1
|
Shrivastava M, Aishwarya A, Fontes CMGA, Goyal A. A novel bifunctional type I α-l-arabinofuranosidase of family 43 glycoside hydrolase (BoGH43_35) from Bacteroides ovatus with endo-β-1,4-xylanase activity. Carbohydr Res 2025; 552:109432. [PMID: 40010274 DOI: 10.1016/j.carres.2025.109432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 02/28/2025]
Abstract
The gut bacterium Bacteroides ovatus harbors a diverse arsenal of glycoside hydrolases (GHs), which play pivotal roles in degrading dietary polysaccharides. In this study, we characterized a novel glycoside hydrolase from family 43 and subfamily 35 (BoGH43_35), cloned from B. ovatus. The 1956 bp gene was expressed in Escherichia coli BL21 (DE3), yielding a homogeneous soluble recombinant enzyme (∼74 kDa) upon purification through immobilized metal-ion affinity chromatography (IMAC). BoGH43_35 exhibited a remarkable specificity for arabinoxylans, with maximum catalytic activity (4.9 U mg-1) against wheat arabinoxylan (low-viscosity), followed by 3.0 U mg-1 against rye arabinoxylan (high viscosity) and beechwood xylan (2.3 U mg-1). Optimal enzymatic performance was achieved at 37 °C and pH 7.0 having kinetic parameters of Vmax 5.7 U mg-1 and KM calculated to be 2.7 mg mL-1 for wheat arabinoxylan. Notably, BoGH43_35 retained stability within an acidic pH range (4-5) and displayed a half-life of 89 min at 30 °C. Protein thermal stability assays revealed a melting temperature (Tm) of 41.0 °C. Thin-layer chromatography (TLC) and 1H NMR analyses of hydrolysed products confirmed the enzyme's dual functionality: an initial α-l-arabinofuranosidase (EC 3.2.1.55) activity, followed by an endo-β-1,4-xylanase (EC 3.2.1.8) activity, as evidenced by the release of xylooligosaccharides, including xylobiose and xylotriose, from xylans. Further structural analysis demonstrated BoGH43_35's ability to hydrolyze monosubstituted arabinofuranosyl residues from α-1,2- or α-1,3-linked arabinoxylan, confirming its type I α-l-arabinofuranosidase activity. This multifunctional enzyme holds potential in the valorization of hemicellulosic biomass and the production of prebiotic oligosaccharides and other biotechnological applications.
Collapse
Affiliation(s)
- Madhulika Shrivastava
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, India
| | - Aishwarya Aishwarya
- School of Energy Sciences and Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Carlos M G A Fontes
- CIISA - Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal; NZYTech Genes & Enzymes, Estrada do Paço do Lumiar, Campus do Lumiar, Edifício J, 1649-038, Lisbon, Portugal
| | - Arun Goyal
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, India; School of Energy Sciences and Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
2
|
Zheng R, Huang S, Feng P, Liu S, Jiang M, Li H, Zheng P, Mi Y, Li E. Comprehensive analysis of gut microbiota and fecal metabolites in patients with autism spectrum disorder. Front Microbiol 2025; 16:1557174. [PMID: 40351314 PMCID: PMC12062028 DOI: 10.3389/fmicb.2025.1557174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/17/2025] [Indexed: 05/14/2025] Open
Abstract
Introduction Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social communication and the presence of restricted, repetitive behaviors or interests. Studies have revealed that gut microbiota and their metabolism play important roles in ASD, and become the underlying mechanisms of ASD. Methods In this study, we performed long-read 16S rRNA sequencing and untargeted metabolomics to comprehensively characterize the profiles of gut microbiota and fecal metabolites in 34 ASD patients and 18 healthy controls. The associations between gut microbiota, fecal metabolites and clinical symptoms were analyzed to screen related biomarkers for ASD. Results The results showed the similarity of the overall microbial richness and diversity between ASD patients and controls, however, some specific bacterial taxa exhibited significant differences, including Klebsiella and Escherichia-Shigella at genera level, and Clostridium-sporogenes, Escherichia-coli-O157H7 and Bacteroides-ovatus at species level. The fecal metabolomics validated that a lot of metabolites had significantly differential levels, including a series of organic acids, amino acids and dopamine. Discussion The associations of gut microbiota and fecal metabolites might shed new light on the pathogenesis of ASD and help us to understand the importance of gut microbiota as potential biomarkers and therapeutic targets in the development of ASD.
Collapse
Affiliation(s)
- Ruijuan Zheng
- Department of Child Rehabilitation, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Silu Huang
- Department of Child Rehabilitation, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pengya Feng
- Department of Child Rehabilitation, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Simeng Liu
- Henan Key Laboratory of Helicobacter Pylori and Microbiota and Gastrointestinal Cancer, Marshall B. J. Medical Research Center of Zhengzhou University, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Miaomiao Jiang
- Department of Child Rehabilitation, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huijuan Li
- Department of Child Rehabilitation, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pengyuan Zheng
- Henan Key Laboratory of Helicobacter Pylori and Microbiota and Gastrointestinal Cancer, Marshall B. J. Medical Research Center of Zhengzhou University, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Mi
- Henan Key Laboratory of Helicobacter Pylori and Microbiota and Gastrointestinal Cancer, Marshall B. J. Medical Research Center of Zhengzhou University, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Enyao Li
- Department of Child Rehabilitation, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Zubillaga-Martín D, Solórzano-García B, Yanez-Montalvo A, de León-Lorenzana A, Falcón LI, Vázquez-Domínguez E. Gut microbiota signatures of the three Mexican primate species, including hybrid populations. PLoS One 2025; 20:e0317657. [PMID: 40100798 PMCID: PMC11918351 DOI: 10.1371/journal.pone.0317657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/02/2025] [Indexed: 03/20/2025] Open
Abstract
Diversity of the gut microbiota has proven to be related with host physiology, health and behavior, influencing host ecology and evolution. Gut microbial community relationships often recapitulate primate phylogeny, suggesting phylosymbiotic associations. Howler monkeys (Alouatta) have been a model for the study of host-gut microbiota relationships, showing the influence of different host related and environmental factors. Differences in life-history traits and feeding behavior with other atelids, like spider monkeys, may reveal distinct patterns of bacterial gut communities, yet few wild populations have been studied; likewise, gut microbiota studies of hybrid populations are mostly lacking. We analyzed diversity and abundance patterns of the gut microbiota of wild populations of the three Mexican primates Ateles geoffroyi, Alouatta palliata and A. pigra from different regions across its distribution in the country, including sympatric localities and the Alouatta hybrid zone. Interspecific differences in gut microbial diversity were higher than intraspecific differences, concordant with phylosymbiosis. Ateles harbored the more differentiated diversity with a major presence of rare taxa, while differences were less strong between Alouatta species. Hybrids had a microbial diversity in-between their parental species, yet also showing unique microbe taxa. Genetic distances between Alouatta individuals correlated positively with their gut microbial dissimilarities. Results show that interspecific and intraspecific overall diversity, abundance and composition patterns are affected by environment, geographic distribution and host genetics. Our study provides the first comprehensive study of gut microbiota of the three Mexican primates and hybrid populations.
