128/spectrum.04910-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Bleaching is one of the most relevant factors implicated in the integrity of coral reef ecosystems, with the increasing frequency and intensity of damaging events representing a serious threat to reef biodiversity. Here, we analyzed changes in coral-associated bacteria from three types of non-bleached and bleached scleractinian corals (Acropora digitifera, Galaxea fascicularis, and Porites pukoensis) in Hainan Luhuitou peninsula coastal areas. The community structure of symbiotic bacteria differed significantly among the three apparently healthy corals. The bleached corals had higher bacterial alpha diversity and some specific bacteria genera, including Ruegeria, Methyloceanibacter, Filomicrobium, Halioglobus, Rubripirellula, Rhodopirellula, Silicimonas, Blastopirellula, Sva0996 marine group, Woeseia, and unclassified_c_Gammaproteobacteria, were consistently increased in bleached groups. Network analysis revealed significantly different degrees of modularity between bleached and non-bleached groups at the bacterial genus level, and a higher proportion of links was dominated by positive co-occurrences. Functional prediction analysis illustrated that coral-associated bacteria remained relatively consistent in the bleached and non-bleached groups. Structure equation modeling revealed that the bacterial community diversity and function were directly influenced by host and environment factors. These findings suggested that coral-associated bacterial responses to bleaching occur in a host-dependent manner, informing novel strategies for restoring coral and aiding adaption to bleaching stress. IMPORTANCE Accumulating evidence indicates that coral-associated bacteria play an important role in the health of holobionts. However, the variability of the symbiotic bacterial community structure among coral species with different coral health statuses remains largely unknown. Here, we investigated three apparent non-bleached (healthy) and bleached coral species (sampled in situ), involving related symbiotic bacterial profiles, including composition, alpha diversity, network relationship, and potential function. Structural equation modeling analysis was used to analyze the relationship between coral status and abiotic and biotic factors. The bacterial community structure of different groups was shown to exhibit host-specific traits. Both host and environmental impacts had primary effects on coral-associated microbial communities. Future studies are needed to identify the mechanisms that mediate divergent microbial consortia.
Collapse
Affiliation(s)
- Meiting Xu
- School of Environment, Harbin Institute of Technology, Harbin, People’s Republic of China
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, Shandong Province, People’s Republic of China
| | - Keke Cheng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, People’s Republic of China
| | - Baohua Xiao
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, People’s Republic of China
| | - Mengmeng Tong
- Ocean College, Zhejiang University, Zhoushan, People’s Republic of China
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, People’s Republic of China
| | - Mui-Choo Jong
- Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, People’s Republic of China
| | - Guofu Chen
- School of Environment, Harbin Institute of Technology, Harbin, People’s Republic of China
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, Shandong Province, People’s Republic of China
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, People’s Republic of China
| |
Collapse
|
13
|
Liu H, Li FY, Liu J, Shi C, Tang K, Yang Q, Liu Y, Fu Q, Gao X, Wang N, Guo W. The reciprocal changes in dominant species with complete metabolic functions explain the decoupling phenomenon of microbial taxonomic and functional composition in a grassland. Front Microbiol 2023; 14:1113157. [PMID: 37007478 PMCID: PMC10060659 DOI: 10.3389/fmicb.2023.1113157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/22/2023] [Indexed: 03/18/2023] Open
Abstract
The decoupling of microbial functional and taxonomic components refers to the phenomenon that a drastic change in microbial taxonomic composition leads to no or only a gentle change in functional composition. Although many studies have identified this phenomenon, the mechanisms underlying it are still unclear. Here we demonstrate, using metagenomics data from a steppe grassland soil under different grazing and phosphorus addition treatments, that there is no “decoupling” in the variation of taxonomic and metabolic functional composition of the microbial community within functional groups at species level. In contrast, the high consistency and complementarity between the abundance and functional gene diversity of two dominant species made metabolic functions unaffected by grazing and phosphorus addition. This complementarity between the two dominant species shapes a bistability pattern that differs from functional redundancy in that only two species cannot form observable redundancy in a large microbial community. In other words, the “monopoly” of metabolic functions by the two most abundant species leads to the disappearance of functional redundancy. Our findings imply that for soil microbial communities, the impact of species identity on metabolic functions is much greater than that of species diversity, and it is more important to monitor the dynamics of key dominant microorganisms for accurately predicting the changes in the metabolic functions of the ecosystems.
