1
|
Vo TTB, Kil EJ, Tabassum M, Nattanong B, Qureshi MA, Im HJ, Parrella G, Lee TK, Lee S. Molecular Dissection of Symptom Determinants in Tomato Leaf Curl New Delhi Virus in Zucchini Through Mechanical Transmission. Viruses 2025; 17:294. [PMID: 40143225 PMCID: PMC11946352 DOI: 10.3390/v17030294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/18/2025] [Accepted: 02/18/2025] [Indexed: 03/28/2025] Open
Abstract
Among begomovirus species, tomato leaf curl New Delhi virus (ToLCNDV) is significant and stands out as a mechanically transmissible bipartite begomovirus originating from the Old World. However, the mechanisms underlying the mechanical transmission of different ToLCNDV strains remain understudied, as their natural transmission occurs via insect vectors. In this study, we investigated the mechanical transmissibility of two ToLCNDVs, one from Italy and another from Pakistan, in host plants. Several cucurbit species were screened, and symptom differences between the two ToLCNDV clones were observed only in zucchini when subjected to rubbing inoculation. The Italian isolate (ToLCNDV-ES) induced typical disease symptoms such as leaf curling, yellow mosaic, and internode stunting, whereas a normal phenotype was observed in zucchini mechanically infected with ToLCNDV-In (Pakistani isolate). Subsequently, a gene-swapping experiment between the two ToLCNDVs was conducted, and ToLCNDV-ES DNA-B was identified as a crucial factor in mechanical transmission. We then constructed chimeric mutant clones based on the DNA-B sequence and assessed their ability to induce symptoms in zucchini. These results indicated that the nuclear shuttle protein is a determinant of symptom development during ToLCNDV mechanical transmission. Moreover, several defense-related host genes showed significant changes in relative expression in different ToLCNDV clones, indicating their potential role in disease symptom development through the mechanical transmission of ToLCNDV. This is the first report comparing the mechanical transmissibility of two isolates of different ToLCNDV strains from the Mediterranean region and the Indian subcontinent in the same host plant, providing new insights into the virus's pathogenicity across different geographic regions.
Collapse
Affiliation(s)
- Thuy T. B. Vo
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea; (T.T.B.V.); (M.T.); (B.N.); (M.A.Q.); (H.-J.I.)
- Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City 700000, Vietnam
| | - Eui-Joon Kil
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea;
| | - Marjia Tabassum
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea; (T.T.B.V.); (M.T.); (B.N.); (M.A.Q.); (H.-J.I.)
| | - Bupi Nattanong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea; (T.T.B.V.); (M.T.); (B.N.); (M.A.Q.); (H.-J.I.)
| | - Muhammad Amir Qureshi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea; (T.T.B.V.); (M.T.); (B.N.); (M.A.Q.); (H.-J.I.)
| | - Hyo-Jin Im
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea; (T.T.B.V.); (M.T.); (B.N.); (M.A.Q.); (H.-J.I.)
| | - Giuseppe Parrella
- Institute for Sustainable Plant Protection of the National Research Council (IPSP-CNR), 80055 Portici, Italy;
| | - Taek-Kyun Lee
- Ecological Risk Research Department, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea; (T.T.B.V.); (M.T.); (B.N.); (M.A.Q.); (H.-J.I.)
| |
Collapse
|
2
|
Fouad N, Granier M, Blanc S, Thébaud G, Urbino C. Demonstration of Insect Vector-Mediated Transfer of a Betasatellite between Two Helper Viruses. Viruses 2024; 16:1420. [PMID: 39339896 PMCID: PMC11436227 DOI: 10.3390/v16091420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Begomoviruses, transmitted by the whitefly Bemisia tabaci, pose significant threats to global agriculture due to their severe impact on various crops. Among the satellite molecules associated with begomoviruses, betasatellites play a crucial role in enhancing disease severity and yield losses. The spread and association of these molecules with helper viruses in host plants are thus matters of concern. Here, we focus on the propagation of betasatellites and, more specifically, on their transfer between different helper viruses and hosts through vector transmission. Our results show that the cotton leaf curl Gezira betasatellite (CLCuGeB), initially acquired with its helper virus cotton leaf curl Gezira virus (CLCuGeV) from an okra plant, can be transmitted and assisted by a different helper virus, tomato yellow leaf curl virus (TYLCV), in a different host plant (tomato plant). The new association can be formed whether TYLCV and CLCuGeB encounter each other in a host plant previously infected with TYLCV or in whiteflies having acquired the different components separately. Our findings reveal two pathways by which betasatellites can be transferred between helper viruses and host plants and highlight the ability of betasatellites to spread in begomovirus-infected environments.