Collapse
Affiliation(s)
- Diego Zubillaga-Martín
- Laboratorio de Genética y Ecología, Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Brenda Solórzano-García
- Laboratorio de Parasitología y Medicina de la Conservación, ENES-Mérida U.N.A.M., Ucú, Yucatán, México
| | - Alfredo Yanez-Montalvo
- Laboratorio de Ecología Bacteriana, Instituto de Ecología, Unidad Mérida, Universidad Nacional Autónoma de México, Ucú, Yucatán, México
| | - Arit de León-Lorenzana
- Laboratorio de Ecología Bacteriana, Instituto de Ecología, Unidad Mérida, Universidad Nacional Autónoma de México, Ucú, Yucatán, México
| | - Luisa I. Falcón
- Laboratorio de Ecología Bacteriana, Instituto de Ecología, Unidad Mérida, Universidad Nacional Autónoma de México, Ucú, Yucatán, México
| | - Ella Vázquez-Domínguez
- Laboratorio de Genética y Ecología, Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
4
|
Srivastava G, Brylinski M. A Data-Driven Approach to Enhance the Prediction of Bacteria-Metabolite Interactions in the Human Gut Microbiome Using Enzyme Encodings and Metabolite Structural Embeddings. Nutrients 2025; 17:469. [PMID: 39940326 PMCID: PMC11820091 DOI: 10.3390/nu17030469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/14/2025] Open
Abstract
Background: The human gut microbiome is critical for host health by facilitating essential metabolic processes. Our study presents a data-driven analysis across 312 bacterial species and 154 unique metabolites to enhance the understanding of underlying metabolic processes in gut bacteria. The focus of the study was to create a strategy to generate a theoretical (negative) set for binary classification models to predict the consumption and production of metabolites in the human gut microbiome. Results: Our models achieved median balanced accuracies of 0.74 for consumption predictions and 0.95 for production predictions, highlighting the effectiveness of this approach in generating reliable negative sets. Additionally, we applied a kernel principal component analysis for dimensionality reduction. The consumption model with a polynomial kernel, and the production model with a radial basis function with 32 reduced features, showed median accuracies of 0.58 and 0.67, respectively. This demonstrates that biological information can still be captured, albeit with some loss, even after reducing the number of features. Furthermore, our models were validated on six previously unseen cases, achieving five correct predictions for consumption and four for production, demonstrating alignment with known biological outcomes. Conclusions: These findings highlight the potential of integrating data-driven approaches with machine learning techniques to enhance our understanding of gut microbiome metabolism. This work provides a foundation for creating bacteria-metabolite datasets to enhance machine learning-based predictive tools, with potential applications in developing therapeutic methods targeting gut microbes.
Collapse
Affiliation(s)
- Gopal Srivastava
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA;
| | - Michal Brylinski
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA;
- Center for Computation and Technology, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
5
|
Du JL, Xiao LH, Yang JH, Luo Q, Li JW, Feng YS, Zhan RT, Yan P. Hypolipidemic Effects of Mesona chinensis Benth Polysaccharides with Different Structures and Molecular Weights. Chem Biodivers 2024; 21:e202401210. [PMID: 39007531 DOI: 10.1002/cbdv.202401210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/16/2024]
Abstract
Four novel Mesona chinensis Benth polysaccharides were isolated using aqueous alcohol precipitation. Their molecular weights were determined using high-performance gel permeation chromatography: MA1 (2.3 kDa), MA2 (80.5 kDa), MA3 (180.9 kDa), and MA4 (635.2 kDa), and their compositions were analyzed using GC-MS. The polysaccharides were mainly D-glucose, D-galactose, L-Rhamnose, D-arabinose, D-xylose, and D-mannose. The structural characteristics were further analyzed using infrared spectrophotometry and were identified as a type of pyrrhic sugar. An insulin-induced insulin resistance model of HepG2 cells and oleic acid-induced fat accumulation model of insulin were established to evaluate the hypolipidemic effects. Three Bacteroides spp. [Bacteroides thetaiotaomicron (BT), B. ovatus (BO), and B. cellulosilyticus (BC)] that were negatively correlated with lipid-lowering activity were used to evaluate the lipid-lowering activity of polysaccharides. The Bacteroides metabolites of MA1 and MA2 exhibited hypolipidemic effects and antioxidant activities and could potentially be used as lipid-lowering supplements.
