1
|
Yu L, Wang H, Zhang X, Xue T. Two-component system UhpAB facilitates the pathogenicity of avian pathogenic Escherichia coli through biofilm formation and stress responses. Avian Pathol 2025; 54:359-370. [PMID: 39801468 DOI: 10.1080/03079457.2024.2442704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 04/05/2025]
Abstract
Avian pathogenic Escherichia coli (APEC) is an important zoonotic pathogen that infects avian species by colonizing the gastrointestinal, respiratory, or reproductive tracts, leading to significant economic losses to the poultry industry worldwide and threatening food security and human health. APEC has evolved the two-component signal transduction system (TCS) to adapt and respond to extracellular environmental stresses, which are produced when the host is invaded by APEC. Here, we focus on the effect of the UhpAB TCS on the pathogenicity of APEC. The results in this study showed that the UhpAB TCS contributed to the pathogenicity of APEC in a chicken infection model. The electrophoretic mobility shift assays (EMSA) confirmed that UhpAB specifically bound to the promoters of fepG, ldrD, ycgV, and ydeI, and activated their expression, measured using real-time reverse transcription PCR (real-time RT-PCR). Furthermore, the UhpAB TCS could promote biofilm formation by activating the expression of biofilm master transcriptional regulator encoding gene csgD and enhance stress tolerance by activating the expression of stress protein encoding genes uspA and bhsA, thereby assisting APEC to evade host immune responses and inflammatory responses, and increasing the pathogenicity of APEC. These findings deepen our understanding of the pathogenic mechanism in APEC and offer new perspectives for further studies on the prevention and control of APEC infection.RESEARCH HIGHLIGHTSUhpAB increases the pathogenicity of APEC.UhpAB activates the expression of virulence genes fepG, ldrD, ycgV, and ydeI.UhpAB promotes biofilm formation and enhances stress tolerance.UhpAB contributes to APEC evading attack by the host immune system.
Collapse
Affiliation(s)
- Lumin Yu
- College of Agriculture and Forestry, Linyi University, Linyi, People's Republic of China
| | - Hui Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, People's Republic of China
| | - Xinglin Zhang
- College of Agriculture and Forestry, Linyi University, Linyi, People's Republic of China
| | - Ting Xue
- School of Life Sciences, Anhui Agricultural University, Hefei, People's Republic of China
| |
Collapse
|
2
|
Subhasinghe I, Bandara HMHN, Karunarathna HMTK, Kodithuwakku SP, Gallage HC, Kalupahana RS, Kottawatta KSA. Antimicrobial resistance patterns and biofilms resurgence ability of Escherichia coli associated with commercial layer chicken farms in Sri Lanka. Vet Microbiol 2025; 302:110422. [PMID: 39923390 DOI: 10.1016/j.vetmic.2025.110422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/23/2024] [Accepted: 02/04/2025] [Indexed: 02/11/2025]
Abstract
This study aims to understand antimicrobial resistance (AMR) associated with planktonic and biofilm-forming bacteria in Sri Lankan chicken industry. Planktonic or biofilm-forming Escherichia coli were isolated from different sources in layer chicken farms and their AMR profiles were determined. Minimum inhibitory concentrations (MICs) of selected antibiotics were quantified against planktonic E. coli isolated from water. Minimum biofilm inhibitory/eradication concentrations (MBIC/MBEC) of tetracycline were determined for biofilm E. coli. Faecal E. coli demonstrated highest resistance to tetracycline (64 % of isolates). Biofilm-derived planktonic E. coli showed greater resistance to antibiotics than planktonic E. coli (75 % vs 62.5 %). The MBIC and MBEC of tetracycline in E. coli biofilm phenotype were significantly greater than MIC of planktonic phenotype of the same isolate (P < 0.05). This study highlights the importance of eliminating biofilms in chicken industry as biofilm-forming bacteria isolated from drinkers demonstrated a significantly greater AMR and can act as a source of AMR dissemination.
