1
|
Liu Y, Wang J, Cheng SW, Chen X, Bai Z, Zhou YH. Calycosin inhibits lytic replication of Kaposi's sarcoma-associated herpesvirus by downregulating early growth response 1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 143:156884. [PMID: 40446581 DOI: 10.1016/j.phymed.2025.156884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 05/16/2025] [Accepted: 05/19/2025] [Indexed: 06/16/2025]
Abstract
BACKGROUND Kaposi's sarcoma-associated herpesvirus (KSHV) is linked to several diseases, including primary effusion lymphoma, multicentric Castleman's disease, and KSHV inflammatory cytokine syndrome. Current treatment options for KSHV-associated diseases are sometimes ineffective, and antiviral drugs are still lacking. Calycosin (CA), an O-methylated isoflavone found in Astragalus membranaceus, has previously demonstrated strong activity against coxsackievirus B3 (CVB3) and human immunodeficiency virus (HIV), but its effect against KSHV has not been previously reported. METHODS Viral lytic replication was evaluated via both the relative quantification of viral DNA within cells and the absolute quantification of viral genomes in cellular supernatants. RNA sequencing was employed to identify key genes involved in the anti-KSHV process for CA. Real-time PCR and western blotting were utilized to elucidate gene expression. Ectopic gene expression was delivered by plasmid transfection or lentivirus transduction. RESULTS CA dose-dependently inhibited KSHV lytic replication in both KSHV latently infected cells and de novo-infected human umbilical vein endothelial cells (HUVECs) without causing cytotoxicity. Further investigation of the anti-KSHV mechanism revealed that CA downregulated the expression of early growth response 1 (EGR1), consequently suppressing the promoter activity of replication and transcription activator (RTA), which is a crucial switch triggering KSHV from latency to lytic replication. Additionally, CA suppressed inflammatory cytokines such as interleukin-6 (IL-6) and interleukin-8 (IL-8) induced by KSHV infection, and this suppression was EGR1 dependent. CONCLUSION This study for the first time reported the function and mechanism of CA in inhibiting the lytic replication of KSHV, providing a new candidate for anti-KSHV agents. Moreover, these findings expand the understanding of the pharmacological values of CA.
Collapse
Affiliation(s)
- Yue Liu
- Shaanxi Engineering and Technological Research Center for Conservation and Utilization of Regional Biological Resources, College of Life Sciences, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Jiale Wang
- Shaanxi Engineering and Technological Research Center for Conservation and Utilization of Regional Biological Resources, College of Life Sciences, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Si-Wei Cheng
- Yan'an Second People's Hospital, Yan'an, Shaanxi 716000, China
| | - Xin Chen
- Department of Pathogenic Biology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Zhantao Bai
- Shaanxi Engineering and Technological Research Center for Conservation and Utilization of Regional Biological Resources, College of Life Sciences, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Yan-Heng Zhou
- Shaanxi Engineering and Technological Research Center for Conservation and Utilization of Regional Biological Resources, College of Life Sciences, Yan'an University, Yan'an, Shaanxi 716000, China; Engineering Research Center of Microbial Resources Development and Green Recycling, University of Shaanxi Province, Yan'an, Shaanxi 716000, China.
| |
Collapse
|
2
|
Yutoku M, Fujita K, Chiba N, Tada R, Ohnishi T, Sugimura M, Matsuguchi T. Early Growth Response 1 Plays an Essential Role in Proinflammatory and Osteoclastogenic Activities of Lipopolysaccharide-Stimulated Osteoblasts. FASEB J 2025; 39:e70532. [PMID: 40193242 DOI: 10.1096/fj.202402623r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/13/2025] [Accepted: 03/31/2025] [Indexed: 04/09/2025]
Abstract
Lipopolysaccharide (LPS) of Gram-negative bacteria in oral plaque is the major cause of periodontal disease. It is involved in the induction of inflammation and alveolar bone resorption at least partly by directly reacting to Toll-like receptor (TLR) 4 on osteoblasts. LPS induces osteoblasts to express proinflammatory cytokines, chemokines, and prostaglandins, as well as macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL), which directly activate adjacent osteoclasts toward bone resorption. However, the regulator mechanisms have not been fully revealed at the molecular level. Here, we have demonstrated that LPS rapidly induces expression of early growth response 1 (EGR1), a zinc-finger transcription factor, and analyzed its physiological functions in osteoblasts. In both primary osteoblasts and an osteoblast cell line, LPS induced expression of EGR1 mRNA and protein within 30 min and 60 min, respectively, which were relatively slower than in macrophages. Inhibition of EGR1 by siRNA significantly inhibited LPS-induced mRNA expression of the tumor necrosis factor (TNF), interleukin-6 (IL-6), chemokines, cyclooxygenase-2 (COX2), matrix metalloproteinase-13 (MMP13), M-CSF, and RANKL in osteoblasts. Moreover, forced overexpression of EGR1 by the inducible expression system was sufficient to increase mRNA expression levels of TNF, IL-6, COX2, MMP13, and RANKL without LPS stimulation. As for the intracellular signal transduction, LPS-induced EGR1 expression in osteoblasts was dependent on the unique c-Jun N-terminal kinase (JNK)-extracellular signal-regulated kinase (ERK) activation pathway. Our data suggest an essential role of EGR1 in osteoblast responses to LPS-inducing tissue inflammation and osteolysis, providing new insights into the pathogenesis of periodontal disease.
Collapse
Affiliation(s)
- Miyoko Yutoku
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Dental Anesthesiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kosuke Fujita
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Norika Chiba
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Ryohei Tada
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tomokazu Ohnishi
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Mitsutaka Sugimura
- Department of Dental Anesthesiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tetsuya Matsuguchi
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
3
|
Zhao Y, Patel J, Fan J, Wang X, Chen L, Li Y, Luo Z. Integrated analysis reveals that EGR1 promotes epithelial IL33 production in T2 asthma. J Transl Med 2025; 23:203. [PMID: 39966984 PMCID: PMC11837401 DOI: 10.1186/s12967-025-06116-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/08/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Airway epithelial cells constitute the first line of defense against external noxious stimuli and play crucial roles in the release of epithelial inflammatory cytokines (IL33, IL25 and TSLP), initiating airway allergic inflammatory diseases such as asthma. IL33 plays critical physiological processes in T2-endotype asthma. However, the mechanisms by which allergen exposure triggers IL33 release from airway epithelial cells remain unclear. METHODS Integrated bioinformatic analysis and transcriptional analysis of bulk RNA-seq and single cell RNA-seq (scRNA-seq) data were used to identify core genes and determine the internal gene network associated with IL33. The expression of EGR1 was subsequently analyzed in vitro in the BEAS-2B cell line and in vivo in a house dust mite (HDM)-induced mouse asthma model. The functional experiments of EGR1 were investigated in vitro via siRNA knockdown and over-expressed plasmid. Chromatin immunoprecipitation (ChIP)-PCR and dual-luciferase reporter assay validation were subsequently performed to investigate the mechanisms by which EGR1 regulates IL33 secretion. RESULTS Bulk RNA-seq and scRNA-seq data identified EGR1 as an epithelial cell-derived gene implicated in IL33 expressions in asthma. The comprehensive analysis of multiple datasets indicated that the high EGR1 expression in epithelial cells may suggest a mechanistic basis of T2-endotype childhood asthma. Moreover, we verified that the expressions of EGR1 in airway epithelial cells were elevated both in vitro and in vivo asthma models. EGR1 regulated the production of IL33. Ultimately, ChIP and luciferase reporter assays confirmed that transcription factor EGR1 directly regulate the transcription of IL33 mRNA. CONCLUSIONS Our integrated bioinformatic analysis elucidated that EGR1 directly regulates the production of IL33 in T2-asthma and provide insights underlying the progression of asthma.
Collapse
Affiliation(s)
- Yan Zhao
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
- China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing, China
| | - Jenil Patel
- Department of Epidemiology, Human Genetics and Environmental Sciences, The University of Texas Health Science Center at Houston (UTHealth Houston) School of Public Health, Dallas, TX, USA
| | - Jinhua Fan
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xinyang Wang
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Chen
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanyuan Li
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
| | - Zhengxiu Luo
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China.