Collapse
Affiliation(s)
- Jia-Lin Du
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510006, China
- Key Laboratory of Chinese Medicinal Resources from Lingnan, Guangzhou University of Chinese Medicine, Ministry of Education, Guangzhou, 510006, China
- Joint Laboratory of Nation Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, China
| | - Lu-Hua Xiao
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510006, China
- Key Laboratory of Chinese Medicinal Resources from Lingnan, Guangzhou University of Chinese Medicine, Ministry of Education, Guangzhou, 510006, China
- Joint Laboratory of Nation Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, China
| | - Jie-Hui Yang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510006, China
- Key Laboratory of Chinese Medicinal Resources from Lingnan, Guangzhou University of Chinese Medicine, Ministry of Education, Guangzhou, 510006, China
- Joint Laboratory of Nation Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, China
| | - Qing Luo
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510006, China
- Key Laboratory of Chinese Medicinal Resources from Lingnan, Guangzhou University of Chinese Medicine, Ministry of Education, Guangzhou, 510006, China
- Joint Laboratory of Nation Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, China
| | - Jing-Wen Li
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510006, China
- Key Laboratory of Chinese Medicinal Resources from Lingnan, Guangzhou University of Chinese Medicine, Ministry of Education, Guangzhou, 510006, China
- Joint Laboratory of Nation Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, China
| | - Ying-Shan Feng
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510006, China
- Key Laboratory of Chinese Medicinal Resources from Lingnan, Guangzhou University of Chinese Medicine, Ministry of Education, Guangzhou, 510006, China
- Joint Laboratory of Nation Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, China
| | - Ruo-Ting Zhan
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510006, China
- Key Laboratory of Chinese Medicinal Resources from Lingnan, Guangzhou University of Chinese Medicine, Ministry of Education, Guangzhou, 510006, China
- Joint Laboratory of Nation Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, China
| | - Ping Yan
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510006, China
- Key Laboratory of Chinese Medicinal Resources from Lingnan, Guangzhou University of Chinese Medicine, Ministry of Education, Guangzhou, 510006, China
- Joint Laboratory of Nation Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, China
| |
Collapse
|
6
|
Rønne ME, Dybdahl Andersen C, Teze D, Petersen AB, Fredslund F, Stender EGP, Chaberski EK, Holck J, Aachmann FL, Welner DH, Svensson B. Action and cooperation in alginate degradation by three enzymes from the human gut bacterium Bacteroides eggerthii DSM 20697. J Biol Chem 2024; 300:107596. [PMID: 39032652 PMCID: PMC11381880 DOI: 10.1016/j.jbc.2024.107596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024] Open
Abstract
Alginate is a polysaccharide consumed by humans in edible seaweed and different foods where it is applied as a texturizing hydrocolloid or in encapsulations of drugs and probiotics. While gut bacteria are found to utilize and ferment alginate to health-beneficial short-chain fatty acids, knowledge on the details of the molecular reactions is sparse. Alginates are composed of mannuronic acid (M) and its C-5 epimer guluronic acid (G). An alginate-related polysaccharide utilization locus (PUL) has been identified in the gut bacterium Bacteroides eggerthii DSM 20697. The PUL encodes two polysaccharide lyases (PLs) from the PL6 (BePL6) and PL17 (BePL17) families as well as a KdgF-like metalloprotein (BeKdgF) known to catalyze ring-opening of 4,5-unsaturated monouronates yielding 4-deoxy-l-erythro-5-hexoseulose uronate (DEH). B. eggerthii DSM 20697 does not grow on alginate, but readily proliferates with a lag phase of a few hours in the presence of an endo-acting alginate lyase A1-I from the marine bacterium Sphingomonas sp. A1. The B. eggerthii lyases are both exo-acting and while BePL6 is strictly G-block specific, BePL17 prefers M-blocks. BeKdgF retained 10-27% activity in the presence of 0.1-1 mM EDTA. X-ray crystallography was used to investigate the three-dimensional structure of BeKdgF, based on which a catalytic mechanism was proposed to involve Asp102, acting as acid/base having pKa of 5.9 as determined by NMR pH titration. BePL6 and BePL17 cooperate in alginate degradation with BeKdgF linearizing producing 4,5-unsaturated monouronates. Their efficiency of alginate degradation was much enhanced by the addition of the A1-I alginate lyase.
Collapse
Affiliation(s)
- Mette E Rønne
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark; Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Christian Dybdahl Andersen
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - David Teze
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark; Enzyme Engineering and Structural Biology, Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Agnes Beenfeldt Petersen
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Folmer Fredslund
- Enzyme Engineering and Structural Biology, Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Emil G P Stender
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Evan Kirk Chaberski
- Enzyme Engineering and Structural Biology, Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Jesper Holck
- Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Finn L Aachmann
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Ditte Hededam Welner
- Enzyme Engineering and Structural Biology, Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
7
|
Waller ME, Eichhorn CJ, Gutierrez A, Baatz JE, Wagner CL, Chetta KE, Engevik MA. Analyzing the Responses of Enteric Bacteria to Neonatal Intensive Care Supplements. Int J Microbiol 2024; 2024:3840327. [PMID: 39220439 PMCID: PMC11364479 DOI: 10.1155/2024/3840327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
In the neonatal intensive care unit, adequate nutrition requires various enteral products, including human milk and formula. Human milk is typically fortified to meet increased calorie goals, and infants commonly receive vitamin mixes, iron supplements, and less frequently, thickening agents. We examined the growth of 16 commensal microbes and 10 pathobionts found in the premature infant gut and found that formula, freshly pasteurized milk, and donated banked milk generally increased bacterial growth. Fortification of human milk significantly elevated the growth of all microbes. Supplementation with thickeners or NaCl in general did not stimulate additional growth. Vitamin mix promoted the growth of several commensals, while iron promoted growth of pathobionts. These data indicate that pathobionts in the preterm gut have significant growth advantage with preterm formula, fortified donor milk, and supplemented iron and suggest that the choice of milk and supplements may impact the infant gut microbiota.