Collapse
Affiliation(s)
- Iresha Subhasinghe
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - H M H N Bandara
- Bristol Dental School, University of Bristol, Bristol BS2 0PT, United Kingdom.
| | - H M T K Karunarathna
- Faculty of Veterinary Medicine & Animal Science, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - S P Kodithuwakku
- Department of Animal Science, Faculty of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - H C Gallage
- Laboratory of Veterinary Public Health, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, South Korea
| | - R S Kalupahana
- Faculty of Veterinary Medicine & Animal Science, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - K S A Kottawatta
- Faculty of Veterinary Medicine & Animal Science, University of Peradeniya, Peradeniya 20400, Sri Lanka.
| |
Collapse
|
3
|
Li F, Li M, Nie L, Zuo J, Fan W, Lian L, Hu J, Chen S, Jiang W, Han X, Wang H. Molecular Epidemiology and Antibiotic Resistance Associated with Avian Pathogenic Escherichia coli in Shanxi Province, China, from 2021 to 2023. Microorganisms 2025; 13:541. [PMID: 40142434 PMCID: PMC11946381 DOI: 10.3390/microorganisms13030541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
Avian Pathogenic Escherichia coli (APEC) constitutes a major etiological agent of avian colibacillosis, which significantly hinders the development of the poultry industry. Conducting molecular epidemiological studies of APEC plays a crucial role in its prevention and control. This study aims to elucidate the molecular epidemiological characteristics of Avian Pathogenic Escherichia coli in Shanxi Province. In this study, 135 APEC strains were isolated and identified from 150 liver samples of diseased and deceased chickens exhibiting clinical symptoms, which were collected from farms in Shanxi Province between 2021 and 2023. The isolates were then analyzed for phylogenetic clustering, drug resistance, resistance genes, virulence genes, and biofilm formation capabilities. The results revealed that the proportions of the A, B1, B2, and D evolutionary subgroups were 26.67%, 32.59%, 17.78%, and 15.56%, respectively. The drug resistance testing results indicated that 92% of the isolates exhibited resistance to cotrimoxazole, kanamycin, chloramphenicol, amoxicillin, tetracycline, and other antibiotics. In contrast, 95% of the strains were sensitive to ofloxacin, amikacin, and ceftazidime. The most prevalent resistance genes included tetracycline-related (tetA) at 88.15%, followed by beta-lactam-related (bla-TEM) at 85.19%, and peptide-related (mcr1) at 12.59%. The virulence gene analysis revealed that ibeB, ompA, iucD, and mat were present in more than 90% of the isolates. The results revealed that 110 strains were biofilm-positive, corresponding to a detection rate of 81.48%. No significant correlation was found between the drug resistance genes, virulence genes, and the drug resistance phenotype. A moderate negative correlation was observed between the adhesion-related gene tsh and biofilm formation ability (r = -0.38). This study provides valuable insights into the prevention and control of avian colibacillosis in Shanxi Province.
Collapse
Affiliation(s)
- Fangfang Li
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (F.L.); (M.L.); (L.N.); (W.F.); (S.C.)
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, China; (J.Z.); (L.L.); (J.H.); (W.J.)
| | - Mengya Li
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (F.L.); (M.L.); (L.N.); (W.F.); (S.C.)
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, China; (J.Z.); (L.L.); (J.H.); (W.J.)
| | - Lianhua Nie
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (F.L.); (M.L.); (L.N.); (W.F.); (S.C.)
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, China; (J.Z.); (L.L.); (J.H.); (W.J.)
| | - Jiakun Zuo
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, China; (J.Z.); (L.L.); (J.H.); (W.J.)
| | - Wenyan Fan
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (F.L.); (M.L.); (L.N.); (W.F.); (S.C.)
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, China; (J.Z.); (L.L.); (J.H.); (W.J.)
| | - Liyan Lian
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, China; (J.Z.); (L.L.); (J.H.); (W.J.)
| | - Jiangang Hu
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, China; (J.Z.); (L.L.); (J.H.); (W.J.)
| | - Shuming Chen
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (F.L.); (M.L.); (L.N.); (W.F.); (S.C.)
| | - Wei Jiang
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, China; (J.Z.); (L.L.); (J.H.); (W.J.)
| | - Xiangan Han
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, China; (J.Z.); (L.L.); (J.H.); (W.J.)
| | - Haidong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (F.L.); (M.L.); (L.N.); (W.F.); (S.C.)