Collapse
Affiliation(s)
- Huaiqiang Liu
- Ministry of Education Key Laboratory of Ecology and Resource Use on the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Frank Yonghong Li
- Ministry of Education Key Laboratory of Ecology and Resource Use on the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
- Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China, Hohhot, China
- *Correspondence: Frank Yonghong Li,
| | - Jiayue Liu
- Ministry of Education Key Laboratory of Ecology and Resource Use on the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Chunjun Shi
- Ministry of Education Key Laboratory of Ecology and Resource Use on the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Kuanyan Tang
- Ministry of Education Key Laboratory of Ecology and Resource Use on the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Qianhui Yang
- Ministry of Education Key Laboratory of Ecology and Resource Use on the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Yu Liu
- Ministry of Education Key Laboratory of Ecology and Resource Use on the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Qiang Fu
- Ministry of Education Key Laboratory of Ecology and Resource Use on the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Xiaotian Gao
- Ministry of Education Key Laboratory of Ecology and Resource Use on the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Ning Wang
- Ministry of Education Key Laboratory of Ecology and Resource Use on the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Wei Guo
- Ministry of Education Key Laboratory of Ecology and Resource Use on the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| |
Collapse
|
14
|
Divergent Changes in Bacterial Functionality as Affected by Root-Zone Ecological Restoration in an Aged Peach Orchard. Microorganisms 2022; 10:microorganisms10112127. [DOI: 10.3390/microorganisms10112127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
Soil restoration is a crucial approach to improving plant productivity in orchards with soil degradation, yield reduction, and fruit quality declination in China. A self-invented root-zone ecological restoration practice (RERP) with soil conditioner, or organic fertilizer, was employed in a degraded peach orchard in Beijing in 2020 to investigate the consequent impacts on soil bacterial composition and functionality at soil depths of 0–20 cm and 20–40 cm. Bacterial diversity was sensitive to RERP, especially in subsurface soil. RERP with soil conditioner significantly increased bacterial diversity, and affected abundances of certain genera, such as a significantly increased amount of Bacillus in surface soil and Blastococcus, Microvirga, Nocardioides, and Sphingomonas in subsurface soil. It also significantly affected abundances of bacterial functions related to metabolism in subsurface soil, particularly those with low abundance such as decreased transcription abundance and increased amino acid metabolism abundance. Soil bacterial functions were observably affected by bacterial diversity and composition, particularly in the deep soil layer. RERP affected bacterial functionality via responses of soil bacteria and bacteria-mediated alterations to the changed soil property. Correlation analysis between soil properties, bacterial taxonomy, and bacterial functions revealed that RERP affected bacterial functionality by altering the soil microenvironment with ample nutrients and water supply in root zone. Consequently, shifted bacterial functionality could have a potential in orchard ecosystem services in view of fruit yield and quality. Taken together, RERP had notably positive impacts on soil bacterial diversity and functions, and a prospect of increased plant productivity in the degrade orchard ecosystem.
Collapse
|
15
|
Assessing Impacts of Transgenic Plants on Soil Using Functional Indicators: Twenty Years of Research and Perspectives. PLANTS 2022; 11:plants11182439. [PMID: 36145839 PMCID: PMC9503467 DOI: 10.3390/plants11182439] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/23/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022]
Abstract
Assessment of the effects of transgenic plants on microbiota and soil fertility is an important part of the overall assessment of their biosafety. However, the environmental risk assessment of genetically modified plants has long been focused on the aboveground effects. In this review, we discuss the results of two decades of research on the impact of transgenic plants on the physicochemical properties of soil, its enzyme activities and microbial biomass. These indicators allow us to assess both the short-term effects and long-term effects of cultivating transgenic plants. Most studies have shown that the effect of transgenic plants on the soil is temporary and inconsistent. Moreover, many other factors, such as the site location, weather conditions, varietal differences and management system, have a greater impact on soil quality than the transgenic status of the plants. In addition to the effects of transgenic crop cultivation, the review also considers the effects of transgenic plant residues on soil processes, and discusses the future prospects for studying the impact of genetically modified plants on soil ecosystems.