Collapse
Affiliation(s)
- Megan E. Waller
- Department of Regenerative Medicine and Cell BiologyMedical University of South Carolina, Charleston, USA
| | - Caroline J. Eichhorn
- Department of Regenerative Medicine and Cell BiologyMedical University of South Carolina, Charleston, USA
| | - Alyssa Gutierrez
- Department of Regenerative Medicine and Cell BiologyMedical University of South Carolina, Charleston, USA
| | - John E. Baatz
- Department of PediatricsC.P. Darby Children's Research InstituteMedical University of South Carolina, Charleston, USA
- Department of PediatricsDivision of Neonatal-Perinatal MedicineMedical University of South CarolinaShawn Jenkins Children's Hospital, 10 McClennan Banks Drive, MSC 915, Charleston, SC 29425, USA
| | - Carol L. Wagner
- Department of PediatricsC.P. Darby Children's Research InstituteMedical University of South Carolina, Charleston, USA
- Department of PediatricsDivision of Neonatal-Perinatal MedicineMedical University of South CarolinaShawn Jenkins Children's Hospital, 10 McClennan Banks Drive, MSC 915, Charleston, SC 29425, USA
| | - Katherine E. Chetta
- Department of PediatricsC.P. Darby Children's Research InstituteMedical University of South Carolina, Charleston, USA
- Department of PediatricsDivision of Neonatal-Perinatal MedicineMedical University of South CarolinaShawn Jenkins Children's Hospital, 10 McClennan Banks Drive, MSC 915, Charleston, SC 29425, USA
| | - Melinda A. Engevik
- Department of Regenerative Medicine and Cell BiologyMedical University of South Carolina, Charleston, USA
- Department of Microbiology and ImmunologyMedical University of South Carolina, Charleston, USA
| |
Collapse
|
8
|
Bars-Cortina D, Ramon E, Rius-Sansalvador B, Guinó E, Garcia-Serrano A, Mach N, Khannous-Lleiffe O, Saus E, Gabaldón T, Ibáñez-Sanz G, Rodríguez-Alonso L, Mata A, García-Rodríguez A, Obón-Santacana M, Moreno V. Comparison between 16S rRNA and shotgun sequencing in colorectal cancer, advanced colorectal lesions, and healthy human gut microbiota. BMC Genomics 2024; 25:730. [PMID: 39075388 PMCID: PMC11285316 DOI: 10.1186/s12864-024-10621-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Gut dysbiosis has been associated with colorectal cancer (CRC), the third most prevalent cancer in the world. This study compares microbiota taxonomic and abundance results obtained by 16S rRNA gene sequencing (16S) and whole shotgun metagenomic sequencing to investigate their reliability for bacteria profiling. The experimental design included 156 human stool samples from healthy controls, advanced (high-risk) colorectal lesion patients (HRL), and CRC cases, with each sample sequenced using both 16S and shotgun methods. We thoroughly compared both sequencing technologies at the species, genus, and family annotation levels, the abundance differences in these taxa, sparsity, alpha and beta diversities, ability to train prediction models, and the similarity of the microbial signature derived from these models. RESULTS As expected, the results showed that 16S detects only part of the gut microbiota community revealed by shotgun, although some genera were only profiled by 16S. The 16S abundance data was sparser and exhibited lower alpha diversity. In lower taxonomic ranks, shotgun and 16S highly differed, partially due to a disagreement in reference databases. When considering only shared taxa, the abundance was positively correlated between the two strategies. We also found a moderate correlation between the shotgun and 16S alpha-diversity measures, as well as their PCoAs. Regarding the machine learning models, only some of the shotgun models showed some degree of predictive power in an independent test set, but we could not demonstrate a clear superiority of one technology over the other. Microbial signatures from both sequencing techniques revealed taxa previously associated with CRC development, e.g., Parvimonas micra. CONCLUSIONS Shotgun and 16S sequencing provide two different lenses to examine microbial communities. While we have demonstrated that they can unravel common patterns (including microbial signatures), shotgun often gives a more detailed snapshot than 16S, both in depth and breadth. Instead, 16S will tend to show only part of the picture, giving greater weight to dominant bacteria in a sample. Therefore, we recommend choosing one or another sequencing technique before launching a study. Specifically, shotgun sequencing is preferred for stool microbiome samples and in-depth analyses, while 16S is more suitable for tissue samples and studies with targeted aims.
Collapse
Affiliation(s)
- David Bars-Cortina
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Barcelona, 08908, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, 08908, Spain
| | - Elies Ramon
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Barcelona, 08908, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, 08908, Spain
| | - Blanca Rius-Sansalvador
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Barcelona, 08908, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, 08908, Spain
- Doctoral Programme in Biomedicine, University of Barcelona (UB), Barcelona, 08907, Spain
| | - Elisabet Guinó
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Barcelona, 08908, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, 08908, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, 28029, Spain
| | - Ainhoa Garcia-Serrano
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, 14186, Sweden
| | - Núria Mach
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Olfat Khannous-Lleiffe
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, 08034, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, 08028, Spain
| | - Ester Saus
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, 08034, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, 08028, Spain
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, 08034, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, 08028, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, 08010, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Barcelona, 08028, Spain
| | - Gemma Ibáñez-Sanz
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Barcelona, 08908, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, 08908, Spain
- Gastroenterology Department, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, 08907, Spain
| | - Lorena Rodríguez-Alonso
- Gastroenterology Department, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, 08907, Spain
| | - Alfredo Mata
- Digestive System Service, Moisés Broggi Hospital, Sant Joan Despí, 08970, Spain
| | - Ana García-Rodríguez
- Endoscopy Unit, Digestive System Service, Viladecans Hospital-IDIBELL, Viladecans, 08840, Spain
| | - Mireia Obón-Santacana
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Barcelona, 08908, Spain.
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, 08908, Spain.
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, 28029, Spain.
| | - Victor Moreno
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Barcelona, 08908, Spain.
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, 08908, Spain.
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, 28029, Spain.
- Department of Clinical Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona Institute of Complex Systems (UBICS), University of Barcelona (UB), L'Hospitalet de Llobregat, Barcelona, 08908, Spain.