| |
Collapse
|
4
|
Śliwka P, Moreno DS, Korzeniowski P, Milcarz A, Kuczkowski M, Kolenda R, Kozioł S, Narajczyk M, Roesler U, Tomaszewska-Hetman L, Kuźmińska-Bajor M. Avian pathogenic Escherichia coli-targeting phages for biofilm biocontrol in the poultry industry. Vet Microbiol 2025; 301:110363. [PMID: 39793452 DOI: 10.1016/j.vetmic.2024.110363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 12/23/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025]
Abstract
Avian pathogenic Escherichia coli (APEC) is a principal etiologic agent of avian colibacillosis, responsible for significant economic losses in the poultry industry due to high mortality and disease treatment with antibiotics. APEC and its ability to form biofilms on food and processing surfaces contributes to its persistence within farms. Bacteriophages are promising antibacterial agents for combating APEC. This study focused on characterization of the newly isolated phages UPWr_E1, UPWr_E2, and UPWr_E4 as well as the UPWr_E124 phage cocktail containing these three phages. Methods included efficiency of plating assay, transmission electron microscopy, and characterization of their resistance to different pH values and temperatures. Moreover, phage genomes were sequenced, annotated and analyzed, and were compared with previously sequenced E. coli phages. All three phages are virulent and devoid of undesirable genes for therapy. Phage UPWr_E1 belongs to the genus Krischvirus within the order Straboviridae and both UPWr_E2 and UPWr_E4 belong to the genus Tequatrovirus within the subfamily Tevenvirinae, sharing over 95 % nucleotide identity between them. For their use on poultry farms, UPWr_E phages and the UPWr_E124 phage cocktail were tested for their anti-biofilm activity on two E. coli strains - 158B (APEC) and the strong biofilm producer NCTC 17848 - on two abiotic surfaces: a 96-well microplate, a stainless steel surface, and one biotic surface, represented by lettuce leaves. The reduction of biofilm formed by both strains in the 96-well microplate, on the stainless steel and lettuce leaf surface for bacteriophage treatment was very efficient, reducing biofilms by ranges of 50.2-83.6, 58.2-88.4 and 53-99.4 %, respectively. Therefore, we conclude that UPWr_E phages and the UPWr_E124 phage cocktail are promising candidates for APEC biocontrol.
Collapse
Affiliation(s)
- Paulina Śliwka
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Poland
| | - David Sáez Moreno
- CEB-Centre of Biological Engineering, University of Minho, Braga 4710-057, Portugal
| | - Paweł Korzeniowski
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Poland
| | - Agata Milcarz
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Poland
| | - Maciej Kuczkowski
- Department of Epizootiology and Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Poland
| | - Rafał Kolenda
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Poland; Quadram Institute, Norwich Research Park, Norwich, UK
| | - Sylwia Kozioł
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Poland
| | | | - Uwe Roesler
- Institute of Animal Hygiene and Environmental Health, Veterinary Centre for Resistance Research-TZR, School of Veterinary Medicine, Freie Universität Berlin, Berlin 14163, Germany
| | - Ludwika Tomaszewska-Hetman
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Poland
| | - Marta Kuźmińska-Bajor
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Poland.
| |
Collapse
|
5
|
Runcharoon K, Favro ME, Logue CM. The pathogenicity traits of avian pathogenic Escherichia coli O25-ST131 associated with avian colibacillosis in Georgia poultry and their genotypic and phenotypic overlap with other extraintestinal pathogenic E. coli. J Appl Microbiol 2025; 136:lxaf015. [PMID: 39814575 DOI: 10.1093/jambio/lxaf015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/03/2025] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
AIMS To characterize Escherichia coli O25 ST131 (O25-ST131) isolated from Georgia poultry-a "global high-risk" clonal strain. METHODS AND RESULTS Using multiplex PCR to detect target genes in 98 isolates of avian pathogenic E. coli (APEC) O25 recovered from avians diagnosed with colibacillosis (n = 87) and healthy chicks (n = 11) in Georgia, USA. Eighty-eight isolates were classified as sequence type ST131 clade b and 56% (n = 49) belong to the phylogenetic group B2. Overall, 17% were identified as uropathogenic E. coli (UPEC)-like and 94% of the isolates formed strong to moderate biofilms. The extended-spectrum β-lactamases encoding genes, blaCTX M-15 (24%), carbapenemases encoding genes, and blaOXA48 (16%) were also detected. The isolates harbored FIB (88%), FIC (28%), A/C (14%), and FIIA (6%) plasmid replicons. Interestingly, 78% of the isolates were found to be resistant to chicken serum and 92% showed capabilities for growth in human urine. The isolates showed phenotypic resistance to several antibiotics including chloramphenicol (63%), ciprofloxacin (57%), trimethoprim-sulfamethoxazole (28%), streptomycin (17%), and cefoxitin and meropenem (14%) using the national antimicrobial resistance monitoring system panel. CONCLUSIONS Overall, our study provides evidence of the virulence of these global "high-risk" clones in Georgia poultry with some isolates showing genotypic overlap between APEC and UPEC. Also, this clone harbored several virulence genes, antimicrobial-resistant genes, and plasmids. Interestingly, the majority of APEC O25-ST131 isolates can survive and grow in both chicken serum and human urine and warrant further investigation of their potential pathogenicity for both chickens and humans.