Collapse
Affiliation(s)
| | | | | | | | - Cica Urbino
- PHIM Plant Health Institute, CIRAD, INRAE, Univ Montpellier, Institut Agro, IRD, 34398 Montpellier Cedex 5, France
| |
Collapse
|
3
|
Cao X, Huang M, Wang S, Li T, Huang Y. Tomato yellow leaf curl virus: Characteristics, influence, and regulation mechanism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108812. [PMID: 38875781 DOI: 10.1016/j.plaphy.2024.108812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
Tomato yellow leaf curl virus (TYLCV), a DNA virus belonging to the genus Begomovirus, significantly impedes the growth and development of numerous host plants, including tomatoes and peppers. Due to its rapid mutation rate and frequent recombination events, achieving complete control of TYLCV proves exceptionally challenging. Consequently, identifying resistance mechanisms become crucial for safeguarding host plants from TYLCV-induced damage. This review article delves into the global distribution, dispersal patterns, and defining characteristics of TYLCV. Moreover, the intricate interplay between TYLCV and various influencing factors, such as insect vectors, susceptible host plants, and abiotic stresses, plays a pivotal role in plant-TYLCV interactions. The review offers an updated perspective on recent investigations focused on plant response mechanisms to TYLCV infection, including the intricate relationship between TYLCV, whiteflies, and regulatory factors. This comprehensive analysis aims to establish a foundation for future research endeavors exploring the molecular mechanisms underlying TYLCV infection and the development of plant resistance through breeding programs.
Collapse
Affiliation(s)
- Xue Cao
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, Shandong Province, 276000, China
| | - Mengna Huang
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, Shandong Province, 276000, China
| | - Shimei Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Tea Science, Guizhou University, Guiyang, Guizhou Province, 550025, China
| | - Tong Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Tea Science, Guizhou University, Guiyang, Guizhou Province, 550025, China.
| | - Ying Huang
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, Shandong Province, 276000, China.
| |
Collapse
|
4
|
Vo TTB, Wira Sanjaya IGNP, Kil EJ, Lal A, Ho PT, Nattanong B, Tabassum M, Qureshi MA, Lee TK, Lee S. Transreplication Preference of the Tomato Leaf Curl Joydebpur Virus for a Noncognate Betasatellite through Iteron Resemblance on Nicotiana bethamiana. Microorganisms 2023; 11:2907. [PMID: 38138051 PMCID: PMC10745424 DOI: 10.3390/microorganisms11122907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Pepper plants (Capsicum annuum) with severe leaf curl symptoms were collected in 2013 from Bangalore, Karnataka, India. The detection results showed a co-infection between the tomato leaf curl Joydebpur virus (ToLCJoV) and tomato leaf curl Bangladesh betasatellite (ToLCBDB) through the sequencing analysis of PCR amplicons. To pinpoint the molecular mechanism of this uncommon combination, infectious clones of ToLCJoV and two different betasatellites-ToLCBDB and tomato leaf curl Joydebpur betasatellite (ToLCJoB)-were constructed and tested for their infectivity in Nicotiana benthamiana. Together, we conducted various combined agroinoculation studies to compare the interaction of ToLCJoV with non-cognate and cognate betasatellites. The natural non-cognate interaction between ToLCJoV and ToLCBDB showed severe symptoms compared to the mild symptoms of a cognate combination (ToLCJoV × ToLCJoB) in infected plants. A sequence comparison among betasatellites and their helper virus wasperformed and the iteron resemblances in ToLCBDB as well as ToLCJoB clones were processed. Mutant betasatellites that comprised iteron modifications revealed that changes in iteron sequences could disturb the transreplication process between betasatellites and their helper virus. Our study might provide an important consideration for determining the efficiency of transreplication activity between betasatellites and their helper virus.