| |
Collapse
|
9
|
Xiao X, Zhou Y, Li X, Jin J, Durham J, Ye Z, Wang Y, Hennig B, Deng P. 13C-Stable isotope resolved metabolomics uncovers dynamic biochemical landscape of gut microbiome-host organ communications in mice. MICROBIOME 2024; 12:90. [PMID: 38750595 PMCID: PMC11094917 DOI: 10.1186/s40168-024-01808-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 04/04/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Gut microbiome metabolites are important modulators of host health and disease. However, the overall metabolic potential of the gut microbiome and interactions with the host organs have been underexplored. RESULTS Using stable isotope resolved metabolomics (SIRM) in mice orally gavaged with 13C-inulin (a tracer), we first observed dynamic enrichment of 13C-metabolites in cecum contents in the amino acids and short-chain fatty acid metabolism pathways. 13C labeled metabolites were subsequently profiled comparatively in plasma, liver, brain, and skeletal muscle collected at 6, 12, and 24 h after the tracer administration. Organ-specific and time-dependent 13C metabolite enrichments were observed. Carbons from the gut microbiome were preferably incorporated into choline metabolism and the glutamine-glutamate/GABA cycle in the liver and brain, respectively. A sex difference in 13C-lactate enrichment was observed in skeletal muscle, which highlights the sex effect on the interplay between gut microbiome and host organs. Choline was identified as an interorgan metabolite derived from the gut microbiome and fed the lipogenesis of phosphatidylcholine and lysophosphatidylcholine in host organs. In vitro and in silico studies revealed the de novo synthesis of choline in the human gut microbiome via the ethanolamine pathway, and Enterococcus faecalis was identified as a major choline synthesis species. These results revealed a previously underappreciated role for gut microorganisms in choline biosynthesis. CONCLUSIONS Multicompartmental SIRM analyses provided new insights into the current understanding of dynamic interorgan metabolite transport between the gut microbiome and host at the whole-body level in mice. Moreover, this study singled out microbiota-derived metabolites that are potentially involved in the gut-liver, gut-brain, and gut-skeletal muscle axes. Video Abstract.
Collapse
Affiliation(s)
- Xia Xiao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, 1132 Yunxuan Bldg, Suzhou, 215123, China
| | - Yixuan Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, 1132 Yunxuan Bldg, Suzhou, 215123, China
| | - Xinwei Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, 1132 Yunxuan Bldg, Suzhou, 215123, China
| | - Jing Jin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, 1132 Yunxuan Bldg, Suzhou, 215123, China
| | - Jerika Durham
- Superfund Research Center, University of Kentucky, Lexington, KY, USA
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Zifan Ye
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yipeng Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Bernhard Hennig
- Superfund Research Center, University of Kentucky, Lexington, KY, USA.
- Department of Animal and Food Sciences, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, 900 S. Limestone St, 501 Wethington Health Sciences Bldg, Lexington, KY, 40536, USA.
| | - Pan Deng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, 1132 Yunxuan Bldg, Suzhou, 215123, China.
| |
Collapse
|
10
|
Yu HR, Yeh YT, Tzeng HT, Dai HY, Lee WC, Wu KLH, Chan JYH, Tain YL, Hsu CN. Carbohydrate-Mediated Pregnancy Gut Microbiota and Neonatal Low Birth Weight. Nutrients 2024; 16:1326. [PMID: 38732572 PMCID: PMC11085476 DOI: 10.3390/nu16091326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The effects of gut microbiota on the association between carbohydrate intake during pregnancy and neonatal low birth weight (LBW) were investigated. A prospective cohort study was conducted with 257 singleton-born mother-child pairs in Taiwan, and maternal dietary intake was estimated using a questionnaire, with each macronutrient being classified as low, medium, or high. Maternal fecal samples were collected between 24 and 28 weeks of gestation, and gut microbiota composition and diversity were profiled using 16S rRNA amplicon gene sequencing. Carbohydrates were the major source of total energy (56.61%), followed by fat (27.92%) and protein (15.46%). The rate of infant LBW was 7.8%, which was positively correlated with maternal carbohydrate intake. In the pregnancy gut microbiota, Bacteroides ovatus and Dorea spp. were indirectly and directly negatively associated with fetal growth, respectively; Rosenburia faecis was directly positively associated with neonatal birth weight. Maternal hypertension during pregnancy altered the microbiota features and was associated with poor fetal growth. Microbiota-accessible carbohydrates can modify the composition and function of the pregnancy gut microbiota, thus providing a potential marker to modulate deviations from dietary patterns, particularly in women at risk of hypertension during pregnancy, to prevent neonatal LBW.
Collapse
Affiliation(s)
- Hong-Ren Yu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Yao-Tsung Yeh
- Aging and Disease Prevention Research Center, Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung 831, Taiwan
| | - Hong-Tai Tzeng
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Hong-Ying Dai
- Aging and Disease Prevention Research Center, Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung 831, Taiwan
| | - Wei-Chia Lee
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Kay L. H. Wu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Julie Y. H. Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - You-Lin Tain
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
11
|
Lillie IM, Booth CE, Horvath AE, Mondragon M, Engevik MA, Horvath TD. Characterizing arginine, ornithine, and putrescine pathways in enteric pathobionts. Microbiologyopen 2024; 13:e1408. [PMID: 38560776 PMCID: PMC10982811 DOI: 10.1002/mbo3.1408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/10/2024] [Accepted: 03/16/2024] [Indexed: 04/04/2024] Open
Abstract
Arginine-ornithine metabolism plays a crucial role in bacterial homeostasis, as evidenced by numerous studies. However, the utilization of arginine and the downstream products of its metabolism remain undefined in various gut bacteria. To bridge this knowledge gap, we employed genomic screening to pinpoint relevant metabolic targets. We also devised a targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) metabolomics method to measure the levels of arginine, its upstream precursors, and downstream products in cell-free conditioned media from enteric pathobionts, including Escherichia coli, Klebsiella aerogenes, K. pneumoniae, Pseudomonas fluorescens, Acinetobacter baumannii, Streptococcus agalactiae, Staphylococcus epidermidis, S. aureus, and Enterococcus faecalis. Our findings revealed that all selected bacterial strains consumed glutamine, glutamate, and arginine, and produced citrulline, ornithine, and GABA in our chemically defined medium. Additionally, E. coli, K. pneumoniae, K. aerogenes, and P. fluorescens were found to convert arginine to agmatine and produce putrescine. Interestingly, arginine supplementation promoted biofilm formation in K. pneumoniae, while ornithine supplementation enhanced biofilm formation in S. epidermidis. These findings offer a comprehensive insight into arginine-ornithine metabolism in enteric pathobionts.