Collapse
Affiliation(s)
- Klao Runcharoon
- Department of Population Health, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA 30602, USA
| | - Margaret E Favro
- Department of Population Health, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA 30602, USA
| | - Catherine M Logue
- Department of Population Health, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA 30602, USA
| |
Collapse
|
6
|
Samoilova Z, Smirnova G, Sutormina L, Oktyabrsky O. Modulating effects of fodder grasses extracts on antibiotic sensitivity and biofilm production in avian pathogenic Escherichia coli strains. BIOFOULING 2024; 40:816-830. [PMID: 39391921 DOI: 10.1080/08927014.2024.2414222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/23/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024]
Abstract
Extracts of certain fodder grasses may be viewed as powerful agents against infections induced by avian pathogenic Escherichia coli strains. Here we demonstrated ability of Galega orientalis and Rhaponticum carthamoides extracts, alone or in combination with antibiotics, to inhibit growth, viability and biofilm formation in avian pathogenic Escherichia coli strains with different sensitivity to antibiotics and non-pathogenic laboratory strain E. coli BW25113 as well as its mutant derivatives. Modulation of motility and production of extracellular structures in the presence of the extracts correlated with their anti-biofilm effects. Interestingly, an increase in antibacterial action of kanamycin, streptomycin, ciprofloxacin, and cefotaxime on both biofilms and planktonic cultures of the studied strains was observed in the presence of the extracts, including antibiotic resistant APEC strain #45. The extracts alone showed weak prooxidant activity which could contribute to modification of redox-sensitive sites of various regulatory circuits, resulting to synergetic effects in combination with antibiotics.
Collapse
Affiliation(s)
- Zoya Samoilova
- Laboratory of Physiology and Genetics of Microorganisms, Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Perm, Russia
| | - Galina Smirnova
- Laboratory of Physiology and Genetics of Microorganisms, Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Perm, Russia
| | - Lyubov Sutormina
- Laboratory of Physiology and Genetics of Microorganisms, Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Perm, Russia
| | - Oleg Oktyabrsky
- Laboratory of Physiology and Genetics of Microorganisms, Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Perm, Russia
| |
Collapse
|
7
|
Saci S, Msela A, Saoudi B, Sebbane H, Trabelsi L, Alam M, Ernst B, Benguerba Y, Houali K. Assessment of antibacterial activity, modes of action, and synergistic effects of Origanum vulgare hydroethanolic extract with antibiotics against avian pathogenic Escherichia coli. Fitoterapia 2024; 177:106055. [PMID: 38838822 DOI: 10.1016/j.fitote.2024.106055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/28/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
This study evaluates the antibacterial effectiveness of Origanum vulgare hydroethanolic extract, both independently and in combination with antibiotics, against Escherichia coli strains associated with avian colibacillosis-a significant concern for the poultry industry due to the rise of antibiotic-resistant E. coli. The urgent demand for new treatments is addressed by analyzing the extract's phytochemical makeup via High-Performance Liquid Chromatography (HPLC), which identified sixteen phenolic compounds. Antibacterial activity was determined through agar diffusion and the measurement of minimum inhibitory and bactericidal concentrations (MIC and MBC), showing moderate efficacy (MIC: 3.9 to 7.8 mg/mL, MBC: 31.2 to 62.4 mg/mL). Combining the extract with antibiotics like ampicillin and tetracycline amplified antibacterial activity, indicating a synergistic effect and highlighting the importance of combinatory treatments against resistant strains. Further analysis revealed the extract's mechanisms of action include disrupting bacterial cell membrane integrity and inhibiting ATPase/H+ proton pumps, essential for bacterial survival. Moreover, the extract effectively inhibited and eradicated biofilms, crucial for preventing bacterial colonization. Regarding cytotoxicity, the extract showed no hemolytic effect at 1 to 9 mg/mL concentrations. These results suggest Origanum vulgare extract, particularly when used with antibiotics, offers a promising strategy for managing avian colibacillosis, providing both direct antibacterial benefits and moderating antibiotic resistance, thus potentially reducing the economic impact of the disease on the poultry industry.
