1
|
Moradi J, Berggreen E, Bunæs DF, Bolstad AI, Bertelsen RJ. Microbiome composition and metabolic pathways in shallow and deep periodontal pockets. Sci Rep 2025; 15:12926. [PMID: 40234709 PMCID: PMC12000285 DOI: 10.1038/s41598-025-97531-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 04/04/2025] [Indexed: 04/17/2025] Open
Abstract
In periodontal diseases, a dysbiotic subgingival microbiome interacts complexly with the host immune response and is strongly considered a risk factor for various systemic conditions. The high prevalence of both periodontal and systemic diseases in older adults highlights the importance of characterizing the subgingival microbiome in this age group. This study specifically characterizes the composition of the subgingival microbiome and investigates the interactions between microbial niches in shallow and deep periodontal pockets in individuals in their early 70s. We collected 1928 samples from 1287 participants, all born between 1950 and 1951. Participants had either shallow (≤ 4 mm) periodontal pockets or both shallow and deep (≥ 5 mm) periodontal pockets. Distinct microbial patterns were observed in shallow and deep periodontal pockets within the same oral cavity. Deep pockets exhibited a significantly higher abundance of species from genera such as Prevotella, Centipeda, Treponema, and Fusobacterium, while shallow pockets were enriched with species from Actinomyces, Pauljensenia, Streptococcus, and Gemella. The top significant species associated with deep pockets included Fretibacterium fastidiosum, Tannerella forsythia, and Treponema denticola, whereas shallow pockets were predominantly associated with Actinomyces species and Rothia dentocariosa. Additionally, shallow pockets in individuals with both pocket types showed a positive association with Tannerella forsythia, Porphyromonas gingivalis, and Fusobacterium nucleatum compared to shallow pockets in individuals with only shallow pockets. Metabolic pathways showed significant variation with pocket depth, with pathways such as lipopolysaccharide metabolism, lipid metabolism, and polyamine biosynthesis being positively associated with deep pockets. Overall, this study provides comprehensive microbiome analyses of periodontal pockets in aging adults, contributing to a better understanding of periodontal health and its potential impact on reducing systemic health risks in aging populations.
Collapse
Affiliation(s)
- Jale Moradi
- Oral Health Center of Expertise in Western Norway, Bergen, Norway.
| | - Ellen Berggreen
- Oral Health Center of Expertise in Western Norway, Bergen, Norway
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Dagmar F Bunæs
- Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| | | | - Randi Jacobsen Bertelsen
- Oral Health Center of Expertise in Western Norway, Bergen, Norway.
- Department of Clinical Science, University of Bergen, Bergen, Norway.
| |
Collapse
|
2
|
Lafaurie GI, Castillo DM, Delgadillo NA, Neuta Y, Castillo Y, Vargas-Sánchez PK, Díaz-Báez D, Gómez LA, Moscoso S, Sarmiento JM, Cortes F, Mendoza F. Bacteraemia and proinflammatory response after non-surgical periodontal therapy and adjunctive antibiotics in patients with recent acute coronary syndrome. Diagn Microbiol Infect Dis 2025; 111:116662. [PMID: 40021314 DOI: 10.1016/j.diagmicrobio.2024.116662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 03/03/2025]
Abstract
INTRODUCTION This study compares the incidence of bacteraemia and proinflammatory cytokines in short and long periods after non-surgical periodontal therapy involving premedication with amoxicillin (AMX) followed by AMX and metronidazole (MTZ) in patients with Acute Coronary Syndrome (ACS). METHODS This pilot study included twelve individuals with periodontitis and recent ACS. Six patients were treated with subgingival instrumentation (SI), and six with supragingival ultrasonic scaling (US). Amoxicillin 2 g was administered as premedication in the first visit, followed by AMX-MTZ for one week. The incidence of bacteraemia was evaluated using hemoculture, qPCR, and next-generation sequencing (NGS) before the treatment (t0) and 30 min later (t1) (quadrants 1 and 2), and after one-week, pre-post-treatment samples were taken from the re-maining quadrants (t3 and t4). Proinflammatory cytokines were evaluated in serum at baseline (t0), one week (t1), and six months (t5). RESULTS Bacteraemia was low in 16.6 %, similar in both treatment groups. Porphyromonas gingivalis and Desulfobulbus oralis (16.6 %), Filifactor alocis, Eubacterium saphenum, Eubacterium brachy (8.3 %) were identified with qPCR. NGS was only detected in a single patient; at time t0, bacteria were more diverse than at t3 and were associated with the phyla Bacteroidetes and Proteobacteria. Interestingly, many clones observed in blood were non-oral. After treatment, all cytokines were reduced significantly in the SI group in the long term (p< 0.05). CONCLUSIONS Periodontal therapy reduced bacteremia: despite the antibiotic regimen, bacteria remained in peripheral blood, which could be associated with antimicrobial resistance. SI produced a more efficient reduction of proinflammatory cytokines after periodontal treatment in individuals with ACS.
Collapse
Affiliation(s)
- Gloria Inés Lafaurie
- Unidad de Investigación Básica Oral (UIBO), Vicerrectoría de investigaciones, Facultad de Odontología, Universidad El Bosque, Av. Carrera 9 No 131A - 02, Bogotá D.C., Colombia.
| | - Diana Marcela Castillo
- Unidad de Investigación Básica Oral (UIBO), Vicerrectoría de investigaciones, Facultad de Odontología, Universidad El Bosque, Av. Carrera 9 No 131A - 02, Bogotá D.C., Colombia
| | - Nathaly Andrea Delgadillo
- Unidad de Investigación Básica Oral (UIBO), Vicerrectoría de investigaciones, Facultad de Odontología, Universidad El Bosque, Av. Carrera 9 No 131A - 02, Bogotá D.C., Colombia
| | - Yineth Neuta
- Unidad de Investigación Básica Oral (UIBO), Vicerrectoría de investigaciones, Facultad de Odontología, Universidad El Bosque, Av. Carrera 9 No 131A - 02, Bogotá D.C., Colombia
| | - Yormaris Castillo
- Unidad de Investigación Básica Oral (UIBO), Vicerrectoría de investigaciones, Facultad de Odontología, Universidad El Bosque, Av. Carrera 9 No 131A - 02, Bogotá D.C., Colombia
| | - Paula Katherine Vargas-Sánchez
- Unidad de Investigación Básica Oral (UIBO), Vicerrectoría de investigaciones, Facultad de Odontología, Universidad El Bosque, Av. Carrera 9 No 131A - 02, Bogotá D.C., Colombia
| | - David Díaz-Báez
- Unidad de Investigación Básica Oral (UIBO), Vicerrectoría de investigaciones, Facultad de Odontología, Universidad El Bosque, Av. Carrera 9 No 131A - 02, Bogotá D.C., Colombia
| | - Luz Amparo Gómez
- Unidad de Investigación Básica Oral (UIBO), Vicerrectoría de investigaciones, Facultad de Odontología, Universidad El Bosque, Av. Carrera 9 No 131A - 02, Bogotá D.C., Colombia
| | - Sandra Moscoso
- Unidad de Investigación Básica Oral (UIBO), Vicerrectoría de investigaciones, Facultad de Odontología, Universidad El Bosque, Av. Carrera 9 No 131A - 02, Bogotá D.C., Colombia; Fundación Clínica Shaio, Dg. 115a #70c - 75, Bogotá D.C., Colombia
| | | | - Fabian Cortes
- Fundación Clínica Shaio, Dg. 115a #70c - 75, Bogotá D.C., Colombia
| | - Fernán Mendoza
- Fundación Clínica Shaio, Dg. 115a #70c - 75, Bogotá D.C., Colombia
| |
Collapse
|
3
|
Zelasko S, Swaney MH, Sandstrom S, Lee KE, Dixon J, Riley C, Watson L, Godfrey JJ, Ledrowski N, Rey F, Safdar N, Seroogy CM, Gern JE, Kalan L, Currie C. Early-life upper airway microbiota are associated with decreased lower respiratory tract infections. J Allergy Clin Immunol 2025; 155:436-450. [PMID: 39547283 DOI: 10.1016/j.jaci.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Microbial interactions mediating colonization resistance play key roles within the human microbiome, shaping susceptibility to infection from birth. The role of the nasal and oral microbiome in the context of early life respiratory infections and subsequent allergic disease risk remains understudied. OBJECTIVES Our aim was to gain insight into microbiome-mediated defenses and respiratory pathogen colonization dynamics within the upper respiratory tract during infancy. METHODS We performed shotgun metagenomic sequencing of nasal (n = 229) and oral (n = 210) microbiomes from our Wisconsin Infant Study Cohort at age 24 months and examined the influence of participant demographics and exposure history on microbiome composition. Detection of viral and bacterial respiratory pathogens by RT-PCR and culture-based studies with antibiotic susceptibility testing, respectively, to assess pathogen carriage was performed. Functional bioassays were used to evaluate pathogen inhibition by respiratory tract commensals. RESULTS Participants with early-life lower respiratory tract infection were more likely to be formula fed, attend day care, and experience wheezing. Composition of the nasal, but not oral, microbiome associated with prior lower respiratory tract infection, namely lower alpha diversity, depletion of Prevotella, and enrichment of Moraxella catarrhalis including drug-resistant strains. Prevotella originating from healthy microbiomes had higher biosynthetic gene cluster abundance and exhibited contact-independent inhibition of M catarrhalis. CONCLUSIONS These results suggest interbacterial competition affects nasal pathogen colonization. This work advances understanding of protective host-microbe interactions occurring in airway microbiomes that alter infection susceptibility in early life.
Collapse
Affiliation(s)
- Susan Zelasko
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wis; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wis.
| | - Mary Hannah Swaney
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wis; Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wis
| | - Shelby Sandstrom
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wis
| | - Kristine E Lee
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wis
| | - Jonah Dixon
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Colleen Riley
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Lauren Watson
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Jared J Godfrey
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Naomi Ledrowski
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Federico Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wis
| | - Nasia Safdar
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis; William S. Middleton Memorial Veterans Affairs Hospital, Madison, Wis
| | - Christine M Seroogy
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - James E Gern
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis; Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Lindsay Kalan
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wis; Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis; M. G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Cameron Currie
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wis; M. G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
4
|
Wang X, He X, Zhong B. Oral microbiota: the overlooked catalyst in cancer initiation and progression. Front Cell Dev Biol 2025; 12:1479720. [PMID: 39872848 PMCID: PMC11769975 DOI: 10.3389/fcell.2024.1479720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/20/2024] [Indexed: 01/30/2025] Open
Abstract
The advancement of high-throughput sequencing technology in recent decades has led to a greater understanding of the components of the oral microbiota, providing a solid foundation for extensive research in this field. The oral microbiota plays an important role in an individual's overall health. It has been shown to be significantly correlated with chronic human diseases, including diabetes, rheumatoid arthritis, cardiovascular disease, periodontal disease, and Alzheimer's disease. Furthermore, tumor occurrence and development are closely related to the oral microbiome. Specific bacteria, such as Fusobacterium nucleatum (F. nucleatum), Porphyromonas gingivalis (P. gingivalis), Streptococcus, Streptomyces, Prevotella, and Fibrophagy gingivalis, play critical roles in cancer development. The oral microbiota has various oncogenic mechanisms, including bacterial inflammation, immunological suppression, tumor growth mediated by bacterial toxins, antiapoptotic activity, and carcinogenic effects. This paper reviews the role of the oral microbiota in the occurrence and progression of cancer and systematically elucidates the molecular mechanisms by which dysbiosis influences tumorigenesis and tumor progression. This information can provide a theoretical basis for exploring cancer treatment strategies and offer new insights for cancer prevention.
Collapse
Affiliation(s)
- Xinlin Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Xin He
- Department of Respiratory Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Jiangxi Provincial Branch of China Clinical Medical Research Center for Geriatric Diseases, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Bin Zhong
- Department of Respiratory Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
5
|
Tang JWY, Hau CCF, Tong WM, Watt RM, Yiu CKY, Shum KKM. Alterations of oral microbiota in young children with autism: Unraveling potential biomarkers for early detection. J Dent 2025; 152:105486. [PMID: 39603332 DOI: 10.1016/j.jdent.2024.105486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024] Open
Abstract
OBJECTIVES This study investigated the oral microbiota in young children with autism spectrum disorder (ASD) to determine possible alterations in microbial composition and identify potential biomarkers for early detection. METHODS Dental plaque samples from 25 children with ASD (aged 3-6 years; M = 4.79, SD = 0.83) and 30 age- and sex-matched typically developing (TD) children were analyzed using 16S rRNA sequencing. RESULTS The results showed lower bacterial diversity in children with ASD compared to controls, with distinct microbial compositions in the ASD and TD groups. Six discriminatory species (Microbacterium flavescens, Leptotrichia sp. HMT-212, Prevotella jejuni, Capnocytophaga leadbetteri, Leptotrichia sp. HMT-392, and Porphyromonas sp. HMT-278) were identified in the oral microbiota of ASD children, while five discriminatory species (Fusobacterium nucleatum subsp. polymorphum, Schaalia sp. HMT-180, Leptotrichia sp. HMT-498, Actinomyces gerencseriae, and Campylobacter concisus) were identified in TD controls. A model generated by random forest and leave-one-out cross-validation achieved an accuracy of 0.813. Receiver operating characteristic analysis yielded a sensitivity of 0.778, a specificity of 0.857, and an AUC (area under curve) of 0.937 (95 % CI: 0.82 - 1.00) for differentiating children with and without ASD. CONCLUSION The present study has unveiled significant disparities in the oral microbial composition between ASD and TD children. SIGNIFICANCE These findings contribute to understanding the microbiome-brain connection in ASD and its implications for early detection and management. Further research is needed to validate these oral bacterial biomarkers and explore their mechanistic association with ASD pathophysiology.
Collapse
Affiliation(s)
| | | | - Wai-Man Tong
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, PR China.
| | - Rory Munro Watt
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, PR China.
| | | | - Kathy Kar-Man Shum
- Department of Psychology, The University of Hong Kong, Hong Kong SAR, PR China.
| |
Collapse
|
6
|
Maan M, U JP, Mohamed DA, Jalaleddine N, Abuzayeda M, Khamis AH, Dutta M, Moharamzadeh K. The Effects of Electronic Cigarettes on Oral Microbiome and Metabolome in 3D Tissue-Engineered Models. Int Dent J 2024:S0020-6539(24)01620-4. [PMID: 39743449 DOI: 10.1016/j.identj.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND AND AIM Recent studies have shown that electronic cigarettes (ECs) use disrupts the oral microbiome composition and diversity, impairing the metabolic pathways of the mucosal cells. However, to date, no reports have evaluated the role of EC exposure in the context of oral metabolome. Hence, the aim of this study was to investigate the role of EC aerosol exposure in the dysregulation of the oral microbiome and metabolome profile using in vitro 3D organotypic models of human oral mucosa. METHODS 3D tissue-engineered human oral mucosa models were generated and infected with oral microbes obtained from saliva of a healthy donor. The epithelial surface of the oral mucosal models was exposed directly to the EC aerosol (flavoured; with and without nicotine) as it came out of a simulated activated device that mimicked the clinical situation. A comprehensive assessment of oral microbiome community composition by bacterial 16S rRNA gene sequencing was performed. A gas chromatography-based mass spectrometry analysis was also conducted to identify the effect of vaping on the oral metabolome profile. RESULTS A higher alpha diversity in flavoured EC with nicotine groups was observed compared to controls, with notable differences in bacterial taxa abundance. Metabolomics analysis further demonstrated distinct clustering of control, EC with flavoured nicotine, and flavoured EC groups, confirming 13 metabolites that were statistically higher in levels in flavoured EC with nicotine group, indicating the adverse effects of nicotine on the oral mucosa model. Altered metabolites were mainly enriched in pathways associated with oral cancer progression. CONCLUSION This study underscores the significant impact of EC use on oral health, highlighting alterations in the oral microbiome, bacterial composition, and metabolite profiles via a clinically relevant in vitro 3D organotypic model of human oral mucosa.