Collapse
Affiliation(s)
- Ian M. Lillie
- Department of Materials Science & EngineeringCornell UniversityIthacaNew YorkUSA
- Department of Pathology & ImmunologyBaylor College of MedicineHoustonTexasUSA
- Department of PathologyTexas Children's HospitalHoustonTexasUSA
| | - Charles E. Booth
- Department of Regenerative Medicine & Cell BiologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Adelaide E. Horvath
- Department of Regenerative Medicine & Cell BiologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
- Department of Biology & BiochemistryUniversity of HoustonHoustonTexasUSA
- Department of MathematicsUniversity of HoustonHoustonTexasUSA
| | - Matthew Mondragon
- Department of Regenerative Medicine & Cell BiologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Melinda A. Engevik
- Department of Regenerative Medicine & Cell BiologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
- Department of Microbiology & ImmunologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Thomas D. Horvath
- Department of Pathology & ImmunologyBaylor College of MedicineHoustonTexasUSA
- Department of PathologyTexas Children's HospitalHoustonTexasUSA
| |
Collapse
|
12
|
Raju SC, Molinaro A, Awoyemi A, Jørgensen SF, Braadland PR, Nendl A, Seljeflot I, Ueland PM, McCann A, Aukrust P, Vestad B, Mayerhofer C, Broch K, Gullestad L, Lappegård KT, Halvorsen B, Kristiansen K, Hov JR, Trøseid M. Microbial-derived imidazole propionate links the heart failure-associated microbiome alterations to disease severity. Genome Med 2024; 16:27. [PMID: 38331891 PMCID: PMC10854170 DOI: 10.1186/s13073-024-01296-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Interactions between the gut microbiota, diet, and host metabolism contribute to the development of cardiovascular disease, but a firm link between disease-specific gut microbiota alterations and circulating metabolites is lacking. METHODS We performed shot-gun sequencing on 235 samples from 166 HF patients and 69 healthy control samples. Separate plasma samples from healthy controls (n = 53) were used for the comparison of imidazole propionate (ImP) levels. Taxonomy and functional pathways for shotgun sequencing data was assigned using MetaPhlAn3 and HUMAnN3 pipelines. RESULTS Here, we show that heart failure (HF) is associated with a specific compositional and functional shift of the gut microbiota that is linked to circulating levels of the microbial histidine-derived metabolite ImP. Circulating ImP levels are elevated in chronic HF patients compared to controls and associated with HF-related gut microbiota alterations. Contrary to the microbiota composition, ImP levels provide insight into etiology and severity of HF and also associate with markers of intestinal permeability and systemic inflammation. CONCLUSIONS Our findings establish a connection between changes in the gut microbiota, the presence, etiology, and severity of HF, and the gut-microbially produced metabolite ImP. While ImP appears promising as a circulating biomarker reflecting gut dysbiosis related to HF, further studies are essential to demonstrate its causal or contributing role in HF pathogenesis. TRIAL REGISTRATION NCT02637167, registered December 22, 2015.
Collapse
Affiliation(s)
- Sajan C Raju
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Antonio Molinaro
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Department of Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Transplantation Medicine, Norwegian PSC Research Center, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Ayodeji Awoyemi
- Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
- Center for Clinical Heart Research, Oslo University Hospital Ullevål, Oslo, Norway
| | - Silje F Jørgensen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Peder R Braadland
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Transplantation Medicine, Norwegian PSC Research Center, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Andraz Nendl
- Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
- Center for Clinical Heart Research, Oslo University Hospital Ullevål, Oslo, Norway
| | - Ingebjørg Seljeflot
- Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
- Center for Clinical Heart Research, Oslo University Hospital Ullevål, Oslo, Norway
| | | | | | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Beate Vestad
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Department of Transplantation Medicine, Norwegian PSC Research Center, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Cristiane Mayerhofer
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Kaspar Broch
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Lars Gullestad
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Knut T Lappegård
- Division of Internal Medicine, Nordlandssykehuset, 8005, Bodø, Norway
- Institute of Clinical Medicine, University of Tromsø, 9037, Tromsø, Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Karsten Kristiansen
- BGI-Shenzhen, Shenzhen, 518083, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Johannes R Hov
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Department of Transplantation Medicine, Norwegian PSC Research Center, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Section of Gastroenterology, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Marius Trøseid
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway.
| |
Collapse
|
13
|
Meng X, Shu Q. Novel primers to identify a wider diversity of butyrate-producing bacteria. World J Microbiol Biotechnol 2024; 40:76. [PMID: 38252387 DOI: 10.1007/s11274-023-03872-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024]
Abstract
Butyrate-producing bacteria are a functionally important part of the intestinal tract flora, and the resulting butyric acid is essential for maintaining host intestinal health, regulating the immune system, and influencing energy metabolism. However, butyrate-producing bacteria have not been defined as a coherent phylogenetic group. They are primarily identified using primers for key genes in the butyrate-producing pathway, and their use has been limited to the Bacillota and Bacteroidetes phyla. To overcome this limitation, we developed functional gene primers able to identify butyrate-producing bacteria through the butyrate kinase gene, which encodes the enzyme involved in the final step of the butyrate-producing pathway. Genomes extracted from human and rat feces were used to amplify the target genes through PCR. The obtained sequences were analyzed using BLASTX to construct a developmental tree using the MEGA software. The newly designed butyrate kinase gene primers allowed to recognize a wider diversity of butyrate-producing bacteria than that recognized using currently available primers. Specifically, butyrate-producing bacteria from the Synergistota and Spirochaetota phyla were identified for the first time using these primers. Thus, the developed primers provide a more accurate method for researchers and doctors to identify potential butyrate-producing bacteria and deepen our understanding of butyrate-producing bacterial species.