Collapse
Affiliation(s)
- Sarah Saci
- Laboratoire de Biochimie Analytique et Biotechnologies (LABAB), Faculté des Sciences Biologiques et Agronomiques, Université Mouloud MAMMERI de Tizi-Ouzou, Algeria
| | - Amine Msela
- Laboratoire de Biochimie Analytique et Biotechnologies (LABAB), Faculté des Sciences Biologiques et Agronomiques, Université Mouloud MAMMERI de Tizi-Ouzou, Algeria
| | - Bilal Saoudi
- Laboratoire de Biochimie Analytique et Biotechnologies (LABAB), Faculté des Sciences Biologiques et Agronomiques, Université Mouloud MAMMERI de Tizi-Ouzou, Algeria
| | - Hillal Sebbane
- Laboratoire de Biochimie Analytique et Biotechnologies (LABAB), Faculté des Sciences Biologiques et Agronomiques, Université Mouloud MAMMERI de Tizi-Ouzou, Algeria
| | - Lamia Trabelsi
- Marine Biodiversity Laboratory, National Institute of Marine Sciences and Technology (inStm), University of Carthage, Tunis, Tunisia
| | - Manawwer Alam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Barbara Ernst
- Université de Strasbourg, CNRS, IPHC UMR 7178, Laboratoire de Reconnaissance et Procédés de Séparation Moléculaire (RePSeM), ECPM 25 rue Becquerel, F-67000 Strasbourg, France
| | - Yacine Benguerba
- Laboratoire de Biopharmacie Et Pharmacotechnie (LBPT), Université Ferhat ABBAS Sétif-1, Sétif, Algeria.
| | - Karim Houali
- Laboratoire de Biochimie Analytique et Biotechnologies (LABAB), Faculté des Sciences Biologiques et Agronomiques, Université Mouloud MAMMERI de Tizi-Ouzou, Algeria.
| |
Collapse
|
8
|
Liu W, Wang Y, Sun Y, Xia W, Qian X, Bo R, Huang Y, Ruan X. Baicalein inhibits biofilm formation of avian pathogenic Escherichia coli in vitro mainly by affecting adhesion. Res Vet Sci 2024; 174:105291. [PMID: 38729095 DOI: 10.1016/j.rvsc.2024.105291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/20/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Avian pathogenic Escherichia coli (APEC) is a widespread bacterium that causes significant economic losses to the poultry industry. APEC biofilm formation may result in chronic, persistent, and recurrent infections in clinics, making treatment challenging. Baicalein is a natural product that exhibits antimicrobial and antibiofilm activities. This study investigates the inhibitory effect of baicalein on APEC biofilm formation at different stages. The minimum inhibitory concentration (MIC) of baicalein on APEC was determined, and the growth curve of APEC biofilm formation was determined. The effects of baicalein on APEC biofilm adhesion, accumulation, and maturation were observed using optical microscopy, confocal laser scanning microscopy, and scanning electron microscopy. The biofilm inhibition rate of baicalein was calculated at different stages. The MIC of baicalein against APEC was 256 μg/mL. The process of APEC biofilm maturation takes approximately 48 h after incubation, with initial adhesion completed at 12 h, and cell accumulation finished at 24 h. Baicalein had a significant inhibitory effect on APEC biofilm formation at concentrations above 1 μg/mL (p < 0.01). Notably, baicalein had the highest rate of biofilm formation inhibition when added at the adhesion stage. Therefore, it can be concluded that baicalein is a potent inhibitor of APEC biofilm formation in vitro and acts, primarily by inhibiting cell adhesion. These findings suggests that baicalein has a potential application for inhibiting APEC biofilm formation and provides a novel approach for the prevention and control APEC-related diseases.
Collapse
Affiliation(s)
- Wanru Liu
- Laboratory of Veterinary Pharmacology and Toxicology, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Yufang Wang
- Laboratory of Veterinary Pharmacology and Toxicology, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Ying Sun
- Laboratory of Veterinary Pharmacology and Toxicology, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Wenjie Xia
- Laboratory of Veterinary Pharmacology and Toxicology, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Xiaoyue Qian
- Laboratory of Veterinary Pharmacology and Toxicology, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Ruihong Bo
- Laboratory of Veterinary Pharmacology and Toxicology, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Yuanyuan Huang
- Laboratory of Veterinary Pharmacology and Toxicology, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Xiangchun Ruan
- Laboratory of Veterinary Pharmacology and Toxicology, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Hefei, Anhui Province 230036, China.