Collapse
Affiliation(s)
- Meenu Maan
- Department of Restorative Dentistry, Hamdan Bin Mohammed College of Dental Medicine (HBMCDM), Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai Health, Dubai, United Arab Emirates; Department of Biophysics, New York University-Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Jisha Pillai U
- Department of Biotechnology, Birla Institute of Technology and Science Pilani-Dubai Campus, Academic City, Dubai, United Arab Emirates
| | - Dalia Alsadig Mohamed
- Department of Restorative Dentistry, Hamdan Bin Mohammed College of Dental Medicine (HBMCDM), Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai Health, Dubai, United Arab Emirates
| | - Nour Jalaleddine
- Department of Restorative Dentistry, Hamdan Bin Mohammed College of Dental Medicine (HBMCDM), Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai Health, Dubai, United Arab Emirates
| | - Moosa Abuzayeda
- Department of Restorative Dentistry, Hamdan Bin Mohammed College of Dental Medicine (HBMCDM), Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai Health, Dubai, United Arab Emirates
| | - Amar Hassan Khamis
- Department of Restorative Dentistry, Hamdan Bin Mohammed College of Dental Medicine (HBMCDM), Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai Health, Dubai, United Arab Emirates
| | - Mainak Dutta
- Department of Biotechnology, Birla Institute of Technology and Science Pilani-Dubai Campus, Academic City, Dubai, United Arab Emirates.
| | - Keyvan Moharamzadeh
- Department of Restorative Dentistry, Hamdan Bin Mohammed College of Dental Medicine (HBMCDM), Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai Health, Dubai, United Arab Emirates; Department of Restorative Dentistry, School of Clinical Dentistry, University of Sheffield, Sheffield, UK.
| |
Collapse
|
7
|
Kunath BJ, De Rudder C, Laczny CC, Letellier E, Wilmes P. The oral-gut microbiome axis in health and disease. Nat Rev Microbiol 2024; 22:791-805. [PMID: 39039286 DOI: 10.1038/s41579-024-01075-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 07/24/2024]
Abstract
The human body hosts trillions of microorganisms throughout many diverse habitats with different physico-chemical characteristics. Among them, the oral cavity and the gut harbour some of the most dense and diverse microbial communities. Although these two sites are physiologically distinct, they are directly connected and can influence each other in several ways. For example, oral microorganisms can reach and colonize the gastrointestinal tract, particularly in the context of gut dysbiosis. However, the mechanisms of colonization and the role that the oral microbiome plays in causing or exacerbating diseases in other organs have not yet been fully elucidated. Here, we describe recent advances in our understanding of how the oral and intestinal microbiota interplay in relation to their impact on human health and disease.
Collapse
Affiliation(s)
- Benoit J Kunath
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| | - Charlotte De Rudder
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Cedric C Laczny
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Elisabeth Letellier
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg.
| |
Collapse
|
8
|
Kim YH, Lee TY, Kim HY, Jeong SJ, Han JH, Shin JE, Lee JH, Kang CM. Natal factors influencing newborn's oral microbiome diversity. Sci Rep 2024; 14:28161. [PMID: 39548168 PMCID: PMC11568190 DOI: 10.1038/s41598-024-78609-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/02/2024] [Indexed: 11/17/2024] Open
Abstract
The early microbiota of neonates is crucial for developing the postnatal immune system and establishing normal physiological, metabolic, and neurological functions. This study aimed to investigate the factors influencing the diversity of the neonatal oral microbiome, including mother-to-newborn microbial transmission. The study includes a prospective cohort comprising 73 mothers and 87 neonates and a retrospective cohort comprising 991 mothers and 1,121 neonates. Samples from the maternal cervix and neonatal gastric, bronchial, and oral cavities were analyzed using culture-based methods. Neonatal oral swab samples were also analyzed using 16S rRNA gene sequencing to characterize microbial diversity and composition. Similar genera were detected in the neonatal gastric, bronchial, and oral samples, and the neonatal gastric culture was the most similar to the maternal cervical culture. In addition to mother-to-newborn microbial transmission, various natal factors including birth type, birth weight, delivery mode, maternal chorioamnionitis, maternal diabetes and the presence of microbes in other sites influenced neonatal oral microbiome diversity. Among these factors, the birth type was the most significant, and preterm neonates exhibited decreased oral microbiome diversity, with fewer beneficial bacteria and more pathogens. These findings could serve as a baseline for research on the establishment of the oral microbiota in preterm neonates and its health implications.
Collapse
Affiliation(s)
- Yoon-Hee Kim
- Department of Pediatric Dentistry, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Tae Yang Lee
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul, Republic of Korea
- Oral Science Research Center, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | | | - Su Jin Jeong
- Statistics Support Part, Medical Science Research Institute, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Jung Ho Han
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jeong Eun Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-Ho Lee
- Department of Pediatric Dentistry, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seoul, 03722, Republic of Korea
- Oral Science Research Center, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Chung-Min Kang
- Department of Pediatric Dentistry, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seoul, 03722, Republic of Korea.
- Oral Science Research Center, Yonsei University College of Dentistry, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Petrilla A, Nemeth P, Fauszt P, Szilagyi-Racz A, Mikolas M, Szilagyi-Tolnai E, David P, Stagel A, Gal F, Gal K, Sohajda R, Pham T, Stundl L, Biro S, Remenyik J, Paholcsek M. Comparative analysis of the postadmission and antemortem oropharyngeal and rectal swab microbiota of ICU patients. Sci Rep 2024; 14:27179. [PMID: 39516251 PMCID: PMC11549221 DOI: 10.1038/s41598-024-78102-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Shotgun metabarcoding was conducted to examine the microbiota in a total of 48 samples from 12 critically ill patients, analyzing samples from both the oropharynx and rectum. We aimed to compare their postadmission microbiota, characterized as moderately dysbiotic, with the severely dysbiotic antemortem microbiota associated with patients' deaths. We found that, compared with postadmission samples, patient antemortem swab samples presented moderate but not significantly decreased diversity indices. The antemortem oropharyngeal samples presented an increase in biofilm-forming bacteria, including Streptococcus oralis, methicillin-resistant Staphylococcus aureus (MRSA), and Enterococcus faecalis. Although the septic shock rate was 67%, no significant differences were detected in the potential pathogen ratios when the microbiota was analyzed. A notable strain-sharing rate between the oropharynx and intestine was noted. By comparing postadmission and antemortem samples, microbial biomarkers of severe dysbiosis were pinpointed through the analysis of differentially abundant and uniquely emerging species in both oropharyngeal and rectal swabs. Demonstrating strong interconnectivity along the oral-intestinal axis, these biomarkers could serve as indicators of the progression of dysbiosis. Furthermore, the microbial networks of the oropharyngeal microbiota in deceased patients presented the lowest modularity, suggesting a vulnerable community structure. Our data also highlight the critical importance of introducing treatments aimed at enhancing the resilience of the oral cavity microbiome, thereby contributing to better patient outcomes.
Collapse
Affiliation(s)
- Annamaria Petrilla
- Department of Anaesthesiology and Intensive Care, Vas County Markusovszky Teaching Hospital, Szombathely, Hungary
| | - Peter Nemeth
- Department of Anaesthesiology and Intensive Care, Vas County Markusovszky Teaching Hospital, Szombathely, Hungary
| | - Peter Fauszt
- Faculty of Agricultural and Food Sciences and Environmental Management, Complex Systems and Microbiome-innovations Centre, University of Debrecen, Debrecen, Hungary
| | - Anna Szilagyi-Racz
- Faculty of Agricultural and Food Sciences and Environmental Management, Complex Systems and Microbiome-innovations Centre, University of Debrecen, Debrecen, Hungary
| | - Maja Mikolas
- Faculty of Agricultural and Food Sciences and Environmental Management, Complex Systems and Microbiome-innovations Centre, University of Debrecen, Debrecen, Hungary
| | - Emese Szilagyi-Tolnai
- Faculty of Agricultural and Food Sciences and Environmental Management, Complex Systems and Microbiome-innovations Centre, University of Debrecen, Debrecen, Hungary
| | - Peter David
- Faculty of Agricultural and Food Sciences and Environmental Management, Complex Systems and Microbiome-innovations Centre, University of Debrecen, Debrecen, Hungary
| | - Aniko Stagel
- Hungarian National Blood Transfusion Service Nucleic Acid Testing Laboratory, Budapest, Hungary
| | - Ferenc Gal
- Faculty of Agricultural and Food Sciences and Environmental Management, Complex Systems and Microbiome-innovations Centre, University of Debrecen, Debrecen, Hungary
| | - Kristof Gal
- Department of Oncoradiology, University of Debrecen Clinical Centre, Debrecen, Hungary
| | - Reka Sohajda
- Hungarian National Blood Transfusion Service Nucleic Acid Testing Laboratory, Budapest, Hungary
| | - Trinh Pham
- Turku Bioscience Centre, University of Turku and Abo Akademi University, 20520, Turku, Finland
| | - Laszlo Stundl
- Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Sandor Biro
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit Remenyik
- Faculty of Agricultural and Food Sciences and Environmental Management, Complex Systems and Microbiome-innovations Centre, University of Debrecen, Debrecen, Hungary
| | - Melinda Paholcsek
- Faculty of Agricultural and Food Sciences and Environmental Management, Complex Systems and Microbiome-innovations Centre, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
10
|
Ahmed HS. The Impact of Prevotella on Neurobiology in Aging: Deciphering Dendritic Cell Activity and Inflammatory Dynamics. Mol Neurobiol 2024; 61:9240-9251. [PMID: 38613648 DOI: 10.1007/s12035-024-04156-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/29/2024] [Indexed: 04/15/2024]
Abstract
Prevotella species, notably Prevotella copri, significantly populate the human gut. In particular, P. copri is prevalent among non-Western populations with diets high in fiber. These species show complex relationships with diverse health aspects, associating with beneficial outcomes, including reduced visceral fat and improved glucose tolerance. Studies implicate various Prevotella species in specific diseases. Prevotella nigrescens and Porphyromonas gingivalis were linked to periodontal disease, promoting immune responses and influencing T helper type 17 (Th17) cells. Prevotella bivia was associated with bacterial vaginosis and a specific increase in activated cells in the vaginal mucosa. In contrast, they have shown substantial potential for inducing connective tissue degradation and alveolar bone resorption. Prevotella's role in neuroinflammatory disorders and autoinflammatory conditions such as Alzheimer's disease and Parkinson's disease has also been noted. The complex relationship between Prevotella and age-related conditions further extends to neurobiological changes in aging, with varying associations with Alzheimer's, Parkinson's, and other inflammatory conditions. Studies have also identified Prevotella to be implicated in cognitive decline in middle aged and the elderly. Future directions in this research area are anticipated to explore Prevotella-associated inflammatory mechanisms and therapeutic interventions. Investigating specific drug targets and immunomodulatory measures could lead to novel therapeutic strategies. Understanding how Prevotella-induced inflammation interacts with aging diseases would offer promising insights for treatments and interventions. This review urges ongoing research to discover therapeutic targets and mechanisms for moderating Prevotella-associated inflammation to further enhance our understanding and improve health outcomes.
Collapse
Affiliation(s)
- H Shafeeq Ahmed
- Bangalore Medical College and Research Institute, K.R Road, Bangalore, 560002, Karnataka, India.
| |
Collapse
|
11
|
Vilà-Quintana L, Fort E, Pardo L, Albiol-Quer MT, Ortiz MR, Capdevila M, Feliu A, Bahí A, Llirós M, García-Velasco A, Morell Ginestà M, Laquente B, Pozas D, Moreno V, Garcia-Gil LJ, Duell EJ, Pimenoff VN, Carreras-Torres R, Aldeguer X. Metagenomic Study Reveals Phage-Bacterial Interactome Dynamics in Gut and Oral Microbiota in Pancreatic Diseases. Int J Mol Sci 2024; 25:10988. [PMID: 39456772 PMCID: PMC11507633 DOI: 10.3390/ijms252010988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Individuals with pancreatic-related health conditions usually show lower diversity and different composition of bacterial and viral species between the gut and oral microbiomes compared to healthy individuals. We performed a thorough microbiome analysis, using deep shotgun sequencing of stool and saliva samples obtained from patients with chronic pancreatitis (CP), pancreatic ductal adenocarcinoma (PDAC), and healthy controls (HCs).We observed similar microbiota composition at the species level in both the gut and oral samples in PDAC patients compared to HCs, among which the most distinctive finding was that the abundance of oral-originated Fusobacterium nucleatum species did not differ between the oral and the gut samples. Moreover, comparing PDAC patients with HCs, Klebsiella oxytoca was significantly more abundant in the stool samples of PDAC patients, while Streptococcus spp. showed higher abundance in both the oral and stool samples of PDAC patients. Finally, the most important finding was the distinctive gut phage-bacterial interactome pattern among PDAC patients. CrAssphages, particularly Blohavirus, showed mutual exclusion with K. oxytoca species, while Burzaovirus showed co-occurrence with Enterobacteriaceae spp., which have been shown to be capable of inducing DNA damage in human pancreatic cells ex vivo. The interactome findings warrant further mechanistic studies, as our findings may provide new insights into developing microbiota-based diagnostic and therapeutic methods for pancreatic diseases.
Collapse
Affiliation(s)
- Laura Vilà-Quintana
- Digestive Diseases and Microbiota Group, Girona Biomedical Research Institute (IDIBGI), 17190 Salt, Spain
| | - Esther Fort
- Department of Gastroenterology, Hospital Universitari de Girona Dr. Josep Trueta, 17007 Girona, Spain
| | - Laura Pardo
- Department of Gastroenterology, Hospital Universitari de Girona Dr. Josep Trueta, 17007 Girona, Spain
| | - Maria T. Albiol-Quer
- Hepato-Pancreato-Biliary Unit, Department of Surgery, Hospital Universitari de Girona Dr. Josep Trueta, 17007 Girona, Spain
| | - Maria Rosa Ortiz
- Department of Pathology, Hospital Universitari de Girona Dr. Josep Trueta, 17007 Girona, Spain
| | - Montserrat Capdevila
- Digestive Diseases and Microbiota Group, Girona Biomedical Research Institute (IDIBGI), 17190 Salt, Spain
| | - Anna Feliu
- Digestive Diseases and Microbiota Group, Girona Biomedical Research Institute (IDIBGI), 17190 Salt, Spain
| | - Anna Bahí
- Digestive Diseases and Microbiota Group, Girona Biomedical Research Institute (IDIBGI), 17190 Salt, Spain
| | - Marc Llirós
- Bioinformatics and Bioimaging (BI-SQUARED) Research Group, Biosciences Department, Faculty of Sciences, Technology and Engineering, Universitat de Vic, 08500 Vic, Spain
| | - Adelaida García-Velasco
- Precision Oncology Group, Girona Biomedical Research Institute (IDIBGI), 17190 Salt, Spain
- Institut Català d’Oncologia (ICO), Hospital Universitari de Girona Dr. Josep Trueta, 17007 Girona, Spain
| | - Mireia Morell Ginestà
- Hereditary Cancer Program, Institut Català d’Oncologia (ICO), Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), CIBERONC, 08908 Barcelona, Spain
| | - Berta Laquente
- Medical Oncology Department, Institut Català d’Oncologia (ICO), Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), 08908 Barcelona, Spain
| | - Débora Pozas
- Digestive Diseases and Microbiota Group, Girona Biomedical Research Institute (IDIBGI), 17190 Salt, Spain
| | - Victor Moreno
- Institut Català d’Oncologia (ICO), Institut de Recerca Biomedica de Bellvitge (IDIBELL), 08908 Barcelona, Spain
- UBICS, University of Barcelona (UB), 08028 Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 08036 Barcelona, Spain
| | - Librado Jesús Garcia-Gil
- Digestive Diseases and Microbiota Group, Girona Biomedical Research Institute (IDIBGI), 17190 Salt, Spain
| | - Eric Jeffrey Duell
- Cancer Epidemiology Research Program, Unit of Nutrition and Cancer, Institut Català d’Oncologia (ICO), Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), 08908 Barcelona, Spain
| | - Ville Nikolai Pimenoff
- Department of Clinical Science, Intervention and Technology—CLINTEC, Karolinska Institutet, 14152 Stockholm, Sweden
- Unit of Population Health, Faculty of Medicine, University of Oulu, 90220 Oulu, Finland
| | - Robert Carreras-Torres
- Digestive Diseases and Microbiota Group, Girona Biomedical Research Institute (IDIBGI), 17190 Salt, Spain
| | - Xavier Aldeguer
- Digestive Diseases and Microbiota Group, Girona Biomedical Research Institute (IDIBGI), 17190 Salt, Spain
| |
Collapse
|
12
|
Ito Y, Hashimoto Y, Suzuki M, Kaneko N, Yoshida M, Nakayama H, Tomita H. The emergence of metronidazole-resistant Prevotella bivia harboring nimK gene in Japan. Microbiol Spectr 2024; 12:e0056224. [PMID: 39162532 PMCID: PMC11448248 DOI: 10.1128/spectrum.00562-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/03/2024] [Indexed: 08/21/2024] Open
Abstract
We present the identification and characterization of the complete genome of metronidazole (MTZ)-resistant Prevotella bivia strain TOH-2715 [minimum inhibitory concentration (MIC): 8 mg/L], isolated from the urine of an elderly Japanese woman, as well as details of its mobile genetic elements (MGEs) containing antimicrobial resistance (AMR) genes and its relationship with other bacterial species determined using whole-genome sequencing (WGS) data. TOH-2715 possessed two chromosomes with putative MGEs containing AMR genes. Two AMR-related MGE regions were present in chromosome 2. MGE-region 1 (7,821 bp) included Tn6456, where nimK was located, and MGE-region 2 (58.8 Kbp) included the integrative and conjugative element (ICE), where tet(Q) and ermF were located. The genetic structure of the ICE of TOH-2715 was similar to that of CTnDOT-family transposons, where ermF and tet(Q) are located. A search of public databases revealed that nimK was present in Prevotella spp., including P. bivia, and was partially composed of a Tn6456-like element lacking the efflux transporter gene qacE and the Crp/Fnr family transcriptional regulator gene in some cases. Core ICE gene analysis showed that ICEs similar to that of TOH-2715 were present in Prevotella spp. and Bacteroides spp., suggesting horizontal gene transfer among anaerobes. This is the report of WGS analysis of an MTZ-resistant clinical strain of P. bivia (TOH-2715) with Tn6456 encoding nimK. Other submitted genomes have described the presence of nimK, but none of them have described MTZ resistance. Additionally, we described putative MGE regions containing the AMR gene within the genus Prevotella and among anaerobes, raising concerns about the future spread of nimK among anaerobes. IMPORTANCE Metronidazole (MTZ) is an important antimicrobial agent in anaerobic infections and is widely used in clinical settings. The rate of MTZ resistance in anaerobic bacteria has been increasing in recent years, and the nim gene (nitro-imidazole reductase) is one of the resistance mechanisms. Prevotella bivia is found in humans in the urinary tract and vagina and is known to cause infections in some cases. One of the nim genes, nimK, has recently been discovered in this species of bacteria, but there are no reports of antimicrobial resistance (AMR)-related regions in its whole genome level. In this study, we analyzed the AMR region of nimK-positive P. bivia derived from clinical specimens based on comparisons with other anaerobic genomes. P. bivia was found to be engaged in horizontal gene transfer with other anaerobic bacteria, and the future spread of the nimK gene is a concern.