- China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing, China.
- Department of Respiratory Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, No.136 Zhongshan 2nd Road, Yuzhong District, Chongqing, 400010, China.
| |
Collapse
|
4
|
Toubanaki DK, Tzortzatos OP, Efstathiou A, Bakopoulos V, Karagouni E. Influence of Viral Re-Infection on Head Kidney Transcriptome of Nervous Necrosis Virus-Resistant and -Susceptible European Sea Bass ( Dicentrarchus labrax, L.). Viruses 2025; 17:230. [PMID: 40006985 PMCID: PMC11860166 DOI: 10.3390/v17020230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Fish viral infections have great environmental and economic implications in aquaculture. Nervous necrosis virus (NNV) is a pathogen affecting more than 120 different species, causing high mortality and morbidity. Herein, we study how NNV re-infection affects the European sea bass (Dicentrarchus labrax, L.) head kidney transcriptome in disease-resistant and -susceptible sea bass families. To determine how each family responds to re-infection, we performed the RNA-sequencing analysis of experimentally NNV-infected D. labrax. Fish were experimentally infected in a long-term study, and one month after the last recorded death, all surviving fish were re-infected by the same NNV strain. Fish tissues were sampled 7 days upon re-infection. The transcriptome profiles of infected vs. non-infected fish revealed 103 differentially expressed genes (DEGs) for the resistant family and 336 DEGs for the susceptible family. Only a few pathways were commonly enriched in the two families, further indicating that the resistant and susceptible families utilize completely different mechanisms to fight the NNV re-infection. Protein-protein interaction analysis identified a variety of hub genes for the resistant and the susceptible families, quite distinct in their function on NNV resistance. In conclusion, NNV-resistant and -sensitive sea bass transcriptomes were analyzed following NNV survivors' viral re-infection, offering a glimpse into how host attempts to control the infection depending on its genetic background in relation with virus resistance.
Collapse
Affiliation(s)
- Dimitra K. Toubanaki
- Immunology of Infection Group, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece; (O.-P.T.); (A.E.)
| | - Odysseas-Panagiotis Tzortzatos
- Immunology of Infection Group, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece; (O.-P.T.); (A.E.)
| | - Antonia Efstathiou
- Immunology of Infection Group, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece; (O.-P.T.); (A.E.)
| | - Vasileios Bakopoulos
- Department of Marine Sciences, School of The Environment, University of the Aegean, University Hill, Lesvos, 81100 Mytilene, Greece;
| | - Evdokia Karagouni
- Immunology of Infection Group, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece; (O.-P.T.); (A.E.)
| |
Collapse
|
5
|
Alkon N, Chennareddy S, Cohenour ER, Ruggiero JR, Stingl G, Bangert C, Rindler K, Bauer WM, Weninger W, Griss J, Jonak C, Brunner PM. Single-cell sequencing delineates T-cell clonality and pathogenesis of the parapsoriasis disease group. J Allergy Clin Immunol 2025; 155:461-478. [PMID: 39278361 DOI: 10.1016/j.jaci.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/30/2024] [Accepted: 09/10/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND Mycosis fungoides (MF), the most common cutaneous T-cell lymphoma, is often underdiagnosed in early stages because of similarities with benign dermatoses such as atopic dermatitis (AD). Furthermore, the delineation from what is called "parapsoriasis en plaque", a disease that can appear either in a small- or large-plaque form, is still controversial. OBJECTIVE We sought to characterize the parapsoriasis disease spectrum. METHODS We performed single-cell RNA sequencing of skin biopsies from patients within the parapsoriasis-to-early-stage MF spectrum, stratified for small and large plaques, and compared them to AD, psoriasis, and healthy control skin. RESULTS Six of 8 large-plaque lesions harbored either an expanded alpha/beta or gamma/delta T-cell clone with downregulation of CD7 expression, consistent with a diagnosis of early-stage MF. In contrast, 6 of 7 small-plaque lesions were polyclonal in nature, thereby lacking a lymphomatous phenotype, and also revealed a less inflammatory microenvironment than early-stage MF or AD. Of note, polyclonal small- and large-plaque lesions characteristically harbored a population of NPY+ innate lymphoid cells and displayed a stromal signature of complement upregulation and antimicrobial hyperresponsiveness in fibroblasts and sweat gland cells, respectively. These conditions were clearly distinct from AD or psoriasis, which uniquely harbored CD3+CRTH2+ IL-13 expressing "TH2A" cells, or strong type 17 inflammation, respectively. CONCLUSION These data position polyclonal small- and large-plaque parapsoriasis lesions as a separate disease entity that characteristically harbors a so far undescribed innate lymphoid cell population. We thus propose a new term, "polyclonal parapsoriasis en plaque", for this kind of lesion because they can be clearly differentiated from early- and advanced-stage MF, psoriasis, and AD on several cellular and molecular levels.
Collapse
Affiliation(s)
- Natalia Alkon
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Sumanth Chennareddy
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Emry R Cohenour
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - John R Ruggiero
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Georg Stingl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Christine Bangert
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Katharina Rindler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang M Bauer
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Weninger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Johannes Griss
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Constanze Jonak
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| | - Patrick M Brunner
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
6
|
PENG NAIXIONG, CAI YUEFENG, CHEN DONG, DENG LING, ZHANG ZEJIAN, LI WEI. EGR1 inhibits clear cell renal cell carcinoma proliferation and metastasis via the MAPK15 pathway. Oncol Res 2025; 33:347-356. [PMID: 39866235 PMCID: PMC11753989 DOI: 10.32604/or.2024.056039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/12/2024] [Indexed: 01/28/2025] Open
Abstract
Background Clear cell renal carcinoma (ccRCC), the leading histological subtype of RCC, lacks any targeted therapy options. Although some studies have shown that early growth response factor 1 (EGR1) has a significant role in cancer development and progression, its role and underlying mechanisms in ccRCC remain poorly understood. Methods The Cancer Genome Atlas (TCGA) database was utilized to examine the expression of EGR1 in ccRCC. The expression of EGR1 in 55 ccRCC tissues was evaluated using immunohistochemistry. The link between EGR1 expression and clinicopathological variables was examined through an analysis. Gain-of-function assays were employed to investigate EGR1's biological functions in ccRCC cells, involving proliferation, colony formation, invasion assays, and tumorigenesis in nude mice. In order to assess the protein expression of mitogen-activated protein kinase 15 (MAPK15), E-cadherin, matrix metalloproteinase-9/-2 (MMP-9 and MMP-2), Western blot technique was applied. Results The results revealed a decrease in EGR1 expression in ccRCC tissues. This decrease was strongly linked to TNM stage, lymphatic metastasis, tumor size, histological grade, and unfavorable prognosis in ccRCC patients. It has been demonstrated that overexpressing EGR1 inhibits the growth of xenograft tumors in vivo and inhibits cell colony formation, motility, and invasion in vitro. Furthermore, EGR1 can prevent the development and movement of ccRCC cells by controlling the expression of MMP-2, MMP-9, E-cadherin, and MAPK15. Conclusions The EGR1/MAPK15 axis may represent a promising target for drug development, with EGR1 serving as a possible target for ccRCC therapy.