| |
Collapse
|
9
|
Silva A, Silva V, Tavares T, López M, Rojo-Bezares B, Pereira JE, Falco V, Valentão P, Igrejas G, Sáenz Y, Poeta P. Rabbits as a Reservoir of Multidrug-Resistant Escherichia coli: Clonal Lineages and Public Health Impact. Antibiotics (Basel) 2024; 13:376. [PMID: 38667052 PMCID: PMC11047531 DOI: 10.3390/antibiotics13040376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
Escherichia coli, including extended-spectrum β-lactamases (ESBL)-producing strains, poses a global health threat due to multidrug resistance, compromising food safety and environmental integrity. In industrial settings, rabbits raised for meat have the highest consumption of antimicrobial agents compared to other food-producing animals. The European Union is facing challenges in rabbit farming as rabbit consumption declines and antibiotic-resistant strains of E. coli cause enteric diseases. The aim of this study was to investigate the antibiotic resistance profile, genetic diversity, and biofilm formation in cefotaxime-resistant E. coli strains isolated from twenty rabbit farms in Northern Portugal to address the effect of the pressing issue of antibiotic resistance in the rabbit farming industry. Resistance to critically antibiotics was observed, with high levels of resistance to several categories, such as tetracycline, ampicillin, aztreonam, and streptomycin. However, all isolates were susceptible to cefoxitin and imipenem. Multidrug resistance was common, with strains showing resistance to all antibiotics tested. The blaCTX-M variants (blaCTX-3G and blaCTX-M9), followed by the tetracycline resistance genes, were the most frequent resistance genes found. ST10 clones exhibiting significant resistance to various categories of antibiotics and harboring different resistance genes were detected. ST457 and ST2325 were important sequence types due to their association with ESBL-E. coli isolates and have been widely distributed in a variety of environments and host species. The strains evaluated showed a high capacity for biofilm formation, which varied when they were grouped by the number of classes of antibiotics to which they showed resistance (i.e., seven different classes of antibiotics, six classes of antibiotics, and three/four/five classes of antibiotics). The One Health approach integrates efforts to combat antimicrobial resistance in rabbit farming through interdisciplinary collaboration of human, animal, and environmental health. Our findings are worrisome and raise concerns. The extensive usage of antibiotics in rabbit farming emphasizes the urgent need to establish active surveillance systems.
Collapse
Affiliation(s)
- Adriana Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal (T.T.)
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal (T.T.)
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Teresa Tavares
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal (T.T.)
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- José Azevedo Monteiro, Lda., Rua do Campo Grande 309, 4625-679 Vila Boa do Bispo, Portugal
| | - María López
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain; (M.L.); (B.R.-B.)
| | - Beatriz Rojo-Bezares
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain; (M.L.); (B.R.-B.)
| | - José Eduardo Pereira
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| | - Virgílio Falco
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Universidade de Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Universidade do Porto (UP), 2829-516 Caparica, Portugal;
| | - Patrícia Valentão
- Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Universidade do Porto (UP), 2829-516 Caparica, Portugal;
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Gilberto Igrejas
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Yolanda Sáenz
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain; (M.L.); (B.R.-B.)
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal (T.T.)
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| |
Collapse
|
10
|
Alshaikh SA, El-Banna T, Sonbol F, Farghali MH. Correlation between antimicrobial resistance, biofilm formation, and virulence determinants in uropathogenic Escherichia coli from Egyptian hospital. Ann Clin Microbiol Antimicrob 2024; 23:20. [PMID: 38402146 PMCID: PMC10894499 DOI: 10.1186/s12941-024-00679-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 02/11/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND Uropathogenic Escherichia coli (UPEC) is the main etiological agent behind community-acquired and hospital-acquired urinary tract infections (UTIs), which are among the most prevalent human infections. The management of UPEC infections is becoming increasingly difficult owing to multi-drug resistance, biofilm formation, and the possession of an extensive virulence arsenal. This study aims to characterize UPEC isolates in Tanta, Egypt, with regard to their antimicrobial resistance, phylogenetic profile, biofilm formation, and virulence, as well as the potential associations among these factors. METHODS One hundred UPEC isolates were obtained from UTI patients in Tanta, Egypt. Antimicrobial susceptibility was assessed using the Kirby-Bauer method. Extended-spectrum β-lactamases (ESBLs) production was screened using the double disk synergy test and confirmed with PCR. Biofilm formation was evaluated using the microtiter-plate assay and microscopy-based techniques. The phylogenetic groups of the isolates were determined. The hemolytic activity, motility, siderophore production, and serum resistance of the isolates were also evaluated. The clonal relatedness of the isolates was assessed using ERIC-PCR. RESULTS Isolates displayed elevated resistance to cephalosporins (90-43%), sulfamethoxazole-trimethoprim (63%), and ciprofloxacin (53%). Ninety percent of the isolates were multidrug-resistant (MDR)/ extensively drug-resistant (XDR) and 67% produced ESBLs. Notably, there was an inverse correlation between biofilm formation and antimicrobial resistance, and 31%, 29%, 32%, and 8% of the isolates were strong, moderate, weak, and non-biofilm producers, respectively. Beta-hemolysis, motility, siderophore production, and serum resistance were detected in 64%, 84%, 65%, and 11% of the isolates, respectively. Siderophore production was correlated to resistance to multiple antibiotics, while hemolysis was more prevalent in susceptible isolates and associated with stronger biofilms. Phylogroups B2 and D predominated, with lower resistance and stronger biofilms in group B2. ERIC-PCR revealed considerable diversity among the isolates. CONCLUSION This research highlights the dissemination of resistance in UPEC in Tanta, Egypt. The evident correlation between biofilm and resistance suggests a resistance cost on bacterial cells; and that isolates with lower resistance may rely on biofilms to enhance their survival. This emphasizes the importance of considering biofilm formation ability during the treatment of UPEC infections to avoid therapeutic failure and/or infection recurrence.