Collapse
|
16
|
Arunrat N, Sansupa C, Kongsurakan P, Sereenonchai S, Hatano R. Soil Microbial Diversity and Community Composition in Rice-Fish Co-Culture and Rice Monoculture Farming System. BIOLOGY 2022; 11:biology11081242. [PMID: 36009869 PMCID: PMC9404718 DOI: 10.3390/biology11081242] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 12/20/2022]
Abstract
Simple Summary The integration of fish in rice fields can influence the diversity and structural composition of soil microbial communities. Therefore, soil microorganisms between rice–fish co-culture (RF) and rice monoculture (MC) were compared. The key findings revealed that Actinobacteria, Chloroflexi, Proteobacteria, Acidobacteria, and Planctomycetes were the most dominant taxa across both paddy fields. The most abundant genus in MC belonged to Anaeromyxobacter, whereas that in RF was Bacillus. Nitrogen fixation, aromatic compound degradation, and hydrocarbon degradation were more abundant in RF. Phosphatase, β-glucosidase, cellulase, and urease enzymes were detected in both paddy fields. However, a 2-year conversion from organic rice to rice–fish co-culture may not be long enough to significantly alter alpha diversity indices. Abstract Soil microorganisms play an important role in determining nutrient cycling. The integration of fish into rice fields can influence the diversity and structural composition of soil microbial communities. However, regarding the rice–fish co-culture (RF) farming system in Thailand, the study of the diversity and composition of soil microbes is still limited. Here, we aim to compare the microbial diversity, community composition, and functional structure of the bacterial communities between RF and rice monoculture (MC) farming systems and identify the environmental factors shaping bacterial community composition. Bacterial taxonomy was observed using 16s rRNA gene amplicon sequencing, and the functional structures of the bacterial communities were predicted based on their taxonomy and sequences. The results showed that soil organic carbon, total nitrogen (TN), organic matter, available phosphorous, and clay content were significantly higher in RF than in MC. The most dominant taxa across both paddy rice fields belonged to Actinobacteria, Chloroflexi, Proteobacteria, Acidobacteria, and Planctomycetes. The taxa Nitrosporae, Rokubacteria, GAL15, and Elusimicrobia were significantly different between both rice fields. At the genus level, Bacillus, Anaeromyxobacter, and HSB OF53-F07 were the predominant genera in both rice fields. The most abundant genus in MC was Anaeromyxobacter, whereas RF belonged to Bacillus. The community composition in MC was positively correlated with magnesium and sand content, while in RF was positively correlated with pH, TN, and clay content. Nitrogen fixation, aromatic compound degradation, and hydrocarbon degradation were more abundant in RF, while cellulolysis, nitrification, ureolysis, and phototrophy functional groups were more abundant in MC. The enzymes involved in paddy soil ecosystems included phosphatase, β-glucosidase, cellulase, and urease. These results provide novel insights into integrated fish in the paddy field as an efficient agricultural development strategy for enhancing soil microorganisms that increase soil fertility.
Collapse
Affiliation(s)
- Noppol Arunrat
- Faculty of Environment and Resource Studies, Mahidol University, Nakhon Pathom 73170, Thailand
- Correspondence:
| | - Chakriya Sansupa
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Praeploy Kongsurakan
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, 1–14 Bunkyo-machi, Nagasaki 852–8521, Japan
| | - Sukanya Sereenonchai
- Faculty of Environment and Resource Studies, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Ryusuke Hatano
- Laboratory of Soil Science, Research Faculty of Agriculture, Hokkaido University, Sapporo 060–8589, Japan
| |
Collapse
|
17
|
Chen H, Ma K, Lu C, Fu Q, Qiu Y, Zhao J, Huang Y, Yang Y, Schadt CW, Chen H. Functional Redundancy in Soil Microbial Community Based on Metagenomics Across the Globe. Front Microbiol 2022; 13:878978. [PMID: 35586865 PMCID: PMC9108720 DOI: 10.3389/fmicb.2022.878978] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/13/2022] [Indexed: 12/30/2022] Open
Abstract
Understanding the contribution of soil microbial communities to ecosystem processes is critical for predicting terrestrial ecosystem feedbacks under changing climate. Our current understanding lacks a consistent strategy to formulate the linkage between microbial systems and ecosystem processes due to the presumption of functional redundancy in soil microbes. Here we present a global soil microbial metagenomic analysis to generalize patterns of microbial taxonomic compositions and functional potentials across climate and geochemical gradient. Our analyses show that soil microbial taxonomic composition varies widely in response to climate and soil physicochemical gradients, while microbial functional attributes based on metagenomic gene abundances are redundant. Among 17 climate zones, microbial taxonomic compositions were more distinct than functional potentials, as climate and edaphic properties showed more significant influence on microbial taxonomic compositions than on functional potentials. Microbial taxonomies formed a larger and more complex co-occurrence network with more module structures than functional potentials. Functional network was strongly inter-connected among different categories, whereas taxonomic network was more positively interactive in the same taxonomic groups. This study provides strong evidence to support the hypothesis of functional redundancy in soil microbes, as microbial taxonomic compositions vary to a larger extent than functional potentials based on metagenomic gene abundances in terrestrial ecosystems across the globe.
Collapse
Affiliation(s)
- Huaihai Chen
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Kayan Ma
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Caiyan Lu
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Key Lab of Conservation Tillage and Ecological Agriculture, Shenyang, China
| | - Qi Fu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Yingbo Qiu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Jiayi Zhao
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Yu Huang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Yuchun Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | | | - Hao Chen
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|