Collapse
Affiliation(s)
- NAIXIONG PENG
- Department of Urology, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - YUEFENG CAI
- Department of Urology, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - DONG CHEN
- Department of Urology, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - LING DENG
- Department of Urology, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - ZEJIAN ZHANG
- Department of Urology, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - WEI LI
- Department of Urology, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| |
Collapse
|
7
|
Merchant M, Ashraf J, Masood KI, Yameen M, Hussain R, Nasir A, Hasan Z. SARS-CoV-2 variants induce increased inflammatory gene expression but reduced interferon responses and heme synthesis as compared with wild type strains. Sci Rep 2024; 14:25734. [PMID: 39468120 PMCID: PMC11519399 DOI: 10.1038/s41598-024-76401-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
SARS-CoV-2 variants of concern (VOC) have been associated with increased viral transmission and disease severity. We investigated the mechanisms of pathogenesis caused by variants using a host blood transcriptome profiling approach. We analysed transcriptional signatures of COVID-19 patients comparing those infected with wildtype (wt), alpha, delta or omicron strains seeking insights into infection in Asymptomatic cases.Comparison of transcriptional profiles of Symptomatic and Asymptomatic COVID-19 cases showed increased differentially regulated gene (DEGs) of inflammatory, apoptosis and blood coagulation pathways, with decreased T cell and Interferon stimulated genes (ISG) activation. Between SARS-CoV-2 strains, an increasing number of DEGs occurred in comparisons between wt and alpha (196), delta (1425) or, omicron (2313) infections. COVID-19 cases with alpha or, delta variants demonstrated suppression transcripts of innate immune pathways. EGR1 and CXCL8 were highly upregulated in those infected with VOC; heme biosynthetic pathway genes (ALAS2, HBB, HBG1, HBD9) and ISGs were downregulated. Delta and omicron infections upregulated ribosomal pathways, reflecting increased viral RNA translation. Asymptomatic COVID-19 cases infected with delta infections showed increased cytokines and ISGs expression. Overall, increased inflammation, with reduced host heme synthesis was associated with infections caused by VOC infections, with raised type I interferon in cases with less severe disease.
Collapse
Affiliation(s)
- Mariam Merchant
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Javaria Ashraf
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Kiran Iqbal Masood
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Maliha Yameen
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Rabia Hussain
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Asghar Nasir
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Zahra Hasan
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan.
| |
Collapse
|
8
|
Rezapour M, Narayanan A, Gurcan MN. Machine Learning Analysis of RNA-Seq Data Identifies Key Gene Signatures and Pathways in Mpox Virus-Induced Gastrointestinal Complications Using Colon Organoid Models. Int J Mol Sci 2024; 25:11142. [PMID: 39456924 PMCID: PMC11508207 DOI: 10.3390/ijms252011142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Mpox, caused by the Mpox virus (MPXV), emerged globally in 2022 with the Clade IIb strain, presenting a critical public health challenge. While MPXV is primarily characterized by fever and rash, gastrointestinal (GI) complications, such as diarrhea and proctitis, have also been observed. This study is a reanalysis of GSE219036 without own data and focuses on the impact of MPXV infection on the colon, using human-induced pluripotent stem cell-derived colon organoids as a model. We applied a tailored statistical framework for RNA-seq data, Generalized Linear Models with Quasi-Likelihood F-tests and Relaxed Magnitude-Altitude Scoring (GLMQL-RMAS), to identify differentially expressed genes (DEGs) across MPXV clades: MPXV I (Zr-599 Congo Basin), MPXV IIa (Liberia), and MPXV IIb (2022 MPXV). Through a novel methodology called Cross-RMAS, we ranked genes by integrating statistical significance and biological relevance across all clades. Machine learning analysis using the genes identified by Cross-RMAS, demonstrated 100% accuracy in differentiating between the different MPXV strains and mock samples. Furthermore, our findings reveal that MPXV Clade I induces the most extensive alterations in gene expression, with significant upregulation of stress response genes, such as HSPA6 and FOS, and downregulation of genes involved in cytoskeletal organization and vesicular trafficking, such as PSAP and CFL1. In contrast, Clade IIb shows the least impact on gene expression. Through Gene Ontology (GO) analysis, we identified pathways involved in protein folding, immune response, and epithelial integrity that are disrupted in infected cells, suggesting mechanisms by which MPXV may contribute to GI symptoms.
Collapse
Affiliation(s)
- Mostafa Rezapour
- Center for Artificial Intelligence Research, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA;
| | - Aarthi Narayanan
- Department of Biology, George Mason University, Fairfax, VA 22030, USA;
| | - Metin Nafi Gurcan
- Center for Artificial Intelligence Research, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA;
| |
Collapse
|
9
|
Wu C, Zhang Z, Li Z, Li R, Huo S, Li H, Lu R, Tian H, Wang W, Zhao L, Huang B, Deng Y, Tan W. Vaccinia virus Tiantan strain blocks host antiviral innate immunity and programmed cell death by disrupting gene expression. BIOSAFETY AND HEALTH 2024; 6:286-297. [PMID: 40078737 PMCID: PMC11895032 DOI: 10.1016/j.bsheal.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 03/14/2025] Open
Abstract
The vaccinia virus Tiantan (VTT) is widely utilized as a smallpox vaccine in China and holds significant importance in the prevention of diseases stemming from poxvirus infections. Nevertheless, few studies have investigated the influence of VTT infection on host gene expression. In this study, we constructed time series transcriptomic profiles of HeLa cells infected with both VTT and western reserve (WR) strains. We observed similar patterns of viral gene expression, while the expression levels of host genes varied between the two strains. There was an immediate and significant repression of host gene expression, particularly in genes associated with oxidative phosphorylation. Conversely, genes involved in nerve growth factor (NGF)-stimulated transcription were significantly activated. The upregulation of genes linked to the ribonucleic acid (RNA)-induced silencing complex (RISC) suggested a potential role for posttranscriptional regulation in the interaction between the vaccinia virus and the host. In the later stages of infection, pathways such as extracellular matrix organization, neutrophil degranulation, complement and interferon responses, translation, and programmed cell death are largely inhibited. A significant number of host genes exhibit correlations with changes in the expression levels of viral genes. The host genes that are negatively correlated with viral genes are mainly enriched in pathways associated with translation and the response to viral infection. This study significantly contributes to advancing our understanding of the dynamics between the vaccinia virus and the host, improving the application of VTTs and facilitating the development of effective vaccines against diseases such as smallpox and monkeypox.
Collapse
Affiliation(s)
- Changcheng Wu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Zhongxian Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Zhaoqing Li
- School of Public Health, Baotou Medical College, Baotou 014040, China
| | - Ruorui Li
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Shuting Huo
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Han Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Roujian Lu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Houwen Tian
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Wenling Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Li Zhao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Baoying Huang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yao Deng
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Wenjie Tan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- School of Public Health, Baotou Medical College, Baotou 014040, China
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| |
Collapse
|
10
|
Rasras S, Akade E, Mohammadianinejad SE, Barahman M, Bahadoram M. Early growth response 1 transcription factor and its context-dependent functions in glioblastoma. Contemp Oncol (Pozn) 2024; 28:91-97. [PMID: 39421709 PMCID: PMC11480913 DOI: 10.5114/wo.2024.142583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/14/2024] [Indexed: 10/19/2024] Open
Abstract
Glioblastoma is the most aggressive form of primary brain tumour in adults. This tumour employs numerous transcription factors to advance and sustain its progression. Current evidence suggest that early growth response 1 (EGR1) plays a dual role as both an oncogene and a tumour suppressor in glioblastoma. Early growth response 1 expression is prevalent in glioblastoma, affecting over 80% of cases. Early growth response 1 regulatory roles extend to angiogenesis, cell adhesion, and resistance to chemotherapy, notably influencing pathways like hypoxia-inducible factor 1α and vascular endothelial growth factor A. Early growth response 1 can also induce cell adhesion, migration, chemoresistance against temozolomide, stemness, and self-renewal in glioblastoma cells. Despite its oncogenic functions, EGR1 can also suppress tumours by upregulating non-steroidal anti-inflammatory drug-activated gene 1 and phosphatase and tensin homolog deleted on chromosome ten, and inhibiting invasion and metastasis. Additionally, EGR1 may have hypothetical implications in the viral hit-and-run theory, particularly regarding cytomegalovirus infection. The key findings of this review are the context- dependent nature of EGR1's actions and its potential as a prognostic marker in glioblastoma. Further research is needed to understand EGR1's role fully and exploit its potential in clinics.