Collapse
Grants
- 21KA1004,24KA1005 Japanese Ministry of Health, Labor and Welfare
- JP23fk0108604,JP24fk0108665 Japan Agency for Medical Research and Development (AMED)
- 22K07067 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP23gm1610003,JP23fk0108665,JP23wm0225029 Japan Agency for Medical Research and Development (AMED)
- 22K16368 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
Collapse
Affiliation(s)
- Yukitaka Ito
- Division of Clinical Microbiology Laboratory, Toho University Ohashi Medical Center, Meguro, Tokyo, Japan
- Department of Infection and Prevention, Toho University Ohashi Medical Center, Meguro, Tokyo, Japan
| | - Yusuke Hashimoto
- Department of Bacteriology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Masato Suzuki
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Naomi Kaneko
- Division of Clinical Microbiology Laboratory, Toho University Ohashi Medical Center, Meguro, Tokyo, Japan
| | - Mieko Yoshida
- Division of Clinical Microbiology Laboratory, Toho University Ohashi Medical Center, Meguro, Tokyo, Japan
| | - Haruo Nakayama
- Division of Clinical Microbiology Laboratory, Toho University Ohashi Medical Center, Meguro, Tokyo, Japan
- Department of Infection and Prevention, Toho University Ohashi Medical Center, Meguro, Tokyo, Japan
| | - Haruyoshi Tomita
- Department of Bacteriology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
- Laboratory of Bacterial Drug Resistance, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| |
Collapse
|
13
|
Huang G, Wang J, Yin L, Khan I, Law BYK, Zheng Y, Xu M, Wong VKW, Hsiao WLW. The impact of test anxiety on oral microbiota among medical students-A pilot study. Stress Health 2024; 40:e3479. [PMID: 39291875 DOI: 10.1002/smi.3479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/07/2024] [Accepted: 09/01/2024] [Indexed: 09/19/2024]
Abstract
Test anxiety (TA) is a common emotion among students during examinations. Test-induced stress can remarkably impact students' emotions and limit their performance. Mental stress is a crucial factor that could significantly alter gut microbial composition, but rare reports focus on the correlation between TA and oral microbial composition. This study aims to investigate the impact of TA on students' oral microbiota composition. This study targeted medical students who usually face heavier workloads than average undergraduates. 28 females and 19 males aged 18-30 were enrolled in this study. Questionnaires and saliva samples were collected from the participants before, during, and after the end-term examination. The level of anxiety was classified as normal, mild, moderate, and severe based on the questionnaire scores. In addition, 16S amplicon sequencing was used to analyse the composition of oral microbes. More than half of the students faced different levels of TA before and after the examination. Over three-quarters of students showed anxiety during the examination, and a quarter suffered severe TA. The 16S sequencing data showed that TA significantly altered the oral microbial composition between students with and without TA in all three survey periods. Moreover, during the examination, the genera Rothia and Streptococcus, the oral-beneficial bacteria, markedly decreased in students with TA. On the other hand, the potential pathogenic genera, such as Prevotella, Fusobacterium, and Haemophilus, significantly increased in the students with TA. And the TA effect on oral microbes displayed a gender difference among students. A high ratio of TA existed in the students during their examination period, and TA could significantly alter the oral microbial composition, decrease beneficial microbes, and promote potential pathogenic oral microbes.
Collapse
Affiliation(s)
- Guoxin Huang
- Clinical Research Center, Shantou Central Hospital, Shantou, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - Jingyi Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - Lin Yin
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - Imran Khan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, China
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - Yi Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - Mengze Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - W L Wendy Hsiao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, China
- Foshan Maternity and Child Healthcare Hospital, Affiliated Southern Medical University, Foshan, China
| |
Collapse
|
14
|
Wang Y, Wu H, Yan C, Huang R, Li K, Du Y, Jin X, Zhu G, Zeng H, Li B. Alterations of the microbiome across body sites in systemic lupus erythematosus: A systematic review and meta-analysis. Lupus 2024; 33:1345-1357. [PMID: 39258896 DOI: 10.1177/09612033241281891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a complex autoimmune disease with unclear etiology. Growing evidence suggests the microbiome plays a role in SLE pathogenesis. However, findings are inconsistent across studies due to factors like small sample sizes and geographical variations. A comprehensive meta-analysis is needed to elucidate microbiome alterations in SLE. OBJECTIVE This study aimed to provide a systematic overview of microbiota dysbiosis across body sites in SLE through a meta-analysis of alpha diversity indices, beta diversity indices, and abundance taxa of microbiome. METHODS A literature search was conducted across four databases to identify relevant studies comparing SLE patients and healthy controls. Extracted data encompassed alpha and beta diversity metrics, as well as bacterial, fungal, and viral abundance across gut, oral, skin, and other microbiota. Study quality was assessed using the Newcastle-Ottawa Scale. Standardized mean differences and pooled effect sizes were calculated through meta-analytical methods. RESULTS The analysis showed reduced alpha diversity and distinct beta diversity in SLE, particularly in the gut microbiota. Taxonomic analysis revealed compositional variations in bacteria from the gut and oral cavity. However, results for fungi, viruses, and bacteria from other sites were inconsistent due to limited studies. CONCLUSIONS This meta-analysis offers a comprehensive perspective on microbiome dysbiosis in SLE patients across diverse body sites and taxa. The observed variations underscore the microbiome's potential role in SLE pathogenesis. Future research should address geographical variations, employ longitudinal designs, and integrate multi-omics approaches.
Collapse
Affiliation(s)
- Yiyu Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Diseases, Hefei, China
| | - Hong Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Diseases, Hefei, China
| | - Chengrui Yan
- Haiheng Community Health Service Center HETDA, Hefei, China
| | - Ronggui Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Diseases, Hefei, China
| | - Kaidi Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Diseases, Hefei, China
| | - Yujie Du
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Diseases, Hefei, China
| | - Xue Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Diseases, Hefei, China
| | - Gaoqi Zhu
- Haiheng Community Health Service Center HETDA, Hefei, China
| | - Hanjun Zeng
- Haiheng Community Health Service Center HETDA, Hefei, China
| | - Baozhu Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Diseases, Hefei, China
- The Second Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
15
|
Martínez Castrejón EB, Reina-Bautista E, Ventura-Gómez ST, Maldonado Cisneros A, Juárez Ramos JA, Durán MAS, Aguilar Ventura J, Valencia-Ledezma OE, Frías-De-León MG, García Salazar E, Castro-Fuentes CA. Empyema Necessitatis Caused by Prevotella melaninogenica and Dialister pneumosintes Resolved with Vacuum-Assisted Closure System: A Case Report. Microorganisms 2024; 12:1881. [PMID: 39338554 PMCID: PMC11433926 DOI: 10.3390/microorganisms12091881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/29/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Empyema necessitatis is a rare complication of an untreated or inadequately controlled empyema. We present the case of an 11-year-old female adolescent living in precarious conditions, overcrowding, incomplete vaccinations, irregular dental hygiene, and no significant family or personal medical history. The patient started with symptoms one week prior to her hospitalization, presenting a persistent sporadic dry cough, and was later diagnosed with complicated pneumonia, resulting in the placement of an endopleural tube. Vancomycin (40 mg/kg/day) and ceftriaxone (75 mg/kg/day) were administered. However, the clinical evolution was unfavorable, with fever and respiratory distress, so a right jugular catheter was placed. The CT scan showed a loculated collection that occupied the entire right lung parenchyma and pneumothorax at the right upper lobe level. After four days of treatment, the patient still presented purulent drainage with persistent right pleural effusion syndrome. P. melaninogenica and D. pneumosintes were identified from the purulent collection on the upper right lobe, so the antimicrobial treatment was adapted to a glycopeptide, Teicoplanin, at a weight-based dosing of 6 mg/kg/day and Metronidazole at a weight-based dosing of 30 mg/kg/day. In addition, VAC therapy was used for 26 days with favorable resolution.
Collapse
Affiliation(s)
- Esteban Bladimir Martínez Castrejón
- Pediatric Intensive Care Unit, Hospital Regional de Alta Especialidad de Ixtapaluca, IMSS-BIENESTAR. Calle Gustavo E. Campa 54, Col. Guadalupe Inn, Alcaldía Álvaro Obregón, Mexico City 01020, Mexico
| | - Erika Reina-Bautista
- Pediatric Infectology Unit, Hospital Regional de Alta Especialidad de Ixtapaluca, IMSS-BIENESTAR. Calle Gustavo E. Campa 54, Col. Guadalupe Inn, Alcaldía Álvaro Obregón, Mexico City 01020, Mexico
| | - Sandra Tania Ventura-Gómez
- Pediatric Intensive Care Unit, Hospital Regional de Alta Especialidad de Ixtapaluca, IMSS-BIENESTAR. Calle Gustavo E. Campa 54, Col. Guadalupe Inn, Alcaldía Álvaro Obregón, Mexico City 01020, Mexico
| | - Araceli Maldonado Cisneros
- Pediatric Intensive Care Unit, Hospital Regional de Alta Especialidad de Ixtapaluca, IMSS-BIENESTAR. Calle Gustavo E. Campa 54, Col. Guadalupe Inn, Alcaldía Álvaro Obregón, Mexico City 01020, Mexico
| | - Jessica Alejandra Juárez Ramos
- Pediatric Intensive Care Unit, Hospital Regional de Alta Especialidad de Ixtapaluca, IMSS-BIENESTAR. Calle Gustavo E. Campa 54, Col. Guadalupe Inn, Alcaldía Álvaro Obregón, Mexico City 01020, Mexico
| | - Miguel Alejandro Sánchez Durán
- Pediatric Intensive Care Unit, Hospital Regional de Alta Especialidad de Ixtapaluca, IMSS-BIENESTAR. Calle Gustavo E. Campa 54, Col. Guadalupe Inn, Alcaldía Álvaro Obregón, Mexico City 01020, Mexico
| | - Jesús Aguilar Ventura
- Pediatric Intensive Care Unit, Hospital Regional de Alta Especialidad de Ixtapaluca, IMSS-BIENESTAR. Calle Gustavo E. Campa 54, Col. Guadalupe Inn, Alcaldía Álvaro Obregón, Mexico City 01020, Mexico
| | - Omar Esteban Valencia-Ledezma
- Research Unit, Hospital Regional de Alta Especialidad de Ixtapaluca, IMSS-BIENESTAR. Calle Gustavo E. Campa 54, Col. Guadalupe Inn, Alcaldía Álvaro Obregón, Mexico City 01020, Mexico
| | - María Guadalupe Frías-De-León
- Biomedical Research Unit, Hospital Regional de Alta Especialidad de Ixtapaluca, IMSS-BIENESTAR. Calle Gustavo E. Campa 54, Col. Guadalupe Inn, Alcaldía Álvaro Obregón, Mexico City 01020, Mexico
| | - Eduardo García Salazar
- Biomedical Research Unit, Hospital Regional de Alta Especialidad de Ixtapaluca, IMSS-BIENESTAR. Calle Gustavo E. Campa 54, Col. Guadalupe Inn, Alcaldía Álvaro Obregón, Mexico City 01020, Mexico
| | - Carlos Alberto Castro-Fuentes
- Research Unit, Hospital Regional de Alta Especialidad de Ixtapaluca, IMSS-BIENESTAR. Calle Gustavo E. Campa 54, Col. Guadalupe Inn, Alcaldía Álvaro Obregón, Mexico City 01020, Mexico
| |
Collapse
|
16
|
Al-Sarraj F, Albiheyri R, Qari M, Alotaibi M, Al-Zahrani M, Anwar Y, Alghamdi MA, Nass NM, Bouback T, Alotibi I, Radhwi O, Sajer BH, Redhwan A, Al-Matary MA, Almanzalawi EA, Elshafie HS. Genetic Patterns of Oral Cavity Microbiome in Patients with Sickle Cell Disease. Int J Mol Sci 2024; 25:8570. [PMID: 39201258 PMCID: PMC11354819 DOI: 10.3390/ijms25168570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
The Middle Eastern prevalence of sickle cell anemia, a genetic disorder that affects red blood cells, necessitates additional research. On a molecular level, we sought to identify and sort the oral microbiota of healthy individuals and those with sickle cell anemia. Furthermore, it is crucial to comprehend how changes in the genetic makeup of the oral microbiota impact the state of sickle cell anemia. Using next-generation sequencing, the 16S rRNA amplicon was examined using saliva samples from 36 individuals with sickle cell anemia and healthy individuals. These samples were obtained from sickle cell anemia patients (18 samples) and healthy control participants (controls, 18 samples). Various analyses are conducted using bioinformatic techniques to identify distinct species and their relative abundance. Streptococcus, followed by Fusobacterium nucleatum, Prevotella, and Veillonella were the most prevalent genera of bacteria in the saliva of the SCA and non-SCA individuals according to our findings. Rothia mucilaginosa, Prevotella scoposa, and Veillonella dispar species were the dominant species in both sickle cell anemia and non-sickle cell anemia subjects. Streptococcus salivarius, Actinomyces graevenitzii, Actinomyces odontolyticus, and Actinomyces georgiae spp. were the most prevalent bacterial spp. in the studied SCA cases. The sequencing of the 16S rRNA gene yielded relative abundance values that were visualized through a heatmap analysis. Alterations in the oral microflora's constitution can significantly affect the susceptibility of sickle cell anemia patients to develop more severe health complications. Salivary diagnosis is a potential tool for predicting and preventing oral microbiome-related diseases in the future.
Collapse
Affiliation(s)
- Faisal Al-Sarraj
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.A.); (Y.A.); (M.A.A.); (N.M.N.); (T.B.); (B.H.S.); (M.A.A.-M.); (E.A.A.)
| | - Raed Albiheyri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.A.); (Y.A.); (M.A.A.); (N.M.N.); (T.B.); (B.H.S.); (M.A.A.-M.); (E.A.A.)
- Centre of Excellence in BioNanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed Qari
- Hematology Department, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.Q.); (O.R.)
- Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed Alotaibi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.A.); (Y.A.); (M.A.A.); (N.M.N.); (T.B.); (B.H.S.); (M.A.A.-M.); (E.A.A.)
| | - Majid Al-Zahrani
- Biological Science Department, College of Science and Art, King Abdulaziz University, Rabigh 21991, Saudi Arabia;
| | - Yasir Anwar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.A.); (Y.A.); (M.A.A.); (N.M.N.); (T.B.); (B.H.S.); (M.A.A.-M.); (E.A.A.)
| | - Mashail A. Alghamdi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.A.); (Y.A.); (M.A.A.); (N.M.N.); (T.B.); (B.H.S.); (M.A.A.-M.); (E.A.A.)
| | - Nada M. Nass
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.A.); (Y.A.); (M.A.A.); (N.M.N.); (T.B.); (B.H.S.); (M.A.A.-M.); (E.A.A.)