Collapse
Affiliation(s)
- Sara A Alshaikh
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, 31511, Egypt.
| | - Tarek El-Banna
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, 31511, Egypt
| | - Fatma Sonbol
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, 31511, Egypt
| | - Mahmoud H Farghali
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, 31511, Egypt
| |
Collapse
|
11
|
Trang PN, Anh Ngoc TT, Masuda Y, Hohjoh KI, Miyamoto T. Antimicrobial resistance and biofilm formation of Escherichia coli in a Vietnamese Pangasius fish processing facility. Heliyon 2023; 9:e20727. [PMID: 37867806 PMCID: PMC10585221 DOI: 10.1016/j.heliyon.2023.e20727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023] Open
Abstract
This study aimed to investigate the occurrence, antibiotic resistance, and biofilm formation of Escherichia coli in the Vietnamese Pangasius fish processing facility. Among 144 samples including Pangasius fish, wash water, food contact surfaces, and personnel gloves, 18 E. coli isolates was detected and characterized. The E. coli was detected most frequently in wash water samples (22%, 8/36), followed by Pangasius fish (18%, 8/45). According to the antibiotic susceptibility test by the disc diffusion method, isolates showed the highest resistance against sulfamethoxazole/trimethoprim (45%), followed by tetracycline (39%), whereas all the E. coli isolates were susceptible to meropenem and fosfomycin. Notably, 39% of the isolates (7/18) were found to be multidrug resistant while no E. coli isolates were confirmed as extended-spectrum β-lactamase producers by the double-disk synergy test. The potency to form biofilm on the polystyrene surface of E. coli isolates indicated that 44% of the isolates (8/18) were classified as weak, 39% (7/18) as moderate, and 17% (3/18) as strong biofilm formers. Interestingly, multidrug resistant E. coli isolates were observed in moderate and strong biofilm producers. Additionally, either slightly acidic hypochlorous water with 40 mg/L of available chlorine or sodium hypochlorite with 100 mg/L of available chlorine exhibited a significant reduction in biofilm mass and biofilm cells of E. coli isolates. This study may provide helpful information about the actual state of E. coli isolates for effective control in the fish processing plant.