Collapse
Affiliation(s)
- Saleh Rasras
- Department of Neurosurgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Esma’il Akade
- Department of Medical Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Maedeh Barahman
- Advanced Diagnostic and Interventional Radiology Research Centre (ADIR), Imam Khomeini Hospital, Iran University of Medical Sciences, Iran
| | - Mohammad Bahadoram
- Department of Neurosurgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
11
|
Huang Y, Bergant V, Grass V, Emslander Q, Hamad MS, Hubel P, Mergner J, Piras A, Krey K, Henrici A, Öllinger R, Tesfamariam YM, Dalla Rosa I, Bunse T, Sutter G, Ebert G, Schmidt FI, Way M, Rad R, Bowie AG, Protzer U, Pichlmair A. Multi-omics characterization of the monkeypox virus infection. Nat Commun 2024; 15:6778. [PMID: 39117661 PMCID: PMC11310467 DOI: 10.1038/s41467-024-51074-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Multiple omics analyzes of Vaccinia virus (VACV) infection have defined molecular characteristics of poxvirus biology. However, little is known about the monkeypox (mpox) virus (MPXV) in humans, which has a different disease manifestation despite its high sequence similarity to VACV. Here, we perform an in-depth multi-omics analysis of the transcriptome, proteome, and phosphoproteome signatures of MPXV-infected primary human fibroblasts to gain insights into the virus-host interplay. In addition to expected perturbations of immune-related pathways, we uncover regulation of the HIPPO and TGF-β pathways. We identify dynamic phosphorylation of both host and viral proteins, which suggests that MAPKs are key regulators of differential phosphorylation in MPXV-infected cells. Among the viral proteins, we find dynamic phosphorylation of H5 that influenced the binding of H5 to dsDNA. Our extensive dataset highlights signaling events and hotspots perturbed by MPXV, extending the current knowledge on poxviruses. We use integrated pathway analysis and drug-target prediction approaches to identify potential drug targets that affect virus growth. Functionally, we exemplify the utility of this approach by identifying inhibitors of MTOR, CHUK/IKBKB, and splicing factor kinases with potent antiviral efficacy against MPXV and VACV.
Collapse
Affiliation(s)
- Yiqi Huang
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Valter Bergant
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Vincent Grass
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Quirin Emslander
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - M Sabri Hamad
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Philipp Hubel
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Munich, Germany
- Core Facility Hohenheim, Universität Hohenheim, Stuttgart, Germany
| | - Julia Mergner
- Bavarian Center for Biomolecular Mass Spectrometry at University Hospital rechts der Isar (BayBioMS@MRI), Technical University of Munich, Munich, Germany
| | - Antonio Piras
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Karsten Krey
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Alexander Henrici
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics and Department of Medicine II, School of Medicine, Technical University of Munich, Munich, Germany
| | - Yonas M Tesfamariam
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Ilaria Dalla Rosa
- Cellular signalling and cytoskeletal function laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Till Bunse
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Gerd Sutter
- Institute for Infectious Diseases and Zoonoses, Department of Veterinary Sciences, LMU Munich, Munich, Germany
- German Centre for Infection Research (DZIF), Partner site Munich, Munich, Germany
| | - Gregor Ebert
- Institute of Virology, Technical University of Munich, School of Medicine/Helmholtz Munich, Munich, Germany
| | - Florian I Schmidt
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Michael Way
- Cellular signalling and cytoskeletal function laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Department of Infectious Disease, Imperial College, London, UK
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics and Department of Medicine II, School of Medicine, Technical University of Munich, Munich, Germany
| | - Andrew G Bowie
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Ulrike Protzer
- German Centre for Infection Research (DZIF), Partner site Munich, Munich, Germany
- Institute of Virology, Technical University of Munich, School of Medicine/Helmholtz Munich, Munich, Germany
| | - Andreas Pichlmair
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany.
- German Centre for Infection Research (DZIF), Partner site Munich, Munich, Germany.
| |
Collapse
|
12
|
Wang Y, Tang Y, Liu TH, Shao L, Li C, Wang Y, Tan P. Integrative Multi-omics Analysis to Characterize Herpes Virus Infection Increases the Risk of Alzheimer's Disease. Mol Neurobiol 2024; 61:5337-5352. [PMID: 38191694 DOI: 10.1007/s12035-023-03903-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/22/2023] [Indexed: 01/10/2024]
Abstract
Evidence suggests that herpes virus infection is associated with an increased risk of Alzheimer's disease (AD), and innate and adaptive immunity plays an important role in the association. Although there have been many studies, the mechanism of the association is still unclear. This study aims to reveal the underlying molecular and immune regulatory network through multi-omics data and provide support for the study of the mechanism of infection and AD in the future. Here, we found that the herpes virus infection significantly increased the risk of AD. Genes associated with the occurrence and development of AD and genetically regulated by herpes virus infection are mainly enrichment in immune-related pathways. The 22 key regulatory genes identified by machine learning are mainly immune genes. They are also significantly related to the infiltration changes of 3 immune cell in AD. Furthermore, many of these genes have previously been reported to be linked, or potentially linked, to the pathological mechanisms of both herpes virus infection and AD. In conclusion, this study contributes to the study of the mechanisms related to herpes virus infection and AD, and indicates that the regulation of innate and adaptive immunity may be an effective strategy for preventing and treating herpes virus infection and AD. Additionally, the identified key regulatory genes, whether previously studied or newly discovered, may serve as valuable targets for prevention and treatment strategies.
Collapse
Affiliation(s)
- Yongheng Wang
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproductive and Development, Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Yaqin Tang
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Tai-Hang Liu
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproductive and Development, Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Lizhen Shao
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Chunying Li
- Chongqing Vocational College of Resources and Environmental Protection, Chongqing, China.
| | - Yingxiong Wang
- Joint International Research Laboratory of Reproductive and Development, Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, China.
| | - Pengcheng Tan
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
13
|
Franco-Enzástiga Ú, Inturi NN, Natarajan K, Mwirigi JM, Mazhar K, Schlachetzki JC, Schumacher M, Price TJ. Epigenomic landscape of the human dorsal root ganglion: sex differences and transcriptional regulation of nociceptive genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.587047. [PMID: 38586055 PMCID: PMC10996669 DOI: 10.1101/2024.03.27.587047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Gene expression is influenced by chromatin architecture via controlled access of regulatory factors to DNA. To better understand gene regulation in the human dorsal root ganglion (hDRG) we used bulk and spatial transposase-accessible chromatin technology followed by sequencing (ATAC-seq). Using bulk ATAC-seq, we detected that in females diverse differentially accessible chromatin regions (DARs) mapped to the X chromosome and in males to autosomal genes. EGR1/3 and SP1/4 transcription factor binding motifs were abundant within DARs in females, and JUN, FOS and other AP-1 factors in males. To dissect the open chromatin profile in hDRG neurons, we used spatial ATAC-seq. The neuron cluster showed higher chromatin accessibility in GABAergic, glutamatergic, and interferon-related genes in females, and in Ca2+- signaling-related genes in males. Sex differences in transcription factor binding sites in neuron-proximal barcodes were consistent with the trends observed in bulk ATAC-seq data. We validated that EGR1 expression is biased to female hDRG compared to male. Strikingly, XIST, the long-noncoding RNA responsible for X inactivation, hybridization signal was found to be highly dispersed in the female neuronal but not non-neuronal nuclei suggesting weak X inactivation in female hDRG neurons. Our findings point to baseline epigenomic sex differences in the hDRG that likely underlie divergent transcriptional responses that determine mechanistic sex differences in pain.
Collapse
Affiliation(s)
- Úrzula Franco-Enzástiga
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Nikhil N. Inturi
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Keerthana Natarajan
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Juliet M. Mwirigi
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Khadija Mazhar
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Johannes C.M. Schlachetzki
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0651, USA
| | - Mark Schumacher
- Department of Anesthesia and Perioperative Care and the UCSF Pain and Addiction Research Center, University of California, San Francisco, California, 94143 USA
| | - Theodore J. Price
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| |
Collapse
|
14
|
Jiang N, He Y, Wu J, You Q, Zhang R, Cheng M, Liu B, Cai Y, Lyu R, Wu Z. 6-Thioguanine inhibits severe fever with thrombocytopenia syndrome virus through suppression of EGR1. Antiviral Res 2024; 227:105916. [PMID: 38777095 DOI: 10.1016/j.antiviral.2024.105916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/06/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
The severe fever with thrombocytopenia syndrome virus (SFTSV) is a novel phlebovirus, recently being officially renamed as Dabie bandavirus, and a causative agent for an emerging infectious disease associated with high fatality. Effective therapeutics and vaccines are lacking and disease pathogenesis is yet to be fully elucidated. In our effort to identify new SFTSV inhibitory molecules, 6-Thioguanine (6-TG) was found to potently inhibit SFTSV infection. 6-TG has been widely used as therapeutic agent since the approval of the Food and Drug Administration in the 1960s. In the current study, we showed that 6-TG was a potent inhibitor of SFTSV infection with 50% effective concentrations (EC50) of 3.465 μM in VeroE6 cells, and 1.848 μM in HUVEC cells. The selectivity index (SI) was >57 in VeroE6 cells and >108 in HUVEC cells, respectively. The SFTSV RNA transcription, protein synthesis, and progeny virions were reduced in a dose dependent manner by the presence of 6-TG in the in vitro infection assay. Further study on the mechanism of the anti-SFTSV activity showed that 6-TG downregulated the production of early growth response gene-1 (EGR1). Using gene silencing and overexpression, we further confirmed that EGR1 was a host restriction factor against SFTSV. Meanwhile, treatment of infected experimental animals with 6-TG inhibited SFTSV infection and alleviated multi-organ dysfunction. In conclusion, we have identified 6-TG as an effective inhibitor of SFTSV replication via the inhibition of EGR1 expression. Further studies are needed to evaluate of 6-TG as a potential therapeutic for treating SFTS.