- Immunology Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Thamer Bouback
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.A.); (Y.A.); (M.A.A.); (N.M.N.); (T.B.); (B.H.S.); (M.A.A.-M.); (E.A.A.)
- Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ibrahim Alotibi
- Health Information Technology Department, Applied College, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Osman Radhwi
- Hematology Department, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.Q.); (O.R.)
- Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Bayan H. Sajer
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.A.); (Y.A.); (M.A.A.); (N.M.N.); (T.B.); (B.H.S.); (M.A.A.-M.); (E.A.A.)
- Immunology Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Alya Redhwan
- Department of Health, College of Health and Rehabilitation Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Mohammed A. Al-Matary
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.A.); (Y.A.); (M.A.A.); (N.M.N.); (T.B.); (B.H.S.); (M.A.A.-M.); (E.A.A.)
- Department of Animal Production, Faculty of Agriculture, Sana’a University, Sana’a P.O. Box 1247, Yemen
| | - Enas A. Almanzalawi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.A.); (Y.A.); (M.A.A.); (N.M.N.); (T.B.); (B.H.S.); (M.A.A.-M.); (E.A.A.)
| | - Hazem S. Elshafie
- Department of Agricultural, Forestry, Food and Environmental Sciences (DAFE), University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
17
|
Power DJ, Ho V, Zhou J. Association between Oral Microbiome and Gastroesophageal Reflux Severity. J Clin Med 2024; 13:4479. [PMID: 39124746 PMCID: PMC11313057 DOI: 10.3390/jcm13154479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Background/Objectives: Gastroesophageal reflux disease (GORD) is caused by gastric contents refluxing back into the oesophagus and oral cavity. It can lead to injuries to the mucosa in the form of erosion and ulcers. Our past research have shown acid reflux severity and disease progression is associated with alternations in the microbiota of the distal oesophagus. The aim of this study was to explore whether changes in the oral microbiota occurred in GORD patients and establish any associations with reflux severity. Methods: Fresh mouthwash samples were collected from 58 patients experiencing reflux symptoms referred for 24 h pH monitoring. The participants were categorised into three groups based on their DeMeester scores: Normal (<14.72), Mild (14.2-50), and Moderate/severe (>51). Microorganism identity and diversity were generated using hypervariable tag sequencing and analysing the V1-V3 region of the 16S rRNA gene. Results: No differences in microbiota diversity were found in oral microbiota between groups using the Chiao1 diversity index and Shannon diversity index. Microbiota in the Mild group showed reductions in Rothia dentocariosa and Lautropia, while Moryella and Clostridiales_1 were increased compared with the Normal group. In the Moderate/severe group, the abundance of Rothia aeria was reduced compared with the Normal group, while Schwartzia, Rs_045, Paludibacter, S. satelles, Treponema, and T. socranskii all had increased abundance. The abundance of Prevotella pallens was higher in the Mild group compared with Moderate/severe, while S. satelles and Paludibacter abundances were lower. Conclusions: Our study shows the oral microbiome show significant differences between acid reflux severity groups, as categorised by DeMeester score.
Collapse
Affiliation(s)
| | | | - Jerry Zhou
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (D.J.P.); (V.H.)
| |
Collapse
|
18
|
Nannini G, Di Gloria L, Russo E, Sterrantino G, Kiros ST, Coppi M, Niccolai E, Baldi S, Ramazzotti M, Di Pilato V, Lagi F, Bartolucci G, Rossolini GM, Bartoloni A, Amedei A. Oral microbiota signatures associated with viremia and CD4 recovery in treatment-naïve HIV-1-infected patients. Microbes Infect 2024; 26:105339. [PMID: 38636822 DOI: 10.1016/j.micinf.2024.105339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
PURPOSE Few reports focused on the role of oral microbiome diversity in HIV infection. We characterized the microbiota-immunity axis in a cohort of treatment-naïve HIV-1-infected patients undergoing antiretroviral therapy (ART) focusing on the oral microbiome (OM) and immunological responsivity. METHODS The sequencing of 16S rRNA V3-V4 hypervariable region was performed on salivary samples of 15 healthy control (HC) and 12 HIV + patients before starting ART and after reaching virological suppression. Then, we correlated the OM composition with serum cytokines and the Short Chain Fatty acids (SCFAs). RESULTS The comparison between HIV patients and HC oral microbiota showed differences in the bacterial α-diversity and richness. We documented a negative correlation between oral Prevotella and intestinal valeric acid at before starting ART and a positive correlation between oral Veillonella and gut acetic acid after reaching virological suppression. Finally, an increase in the phylum Proteobacteria was observed comparing saliva samples of immunological responders (IRs) patients against immunological non-responders (INRs). CONCLUSIONS For the first time, we described an increase in the oral pro-inflammatory Proteobacteria phylum in INRs compared to IRs. We provided more evidence that saliva could be a non-invasive and less expensive approach for research involving the oral cavity microbiome in HIV patients.
Collapse
Affiliation(s)
- Giulia Nannini
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Leandro Di Gloria
- Department of Biomedical, Experimental and Clinical "Mario Serio", University of Florence, Florence 50134, Italy
| | - Edda Russo
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Gaetana Sterrantino
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Seble Tekle Kiros
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy; Clinical Microbiology and Virology Unit, Careggi University Hospital, Florence, Italy
| | - Marco Coppi
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Simone Baldi
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Matteo Ramazzotti
- Department of Biomedical, Experimental and Clinical "Mario Serio", University of Florence, Florence 50134, Italy
| | - Vincenzo Di Pilato
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Filippo Lagi
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Gianluca Bartolucci
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence 50019, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy; Clinical Microbiology and Virology Unit, Careggi University Hospital, Florence, Italy
| | - Alessandro Bartoloni
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy; Infectious and Tropical Diseases Unit, Careggi University Hospital, Florence, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy.
| |
Collapse
|
19
|
Zhang T, Huang H, Shen Y. Pulmonary Abscess Caused by Coinfections of Mycoplasma pneumoniae and Prevotella oris in a 4-year-old Child. Pediatr Infect Dis J 2024:00006454-990000000-00918. [PMID: 38916926 DOI: 10.1097/inf.0000000000004466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Affiliation(s)
- Ting Zhang
- Respiratory Department Children's Hospital Affiliated to Zhengzhou University Henan Children's Hospital Zhengzhou Children's Hospital Zhengzhou, China
| | - Han Huang
- Respiratory Department Children's Hospital Affiliated to Zhengzhou University Henan Children's Hospital Zhengzhou Children's Hospital Zhengzhou, China
| | - Yuelin Shen
- Respiratory Department II National Clinical Research Center for Respiratory Diseases Beijing Children's Hospital Capital Medical University National Center for Children's Health Beijing, China
| |
Collapse
|
20
|
Kimura C, Miura K, Watanabe Y, Baba H, Ozaki K, Hasebe A, Ayabe T, Nakamura K, Nakaoka S, Ogasawara K, Suzuki T, Saito H, Kimura T, Tamakoshi A, Yamazaki Y. Association between oral frailty and Prevotella percentage in the oral microbiota of community-dwelling older adults who participated in the CHEER Iwamizawa project, Japan. J Oral Rehabil 2024. [PMID: 38850071 DOI: 10.1111/joor.13767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/19/2024] [Accepted: 05/24/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Prevotella bacteria are associated with inherent diseases of the oral cavity, such as periodontal disease, and systemic diseases. Oral frailty (OF) has been associated with nursing necessity and death. However, the relationship between OF and oral microbiota has not been fully clarified. OBJECTIVE This cross-sectional study investigated the association between OF and Prevotella percentage in the oral microbiota of community-dwelling older adults. METHODS Oral bacteria species from saliva were identified in 208 community-dwelling older individuals aged ≥60 years in Japan. The proportion of Prevotella in the oral microbiota was classified into three tertile groups, and its relationship with each test item for OF (number of remaining teeth, masticatory performance, oral diadochokinesis, tongue pressure, difficulties eating tough foods, difficulties swallowing tea or soup, number of applicable OF judgement items, and existence of OF) was examined using ordinal logistic regression analysis. RESULTS The Prevotella proportions were classified into lower, middle and upper groups, comprising 70, 69 and 69 participants, respectively. The three groups showed a significant relationship between the number of remaining teeth (odds ratio [OR]: 0.946, 95% confidence interval [CI]: 0.915-0.977), masticatory performance (OR: 0.897, 95% CI: 0.844-0.953), number of applicable OF judgement items (OR: 1.477, 95% CI: 1.14-1.915), and existence of OF (OR: 4.194, 95% CI: 1.519-11.576). CONCLUSION The proportion of Prevotella in oral microbiota was high in individuals with OF. Among the older adults, the type of oral microbiota and systemic diseases may be related to the examination and management of oral function decline.
Collapse
Affiliation(s)
- Chizuru Kimura
- Gerodontology, Department of Oral Health Science, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kazuhito Miura
- Gerodontology, Department of Oral Health Science, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yutaka Watanabe
- Gerodontology, Department of Oral Health Science, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Haruhisa Baba
- Gerodontology, Department of Oral Health Science, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kimiya Ozaki
- Gerodontology, Department of Oral Health Science, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Akira Hasebe
- Oral Molecular Microbiology, Department of Oral Pathobiological Science, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tokiyoshi Ayabe
- Innate Immunity Laboratory, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kiminori Nakamura
- Innate Immunity Laboratory, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shinji Nakaoka
- Laboratory of Mathematical Biology, Department of Advanced Transdisciplinary Sciences, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Katsuhiko Ogasawara
- Health Innovation and Technology Center, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Teppei Suzuki
- Hokkaido University of Education, Iwamizawa Campus, Iwamizawa, Hokkaido, Japan
| | - Hiroshi Saito
- Department of Public Health, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takashi Kimura
- Department of Public Health, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Akiko Tamakoshi
- Department of Public Health, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yutaka Yamazaki
- Gerodontology, Department of Oral Health Science, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
21
|
George SD, Van Gerwen OT, Dong C, Sousa LGV, Cerca N, Elnaggar JH, Taylor CM, Muzny CA. The Role of Prevotella Species in Female Genital Tract Infections. Pathogens 2024; 13:364. [PMID: 38787215 PMCID: PMC11123741 DOI: 10.3390/pathogens13050364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
Female genital tract infections (FGTIs) include vaginal infections (e.g., bacterial vaginosis [BV]), endometritis, pelvic inflammatory disease [PID], and chorioamnionitis [amniotic fluid infection]. They commonly occur in women of reproductive age and are strongly associated with multiple adverse health outcomes including increased risk of HIV/sexually transmitted infection acquisition and transmission, infertility, and adverse birth outcomes such as preterm birth. These FGTIs are characterized by a disruption of the cervicovaginal microbiota which largely affects host immunity through the loss of protective, lactic acid-producing Lactobacillus spp. and the overgrowth of facultative and strict anaerobic bacteria. Prevotella species (spp.), anaerobic Gram-negative rods, are implicated in the pathogenesis of multiple bacterial FGTIs. Specifically, P. bivia, P. amnii, and P. timonensis have unique virulence factors in this setting, including resistance to antibiotics commonly used in treatment. Additionally, evidence suggests that the presence of Prevotella spp. in untreated BV cases can lead to infections of the upper female genital tract by ascension into the uterus. This narrative review aims to explore the most common Prevotella spp. in FGTIs, highlight their important role in the pathogenesis of FGTIs, and propose future research in this area.
Collapse
Affiliation(s)
- Sheridan D. George
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (O.T.V.G.); (C.D.); (C.A.M.)
| | - Olivia T. Van Gerwen
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (O.T.V.G.); (C.D.); (C.A.M.)
| | - Chaoling Dong
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (O.T.V.G.); (C.D.); (C.A.M.)
| | - Lúcia G. V. Sousa
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (L.G.V.S.); (N.C.)
| | - Nuno Cerca
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (L.G.V.S.); (N.C.)
| | - Jacob H. Elnaggar
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (J.H.E.); (C.M.T.)
| | - Christopher M. Taylor
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (J.H.E.); (C.M.T.)
| | - Christina A. Muzny
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (O.T.V.G.); (C.D.); (C.A.M.)
| |
Collapse
|
22
|
Boiten KE, Notermans DW, Rentenaar RJ, van Prehn J, Bode LGM, Maat I, van der Zwet W, Jansz A, Siebers TJH, Rossen JWA, de Greeff SC, Hendrickx APA, Kuijper EJ, Veloo ACM. Antimicrobial susceptibility profile of clinically relevant Bacteroides, Phocaeicola, Parabacteroides and Prevotella species, isolated by eight laboratories in the Netherlands. J Antimicrob Chemother 2024; 79:868-874. [PMID: 38394460 PMCID: PMC10984934 DOI: 10.1093/jac/dkae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
OBJECTIVES Recently, reports on antimicrobial-resistant Bacteroides and Prevotella isolates have increased in the Netherlands. This urged the need for a surveillance study on the antimicrobial susceptibility profile of Bacteroides, Phocaeicola, Parabacteroides and Prevotella isolates consecutively isolated from human clinical specimens at eight different Dutch laboratories. METHODS Each laboratory collected 20-25 Bacteroides (including Phocaeicola and Parabacteroides) and 10-15 Prevotella isolates for 3 months. At the national reference laboratory, the MICs of amoxicillin, amoxicillin/clavulanic acid, piperacillin/tazobactam, meropenem, imipenem, metronidazole, clindamycin, tetracycline and moxifloxacin were determined using agar dilution. Isolates with a high MIC of metronidazole or a carbapenem, or harbouring cfiA, were subjected to WGS. RESULTS Bacteroides thetaiotaomicron/faecis isolates had the highest MIC90 values, whereas Bacteroides fragilis had the lowest MIC90 values for amoxicillin/clavulanic acid, piperacillin/tazobactam, meropenem, imipenem and moxifloxacin. The antimicrobial profiles of the different Prevotella species were similar, except for amoxicillin, for which the MIC50 ranged from 0.125 to 16 mg/L for Prevotella bivia and Prevotella buccae, respectively. Three isolates with high metronidazole MICs were sequenced, of which one Bacteroides thetaiotaomicron isolate harboured a plasmid-located nimE gene and a Prevotella melaninogenica isolate harboured a nimA gene chromosomally.Five Bacteroides isolates harboured a cfiA gene and three had an IS element upstream, resulting in high MICs of carbapenems. The other two isolates harboured no IS element upstream of the cfiA gene and had low MICs of carbapenems. CONCLUSIONS Variations in resistance between species were observed. To combat emerging resistance in anaerobes, monitoring resistance and conducting surveillance are essential.
Collapse
Affiliation(s)
- K E Boiten
- University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, University of Groningen, Groningen, The Netherlands
| | - D W Notermans
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Medical Microbiology, Academic Medical Center, Amsterdam, The Netherlands
| | - R J Rentenaar
- Department of Medical Microbiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - J van Prehn
- Department of Medical Microbiology, Leiden University Center for Infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - L G M Bode
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center (Erasmus MC), Rotterdam, The Netherlands
| | - I Maat
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - W van der Zwet
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - A Jansz
- PAMM Laboratory of Medical Microbiology, Veldhoven, The Netherlands
| | - T J H Siebers
- University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, University of Groningen, Groningen, The Netherlands
- Department of Medical Microbiology, Certe, Groningen, The Netherlands
| | - J W A Rossen
- University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, University of Groningen, Groningen, The Netherlands
- Laboratory of Medical Microbiology and Infectious Diseases, and Isala Academy, Isala Hospital, Zwolle, The Netherlands
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, USA
| | - S C de Greeff
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - A P A Hendrickx
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - E J Kuijper
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Medical Microbiology, Leiden University Center for Infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - A C M Veloo
- University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
23
|
Inchingolo AD, Dipalma G, Viapiano F, Netti A, Ferrara I, Ciocia AM, Mancini A, Di Venere D, Palermo A, Inchingolo AM, Inchingolo F. Celiac Disease-Related Enamel Defects: A Systematic Review. J Clin Med 2024; 13:1382. [PMID: 38592254 PMCID: PMC10932357 DOI: 10.3390/jcm13051382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 04/10/2024] Open
Abstract
INTRODUCTION This systematic review aims to elucidate the intricate correlation between celiac disease (CD) and dental enamel defects (DED), exploring pathophysiological mechanisms, oral health implications, and a dentist's role in early diagnosis. MATERIALS AND METHODS Following PRISMA guidelines, a comprehensive search from 1 January 2013 to 1 January 2024 across PubMed, Cochrane Library, Scopus, and Web of Science identified 153 publications. After exclusions, 18 studies met the inclusion criteria for qualitative analysis. Inclusion criteria involved study types (RCTs, RCCTs, case series), human participants, English language, and full-text available. RESULTS The search yielded 153 publications, with 18 studies meeting the inclusion criteria for qualitative analysis. Notable findings include a high prevalence of DED in CD patients, ranging from 50 to 94.1%. Symmetrical and chronological defects, according to Aine's classification, were predominant, and significant associations were observed between CD severity and enamel defect extent. CONCLUSIONS The early recognition of oral lesions, particularly through Aine's classification, may signal potential CD even in the absence of gastrointestinal symptoms. Correlations between CD and dental health conditions like molar incisor hypomineralization (MIH) emphasize the dentist's crucial role in early diagnosis. Collaboration between dentists and gastroenterologists is essential for effective monitoring and management. This review consolidates current knowledge, laying the groundwork for future research and promoting interdisciplinary collaboration for improved CD-related oral health outcomes. Further large-scale prospective research is recommended to deepen our understanding of these issues.