Collapse
Affiliation(s)
- Xianbin Meng
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Qinglong Shu
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China.
| |
Collapse
|
14
|
Hammond TC, Green SJ, Jacobs Y, Chlipala GE, Xing X, Heil S, Chen A, Aware C, Flemister A, Stromberg A, Balchandani P, Lin AL. Gut microbiome association with brain imaging markers, APOE genotype, calcium and vegetable intakes, and obesity in healthy aging adults. Front Aging Neurosci 2023; 15:1227203. [PMID: 37736325 PMCID: PMC10510313 DOI: 10.3389/fnagi.2023.1227203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/17/2023] [Indexed: 09/23/2023] Open
Abstract
Introduction Advanced age is a significant factor in changes to brain physiology and cognitive functions. Recent research has highlighted the critical role of the gut microbiome in modulating brain functions during aging, which can be influenced by various factors such as apolipoprotein E (APOE) genetic variance, body mass index (BMI), diabetes, and dietary intake. However, the associations between the gut microbiome and these factors, as well as brain structural, vascular, and metabolic imaging markers, have not been well explored. Methods We recruited 30 community dwelling older adults between age 55-85 in Kentucky. We collected the medical history from the electronic health record as well as the Dietary Screener Questionnaire. We performed APOE genotyping with an oral swab, gut microbiome analysis using metagenomics sequencing, and brain structural, vascular, and metabolic imaging using MRI. Results Individuals with APOE e2 and APOE e4 genotypes had distinct microbiota composition, and higher level of pro-inflammatory microbiota were associated higher BMI and diabetes. In contrast, calcium- and vegetable-rich diets were associated with microbiota that produced short chain fatty acids leading to an anti-inflammatory state. We also found that important gut microbial butyrate producers were correlated with the volume of the thalamus and corpus callosum, which are regions of the brain responsible for relaying and processing information. Additionally, putative proinflammatory species were negatively correlated with GABA production, an inhibitory neurotransmitter. Furthermore, we observed that the relative abundance of bacteria from the family Eggerthellaceae, equol producers, was correlated with white matter integrity in tracts connecting the brain regions related to language, memory, and learning. Discussion These findings highlight the importance of gut microbiome association with brain health in aging population and could have important implications aimed at optimizing healthy brain aging through precision prebiotic, probiotic or dietary interventions.
Collapse
Affiliation(s)
- Tyler C. Hammond
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Stefan J. Green
- Genomics and Microbiome Core Facility, Rush University, Chicago, IL, United States
| | - Yael Jacobs
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - George E. Chlipala
- Research Informatics Core, University of Illinois Chicago, Chicago, IL, United States
| | - Xin Xing
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
- Department of Computer Science, University of Kentucky, Lexington, KY, United States
- Roy Blunt NextGen Precision Health, University of Missouri, Columbia, MO, United States
- Department of Radiology, University of Missouri, Columbia, MO, United States
| | - Sally Heil
- School of Medicine, University of Missouri, Columbia, MO, United States
| | - Anna Chen
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| | - Chetan Aware
- Roy Blunt NextGen Precision Health, University of Missouri, Columbia, MO, United States
- Department of Radiology, University of Missouri, Columbia, MO, United States
| | - Abeoseh Flemister
- Roy Blunt NextGen Precision Health, University of Missouri, Columbia, MO, United States
- Department of Radiology, University of Missouri, Columbia, MO, United States
| | - Arnold Stromberg
- Dr. Bing Zhang Department of Statistics, University of Kentucky, Lexington, KY, United States
| | - Priti Balchandani
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ai-Ling Lin
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
- Roy Blunt NextGen Precision Health, University of Missouri, Columbia, MO, United States
- Department of Radiology, University of Missouri, Columbia, MO, United States
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO, United States
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
| |
Collapse
|
15
|
Vega-Sagardía M, Delgado J, Ruiz-Moyano S, Garrido D. Proteomic analyses of Bacteroides ovatus and Bifidobacterium longum in xylan bidirectional culture shows sugar cross-feeding interactions. Food Res Int 2023; 170:113025. [PMID: 37316088 DOI: 10.1016/j.foodres.2023.113025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/16/2023]
Abstract
The intestinal microbiome is a community of anaerobic microorganisms whose activities significantly impact human health. Its composition can be modulated by consuming foods rich in dietary fiber, such as xylan, a complex polysaccharide that can be considered an emerging prebiotic. In this work, we evaluated how certain gut bacteria acted as primary degraders, fermenting dietary fibers, and releasing metabolites that other bacteria can further use. Different bacterial strains of Lactobacillus, Bifidobacterium, and Bacteroides were evaluated for their ability to consume xylan and interact with one another. Results from unidirectional assays gave indications of possible cross-feeding between bacteria using xylan as a carbon source. Bidirectional assays showed that Bifidobacterium longum PT4 increased its growth in the presence of Bacteroides ovatus HM222. Proteomic analyses indicated that B. ovatus HM222 synthesizes enzymes facilitating xylan degradation, such as β-xylanase, arabinosidase, L-arabinose isomerase, and xylosidase. Interestingly, the relative abundance of these proteins remains largely unaffected in the presence of Bifidobacterium longum PT4. In the presence of B. ovatus, B. longum PT4 increased the production of enzymes such as α-L-arabinosidase, L-arabinose isomerase, xylulose kinase, xylose isomerase, and sugar transporters. These results show an example of positive interaction between bacteria mediated by xylan consumption. Bacteroides degraded this substrate to release xylooligosaccharides, or monosaccharides (xylose, arabinose), which might support the growth of secondary degraders such as B. longum.
Collapse
Affiliation(s)
- Marco Vega-Sagardía
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile
| | - Josué Delgado
- Food Hygiene and Safety, Meat and Meat Products Research Institute, Faculty of Veterinary Science, Universidad de Extremadura, Avenida de las Ciencias s/n, 10003 Caceres, Spain.
| | - Santiago Ruiz-Moyano
- Departamento de Producción Animal y Ciencia de los Alimentos, Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain; Instituto Universitario de Investigación de Recursos Agrarios (INURA), Universidad de Extremadura, Avda. de la Investigación s/n, Campus Universitario, 06006 Badajoz, Spain
| | - Daniel Garrido
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile.