Collapse
Affiliation(s)
- Na Jiang
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Yating He
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Jing Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Qiao You
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Rui Zhang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Min Cheng
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Bingxin Liu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Yurong Cai
- School of Life Sciences, Ningxia University, Yinchuan, China
| | - Ruining Lyu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Zhiwei Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
15
|
Yang Q, Murata K, Ikeda T, Minatoya K, Masumoto H. miR-124-3p downregulates EGR1 to suppress ischemia-hypoxia reperfusion injury in human iPS cell-derived cardiomyocytes. Sci Rep 2024; 14:14811. [PMID: 38926457 PMCID: PMC11208498 DOI: 10.1038/s41598-024-65373-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
Ischemic heart diseases are a major global cause of death, and despite timely revascularization, heart failure due to ischemia-hypoxia reperfusion (IH/R) injury remains a concern. The study focused on the role of Early Growth Response 1 (EGR1) in IH/R-induced apoptosis in human cardiomyocytes (CMs). Human induced pluripotent stem cell (hiPSC)-derived CMs were cultured under IH/R conditions, revealing higher EGR1 expression in the IH/R group through quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting (WB). Immunofluorescence analysis (IFA) showed an increased ratio of cleaved Caspase-3-positive apoptotic cells in the IH/R group. Using siRNA for EGR1 successfully downregulated EGR1, suppressing cleaved Caspase-3-positive apoptotic cell ratio. Bioinformatic analysis indicated that EGR1 is a plausible target of miR-124-3p under IH/R conditions. The miR-124-3p mimic, predicted to antagonize EGR1 mRNA, downregulated EGR1 under IH/R conditions in qRT-PCR and WB, as confirmed by IFA. The suppression of EGR1 by the miR-124-3p mimic subsequently reduced CM apoptosis. The study suggests that treatment with miR-124-3p targeting EGR1 could be a potential novel therapeutic approach for cardioprotection in ischemic heart diseases in the future.
Collapse
Affiliation(s)
- Qiaoke Yang
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, 54 Kawara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kozue Murata
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, 54 Kawara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Clinical Translational Research Program, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Tadashi Ikeda
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, 54 Kawara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kenji Minatoya
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, 54 Kawara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hidetoshi Masumoto
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, 54 Kawara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
- Clinical Translational Research Program, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe, 650-0047, Japan.
| |
Collapse
|
16
|
Loganathan T, Fletcher J, Abraham P, Kannangai R, Chakraborty C, El Allali A, Alsamman AM, Zayed H, C GPD. Expression analysis and mapping of Viral-Host Protein interactions of Poxviridae suggests a lead candidate molecule targeting Mpox. BMC Infect Dis 2024; 24:483. [PMID: 38730352 PMCID: PMC11088078 DOI: 10.1186/s12879-024-09332-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Monkeypox (Mpox) is an important human pathogen without etiological treatment. A viral-host interactome study may advance our understanding of molecular pathogenesis and lead to the discovery of suitable therapeutic targets. METHODS GEO Expression datasets characterizing mRNA profile changes in different host responses to poxviruses were analyzed for shared pathway identification, and then, the Protein-protein interaction (PPI) maps were built. The viral gene expression datasets of Monkeypox virus (MPXV) and Vaccinia virus (VACV) were used to identify the significant viral genes and further investigated for their binding to the library of targeting molecules. RESULTS Infection with MPXV interferes with various cellular pathways, including interleukin and MAPK signaling. While most host differentially expressed genes (DEGs) are predominantly downregulated upon infection, marked enrichments in histone modifiers and immune-related genes were observed. PPI analysis revealed a set of novel virus-specific protein interactions for the genes in the above functional clusters. The viral DEGs exhibited variable expression patterns in three studied cell types: primary human monocytes, primary human fibroblast, and HeLa, resulting in 118 commonly deregulated proteins. Poxvirus proteins C6R derived protein K7 and K7R of MPXV and VACV were prioritized as targets for potential therapeutic interventions based on their histone-regulating and immunosuppressive properties. In the computational docking and Molecular Dynamics (MD) experiments, these proteins were shown to bind the candidate small molecule S3I-201, which was further prioritized for lead development. RESULTS MPXV circumvents cellular antiviral defenses by engaging histone modification and immune evasion strategies. C6R-derived protein K7 binding candidate molecule S3I-201 is a priority promising candidate for treating Mpox.
Collapse
Affiliation(s)
- Tamizhini Loganathan
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore-632014, Tamil Nadu, India
| | - John Fletcher
- Department of Clinical Virology, Christian Medical College, Tamil Nadu, Vellore, 632004, India
| | - Priya Abraham
- Department of Clinical Virology, Christian Medical College, Tamil Nadu, Vellore, 632004, India
| | - Rajesh Kannangai
- Department of Clinical Virology, Christian Medical College, Tamil Nadu, Vellore, 632004, India
| | | | - Achraf El Allali
- Bioinformatics Laboratory, College of Computing, Mohammed VI Polytechnic University, Ben Guerir, Mohammed, Morocco.
| | - Alsamman M Alsamman
- Department of Genome Mapping, Molecular Genetics, and Genome Mapping Laboratory, Agricultural Genetic Engineering Research Institute, Giza, Egypt
| | - Hatem Zayed
- Department of Biomedical Sciences College of Health Sciences, QU. Health, Qatar University, Doha, Qatar
| | - George Priya Doss C
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore-632014, Tamil Nadu, India.
| |
Collapse
|
17
|
Zhang Z, Jin H, Zhang X, Bai M, Zheng K, Tian J, Deng B, Mao L, Qiu P, Huang B. Bioinformatics and system biology approach to identify the influences among COVID-19, influenza, and HIV on the regulation of gene expression. Front Immunol 2024; 15:1369311. [PMID: 38601162 PMCID: PMC11004287 DOI: 10.3389/fimmu.2024.1369311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/14/2024] [Indexed: 04/12/2024] Open
Abstract
Background Coronavirus disease (COVID-19), caused by SARS-CoV-2, has emerged as a infectious disease, coexisting with widespread seasonal and sporadic influenza epidemics globally. Individuals living with HIV, characterized by compromised immune systems, face an elevated risk of severe outcomes and increased mortality when affected by COVID-19. Despite this connection, the molecular intricacies linking COVID-19, influenza, and HIV remain unclear. Our research endeavors to elucidate the shared pathways and molecular markers in individuals with HIV concurrently infected with COVID-19 and influenza. Furthermore, we aim to identify potential medications that may prove beneficial in managing these three interconnected illnesses. Methods Sequencing data for COVID-19 (GSE157103), influenza (GSE185576), and HIV (GSE195434) were retrieved from the GEO database. Commonly expressed differentially expressed genes (DEGs) were identified across the three datasets, followed by immune infiltration analysis and diagnostic ROC analysis on the DEGs. Functional enrichment analysis was performed using GO/KEGG and Gene Set Enrichment Analysis (GSEA). Hub genes were screened through a Protein-Protein Interaction networks (PPIs) analysis among DEGs. Analysis of miRNAs, transcription factors, drug chemicals, diseases, and RNA-binding proteins was conducted based on the identified hub genes. Finally, quantitative PCR (qPCR) expression verification was undertaken for selected hub genes. Results The analysis of the three datasets revealed a total of 22 shared DEGs, with the majority exhibiting an area under the curve value exceeding 0.7. Functional enrichment analysis with GO/KEGG and GSEA primarily highlighted signaling pathways associated with ribosomes and tumors. The ten identified hub genes included IFI44L, IFI44, RSAD2, ISG15, IFIT3, OAS1, EIF2AK2, IFI27, OASL, and EPSTI1. Additionally, five crucial miRNAs (hsa-miR-8060, hsa-miR-6890-5p, hsa-miR-5003-3p, hsa-miR-6893-3p, and hsa-miR-6069), five essential transcription factors (CREB1, CEBPB, EGR1, EP300, and IRF1), and the top ten significant drug chemicals (estradiol, progesterone, tretinoin, calcitriol, fluorouracil, methotrexate, lipopolysaccharide, valproic acid, silicon dioxide, cyclosporine) were identified. Conclusion This research provides valuable insights into shared molecular targets, signaling pathways, drug chemicals, and potential biomarkers for individuals facing the complex intersection of COVID-19, influenza, and HIV. These findings hold promise for enhancing the precision of diagnosis and treatment for individuals with HIV co-infected with COVID-19 and influenza.