Collapse
Affiliation(s)
- Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.D.); (F.V.); (A.N.); (I.F.); (A.M.C.); (A.M.); (D.D.V.); (A.M.I.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.D.); (F.V.); (A.N.); (I.F.); (A.M.C.); (A.M.); (D.D.V.); (A.M.I.)
| | - Fabio Viapiano
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.D.); (F.V.); (A.N.); (I.F.); (A.M.C.); (A.M.); (D.D.V.); (A.M.I.)
| | - Anna Netti
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.D.); (F.V.); (A.N.); (I.F.); (A.M.C.); (A.M.); (D.D.V.); (A.M.I.)
| | - Irene Ferrara
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.D.); (F.V.); (A.N.); (I.F.); (A.M.C.); (A.M.); (D.D.V.); (A.M.I.)
| | - Anna Maria Ciocia
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.D.); (F.V.); (A.N.); (I.F.); (A.M.C.); (A.M.); (D.D.V.); (A.M.I.)
| | - Antonio Mancini
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.D.); (F.V.); (A.N.); (I.F.); (A.M.C.); (A.M.); (D.D.V.); (A.M.I.)
| | - Daniela Di Venere
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.D.); (F.V.); (A.N.); (I.F.); (A.M.C.); (A.M.); (D.D.V.); (A.M.I.)
| | - Andrea Palermo
- College of Medicine and Dentistry, Birmingham B4 6BN, UK;
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.D.); (F.V.); (A.N.); (I.F.); (A.M.C.); (A.M.); (D.D.V.); (A.M.I.)
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.D.); (F.V.); (A.N.); (I.F.); (A.M.C.); (A.M.); (D.D.V.); (A.M.I.)
| |
Collapse
|
24
|
Abstract
Biogeography is the study of species distribution and diversity within an ecosystem and is at the core of how we understand ecosystem dynamics and interactions at the macroscale. In gut microbial communities, a historical reliance on bulk sequencing to probe community composition and dynamics has overlooked critical processes whereby microscale interactions affect systems-level microbiota function and the relationship with the host. In recent years, higher-resolution sequencing and novel single-cell level data have uncovered an incredible heterogeneity in microbial composition and have enabled a more nuanced spatial understanding of the gut microbiota. In an era when spatial transcriptomics and single-cell imaging and analysis have become key tools in mammalian cell and tissue biology, many of these techniques are now being applied to the microbiota. This fresh approach to intestinal biogeography has given important insights that span temporal and spatial scales, from the discovery of mucus encapsulation of the microbiota to the quantification of bacterial species throughout the gut. In this Review, we highlight emerging knowledge surrounding gut biogeography enabled by the observation and quantification of heterogeneity across multiple scales.
Collapse
Affiliation(s)
- Giselle McCallum
- Department of Biology, Concordia University, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carolina Tropini
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada.
- Humans and the Microbiome Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario, Canada.
| |
Collapse
|
25
|
Huang X, Luo Y, Wang J, Zhang X, Chen L, Wu R, Xue Z, Gu H, Li D, Tang H, Qin H, Zhao D, Liu F. Integrative study of pulmonary microbiome, transcriptome and clinical outcomes in Mycoplasma pneumoniae pneumonia. Respir Res 2024; 25:35. [PMID: 38238712 PMCID: PMC10795342 DOI: 10.1186/s12931-024-02687-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/09/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND This study aimed to investigate the interactions among three core elements of respiratory infection-pathogen, lung microbiome, and host response-and their avocation with the severity and outcomes of Mycoplasma pneumoniae pneumonia (MPP) in children. METHODS We prospectively collected bronchoalveolar lavage fluid from a cohort of 41 children with MPP, including general MPP (GMPP) and complicated MPP (CMPP), followed by microbiome and transcriptomic analyses to characterize the association among pathogen, lung microbiome, and host response and correlate it with the clinical features and outcomes. RESULTS The lung microbiome of patients with CMPP had an increased relative abundance of Mycoplasma pneumoniae (MP) and reduced alpha diversity, with 76 differentially expressed species. Host gene analysis revealed a key module associated with neutrophil function and several inflammatory response pathways. Patients with a high relative abundance of MP, manifested by a specific lung microbiome and host response type, were more prone to CMPP and had a long imaging recovery time. CONCLUSION Patients with CMPP have a more disrupted lung microbiome than those with GMPP. MP, lung microbiome, and host response interacts with each other and are closely related to disease severity and outcomes in children with MPP.
Collapse
Affiliation(s)
- Xia Huang
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Yingying Luo
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Jing Wang
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Xuefang Zhang
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Lei Chen
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Ruxi Wu
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Zhengyang Xue
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Haiyan Gu
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Daiying Li
- Vision Medicals Center for Infectious Diseases, Guangzhou, 510705, China
| | - Heng Tang
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Houbing Qin
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Deyu Zhao
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
| | - Feng Liu
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
| |
Collapse
|
26
|
Martinez-Lomeli J, Deol P, Deans JR, Jiang T, Ruegger P, Borneman J, Sladek FM. Impact of various high fat diets on gene expression and the microbiome across the mouse intestines. Sci Rep 2023; 13:22758. [PMID: 38151490 PMCID: PMC10752901 DOI: 10.1038/s41598-023-49555-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/09/2023] [Indexed: 12/29/2023] Open
Abstract
High fat diets (HFDs) have been linked to several diseases including obesity, diabetes, fatty liver, inflammatory bowel disease (IBD) and colon cancer. In this study, we examined the impact on intestinal gene expression of three isocaloric HFDs that differed only in their fatty acid composition-coconut oil (saturated fats), conventional soybean oil (polyunsaturated fats) and a genetically modified soybean oil (monounsaturated fats). Four functionally distinct segments of the mouse intestinal tract were analyzed using RNA-seq-duodenum, jejunum, terminal ileum and proximal colon. We found considerable dysregulation of genes in multiple tissues with the different diets, including those encoding nuclear receptors and genes involved in xenobiotic and drug metabolism, epithelial barrier function, IBD and colon cancer as well as genes associated with the microbiome and COVID-19. Network analysis shows that genes involved in metabolism tend to be upregulated by the HFDs while genes related to the immune system are downregulated; neurotransmitter signaling was also dysregulated by the HFDs. Genomic sequencing also revealed a microbiome altered by the HFDs. This study highlights the potential impact of different HFDs on gut health with implications for the organism as a whole and will serve as a reference for gene expression along the length of the intestines.
Collapse
Affiliation(s)
- Jose Martinez-Lomeli
- Genetics, Genomics and Bioinformatics Graduate Program, University of California, Riverside, CA, 92521, USA
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Poonamjot Deol
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA.
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA.
| | - Jonathan R Deans
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Tao Jiang
- Department of Computer Science and Engineering, University of California, Riverside, CA, 92521, USA
- Institute of Integrated Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Paul Ruegger
- Institute of Integrated Genome Biology, University of California, Riverside, CA, 92521, USA
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - James Borneman
- Institute of Integrated Genome Biology, University of California, Riverside, CA, 92521, USA
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Frances M Sladek
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
- Institute of Integrated Genome Biology, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
27
|
Nath S, Sarkar M, Maddheshiya A, De D, Paul S, Dey S, Pal K, Roy SK, Ghosh A, Sengupta S, Paine SK, Biswas NK, Basu A, Mukherjee S. Upper respiratory tract microbiome profiles in SARS-CoV-2 Delta and Omicron infected patients exhibit variant specific patterns and robust prediction of disease groups. Microbiol Spectr 2023; 11:e0236823. [PMID: 37905804 PMCID: PMC10715160 DOI: 10.1128/spectrum.02368-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/25/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE The role of the upper respiratory tract (URT) microbiome in predicting lung health has been documented in several studies. The dysbiosis in COVID patients has been associated with disease outcomes by modulating the host immune system. However, although it has been known that different SARS-CoV-2 variants manifest distinct transmissibility and mortality rates in human populations, their effect on the composition and diversity of the URT microbiome has not been studied to date. Unlike the older variant (Delta), the newer variant (Omicron) have become more transmissible with lesser mortality and the symptoms have also changed significantly. Hence, in the present study, we have investigated the change in the URT microbiome associated with Delta and Omicron variants and identified variant-specific signatures that will be useful in the assessment of lung health and can be utilized for nasal probiotic therapy in the future.
Collapse
Affiliation(s)
- Shankha Nath
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Mousumi Sarkar
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | | | - Debjit De
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Shouvik Paul
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Souradeep Dey
- Department of Community Medicine, College of Medicine and JNM Hospital, Kalyani, West Bengal, India
| | - Kuhu Pal
- Department of Microbiology, College of Medicine and JNM Hospital, Kalyani, West Bengal, India
| | - Suman Kr. Roy
- Department of Community Medicine, College of Medicine and JNM Hospital, Kalyani, West Bengal, India
| | - Ayan Ghosh
- Department of Community Medicine, College of Medicine and JNM Hospital, Kalyani, West Bengal, India
| | - Sharmila Sengupta
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | | | - Nidhan K. Biswas
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Analabha Basu
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Souvik Mukherjee
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| |
Collapse
|
28
|
Ling Z, Cheng Y, Liu X, Yan X, Wu L, Shao L, Gao J, Lei W, Song Q, Zhao L, Jin G. Altered oral microbiota and immune dysfunction in Chinese elderly patients with schizophrenia: a cross-sectional study. Transl Psychiatry 2023; 13:383. [PMID: 38071192 PMCID: PMC10710460 DOI: 10.1038/s41398-023-02682-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Schizophrenia (SZ) is a complex psychiatric neurodevelopmental disorder with uncertain etiology and pathogenesis. Increasing evidence has recognized the key role of the gut microbiota in SZ. However, few studies have investigated the potential link between oral microbiota and SZ. We studied the tongue coating microbiota and inflammatory profiles of 118 elderly SZ patients and 97 age-matched healthy controls using Illumina MiSeq sequencing and multiplex immunoassays, respectively. Reduced α-diversity, along with a significant difference in β-diversity, were observed in patients with SZ. We have identified SZ-associated oral dysbiosis, characterized by increased Streptococcus and Fusobacterium, as well as decreased Prevotella and Veillonella. These differential genera could potentially serve as biomarkers for SZ, either alone or in combination. Additionally, an elevated Streptococcus/Prevotella ratio could indicate oral dysbiosis. These differential genera formed two distinct clusters: Streptococcus-dominated and Prevotella-dominated, which exhibited different correlations with the altered immunological profiles. Furthermore, we also observed disruptions in the inferred microbiota functions in SZ-associated microbiota, particularly in lipid and amino acid metabolism. Our study provides novel insights into the characteristics of tongue coating microbiota and its associations with immunological disturbances in elderly SZ patients, which offer new targets for the diagnosis and treatment of SZ in the elderly.
Collapse
Affiliation(s)
- Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China.
- Jinan Microecological Biomedicine Shandong Laboratory, 250000, Jinan, Shandong, China.
| | - Yiwen Cheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China
- Jinan Microecological Biomedicine Shandong Laboratory, 250000, Jinan, Shandong, China
| | - Xia Liu
- Department of Intensive Care Unit, the First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China
| | - Xiumei Yan
- Department of Laboratory Medicine, Lishui Second People's Hospital, 323000, Lishui, Zhejiang, China
| | - Lingbin Wu
- Department of Laboratory Medicine, Lishui Second People's Hospital, 323000, Lishui, Zhejiang, China
| | - Li Shao
- School of Clinical Medicine, Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, The Affiliated Hospital of Hangzhou Normal University, 310015, Hangzhou, Zhejiang, China
| | - Jie Gao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China
| | - Wenhui Lei
- Jinan Microecological Biomedicine Shandong Laboratory, 250000, Jinan, Shandong, China
- School of Basic Medicine, Shandong First Medical University, 250000, Jinan, Shandong, China
| | - Qinghai Song
- Department of Psychiatry, Lishui Second People's Hospital, 323000, Lishui, Zhejiang, China
| | - Longyou Zhao
- Department of Laboratory Medicine, Lishui Second People's Hospital, 323000, Lishui, Zhejiang, China.
| | - Guolin Jin
- Department of Psychiatry, Lishui Second People's Hospital, 323000, Lishui, Zhejiang, China.
| |
Collapse
|
29
|
Patel S, Hanfe H, Khurana AK, Bhadade A, Nema S. Unilateral complicated pleural empyema in a patient with bronchial asthma due to clindamycin-resistant Prevotella buccae. Arch Clin Cases 2023; 10:150-152. [PMID: 38026109 PMCID: PMC10660240 DOI: 10.22551/2023.41.1004.10263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
Prevotella buccae (P. buccae) is a gram-negative obligate anaerobe mainly associated with infections of odontogenic origin. Non-oral monomicrobial infection by these obligate anaerobic bacteria is rare. Only a few cases of monomicrobial non-oral infections by P. buccae have been reported in the literature. We are reporting a case of unilateral complicated pleural empyema in a patient with bronchial asthma infected by P. buccae. Pleural fluid aerobic culture and blood culture reports were sterile. No acid-fast bacilli were detected by Acid Fast Bacilli (AFB) staining, and cartridge-based nucleic acid assay test (CBNAAT) reports were negative for Mycobacterium tuberculosis. The isolate, P. buccae was found susceptible to Metronidazole (MIC = 3 μg/ml) and resistant to Clindamycin (MIC = 256 μg/ml). In view of rising trends of antimicrobial resistance among anaerobes, it is recommended to perform anaerobic culture and sensitivity testing in clinically suspected cases of pleuropulmonary infection for appropriate diagnosis and optimal patient management. Clindamycin should be used with caution for empiric treatment.
Collapse
Affiliation(s)
- Sakshi Patel
- Department of Microbiology, All India Institute of Medical Sciences (AIIMS) Bhopal, India
| | - Hamza Hanfe
- Department of Pulmonary Medicine, All India Institute of Medical Sciences (AIIMS) Bhopal, India
| | - Alkesh Kumar Khurana
- Department of Pulmonary Medicine, All India Institute of Medical Sciences (AIIMS) Bhopal, India
| | - Arati Bhadade
- Department of Microbiology, All India Institute of Medical Sciences (AIIMS) Bhopal, India
| | - Shashwati Nema
- Department of Microbiology, All India Institute of Medical Sciences (AIIMS) Bhopal, India
| |
Collapse
|
30
|
Czarnecka-Chrebelska KH, Kordiak J, Brzeziańska-Lasota E, Pastuszak-Lewandoska D. Respiratory Tract Oncobiome in Lung Carcinogenesis: Where Are We Now? Cancers (Basel) 2023; 15:4935. [PMID: 37894302 PMCID: PMC10605430 DOI: 10.3390/cancers15204935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
The importance of microbiota in developing and treating diseases, including lung cancer (LC), is becoming increasingly recognized. Studies have shown differences in microorganism populations in the upper and lower respiratory tracts of patients with lung cancer compared to healthy individuals, indicating a link between dysbiosis and lung cancer. However, it is not only important to identify "which bacteria are present" but also to understand "how" they affect lung carcinogenesis. The interactions between the host and lung microbiota are complex, and our knowledge of this relationship is limited. This review presents research findings on the bacterial lung microbiota and discusses the mechanisms by which lung-dwelling microorganisms may directly or indirectly contribute to the development of lung cancer. These mechanisms include influences on the host immune system regulation and the local immune microenvironment, the regulation of oncogenic signaling pathways in epithelial cells (causing cell cycle disorders, mutagenesis, and DNA damage), and lastly, the MAMPs-mediated path involving the effects of bacteriocins, TLRs signaling induction, and TNF release. A better understanding of lung microbiota's role in lung tumor pathology could lead to identifying new diagnostic and therapeutic biomarkers and developing personalized therapeutic management for lung cancer patients.