| |
Collapse
|
16
|
Felber J, Gross B, Rahrisch A, Waltersbacher E, Trips E, Schröttner P, Fitze G, Schultz J. Bacterial pathogens in pediatric appendicitis: a comprehensive retrospective study. Front Cell Infect Microbiol 2023; 13:1027769. [PMID: 37228669 PMCID: PMC10205019 DOI: 10.3389/fcimb.2023.1027769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 03/30/2023] [Indexed: 05/27/2023] Open
Abstract
Background Appendicitis is a frequent condition, with peak incidences in the second decade of life. Its pathogenesis is under debate, but bacterial infections are crucial, and antibiotic treatment remains essential. Rare bacteria are accused of causing complications, and various calculated antibiotics are propagated, yet there is no comprehensive microbiological analysis of pediatric appendicitis. Here we review different pre-analytic pathways, identify rare and common bacterial pathogens and their antibiotic resistances, correlate clinical courses, and evaluate standard calculated antibiotics in a large pediatric cohort. Method We reviewed 579 patient records and microbiological results of intraoperative swabs in standard Amies agar media or fluid samples after appendectomies for appendicitis between May 2011 and April 2019. Bacteria were cultured and identified via VITEK 2 or MALDI-TOF MS. Minimal inhibitory concentrations were reevaluated according to EUCAST 2022. Results were correlated to clinical courses. Results Of 579 analyzed patients, in 372 patients we got 1330 bacterial growths with resistograms. 1259 times, bacteria could be identified to species level. 102 different bacteria could be cultivated. 49% of catarrhal and 52% of phlegmonous appendices resulted in bacterial growth. In gangrenous appendicitis, only 38% remained sterile, while this number reduced to 4% after perforation. Many fluid samples remained sterile even when unsterile swabs had been taken simultaneously. 40 common enteral genera were responsible for 76.5% of bacterial identifications in 96.8% of patients. However, 69 rare bacteria were found in 187 patients without specifically elevated risk for complications. Conclusion Amies agar gel swabs performed superior to fluid samples and should be a standard in appendectomies. Even catarrhal appendices were only sterile in 51%, which is interesting in view of a possible viral cause. According to our resistograms, the best in vitro antibiotic was imipenem with 88.4% susceptible strains, followed by piperacillin-tazobactam, cefuroxime with metronidazole, and ampicillin-sulbactam to which only 21.6% of bacteria were susceptible. Bacterial growths and higher resistances correlate to an elevated risk of complications. Rare bacteria are found in many patients, but there is no specific consequence regarding antibiotic susceptibility, clinical course, or complications. Prospective, comprehensive studies are needed to further elicit pediatric appendicitis microbiology and antibiotic treatment.
Collapse
Affiliation(s)
- Julia Felber
- Department of Pediatric Surgery, University Hospital Dresden – Technical University of Dresden, Dresden, Germany
| | - Benedikt Gross
- Department of Pediatric Surgery, University Hospital Dresden – Technical University of Dresden, Dresden, Germany
| | - Arend Rahrisch
- Department of Pediatric Surgery, University Hospital Dresden – Technical University of Dresden, Dresden, Germany
| | - Eric Waltersbacher
- Department of Pediatric Surgery, University Hospital Dresden – Technical University of Dresden, Dresden, Germany
| | - Evelyn Trips
- Coordination Centre for Clinical Trials, Faculty of Medicine Carl Gustav Carus, Technical University of Dresden, Dresden, Germany
| | - Percy Schröttner
- Institute for Microbiology and Virology, University Hospital Dresden – Technical University of Dresden, Dresden, Germany
| | - Guido Fitze
- Department of Pediatric Surgery, University Hospital Dresden – Technical University of Dresden, Dresden, Germany
| | - Jurek Schultz
- Department of Pediatric Surgery, University Hospital Dresden – Technical University of Dresden, Dresden, Germany
| |
Collapse
|
17
|
Kijner S, Cher A, Yassour M. The Infant Gut Commensal Bacteroides dorei Presents a Generalized Transcriptional Response to Various Human Milk Oligosaccharides. Front Cell Infect Microbiol 2022; 12:854122. [PMID: 35372092 PMCID: PMC8971754 DOI: 10.3389/fcimb.2022.854122] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/22/2022] [Indexed: 12/22/2022] Open
Abstract
Human milk oligosaccharides (HMOs) are a family of glycans found in breastmilk with over 200 identified structures. Despite being the third-largest solid component in breastmilk, HMOs are indigestible by infants, and they serve as food for the infant gut bacteria. Most research thus far has focused on Bifidobacterium species that harbor many glycoside hydrolases (GHs) tailored to break the carbon bonds in HMO molecules. However, there are additional microbes in the infant gut, such as Bacteroides species, with increasing evidence that they, too, are able to break-down HMOs. To study the unbiased impact of breastfeeding on the infant gut microbiome, we need to investigate the underlying mechanisms of HMO utilization by all members of the infant gut. Here, we developed an optimized system for isolating Bacteroides strains from infant stool samples. We then examined the HMO utilization capacity of multiple Bacteroides isolates by performing growth curves on six common HMOs (2'-FL, DFL, 3'-SL, 6'-SL, LNT, LNnT). Isolates often displayed similar growth characteristics on similarly-structured HMOs, like sialylated or fucosylated sugars. We identified variation in HMO utilization across multiple strains of the same species, and chose to focus here on a Bacteroides dorei isolate that was able to utilize the test HMOs. We performed RNA sequencing on B. dorei cultures, comparing the transcriptional profile in minimal media supplemented with glucose or HMOs. We showed that B. dorei employs an extensive metabolic response to HMOs. Surprisingly, there was no clear up-regulation for most GH families previously known to break-down HMOs, possibly because they were almost exclusively described in Bifidobacterium species. Instead, B. dorei exhibits a generalized response to HMOs, markedly up-regulating several shared GH families across all conditions. Within each GH family, B. dorei displays a consistent pattern of up-regulation of some genes with down-regulation of the others. This response pattern to HMOs has yet to be described in other commensals of the infant gut. Our work highlights the importance of expanding the HMO-microbiome studies beyond Bifidobacterium species, sheds light on the differences across Bacteroides strains in terms of HMO utilization, and paves the way to understanding the mechanisms enabling Bacteroides HMO utilization.
Collapse
Affiliation(s)
- Sivan Kijner
- Microbiology & Molecular Genetics Department, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Avital Cher
- Microbiology & Molecular Genetics Department, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Moran Yassour
- Microbiology & Molecular Genetics Department, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|