Collapse
Affiliation(s)
- Zhen Zhang
- Microbiology Laboratory Department, Jinzhou Center for Disease Control and Prevention, Jinzhou, Liaoning, China
| | - Hao Jin
- Microbiology Laboratory Department, Jinzhou Center for Disease Control and Prevention, Jinzhou, Liaoning, China
| | - Xu Zhang
- Microbiology Laboratory Department, Jinzhou Center for Disease Control and Prevention, Jinzhou, Liaoning, China
| | - Mei Bai
- Microbiology Laboratory Department, Jinzhou Center for Disease Control and Prevention, Jinzhou, Liaoning, China
| | - Kexin Zheng
- Microbiology Laboratory Department, Jinzhou Center for Disease Control and Prevention, Jinzhou, Liaoning, China
| | - Jing Tian
- Department of Immunology, School of Basic Medical Science, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Bin Deng
- Laboratory Department, Jinzhou Central Hospital, Jinzhou, Liaoning, China
| | - Lingling Mao
- Institute for Prevention and Control of Infection and Infectious Diseases, Liaoning Provincial Center for Disease Control and Prevention, Shenyang, Liaoning, China
| | - Pengcheng Qiu
- Thoracic Surgery Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Bo Huang
- Thoracic Surgery Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
- Thoracic Surgery Department, Yingkou Central Hospital, Yingkou, Liaoning, China
| |
Collapse
|
18
|
Zou K, Wang C, Zhou C, Yang Y, Zeng Z. Early growth response 1/Krüppel-like factor 5 pathway inhibitor alleviates lipopolysaccharide-induced lung injury by promoting autophagy. Eur J Pharmacol 2024; 964:176294. [PMID: 38158112 DOI: 10.1016/j.ejphar.2023.176294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Early transcription factors play critical roles in the development of acute lung injury/acute respiratory distress syndrome (ALI/ARDS). Early growth response 1 (EGR1) is a transcription factor essential for various biological processes, including regulation of metabolism, differentiation, and inflammation. However, its role in ALI has been poorly reported. In this study, we aimed to determine the effect of EGR1 on ALI to gain insights into the theoretical basis for further treatment of ALI. By employing concerted molecular biology techniques, we showed that EGR1 protein was upregulated in mice. EGR1 protein was upregulated in mice and human lung epithelial cells in response to lipopolysaccharide (LPS) stimulation. EGR1 knockdown promoted autophagy and reduced LPS-induced pro-inflammatory mediator production. EGR1 was preferentially bound to the GCGTGGGCG motif region and EGR1-binding peak-related genes were mainly enriched in autophagy and injury stress-related pathways. Additionally, EGR1 promoted Krüppel-like factor 5 (KLF5) transcription by binding to the KLF5 promoter region, and KLF5 knockdown significantly decreased inflammatory damage, suggesting that EGR1 promotes ALI progression by regulating KLF5 expression. Furthermore, ML264, an inhibitor of the EGR1/KLF5 pathway axis, displayed a protective role in ALI to reduce inflammation. In conclusion, our findings demonstrate the potential of EGR1 knockdown to inhibit KLF5 and promote autophagy, further reducing the inflammatory response to mitigate ALI/ARDS. The EGR1/KLF5 pathway axis may be a valuable therapeutic target for the treatment of ALI/ARDS.
Collapse
Affiliation(s)
- Kang Zou
- Department of Critical Care Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, 330006, Jiangxi Province, China; Jiangxi Institute of Respiratory Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, 330006, Jiangxi Province, China; Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou City, 341000, Jiangxi Province, China
| | - Cheng Wang
- Department of Critical Care Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, 330006, Jiangxi Province, China; Jiangxi Institute of Respiratory Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, 330006, Jiangxi Province, China
| | - Chaoqi Zhou
- Department of Critical Care Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, 330006, Jiangxi Province, China
| | - Yuting Yang
- Department of Critical Care Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, 330006, Jiangxi Province, China
| | - Zhenguo Zeng
- Department of Critical Care Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, 330006, Jiangxi Province, China.
| |
Collapse
|
19
|
Linkner TR, Ambrus V, Kunkli B, Szojka ZI, Kalló G, Csősz É, Kumar A, Emri M, Tőzsér J, Mahdi M. Comparative Analysis of Differential Cellular Transcriptome and Proteome Regulation by HIV-1 and HIV-2 Pseudovirions in the Early Phase of Infection. Int J Mol Sci 2023; 25:380. [PMID: 38203551 PMCID: PMC10779251 DOI: 10.3390/ijms25010380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/18/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
In spite of the similar structural and genomic organization of human immunodeficiency viruses type 1 and 2 (HIV-1 and HIV-2), striking differences exist between them in terms of replication dynamics and clinical manifestation of infection. Although the pathomechanism of HIV-1 infection is well characterized, relatively few data are available regarding HIV-2 viral replication and its interaction with host-cell proteins during the early phase of infection. We utilized proteo-transcriptomic analyses to determine differential genome expression and proteomic changes induced by transduction with HIV-1/2 pseudovirions during 8, 12 and 26 h time-points in HEK-293T cells. We show that alteration in the cellular milieu was indeed different between the two pseudovirions. The significantly higher number of genes altered by HIV-2 in the first two time-points suggests a more diverse yet subtle effect on the host cell, preparing the infected cell for integration and latency. On the other hand, GO analysis showed that, while HIV-1 induced cellular oxidative stress and had a greater effect on cellular metabolism, HIV-2 mostly affected genes involved in cell adhesion, extracellular matrix organization or cellular differentiation. Proteomics analysis revealed that HIV-2 significantly downregulated the expression of proteins involved in mRNA processing and translation. Meanwhile, HIV-1 influenced the cellular level of translation initiation factors and chaperones. Our study provides insight into the understudied replication cycle of HIV-2 and enriches our knowledge about the use of HIV-based lentiviral vectors in general.
Collapse
Affiliation(s)
- Tamás Richárd Linkner
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.R.L.); (V.A.); (B.K.); (Z.I.S.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary;
| | - Viktor Ambrus
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.R.L.); (V.A.); (B.K.); (Z.I.S.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary;
| | - Balázs Kunkli
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.R.L.); (V.A.); (B.K.); (Z.I.S.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary;
| | - Zsófia Ilona Szojka
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.R.L.); (V.A.); (B.K.); (Z.I.S.)
- Division of Medical Microbiology, Department of Laboratory Medicine, Lund University, 22100 Lund, Sweden
| | - Gergő Kalló
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.K.); (É.C.)
| | - Éva Csősz
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.K.); (É.C.)
| | - Ajneesh Kumar
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary;
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.K.); (É.C.)
| | - Miklós Emri
- Department of Medical Imaging, Division of Nuclear Medicine and Translational Imaging, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - József Tőzsér
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.R.L.); (V.A.); (B.K.); (Z.I.S.)