Collapse
Affiliation(s)
| | - Jacek Kordiak
- Department of Thoracic, General and Oncological Surgery, Medical University of Lodz, 90-151 Lodz, Poland
| | - Ewa Brzeziańska-Lasota
- Department of Biomedicine and Genetics, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland
| | - Dorota Pastuszak-Lewandoska
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, Pomorska 251, 90-151 Lodz, Poland;
| |
Collapse
|
31
|
Martinez-Lomeli J, Deol P, Deans JR, Jiang T, Ruegger P, Borneman J, Sladek FM. Impact of Various High Fat Diets on Gene Expression and the Microbiome Across the Mouse Intestines. RESEARCH SQUARE 2023:rs.3.rs-3401763. [PMID: 37886485 PMCID: PMC10602159 DOI: 10.21203/rs.3.rs-3401763/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
High fat diets (HFDs) have been linked to several diseases including obesity, diabetes, fatty liver, inflammatory bowel disease (IBD) and colon cancer. In this study, we examined the impact on intestinal gene expression of three isocaloric HFDs that differed only in their fatty acid composition - coconut oil (saturated fats), conventional soybean oil (polyunsaturated fats) and a genetically modified soybean oil (monounsaturated fats). Four functionally distinct segments of the mouse intestinal tract were analyzed using RNA-seq - duodenum, jejunum, terminal ileum and proximal colon. We found considerable dysregulation of genes in multiple tissues with the different diets, including those encoding nuclear receptors and genes involved in xenobiotic and drug metabolism, epithelial barrier function, IBD and colon cancer as well as genes associated with the microbiome and COVID-19. Network analysis shows that genes involved in metabolism tend to be upregulated by the HFDs while genes related to the immune system are downregulated; neurotransmitter signaling was also dysregulated by the HFDs. Genomic sequencing also revealed a microbiome altered by the HFDs. This study highlights the potential impact of different HFDs on gut health with implications for the organism as a whole and will serve as a reference for gene expression along the length of the intestines.
Collapse
|
32
|
Shah M, Anwar A, Qasim A, Jaan S, Sarfraz A, Ullah R, Ali EA, Nishan U, Shehroz M, Zaman A, Ojha SC. Proteome level analysis of drug-resistant Prevotella melaninogenica for the identification of novel therapeutic candidates. Front Microbiol 2023; 14:1271798. [PMID: 37808310 PMCID: PMC10556700 DOI: 10.3389/fmicb.2023.1271798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023] Open
Abstract
The management of infectious diseases has become more critical due to the development of novel pathogenic strains with enhanced resistance. Prevotella melaninogenica, a gram-negative bacterium, was found to be involved in various infections of the respiratory tract, aerodigestive tract, and gastrointestinal tract. The need to explore novel drug and vaccine targets against this pathogen was triggered by the emergence of antimicrobial resistance against reported antibiotics to combat P. melaninogenica infections. The study involves core genes acquired from 14 complete P. melaninogenica strain genome sequences, where promiscuous drug and vaccine candidates were explored by state-of-the-art subtractive proteomics and reverse vaccinology approaches. A stringent bioinformatics analysis enlisted 18 targets as novel, essential, and non-homologous to humans and having druggability potential. Moreover, the extracellular and outer membrane proteins were subjected to antigenicity, allergenicity, and physicochemical analysis for the identification of the candidate proteins to design multi-epitope vaccines. Two candidate proteins (ADK95685.1 and ADK97014.1) were selected as the best target for the designing of a vaccine construct. Lead B- and T-cell overlapped epitopes were joined to generate potential chimeric vaccine constructs in combination with adjuvants and linkers. Finally, a prioritized vaccine construct was found to have stable interactions with the human immune cell receptors as confirmed by molecular docking and MD simulation studies. The vaccine construct was found to have cloning and expression ability in the bacterial cloning system. Immune simulation ensured the elicitation of significant immune responses against the designed vaccine. In conclusion, our study reported novel drug and vaccine targets and designed a multi-epitope vaccine against the P. melaninogenica infection. Further experimental validation will help open new avenues in the treatment of this multi-drug-resistant pathogen.
Collapse
Affiliation(s)
- Mohibullah Shah
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Amna Anwar
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Aqsa Qasim
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Samavia Jaan
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Asifa Sarfraz
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Riaz Ullah
- Medicinal Aromatic and Poisonous Plants Research Center, College of Pharmacy King Saud University, Riyadh, Saudi Arabia
| | - Essam A. Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Umar Nishan
- Department of Chemistry, Kohat University of Science and Technology, Kohat, Pakistan
| | - Muhammad Shehroz
- Department of Bioinformatics, Kohsar University Murree, Murree, Pakistan
| | - Aqal Zaman
- Department of Microbiology and Molecular Genetics, Bahauddin Zakariya University, Multan, Pakistan
| | - Suvash Chandra Ojha
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
33
|
Pan X, Raaijmakers JM, Carrión VJ. Importance of Bacteroidetes in host-microbe interactions and ecosystem functioning. Trends Microbiol 2023; 31:959-971. [PMID: 37173204 DOI: 10.1016/j.tim.2023.03.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 05/15/2023]
Abstract
Bacteroidetes are prevalent in soil ecosystems and are associated with various eukaryotic hosts, including plants, animals, and humans. The ubiquity and diversity of Bacteroidetes exemplify their impressive versatility in niche adaptation and genomic plasticity. Over the past decade, a wealth of knowledge has been obtained on the metabolic functions of clinically relevant Bacteroidetes, but much less attention has been given to Bacteroidetes living in close association with plants. To improve our understanding of the functional roles of Bacteroidetes for plants and other hosts, we review the current knowledge of their taxonomy and ecology, in particular their roles in nutrient cycling and host fitness. We highlight their environmental distribution, stress resilience, genomic diversity, and functional importance in diverse ecosystems, including, but not limited to, plant-associated microbiomes.
Collapse
Affiliation(s)
- Xinya Pan
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708, PB, Wageningen, The Netherlands; Institute of Biology, Leiden University, Sylviusweg 72, 2333, BE, Leiden, The Netherlands
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708, PB, Wageningen, The Netherlands; Institute of Biology, Leiden University, Sylviusweg 72, 2333, BE, Leiden, The Netherlands
| | - Víctor J Carrión
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708, PB, Wageningen, The Netherlands; Institute of Biology, Leiden University, Sylviusweg 72, 2333, BE, Leiden, The Netherlands; Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain; Department of Microbiology and Plant Protection, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", IHSM-UMA-CSIC, Málaga, Spain.
| |
Collapse
|
34
|
Mancini A, Cerulli C, Vitucci D, Lasorsa VA, Parente D, Di Credico A, Orrù S, Brustio PR, Lupo C, Rainoldi A, Schena F, Capasso M, Buono P. Impact of active lifestyle on the primary school children saliva microbiota composition. Front Nutr 2023; 10:1226891. [PMID: 37671197 PMCID: PMC10476528 DOI: 10.3389/fnut.2023.1226891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/28/2023] [Indexed: 09/07/2023] Open
Abstract
The aim of the study was to evaluate the effects of Active or Sedentary lifestyle on saliva microbiota composition in Italian schoolchildren. Methods Male (114) and female children (8-10 years) belonging to five primary schools in the neighborhoods of Turin were classified as active (A) or sedentary (S) based on PAQ-C-It questionnaire. PCR amplification of salivary DNA targeted the hypervariable V3-V4 regions of the 16S rRNA bacterial genes. DADA2 workflow was used to infer the Amplicon Sequence Variants and the taxonomic assignments; the beta-diversity was obtained by PCoA with the UniFrac method; LEfSe algorithm, threshold at 5%, and Log LDA cutoff at ±0.5 were used to identify differently abundant species in A compared to S saliva sample. Daily food intake was assessed by 3-Days food record. The metabolic potential of microbial communities was assessed by PICRUSt. Results No significant differences were found in individual's gender distribution (p = 0.411), anthropometry, BMI (p > 0.05), and all diet composition between A and S groups (p > 0.05). Eight species were differently abundant: Prevotella nigrescens (LDA score = -3.76; FDR = 1.5×10-03), Collinsella aerofaciens (LDA score = -3.17; FDR = 7.45×10-03), Simonsiella muelleri (LDA score = -2.96; FDR = 2.76×10-05), Parabacteroides merdae (LDA score = -2.43; FDR = 1.3×10-02) are enriched in the A group; Gemella parahaemolysans, Prevotella aurantiaca (LDA score = -3.9; FDR = 5.27×10-04), Prevotella pallens (LDA score = 4.23; FDR = 1.93×10-02), Neisseria mucosa (LDA score = 4.43; FDR = 1.31×10-02; LDA score = 2.94; FDR = 7.45×10-03) are enriched in the S group. A prevalence of superpathway of fatty acid biosynthesis initiation (E. coli) and catechol degradation II (meta-cleavage pathway) was found in saliva from A compared to S children. Conclusion Our results showed that active children had an enrichment of species and genera mainly associated with a healthier profile. By contrast, the genera and the species enriched in the sedentary group could be linked to human diseases.
Collapse
Affiliation(s)
- Annamaria Mancini
- Department of Movement Sciences and Wellness, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Napoli, Italy
| | - Claudia Cerulli
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Daniela Vitucci
- Department of Movement Sciences and Wellness, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Napoli, Italy
| | | | - Daniela Parente
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Napoli, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Andrea Di Credico
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology (CAST), Chieti, Italy
- Department of Medicine and Aging Sciences, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Stefania Orrù
- Department of Movement Sciences and Wellness, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Napoli, Italy
| | | | - Corrado Lupo
- Department of Medical Sciences, University of Torino, Turin, Italy
| | - Alberto Rainoldi
- Department of Medical Sciences, University of Torino, Turin, Italy
| | - Federico Schena
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Mario Capasso
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Napoli, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Pasqualina Buono
- Department of Movement Sciences and Wellness, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Napoli, Italy
| |
Collapse
|
35
|
Tawfik SA, Azab M, Ramadan M, Shabayek S, Abdellah A, Al Thagfan SS, Salah M. The Eradication of Helicobacter pylori Was Significantly Associated with Compositional Patterns of Orointestinal Axis Microbiota. Pathogens 2023; 12:832. [PMID: 37375522 DOI: 10.3390/pathogens12060832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) is significantly linked to various diseases that seriously impact human health, such as gastric ulcers, chronic gastritis and gastric adenocarcinoma. METHODS The compositional shifts in bacterial communities of the orointestinal axis were surveyed pre/post-eradication of H. pylori. In total, 60 samples, including stool and salivary specimens, were collected from 15 H. pylori-positive individuals (HPP) before beginning and 2 months after receiving the eradication therapy. The V3-V4 regions of the 16S rRNA gene were sequenced using MiSeq. RESULTS Overall, oral microbiomes were collectively more diverse than the gut microbiomes (Kruskal-Wallis; p = 3.69 × 10-5). Notably, the eradication of H. pylori was associated with a significant reduction in the bacterial diversity along the orointestinal axis (Wilcoxon rank sum test; p = 6.38 × 10-3). Interestingly, the oral microbiome of HPP showed a positive correlation between Proteobacteria and Fusobacteria, in addition to a significant predominance of Streptococcus, in addition to Eubacterium_eligens, Haemophilus, Ruminococcaceae, Actinomyces and Staphylococcus. On the other hand, Fusobacterium, Veillonella, Catenibacterium, Neisseria and Prevotella were significantly enriched upon eradication of H. pylori. Generally, Bacteroidetes and Fusobacteria positively coexisted during H. pylori infection along the orointestinal axis (r = 0.67; p = 0.0006). The eradication of H. pylori was positively linked to two distinctive orotypes (O3 and O4). Orotype O4 was characterized by a robust abundance of Veillonella and Fusobacteria. The gut microbiomes during H. pylori infection showed a remarkable predominance of Clostridium_sensu_stricto_1 and Escherichia_Shigella. Likewise, Bifidobacterium and Faecalibacterium were significantly enriched upon eradication of H. pylori. CONCLUSIONS Finally, the impact of eradication therapy clearly existed on the representation of certain genera, especially in the oral microbiome, which requires particular concern in order to counteract and limit their subsequent threats.
Collapse
Affiliation(s)
- Sally Ali Tawfik
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Marwa Azab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Mohammed Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Sarah Shabayek
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Ali Abdellah
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Sultan S Al Thagfan
- Department of Clinical and Hospital Pharmacy, College of Pharmacy, Taibah University, Al Madinah Al Munaearah 42353, Saudi Arabia
| | - Mohammed Salah
- Department of Microbiology and Immunology, Faculty of Pharmacy, Port Said University, Port Said 42511, Egypt
| |
Collapse
|
36
|
Jagare L, Rozenberga M, Silamikelis I, Ansone L, Elbere I, Briviba M, Megnis K, Konrade I, Birka I, Straume Z, Klovins J. Metatranscriptome analysis of blood in healthy individuals and irritable bowel syndrome patients. J Med Microbiol 2023; 72. [PMID: 37335601 DOI: 10.1099/jmm.0.001719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
Introduction. Although the presence of micro-organisms in the blood of healthy humans is a relatively new concept, there is a growing amount of evidence that blood might have its own microbiome.Gap Statement. Previous research has targeted the taxonomic composition of the blood microbiome using DNA-based sequencing methods, while little information is known about the presence of microbial transcripts obtained from the blood and their relation to conditions connected with increased gut permeability.Aim. To detect potentially alive and active micro-organisms and investigate differences in taxonomic composition between healthy people and patients with irritable bowel syndrome (IBS), we used the metatranscriptomics approach.Methodology. We collected blood samples from 23 IBS patients and 26 volunteers from the general population, and performed RNAseq on the isolated RNA. Reads corresponding to microbial genomes were identified with Kraken 2's standard plus protozoa and fungi database, and re-estimated at genus level with Bracken 2.7. We looked for trends in the taxonomic composition, making a comparison between the IBS and control groups, accounting for other different factors.Results. The dominant genera in the blood microbiome were found to be Cutibacterium, Bradyrhizobium, Escherichia, Pseudomonas, Micrococcus, Delftia, Mediterraneibacter, Staphylococcus, Stutzerimonas and Ralstonia. Some of these are typical environmental bacteria and could partially represent contamination. However, analysis of sequences from the negative controls suggested that some genera which are characteristic of the gut microbiome (Mediterraneibacter, Blautia, Collinsella, Klebsiella, Coprococcus, Dysosmobacter, Anaerostipes, Faecalibacterium, Dorea, Simiaoa, Bifidobacterium, Alistipes, Prevotella, Ruminococcus) are less likely to be a result of contamination. Differential analysis of microbes between groups showed that some taxa associated with the gut microbiome (Blautia, Faecalibacterium, Dorea, Bifidobacterium, Clostridium, Christensenella) are more prevalent in IBS patients compared to the general population. No significant correlations with any other factors were identified.Conclusion. Our findings support the existence of the blood microbiome and suggest the gut and possibly the oral microbiome as its origin, while the skin microbiome is a possible but less certain source. The blood microbiome is likely influenced by states of increased gut permeability such as IBS.