Collapse
Affiliation(s)
- Phan Nguyen Trang
- Department of Food Technology, Institute of Food and Biotechnology, Can Tho University, Campus II, 3/2 Street, Ninh Kieu District, Can Tho, Viet Nam
| | - Tong Thi Anh Ngoc
- Department of Food Technology, Institute of Food and Biotechnology, Can Tho University, Campus II, 3/2 Street, Ninh Kieu District, Can Tho, Viet Nam
| | - Yoshimitsu Masuda
- Division of Food Science and Biotechnology, Faculty of Agriculture, Kyushu University,744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Ken-ichi Hohjoh
- Division of Food Science and Biotechnology, Faculty of Agriculture, Kyushu University,744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takahisa Miyamoto
- Division of Food Science and Biotechnology, Faculty of Agriculture, Kyushu University,744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
12
|
Borges KA, Furian TQ, de Brito BG, de Brito KCT, da Rocha DT, Salle CTP, Moraes HLDS, do Nascimento VP. Characterization of avian pathogenic Escherichia coli isolates based on biofilm formation, ESBL production, virulence-associated genes, and phylogenetic groups. Braz J Microbiol 2023; 54:2413-2425. [PMID: 37344657 PMCID: PMC10485228 DOI: 10.1007/s42770-023-01026-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/30/2023] [Indexed: 06/23/2023] Open
Abstract
Escherichia coli is a part of both animal and human commensal microbiota. Avian pathogenic E. coli (APEC) is responsible for colibacillosis in poultry, an economically important disease. However, the close similarities among APEC isolates make it difficult to differentiate between pathogenic and commensal bacteria. The aim of this study was to determine phenotypic and molecular characteristics of APEC isolates and to compare them with their in vivo pathogenicity indices. A total of 198 APEC isolates were evaluated for their biofilm-producing ability and extended-spectrum β-lactamase (ESBL) production phenotypes. In addition, 36 virulence-associated genes were detected, and the isolates were classified into seven phylogenetic groups using polymerase chain reaction. The sources of the isolates were not associated with biofilms, ESBL, genes, or phylogroups. Biofilm and ESBL production were not associated with pathogenicity. Group B2 had the highest pathogenicity index. Groups B2 and E were positively associated with high-pathogenicity isolates and negatively associated with low-pathogenicity isolates. In contrast, groups A and C were positively associated with apathogenic isolates, and group B1 was positively associated with low-pathogenicity isolates. Some virulence-associated genes showed positive or negative associations with specific phylogenetic groups. None of the individual techniques produced results that correlated with the in vivo pathogenicity index. However, the combination of two techniques, namely, detection of virulence-associated genes and the phylogenetic groups, could help the classification of the isolates as pathogenic or commensal.
Collapse
Affiliation(s)
- Karen Apellanis Borges
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, 91540-000, Brazil.
| | - Thales Quedi Furian
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, 91540-000, Brazil
| | - Benito Guimarães de Brito
- Departamento de Diagnóstico E Pesquisa Agropecuária, Instituto de Pesquisas Veterinárias Desidério Finamor, Secretaria da Agricultura, Pecuária e Desenvolvimento Rural, Estrada Do Conde 6000, Eldorado Do Sul, RS, Brazil
| | - Kelly Cristina Tagliari de Brito
- Departamento de Diagnóstico E Pesquisa Agropecuária, Instituto de Pesquisas Veterinárias Desidério Finamor, Secretaria da Agricultura, Pecuária e Desenvolvimento Rural, Estrada Do Conde 6000, Eldorado Do Sul, RS, Brazil
| | | | - Carlos Tadeu Pippi Salle
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, 91540-000, Brazil
| | - Hamilton Luiz de Souza Moraes
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, 91540-000, Brazil
| | - Vladimir Pinheiro do Nascimento
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, 91540-000, Brazil
| |
Collapse
|
13
|
Identification of novel genes involved in the biofilm formation process of Avian Pathogenic Escherichia coli (APEC). PLoS One 2022; 17:e0279206. [PMID: 36534660 PMCID: PMC9762606 DOI: 10.1371/journal.pone.0279206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is the etiological agent of avian colibacillosis, a leading cause of economic loss to the poultry industry worldwide. APEC causes disease using a diverse repertoire of virulence factors and has the ability to form biofilms, which contributes to the survival and persistence of APEC in harsh environments. The objective of this study was to identify genes most widespread and important in APEC that contribute to APEC biofilm formation. Using the characterized APEC O18 as the template strain, a total of 15,660 mutants were randomly generated using signature tagged mutagenesis and evaluated for decreased biofilm formation ability using the crystal violet assay. Biofilm deficient mutants were sequenced, and a total of 547 putative biofilm formation genes were identified. Thirty of these genes were analyzed by PCR for prevalence among 109 APEC isolates and 104 avian fecal E. coli (AFEC) isolates, resulting in nine genes with significantly greater prevalence in APEC than AFEC. The expression of these genes was evaluated in the wild-type APEC O18 strain using quantitative real-time PCR (qPCR) in both the exponential growth phase and the mature biofilm phase. To investigate the role of these genes in biofilm formation, isogenic mutants were constructed and evaluated for their biofilm production and planktonic growth abilities. Four of the mutants (rfaY, rfaI, and two uncharacterized genes) displayed significantly decreased biofilm formation, and of those four, one (rfaI) displayed significantly decreased growth compared to the wild type. Overall, this study identified novel genes that may be important in APEC and its biofilm formation. The data generated from this study will benefit further investigation into the mechanisms of APEC biofilm formation.
Collapse
|