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.K.); (É.C.)
| | - Mohamed Mahdi
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.R.L.); (V.A.); (B.K.); (Z.I.S.)
| |
Collapse
|
20
|
Lee JD, Menasche BL, Mavrikaki M, Uyemura MM, Hong SM, Kozlova N, Wei J, Alfajaro MM, Filler RB, Müller A, Saxena T, Posey RR, Cheung P, Muranen T, Heng YJ, Paulo JA, Wilen CB, Slack FJ. Differences in syncytia formation by SARS-CoV-2 variants modify host chromatin accessibility and cellular senescence via TP53. Cell Rep 2023; 42:113478. [PMID: 37991919 PMCID: PMC10785701 DOI: 10.1016/j.celrep.2023.113478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/13/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) remains a significant public health threat due to the ability of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants to evade the immune system and cause breakthrough infections. Although pathogenic coronaviruses such as SARS-CoV-2 and Middle East respiratory syndrome (MERS)-CoV lead to severe respiratory infections, how these viruses affect the chromatin proteomic composition upon infection remains largely uncharacterized. Here, we use our recently developed integrative DNA And Protein Tagging methodology to identify changes in host chromatin accessibility states and chromatin proteomic composition upon infection with pathogenic coronaviruses. SARS-CoV-2 infection induces TP53 stabilization on chromatin, which contributes to its host cytopathic effect. We mapped this TP53 stabilization to the SARS-CoV-2 spike and its propensity to form syncytia, a consequence of cell-cell fusion. Differences in SARS-CoV-2 spike variant-induced syncytia formation modify chromatin accessibility, cellular senescence, and inflammatory cytokine release via TP53. Our findings suggest that differences in syncytia formation alter senescence-associated inflammation, which varies among SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Jonathan D Lee
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| | - Bridget L Menasche
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Maria Mavrikaki
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Madison M Uyemura
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Su Min Hong
- Department of Genetics, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Nina Kozlova
- Department of Genetics, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Jin Wei
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Mia M Alfajaro
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Renata B Filler
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Arne Müller
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Tanvi Saxena
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Ryan R Posey
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Priscilla Cheung
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Taru Muranen
- Department of Genetics, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Yujing J Heng
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Craig B Wilen
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Frank J Slack
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Department of Genetics, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
21
|
Wang X, Zhang AM. Functional features of a novel interferon-stimulated gene SHFL: a comprehensive review. Front Microbiol 2023; 14:1323231. [PMID: 38149274 PMCID: PMC10750386 DOI: 10.3389/fmicb.2023.1323231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023] Open
Abstract
Various interferon (IFN)-stimulated genes (ISGs), expressed via Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway-stimulated IFNs to increase antiviral effects or regulate immune response, perform different roles in virus-infected cells. In recent years, a novel ISG, SHFL, which is located in the genomic region 19p13.2 and comprises two isoforms, has been studied as a virus-inhibiting agent. Studies have shown that SHFL suppressive effects on human immunodeficiency virus-1 (HIV), Zika virus (ZIKV), dengue virus (DENV), hepatitis C virus (HCV), Japanese encephalitis virus (JEV), porcine epidemic diarrhea virus (PEDV), Human enterovirus A71 (EV-A71) and Kaposi's sarcoma-associated herpes virus (KSHV). SHFL interacts with various viral and host molecules to inhibit viral life circle and activities, such as replication, translation, and ribosomal frameshifting, or regulates host pathways to degrade viral proteins. In this review, we summarized the functional features of SHFL to provide insights to underlying mechanisms of the antiviral effects of SHFL and explored its potential function.
Collapse
Affiliation(s)
| | - A-Mei Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
22
|
Jeong H, Lee D, Jiang X, Negishi K, Tsubota K, Kurihara T. Opsin 5 mediates violet light-induced early growth response-1 expression in the mouse retina. Sci Rep 2023; 13:17861. [PMID: 37857760 PMCID: PMC10587185 DOI: 10.1038/s41598-023-44983-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023] Open
Abstract
Myopia is an abnormal vision condition characterized by difficulties in seeing distant objects. Myopia has become a public health issue not only in Asian countries but also in Western countries. Previously, we found that violet light (VL, 360-400 nm wavelength) exposure effectively suppressed myopia progression in experimental chick and mice models of myopia. The inhibitory effects of VL on myopia progression are reduced in retina-specific opsin 5 (Opn5) knockout (KO) mice. Furthermore, VL exposure upregulated early growth response-1 (Egr-1) expression in the chorioretinal tissues of chicks. However, the expression of EGR-1 and role of OPN5 in mice following VL exposure remain unclear. In this study, we examined whether VL exposure-induced EGR-1 upregulation depends on Opn5 expression in the mouse retina. EGR-1 mRNA and protein expressions increased in the mouse retina and mouse retinal 661W cells following VL exposure. These increases were consistently reduced in retina specific Opn5 conditional KO mice and Opn5 KO 661W cells. Our results suggest that OPN5 mediates VL-induced EGR-1 upregulation in mice. These molecular targets could be considered for the prevention and treatment of myopia.
Collapse
Affiliation(s)
- Heonuk Jeong
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Deokho Lee
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Xiaoyan Jiang
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
- Tsubota Laboratory, Inc., 304 Toshin Shinanomachi-ekimae Bldg., 34 Shinanomachi Shinjuku-ku, Tokyo, 160-0016, Japan.
| | - Toshihide Kurihara
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
23
|
Yazarlou F, Tabibian M, Azarnezhad A, Sadeghi Rad H, Lipovich L, Sanati G, Mostafavi Abdolmaleky H, Alizadeh F. Evaluating Gene Expression and Methylation Profiles of TCF4, MBP, and EGR1 in Peripheral Blood of Drug-Free Patients with Schizophrenia: Correlations with Psychopathology, Intelligence, and Cognitive Impairment. J Mol Neurosci 2023; 73:738-750. [PMID: 37668894 DOI: 10.1007/s12031-023-02150-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 08/15/2023] [Indexed: 09/06/2023]
Abstract
Discovery and validation of new, reliable diagnostic and predictive biomarkers for schizophrenia (SCZ) are an ongoing effort. Here, we assessed the mRNA expression and DNA methylation of the TCF4, MBP, and EGR1 genes in the blood of patients with SCZ and evaluated their relationships to psychopathology and cognitive impairments. Quantitative real-time PCR and quantitative methylation-specific PCR methods were used to assess the expression level and promoter DNA methylation status of these genes in 70 drug-free SCZ patients and 72 healthy controls. The correlation of molecular changes with psychopathology and cognitive performance of participants was evaluated. We observed downregulation of TCF4 and upregulation of MBP mRNA levels in SCZ cases, relative to controls in our study. DNA methylation status at the promoter region of TCF4 demonstrated an altered pattern in SCZ as well. Additionally, TCF4 mRNA levels were inversely correlated with PANSS and Stroop total errors and positively correlated with WAIS total score and working memory, consistent with previous studies by our group. In contrast, MBP mRNA level was significantly positively correlated with PANSS and Stroop total errors and inversely correlated with WAIS total score and working memory. These epigenetic and expression signatures can help to assemble a peripheral biomarker-based diagnostic panel for SCZ.