Collapse
Affiliation(s)
- Lauma Jagare
- Latvian Biomedical Research and Study Centre, Human Genetics and Disease Mechanisms Group, Ratsupites iela 1, Riga, LV-1067, Latvia
| | - Maija Rozenberga
- Latvian Biomedical Research and Study Centre, Human Genetics and Disease Mechanisms Group, Ratsupites iela 1, Riga, LV-1067, Latvia
| | - Ivars Silamikelis
- Latvian Biomedical Research and Study Centre, Human Genetics and Disease Mechanisms Group, Ratsupites iela 1, Riga, LV-1067, Latvia
| | - Laura Ansone
- Latvian Biomedical Research and Study Centre, Human Genetics and Disease Mechanisms Group, Ratsupites iela 1, Riga, LV-1067, Latvia
| | - Ilze Elbere
- Latvian Biomedical Research and Study Centre, Human Genetics and Disease Mechanisms Group, Ratsupites iela 1, Riga, LV-1067, Latvia
| | - Monta Briviba
- Latvian Biomedical Research and Study Centre, Human Genetics and Disease Mechanisms Group, Ratsupites iela 1, Riga, LV-1067, Latvia
| | - Kaspars Megnis
- Latvian Biomedical Research and Study Centre, Human Genetics and Disease Mechanisms Group, Ratsupites iela 1, Riga, LV-1067, Latvia
| | - Ilze Konrade
- Riga Stradins University, Dzirciema iela 16, Riga, LV-1007, Latvia
| | - Ilze Birka
- Pauls Stradins Clinical University Hospital, Pilsonu iela 13, Riga, LV-1002, Latvia
| | - Zane Straume
- Ogre Regional Hospital, Slimnicas iela 2, Ogre, LV-5001, Latvia
| | - Janis Klovins
- Latvian Biomedical Research and Study Centre, Human Genetics and Disease Mechanisms Group, Ratsupites iela 1, Riga, LV-1067, Latvia
| |
Collapse
|
37
|
Sami A, Elimairi I, Ryan CA, Stanton C, Patangia D, Ross RP. Altered oral microbiome in Sudanese Toombak smokeless tobacco users carries a newly emerging risk of squamous cell carcinoma development and progression. Sci Rep 2023; 13:6645. [PMID: 37095112 PMCID: PMC10125980 DOI: 10.1038/s41598-023-32892-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/04/2023] [Indexed: 04/26/2023] Open
Abstract
There are an estimated 6-10 million smokeless tobacco (Toombak) users in Sudan, the majority being males. Toombak is known to be a carcinogenic product that is likely to modify the oral microbiome spatiality into a high-risk potential for the development and progression of oral cancer, but previous studies are lacking in this field. Here, we endeavour for the first time the exploration of the oral microbiome in key mucosal areas of the oral cavity and assess the microbiome variations in premalignant and oral squamous cell carcinoma (OSCC) samples from both users and non-users of Toombak. 16S rRNA sequencing was performed on DNA obtained from pooled saliva, oral mucosa and supragingival plaque from 78 Sudanese users and non-users of Toombak, aged between 20 and 70 years. In 32 of the pooled saliva samples, the mycobiome (fungal) environment was analysed through ITS sequencing. Then, 46 formalin-fixed paraffin-embedded samples of premalignant and OSCC samples were collected, and their associated microbiomes sequenced. The oral Sudanese microbiome was found to be enriched in Streptococcaceae, but Staphylococcaceae were significantly more abundant amongst Toombak users. Genera enriched in the oral cavity of Toombak users included Corynebacterium_1 and Cardiobacterium while in non-users, Prevotella, Lactobacillus and Bifidobacterium were prominent. Aspergillus was the most abundant fungus in the mouths of Toombak users with a marked loss of Candida. The genus Corynebacterium_1 was abundant in the buccal, floor of the mouth and saliva microbiomes as well as in oral cancer samples from Toombak users indicating a possible role for this genus in the early stages of oral cancer development. An oral cancer microbiome that favours poor survival and metastasis in those who use Toombak also emerged that includes the genera Stenotrophomonas and Schlegelella. Those utilising Toombak carry an altered oral microbiome that may be an additional risk factor for this products carcinogenicity to the oral structures. These significant microbiome modulations are a newly emerging key driving factor in oral cancer development and progression in Toombak users while it is also shown that Toombak users carry an oral cancer microbiome that may increase the potential for a poorer prognosis.
Collapse
Affiliation(s)
- Amel Sami
- APC Microbiome Ireland, School of Microbiology, University College Cork, Cork, T12 YN60, Ireland
- Department of Oral and Maxillofacial Surgery and Oral Medicine, Faculty of Dentistry, National Ribat University, Nile street, 1111, Khartoum, Sudan
| | - Imad Elimairi
- Department of Oral and Maxillofacial Surgery and Oral Medicine, Faculty of Dentistry, National Ribat University, Nile street, 1111, Khartoum, Sudan
| | - C Anthony Ryan
- Department of Paediatrics and Child Health, University College Cork, Cork, T12 DFK4, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, School of Microbiology, University College Cork, Cork, T12 YN60, Ireland.
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, P61 C996, Ireland.
| | - Dhrati Patangia
- APC Microbiome Ireland, School of Microbiology, University College Cork, Cork, T12 YN60, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, School of Microbiology, University College Cork, Cork, T12 YN60, Ireland
| |
Collapse
|
38
|
Xue Q, Xie Y, He Y, Yu Y, Fang G, Yu W, Wu J, Li J, Zhao L, Deng X, Li R, Wang F, Zheng Y, Gao Z. Lung microbiome and cytokine profiles in different disease states of COPD: a cohort study. Sci Rep 2023; 13:5715. [PMID: 37029178 PMCID: PMC10080507 DOI: 10.1038/s41598-023-32901-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 04/04/2023] [Indexed: 04/09/2023] Open
Abstract
Increasing evidence indicates that respiratory tract microecological disorders may play a role in the pathogenesis of chronic obstructive pulmonary disease (COPD). Understanding the composition of the respiratory microbiome in COPD and its relevance to respiratory immunity will help develop microbiome-based diagnostic and therapeutic approaches. One hundred longitudinal sputum samples from 35 subjects with acute exacerbation of COPD (AECOPD) were analysed for respiratory bacterial microbiome using 16S ribosomal RNA amplicon sequencing technology, and the sputum supernatant was analysed for 12 cytokines using a Luminex liquid suspension chip. Unsupervised hierarchical clustering was employed to evaluate the existence of distinct microbial clusters. In AECOPD, the respiratory microbial diversity decreased, and the community composition changed significantly. The abundances of Haemophilus, Moraxella, Klebsiella, and Pseudomonas increased significantly. Significant positive correlations between the abundance of Pseudomonas and TNF-α, abundance of Klebsiella and the percentage of eosinophils were observed. Furthermore, COPD can be divided into four clusters based on the respiratory microbiome. AECOPD-related cluster was characterized by the enrichment of Pseudomonas and Haemophilus and a high level of TNF-α. Lactobacillus and Veillonella are enriched in therapy-related phenotypes and may play potential probiotic roles. There are two inflammatory endotypes in the stable state: Gemella is associated with the Th2 inflammatory endotypes, whereas Prevotella is associated with the Th17 inflammatory endotypes. Nevertheless, no differences in clinical manifestations were found between these two endotypes. The sputum microbiome is associated with the disease status of COPD, allowing us to distinguish different inflammatory endotypes. Targeted anti-inflammatory and anti-infective therapies may improve the long-term prognosis of COPD.
Collapse
Affiliation(s)
- Qing Xue
- The Third Clinical Medical College, Fujian Medical University, Ningde Municipal Hospital, Ningde, Fujian, China
| | - Yu Xie
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, 100044, China
- Department of Respiratory Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yukun He
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, 100044, China
| | - Yan Yu
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, 100044, China
| | - Guiju Fang
- The Third Clinical Medical College, Fujian Medical University, Ningde Municipal Hospital, Ningde, Fujian, China
| | - Wenyi Yu
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, 100044, China
| | - Jianhui Wu
- The Third Clinical Medical College, Fujian Medical University, Ningde Municipal Hospital, Ningde, Fujian, China
| | - Jiwei Li
- Department of Respiratory, Critical Care, and Sleep Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361101, China
| | - Lili Zhao
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, 100044, China
| | - Xinyu Deng
- The Third Clinical Medical College, Fujian Medical University, Ningde Municipal Hospital, Ningde, Fujian, China
| | - Ran Li
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, 100044, China
| | - Fang Wang
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, 100044, China
| | - Yali Zheng
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, 100044, China.
- Department of Respiratory, Critical Care, and Sleep Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361101, China.
| | - Zhancheng Gao
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, 100044, China.
| |
Collapse
|
39
|
Wang XW, Sun Z, Jia H, Michel-Mata S, Angulo MT, Dai L, He X, Weiss ST, Liu YY. Identifying keystone species in microbial communities using deep learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.15.532858. [PMID: 36993659 PMCID: PMC10055077 DOI: 10.1101/2023.03.15.532858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Previous studies suggested that microbial communities harbor keystone species whose removal can cause a dramatic shift in microbiome structure and functioning. Yet, an efficient method to systematically identify keystone species in microbial communities is still lacking. This is mainly due to our limited knowledge of microbial dynamics and the experimental and ethical difficulties of manipulating microbial communities. Here, we propose a Data-driven Keystone species Identification (DKI) framework based on deep learning to resolve this challenge. Our key idea is to implicitly learn the assembly rules of microbial communities from a particular habitat by training a deep learning model using microbiome samples collected from this habitat. The well-trained deep learning model enables us to quantify the community-specific keystoneness of each species in any microbiome sample from this habitat by conducting a thought experiment on species removal. We systematically validated this DKI framework using synthetic data generated from a classical population dynamics model in community ecology. We then applied DKI to analyze human gut, oral microbiome, soil, and coral microbiome data. We found that those taxa with high median keystoneness across different communities display strong community specificity, and many of them have been reported as keystone taxa in literature. The presented DKI framework demonstrates the power of machine learning in tackling a fundamental problem in community ecology, paving the way for the data-driven management of complex microbial communities.
Collapse
|
40
|
Ma T, Wu Z, Lin J, Shan C, Abasijiang A, Zhao J. Characterization of the oral and gut microbiome in children with obesity aged 3 to 5 years. Front Cell Infect Microbiol 2023; 13:1102650. [PMID: 37065198 PMCID: PMC10090557 DOI: 10.3389/fcimb.2023.1102650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
The ever-increasing global prevalence of obesity has trended towards a younger age. The ecological characteristics and changes of the oral and gut microbial community during childhood are poorly understood.In this study, we analyzed the salivary and fecal microbiota of 30 children with obesity and 30 normal weight children aged 3-5 years via third-generation long-range DNA sequencing,with the aim of understanding the structure of childhood microbiota and identifying specific oral and gut microbial lineages and genera in children that may be associated with obesity.The results revealed significant variation in alpha diversity indices among the four groups (Chao1: P < 0.001; observed species: P < 0.001; Shannon < 0.001). Principal coordinate analysis (PCoA) and nonmetric multidimensional scaling (NMDS) revealed significant differences in oral and gut microbial community structure between obesity and controls. The Firmicutes/Bacteroidetes (F/B) abundance ratios of oral and intestinal flora among children with obesity were higher than those of controls. The most abundant phyla and genera found in oral and intestinal flora were Firmicutes, Proteobacteria, Bacteroidetes, Neisseria, Bacteroides, Faecalibacterium, Streptococcus, Prevotella and so on. Linear discriminant analysis effect size (LEfSe) revealed higher proportions of Filifactor (LDA= 3.98; P < 0.05) and Butyrivibrio (LDA = 2.54; P < 0.001) in the oral microbiota of children with obesity, while the fecal microbiota of children with obesity were more enriched with Faecalibacterium (LDA = 5.02; P < 0.001), Tyzzerella (LDA=3.25; P < 0.01), Klebsiella (LDA = 4.31; P < 0.05),which could be considered as dominant bacterial biomarkers for obesity groups.A total of 148 functional bacterial pathways were found to significantly differ in the oral and gut microbiota among controls and obesity using PICRUSt 2. Most predicted functional pathways were clustered in biosynthesis. In conclusion, This work suggests there were significant differences in oral and gut microbiota in controls and obesity groups, microbiota dysbiosis in childhood might have significant effect on the development of obesity.
Collapse
Affiliation(s)
- Ting Ma
- Department of Cariology and Endodontics, The First Affiliated Hospital of Xinjiang Medical University, The Affiliated Stomatology Hospital of Xinjiang Medical University, Urumqi, China
- Stomatology Disease Institute of Xinjiang Uyghur Autonomous Region, Xinjiang Medical University, Urumqi, China
| | - Zeyu Wu
- Department of Cariology and Endodontics, The First Affiliated Hospital of Xinjiang Medical University, The Affiliated Stomatology Hospital of Xinjiang Medical University, Urumqi, China
- Stomatology Disease Institute of Xinjiang Uyghur Autonomous Region, Xinjiang Medical University, Urumqi, China
| | - Jing Lin
- Department of Cariology and Endodontics, The First Affiliated Hospital of Xinjiang Medical University, The Affiliated Stomatology Hospital of Xinjiang Medical University, Urumqi, China
- Stomatology Disease Institute of Xinjiang Uyghur Autonomous Region, Xinjiang Medical University, Urumqi, China
| | - Chao Shan
- Department of Cariology and Endodontics, The First Affiliated Hospital of Xinjiang Medical University, The Affiliated Stomatology Hospital of Xinjiang Medical University, Urumqi, China
- Stomatology Disease Institute of Xinjiang Uyghur Autonomous Region, Xinjiang Medical University, Urumqi, China
| | - Aisaiti Abasijiang
- Department of Cariology and Endodontics, The First Affiliated Hospital of Xinjiang Medical University, The Affiliated Stomatology Hospital of Xinjiang Medical University, Urumqi, China
- Stomatology Disease Institute of Xinjiang Uyghur Autonomous Region, Xinjiang Medical University, Urumqi, China
| | - Jin Zhao
- Department of Cariology and Endodontics, The First Affiliated Hospital of Xinjiang Medical University, The Affiliated Stomatology Hospital of Xinjiang Medical University, Urumqi, China
- Stomatology Disease Institute of Xinjiang Uyghur Autonomous Region, Xinjiang Medical University, Urumqi, China
- *Correspondence: Jin Zhao,
| |
Collapse
|
41
|
Elnaggar JH, Huynh VO, Lin D, Hillman RT, Abana CO, El Alam MB, Tomasic KC, Karpinets TV, Kouzy R, Phan JL, Wargo J, Holliday EB, Das P, Mezzari MP, Ajami NJ, Lynn EJ, Minsky BD, Morris VK, Milbourne A, Messick CA, Klopp AH, Futreal PA, Taniguchi CM, Schmeler KM, Colbert LE. HPV-related anal cancer is associated with changes in the anorectal microbiome during cancer development. Front Immunol 2023; 14:1051431. [PMID: 37063829 PMCID: PMC10090447 DOI: 10.3389/fimmu.2023.1051431] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Background Squamous cell carcinoma of the anus (SCCA) is a rare gastrointestinal cancer. Factors associated with progression of HPV infection to anal dysplasia and cancer are unclear and screening guidelines and approaches for anal dysplasia are less clear than for cervical dysplasia. One potential contributing factor is the anorectal microbiome. In this study, we aimed to identify differences in anal microbiome composition in the settings of HPV infection, anal dysplasia, and anal cancer in this rare disease. Methods Patients were enrolled in two prospective studies. Patients with anal dysplasia were part of a cross-sectional cohort that enrolled women with high-grade lower genital tract dysplasia. Anorectal tumor swabs were prospectively collected from patients with biopsy-confirmed locally advanced SCCA prior to receiving standard-of-care chemoradiotherapy (CRT). Patients with high-grade lower genital tract dysplasia without anal dysplasia were considered high-risk (HR Normal). 16S V4 rRNA Microbiome sequencing was performed for anal swabs. Alpha and Beta Diversity and composition were compared for HR Normal, anal dysplasia, and anal cancer. Results 60 patients with high-grade lower genital tract dysplasia were initially enrolled. Seven patients had concurrent anal dysplasia and 44 patients were considered HR Normal. Anorectal swabs from 21 patients with localized SCCA were included, sequenced, and analyzed in the study. Analysis of weighted and unweighted UniFrac distances demonstrated significant differences in microbial community composition between anal cancer and HR normal (p=0.018). LEfSe identified that all three groups exhibited differential enrichment of specific taxa. Peptoniphilus (p=0.028), Fusobacteria (p=0.0295), Porphyromonas (p=0.034), and Prevotella (p=0.029) were enriched in anal cancer specimens when compared to HR normal. Conclusion Although alpha diversity was similar between HR Normal, dysplasia and cancer patients, composition differed significantly between the three groups. Increased anorectal Peptoniphilus, Fusobacteria, Porphyromonas, and Prevotella abundance were associated with anal cancer. These organisms have been reported in various gastrointestinal cancers with roles in facilitating the proinflammatory microenvironment and neoplasia progression. Future work should investigate a potential role of microbiome analysis in screening for anal dysplasia and investigation into potential mechanisms of how these microbial imbalances influence the immune system and anal carcinogenesis.