Collapse
Affiliation(s)
- Fatemeh Yazarlou
- Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai, United Arab Emirates
| | - Mobina Tabibian
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and Biotechnologies, Shahid Beheshti University, Tehran, Iran
| | - Asaad Azarnezhad
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Habib Sadeghi Rad
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Leonard Lipovich
- Shenzhen Huayuan Biological Science Research Institute, Shenzhen Huayuan Biotechnology Co. Ltd., 601 Building C1, Guangming Science Park, Fenghuang Street, 518000, Shenzhen, Guangdong, People's Republic of China
- Center for Molecular Medicine and Genetics, Wayne State University, 540 E. Canfield St., Detroit, MI, 48201, USA
| | - Golshid Sanati
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | | | - Fatemeh Alizadeh
- Department of Genomic Psychiatry and Behavioral Genomics (DGPBG), Roozbeh Hospital, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
24
|
Lee JD, Menasche BL, Mavrikaki M, Uyemura MM, Hong SM, Kozlova N, Wei J, Alfajaro MM, Filler RB, Müller A, Saxena T, Posey RR, Cheung P, Muranen T, Heng YJ, Paulo JA, Wilen CB, Slack FJ. Differences in syncytia formation by SARS-CoV-2 variants modify host chromatin accessibility and cellular senescence via TP53. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.31.555625. [PMID: 37693555 PMCID: PMC10491142 DOI: 10.1101/2023.08.31.555625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
COVID-19 remains a significant public health threat due to the ability of SARS-CoV-2 variants to evade the immune system and cause breakthrough infections. Although pathogenic coronaviruses such as SARS-CoV-2 and MERS-CoV lead to severe respiratory infections, how these viruses affect the chromatin proteomic composition upon infection remains largely uncharacterized. Here we used our recently developed integrative DNA And Protein Tagging (iDAPT) methodology to identify changes in host chromatin accessibility states and chromatin proteomic composition upon infection with pathogenic coronaviruses. SARS-CoV-2 infection induces TP53 stabilization on chromatin, which contributes to its host cytopathic effect. We mapped this TP53 stabilization to the SARS-CoV-2 spike and its propensity to form syncytia, a consequence of cell-cell fusion. Differences in SARS-CoV-2 spike variant-induced syncytia formation modify chromatin accessibility, cellular senescence, and inflammatory cytokine release via TP53. Our findings suggest that differences in syncytia formation alter senescence-associated inflammation, which varies among SARS-CoV-2 variants.
Collapse
|
25
|
Zou K, Zeng Z. Role of early growth response 1 in inflammation-associated lung diseases. Am J Physiol Lung Cell Mol Physiol 2023; 325:L143-L154. [PMID: 37401387 PMCID: PMC10511164 DOI: 10.1152/ajplung.00413.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/03/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023] Open
Abstract
Early growth response 1 (EGR1), which is involved in cell proliferation, differentiation, apoptosis, adhesion, migration, and immune and inflammatory responses, is a zinc finger transcription factor. EGR1 is a member of the EGR family of early response genes and can be activated by external stimuli such as neurotransmitters, cytokines, hormones, endotoxins, hypoxia, and oxidative stress. EGR1 expression is upregulated during several common respiratory diseases, such as acute lung injury/acute respiratory distress syndrome, chronic obstructive pulmonary disease, asthma, pneumonia, and novel coronavirus disease 2019. Inflammatory response is the common pathophysiological basis of these common respiratory diseases. EGR1 is highly expressed early in the disease, amplifying pathological signals from the extracellular environment and driving disease progression. Thus, EGR1 may be a target for early and effective intervention in these inflammation-associated lung diseases.
Collapse
Affiliation(s)
- Kang Zou
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical College, Ganzhou, People's Republic of China
- Department of Critical Care Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Zhenguo Zeng
- Department of Critical Care Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
26
|
Lu H, Ma J, Li Y, Zhang J, An Y, Du W, Cai X. Bioinformatic and systems biology approach revealing the shared genes and molecular mechanisms between COVID-19 and non-alcoholic hepatitis. Front Mol Biosci 2023; 10:1164220. [PMID: 37405258 PMCID: PMC10315682 DOI: 10.3389/fmolb.2023.1164220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/01/2023] [Indexed: 07/06/2023] Open
Abstract
Introduction: Coronavirus disease 2019 (COVID-19) has become a global pandemic and poses a serious threat to human health. Many studies have shown that pre-existing nonalcoholic steatohepatitis (NASH) can worsen the clinical symptoms in patients suffering from COVID-19. However, the potential molecular mechanisms between NASH and COVID-19 remain unclear. To this end, key molecules and pathways between COVID-19 and NASH were herein explored by bioinformatic analysis. Methods: The common differentially expressed genes (DEGs) between NASH and COVID-19 were obtained by differential gene analysis. Enrichment analysis and protein-protein interaction (PPI) network analysis were carried out using the obtained common DEGs. The key modules and hub genes in PPI network were obtained by using the plug-in of Cytoscape software. Subsequently, the hub genes were verified using datasets of NASH (GSE180882) and COVID-19 (GSE150316), and further evaluated by principal component analysis (PCA) and receiver operating characteristic (ROC). Finally, the verified hub genes were analyzed by single-sample gene set enrichment analysis (ssGSEA) and NetworkAnalyst was used for the analysis of transcription factor (TF)-gene interactions, TF-microRNAs (miRNA) coregulatory network, and Protein-chemical Interactions. Results: A total of 120 DEGs between NASH and COVID-19 datasets were obtained, and the PPI network was constructed. Two key modules were obtained via the PPI network, and enrichment analysis of the key modules revealed the common association between NASH and COVID-19. In total, 16 hub genes were obtained by five algorithms, and six of them, namely, Kruppel-like factor 6 (KLF6), early growth response 1 (EGR1), growth arrest and DNA-damage-inducible 45 beta (GADD45B), JUNB, FOS, and FOS-like antigen 1 (FOSL1) were confirmed to be closely related to NASH and COVID-19. Finally, the relationship between hub genes and related pathways was analyzed, and the interaction network of six hub genes was constructed with TFs, miRNAs, and compounds. Conclusion: This study identified six hub genes related to COVID-19 and NASH, providing a new perspective for disease diagnosis and drug development.
Collapse
|
27
|
da Silva EV, Fontes-Dantas FL, Dantas TV, Dutra A, Nascimento OJM, Alves-Leon SV. Shared Molecular Signatures Across Zika Virus Infection and Multiple Sclerosis Highlight AP-1 Transcription Factor as a Potential Player in Post-ZIKV MS-Like Phenotypes. Mol Neurobiol 2023:10.1007/s12035-023-03305-y. [PMID: 37046138 DOI: 10.1007/s12035-023-03305-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/08/2023] [Indexed: 04/14/2023]
Abstract
Zika virus (ZIKV) is an arbovirus of the Flaviviridae genus that has rapidly disseminated from across the Pacific to the Americas. Robust evidence has indicated a crucial role of ZIKV in congenital virus syndrome, including neonatal microcephaly. Moreover, emerging evidence suggests an association between ZIKV infection and the development of an extensive spectrum of central nervous system inflammatory demyelinating diseases (CNS IDD), such as multiple sclerosis-like clinical phenotypes. However, the underlying mechanisms of host-pathogen neuro-immune interactions remain to be elucidated. This study aimed to identify common transcriptional signatures between multiple sclerosis (MS) and ZIKV infection to generate molecular interaction networks, thereby leading to the identification of deregulated processes and pathways, which could give an insight of these underlying molecular mechanisms. Our investigation included publicly available transcriptomic data from MS patients in either relapse or remission (RR-MS) and datasets of subjects acutely infected by ZIKV for both immune peripheral cells and central nervous system cells. The protein-protein interaction (PPI) analysis showed upregulated AP-1 transcription factors (JUN and FOS) among the top hub and bottleneck genes in RR-MS and ZIKV data. Gene enrichment analysis retrieved a remarkable presence of ontologies and pathways linked to oxidative stress responses, immune cell function, inflammation, interleukin signaling, cell division, and transcriptional regulation commonly enriched in both scenarios. Considering the recent findings concerning AP-1 function in immunological tolerance breakdown, regulation of inflammation, and its function as an oxidative stress sensor, we postulate that the ZIKV trigger may contribute as a boost for the activation of such AP-1-regulated mechanisms that could favor the development of MS-like phenotypes following ZIKV infection in a genetically susceptible individual.
Collapse
Affiliation(s)
- Elielson Veloso da Silva
- Laboratório de Neurociências Translacional, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de pós-graduação em Medicina (Neurologia/Neurociências), Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | - Fabrícia Lima Fontes-Dantas
- Laboratório de Neurociências Translacional, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcântara Gomes, Universidade Estadual do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thiago Viana Dantas
- Programa de Engenharia de Sistemas e Computação-COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Amanda Dutra
- Laboratório de Neurociências Translacional, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Osvaldo J M Nascimento
- Programa de pós-graduação em Medicina (Neurologia/Neurociências), Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | - Soniza Vieira Alves-Leon
- Laboratório de Neurociências Translacional, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil.
- Hospital Universitário Clementino Fraga Filho, Centro de Referência em Doenças Inflamatórias Desmielinizantes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|