Collapse
Affiliation(s)
- Jacob H. Elnaggar
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Victoria O. Huynh
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Daniel Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - R. Tyler Hillman
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Cancer Prevention Research Institute of Texas Scholar in Cancer Research, Austin, TX, United States
| | - Chike O. Abana
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Molly B. El Alam
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Katarina C. Tomasic
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Tatiana V. Karpinets
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ramez Kouzy
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jae L. Phan
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jennifer Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Emma B. Holliday
- Gastrointestinal Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Prajnan Das
- Gastrointestinal Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Melissa P. Mezzari
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Nadim J. Ajami
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Erica J. Lynn
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Bruce D. Minsky
- Gastrointestinal Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Van K. Morris
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Andrea Milbourne
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Craig A. Messick
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ann H. Klopp
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - P. Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Cullen M. Taniguchi
- Gastrointestinal Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Kathleen M. Schmeler
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Lauren E. Colbert
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
42
|
Athanasopoulou K, Adamopoulos PG, Scorilas A. Unveiling the Human Gastrointestinal Tract Microbiome: The Past, Present, and Future of Metagenomics. Biomedicines 2023; 11:biomedicines11030827. [PMID: 36979806 PMCID: PMC10045138 DOI: 10.3390/biomedicines11030827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/26/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
Over 1014 symbiotic microorganisms are present in a healthy human body and are responsible for the synthesis of vital vitamins and amino acids, mediating cellular pathways and supporting immunity. However, the deregulation of microbial dynamics can provoke diverse human diseases such as diabetes, human cancers, cardiovascular diseases, and neurological disorders. The human gastrointestinal tract constitutes a hospitable environment in which a plethora of microbes, including diverse species of archaea, bacteria, fungi, and microeukaryotes as well as viruses, inhabit. In particular, the gut microbiome is the largest microbiome community in the human body and has drawn for decades the attention of scientists for its significance in medical microbiology. Revolutions in sequencing techniques, including 16S rRNA and ITS amplicon sequencing and whole genome sequencing, facilitate the detection of microbiomes and have opened new vistas in the study of human microbiota. Especially, the flourishing fields of metagenomics and metatranscriptomics aim to detect all genomes and transcriptomes that are retrieved from environmental and human samples. The present review highlights the complexity of the gastrointestinal tract microbiome and deciphers its implication not only in cellular homeostasis but also in human diseases. Finally, a thorough description of the widely used microbiome detection methods is discussed.
Collapse
Affiliation(s)
- Konstantina Athanasopoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| |
Collapse
|
43
|
Yokoyama S, Hayashi M, Goto T, Muto Y, Tanaka K. Identification of cfxA gene variants and susceptibility patterns in β-lactamase-producing Prevotella strains. Anaerobe 2023; 79:102688. [PMID: 36580990 DOI: 10.1016/j.anaerobe.2022.102688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022]
Abstract
OBJECTIVES Antimicrobial-resistant isolates of Prevotella species, especially those resistant to β-lactams, have become increasingly common. Here, we aimed to elucidate the underlying mechanisms contributing to the emergence and spread of antimicrobial resistance in Prevotella species. METHODS Prevotella species were isolated from a variety of clinical specimens. β-lactamase production was determined using nitrocefin discs, and the determination of minimum inhibitory concentration (MIC) to ten antimicrobials was done by the agar dilution method. Four resistance genes (cfxA, tetQ, ermF, and nim) and cfxA-flanking regions were detected using polymerase chain reaction. cfxA and the flanking regions were sequenced, and a phylogenetic tree was constructed based on CfxA amino acid sequences using the UPGMA method. RESULTS Among the 45 Prevotella isolates identified, 35 (77.8%) produced β-lactamases and had the cfxA genes. The tetQ, ermF, and nim genes were detected in 53.3%, 17.8%, and 0% of the 45 isolates, respectively. Among the 33 sequenced cfxA alleles, cfxA2 (45.5%) was the most frequent, followed by cfxA3 (42.4%) and a novel variant (cfxA7, 12.1%). The novel CfxA7 β-lactamase had a novel L155F substitution not previously reported in CfxA variants. The MICs of all β-lactam agents tested, excluding cefmetazole and meropenem, were lower among cfxA7-positive isolates than in cfxA2-and cfxA3-positive isolates. CONCLUSIONS Differences in MICs of penicillins and cephalosporins may be due to amino acid substitutions in the CfxA variants, CfxA2, CfxA3, and CfxA7, among Prevotella isolates. Possession of cfxA-mobA, tetQ, and ermF may increase the risks of the emergence and spread of multidrug-resistant Prevotella species.
Collapse
Affiliation(s)
- Sodai Yokoyama
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu City, Gifu, Japan
| | - Masahiro Hayashi
- Institute for Glyco-core Research iGCORE, Gifu University, Gifu City, Gifu, Japan; Division of Anaerobe Research, Life Science Research Center, Gifu University, Gifu City, Gifu, Japan
| | - Takatsugu Goto
- Institute for Glyco-core Research iGCORE, Gifu University, Gifu City, Gifu, Japan; Division of Anaerobe Research, Life Science Research Center, Gifu University, Gifu City, Gifu, Japan
| | - Yoshinori Muto
- Institute for Glyco-core Research iGCORE, Gifu University, Gifu City, Gifu, Japan
| | - Kaori Tanaka
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu City, Gifu, Japan; Institute for Glyco-core Research iGCORE, Gifu University, Gifu City, Gifu, Japan; Division of Anaerobe Research, Life Science Research Center, Gifu University, Gifu City, Gifu, Japan.
| |
Collapse
|
44
|
Devi P, Kumari P, Yadav A, Tarai B, Budhiraja S, Shamim U, Pandey R. Transcriptionally active nasopharyngeal commensals and opportunistic microbial dynamics define mild symptoms in the COVID 19 vaccination breakthroughs. PLoS Pathog 2023; 19:e1011160. [PMID: 36800345 PMCID: PMC9937460 DOI: 10.1371/journal.ppat.1011160] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/27/2023] [Indexed: 02/18/2023] Open
Abstract
The development of COVID 19 vaccines as an effort to mitigate the outbreak, has saved millions of lives globally. However, vaccination breakthroughs have continuously challenged the vaccines' effectiveness and provided incentives to explore facets holding potential to alter vaccination-induced immunity and protection from subsequent infection, especially VOCs (Variants Of Concern). We explored the functional dynamics of nasopharyngeal transcriptionally active microbes (TAMs) between vaccination breakthroughs and unvaccinated SARS-CoV-2 infected individuals. Microbial taxonomic communities were differentially altered with skewed enrichment of bacterial class/genera of Firmicutes and Gammaproteobacteria with grossly reduced phylum Bacteroidetes in vaccination breakthrough individuals. The Bacillus genus was abundant in Firmicutes in vaccination breakthrough whereas Prevotella among Bacteroides dominated the unvaccinated. Also, Pseudomonas and Salmonella of Gammaproteobacteria were overrepresented in vaccination breakthrough, whilst unvaccinated showed presence of several genera, Achromobacter, Bordetella, Burkholderia, Neisseria, Hemophilus, Salmonella and Pseudomonas, belonging to Proteobacteria. At species level, the microbiota of vaccination breakthrough exhibited relatively higher abundance of unique commensals, in comparison to potential opportunistic microbes enrichment in unvaccinated patients' microbiota. Functional metabolic pathways like amino acid biosynthesis, sulphate assimilation, fatty acid and beta oxidation, associated with generation of SCFAs (short chain fatty acids), were enriched in vaccination breakthroughs. Majorly, metabolic pathways of LCFAs biosynthesis (long chain fatty acids; oleate, dodecenoate, palmitoleate, gondoate) were found associated with the unvaccinated. Our research highlights that vaccination decreases the microbial diversity in terms of depleting opportunistic pathogens and increasing the preponderance of commensals with respect to unvaccinated patients. Metabolic pathway analysis substantiates the shift in diversity to functionally modulate immune response generation, which may be related to mild clinical manifestations and faster recovery times during vaccination breakthroughs.
Collapse
Affiliation(s)
- Priti Devi
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pallawi Kumari
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Aanchal Yadav
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Bansidhar Tarai
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi, India
| | - Sandeep Budhiraja
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi, India
| | - Uzma Shamim
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Rajesh Pandey
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
45
|
Salivary IgA and IgG Antibody Responses against Periodontitis-Associated Bacteria in Crohn's Disease. Int J Mol Sci 2023; 24:ijms24032385. [PMID: 36768711 PMCID: PMC9917030 DOI: 10.3390/ijms24032385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Elevated serum immunoglobulin (Ig) antibody levels are observed in Crohn's disease patients. The aim of this study was to evaluate the salivary IgA and IgG antibody levels against Porphyromonas gingivalis, Tannerella forsythia, Aggregatibacter actinomycetemcomitans, and Prevotella intermedia in Crohn's disease patients. Eighty-eight participants (47 Crohn's disease patients and 41 systemically healthy age- and gender-matched controls) were included in the study. Oral and medical health statuses were recorded and salivary samples were collected. Salivary P. gingivalis, T. forsythia, A. actinomycetemcomitans, and P. intermedia carriage were analyzed with DNA sequencing technique, salivary levels of IgG1, IgG2, IgG3, IgG4, and IgM were measured with the Luminex® xMAP™ technique, and salivary IgA and IgG antibody levels against P. gingivalis, T. forsythia, A. actinomycetemcomitans, and P. intermedia were detected by ELISA. As result, higher salivary IgG2 (p = 0.011) and IgG3 (p = 0.006), P. gingivalis IgA (p < 0.001), A. actinomycetemcomitans IgG (p = 0.001), and P. intermedia IgG (p < 0.001) antibody levels were detected in the Crohn's disease group compared to the controls. Salivary P. gingivalis carriage was lower in the Crohn's disease group in comparison to the controls (p = 0.024). In conclusion, salivary IgA antibody responses against P. gingivalis and IgG antibody responses against P. intermedia have independent associations with Crohn's disease.
Collapse
|
46
|
Belibasakis GN, Belstrøm D, Eick S, Gursoy UK, Johansson A, Könönen E. Periodontal microbiology and microbial etiology of periodontal diseases: Historical concepts and contemporary perspectives. Periodontol 2000 2023. [PMID: 36661184 DOI: 10.1111/prd.12473] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/21/2022] [Accepted: 09/06/2022] [Indexed: 01/21/2023]
Abstract
This narrative review summarizes the collective knowledge on periodontal microbiology, through a historical timeline that highlights the European contribution in the global field. The etiological concepts on periodontal disease culminate to the ecological plaque hypothesis and its dysbiosis-centered interpretation. Reference is made to anerobic microbiology and to the discovery of select periodontal pathogens and their virulence factors, as well as to biofilms. The evolution of contemporary molecular methods and high-throughput platforms is highlighted in appreciating the breadth and depth of the periodontal microbiome. Finally clinical microbiology is brought into perspective with the contribution of different microbial species in periodontal diagnosis, the combination of microbial and host biomarkers for this purpose, and the use of antimicrobials in the treatment of the disease.
Collapse
Affiliation(s)
- Georgios N Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Belstrøm
- Section for Clinical Oral Microbiology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Ulvi K Gursoy
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| | | | - Eija Könönen
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| |
Collapse
|
47
|
Gershater E, Liu Y, Xue B, Shin MK, Koo H, Zheng Z, Li C. Characterizing the microbiota of cleft lip and palate patients: a comprehensive review. Front Cell Infect Microbiol 2023; 13:1159455. [PMID: 37143743 PMCID: PMC10152472 DOI: 10.3389/fcimb.2023.1159455] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/31/2023] [Indexed: 05/06/2023] Open
Abstract
Orofacial cleft disorders, including cleft lip and/or palate (CL/P), are one of the most frequently-occurring congenital disorders worldwide. The health issues of patients with CL/P encompass far more than just their anatomic anomaly, as patients with CL/P are prone to having a high incidence of infectious diseases. While it has been previously established that the oral microbiome of patients with CL/P differs from that of unaffected patients, the exact nature of this variance, including the relevant bacterial species, has not been fully elucidated; likewise, examination of anatomic locations besides the cleft site has been neglected. Here, we intended to provide a comprehensive review to highlight the significant microbiota differences between CL/P patients and healthy subjects in various anatomic locations, including the teeth inside and adjacent to the cleft, oral cavity, nasal cavity, pharynx, and ear, as well as bodily fluids, secretions, and excretions. A number of bacterial and fungal species that have been proven to be pathogenic were found to be prevalently and/or specifically detected in CL/P patients, which can benefit the development of CL/P-specific microbiota management strategies.
Collapse
Affiliation(s)
| | - Yuan Liu
- Biofilm Research Laboratories, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Binglan Xue
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Min Kyung Shin
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Hyun Koo
- Biofilm Research Laboratories, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Innovation & Precision Dentistry, School of Dental Medicine and School of Engineering & Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - Zhong Zheng
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- *Correspondence: Zhong Zheng, ; Chenshuang Li,
| | - Chenshuang Li
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Zhong Zheng, ; Chenshuang Li,
| |
Collapse
|
48
|
Huang J, Huang J. Microbial Biomarkers for Lung Cancer: Current Understandings and Limitations. J Clin Med 2022; 11:jcm11247298. [PMID: 36555915 PMCID: PMC9782454 DOI: 10.3390/jcm11247298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
As our "hidden organ", microbes widely co-exist at various sites on the human body. These microbes are collectively referred to as the microbiome. A considerable number of studies have already proven that the microbiome has significant impacts on human health and disease progression, including cancers. The recent discovery of cancer-specific microbiomes renders these cancer-associated microbes as potential biomarkers and therapeutic targets. While at low biomass levels, the lung microbiome still dramatically influences the initiation, progression and treatment of lung cancers. However, research on lung cancer-associated microbiomes is emerging, and most profiling studies are performed within three years. Unfortunately, there are substantial inconsistencies across these studies. Variations in microbial diversity were observed, and different microbial biomarkers for lung cancer have been proposed. In this review, we summarized the current findings of lung cancer microbiome studies and attempt to explain the potential reasons for the dissimilarities. Other than lung microbiomes, oral and airway microbiomes are highly related to lung microbiomes and are therefore included as well. In addition, several lung cancer-associated bacterial genera have been detected by different independent studies. These bacterial genera may not be perfect biomarkers, but they still serve as promising risk factors for lung cancers and show great prognostic value.
Collapse
Affiliation(s)
| | - Juan Huang
- Correspondence: ; Tel.: +86-181-0818-9376
| |
Collapse
|
49
|
Bacterial Communities Associated with Crude Oil Bioremediation through Composting Approaches with Indigenous Bacterial Isolate. Life (Basel) 2022; 12:life12111712. [DOI: 10.3390/life12111712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, we aim to investigate the efficiency of crude oil bioremediation through composting and culture-assisted composting. First, forty-eight bacteria were isolated from a crude oil-contaminated soil, and the isolate with the highest crude oil degradation activity, identified as Pseudomonas aeruginosa, was selected. The bioremediation was then investigated and compared between crude oil-contaminated soil (S), the contaminated soil composted with fruit-based waste (SW), and the contaminated soil composted with the same waste with the addition of the selected bacterium (SWB). Both compost-based methods showed high efficiencies of crude oil bioremediation (78.1% and 83.84% for SW and SWB, respectively). However, only a slight difference between the treatments without and with the addition of P. aeruginosa was observed. To make a clear understanding of this point, bacterial communities throughout the 4-week bioremediation period were analyzed. It was found that the community dynamics between both composted treatments were similar, which corresponds with their similar bioremediation efficiencies. Interestingly, Pseudomonas disappeared from the system after one week, which suggests that this genus was not the key degrader or only involved in the early stage of the process. Altogether, our results elaborate that fruit-based composting is an effective approach for crude oil bioremediation.
Collapse
|
50
|
Ahn H, Min K, Lee E, Kim H, Kim S, Kim Y, Kim G, Cho B, Jeong C, Kim Y, Park H. Whole-Transcriptome Sequencing Reveals Characteristics of Cancer Microbiome in Korean Patients with GI Tract Cancer: Fusobacterium nucleatum as a Therapeutic Target. Microorganisms 2022; 10:microorganisms10101896. [PMID: 36296174 PMCID: PMC9610011 DOI: 10.3390/microorganisms10101896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022] Open
Abstract
Remarkable progress has occurred over the past two decades in identifying microbiomes affecting the human body in numerous ways. The microbiome is linked to gastrointestinal (GI) tract cancer. The purpose of this study was to determine if there is a common microbiome among GI tract cancers and how the microbiome affects the disease. To ensure ethnic consistency, Korean patients with GI tract cancer were selected. Fusobacterium nucleatum is an enriched bacteria in all cancer tissues. F. nucleatum is a Gram-negative obligate anaerobe that promotes colorectal cancer. Through Gene Set Enrichment Analysis (GSEA) and Differentially Expressed Genes (DEG) analyses, the upregulation of the G2M checkpoint pathway was identified in the F. nucleatum-high group. Cell viability and G2M checkpoint pathway genes were examined in MC 38 cells treated with F. nucleatum. F. nucleatum upregulated the expression of G2M checkpoint pathway genes and the cell proliferation of MC 38 cells. F. nucleatum facilitated cancer’s use of G2M checkpoint pathways and F. nucleatum could be a therapeutic target in Korean GI tract cancer.
Collapse
|