Collapse
Affiliation(s)
- Thuy T. B. Vo
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea; (T.T.B.V.); (I.G.N.P.W.S.); (P.T.H.); (B.N.); (M.T.); (M.A.Q.)
| | - I Gusti Ngurah Prabu Wira Sanjaya
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea; (T.T.B.V.); (I.G.N.P.W.S.); (P.T.H.); (B.N.); (M.T.); (M.A.Q.)
| | - Eui-Joon Kil
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea; (E.-J.K.); (A.L.)
| | - Aamir Lal
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea; (E.-J.K.); (A.L.)
| | - Phuong T. Ho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea; (T.T.B.V.); (I.G.N.P.W.S.); (P.T.H.); (B.N.); (M.T.); (M.A.Q.)
| | - Bupi Nattanong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea; (T.T.B.V.); (I.G.N.P.W.S.); (P.T.H.); (B.N.); (M.T.); (M.A.Q.)
| | - Marjia Tabassum
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea; (T.T.B.V.); (I.G.N.P.W.S.); (P.T.H.); (B.N.); (M.T.); (M.A.Q.)
| | - Muhammad Amir Qureshi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea; (T.T.B.V.); (I.G.N.P.W.S.); (P.T.H.); (B.N.); (M.T.); (M.A.Q.)
| | - Taek-Kyun Lee
- Ecological Risk Research Department, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea; (T.T.B.V.); (I.G.N.P.W.S.); (P.T.H.); (B.N.); (M.T.); (M.A.Q.)
| |
Collapse
|
5
|
Vo TTB, Lal A, Nattanong B, Tabassum M, Qureshi MA, Troiano E, Parrella G, Kil EJ, Lee S. Coat protein is responsible for tomato leaf curl New Delhi virus pathogenicity in tomato. FRONTIERS IN PLANT SCIENCE 2023; 14:1206255. [PMID: 37492775 PMCID: PMC10364049 DOI: 10.3389/fpls.2023.1206255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/23/2023] [Indexed: 07/27/2023]
Abstract
Tomato leaf curl New Delhi virus (ToLCNDV), a bipartite Begomovirus belonging to the family Geminiviridae, causes severe damage to many economically important crops worldwide. In the present study, pathogenicity of Asian (ToLCNDV-In from Pakistan) and Mediterranean isolates (ToLCNDV-ES from Italy) were examined using infectious clones in tomato plants. Only ToLCNDV-In could infect the three tomato cultivars, whereas ToLCNDV-ES could not. Genome-exchange of the two ToLCNDVs revealed the ToLCNDV DNA-A segment as the main factor for ToLCNDV infectivity in tomato. In addition, serial clones with chimeric ToLCNDV-In A and ToLCNDV-ES A genome segments were generated to identify the region determining viral infectivity in tomatoes. A chimeric clone carrying the ToLCNDV-In coat protein (CP) exhibited pathogenic adaptation in tomatoes, indicating that the CP of ToLCNDV is essential for its infectivity. Analyses of infectious clones carrying a single amino acid substitution revealed that amino acid at position 143 of the CP is critical for ToLCNDV infectivity in tomatoes. To better understand the molecular basis whereby CP function in pathogenicity, a yeast two-hybrid screen of a tomato cDNA library was performed using CPs as bait. The hybrid results showed different interactions between the two CPs and Ring finger protein 44-like in the tomato genome. The relative expression levels of upstream and downstream genes and Ring finger 44-like genes were measured using quantitative reverse transcription PCR (RT-qPCR) and compared to those of control plants. This is the first study to compare the biological features of the two ToLCNDV strains related to viral pathogenicity in the same host plant. Our results provide a foundation for elucidating the molecular mechanisms underlying ToLCNDV infection in tomatoes.
Collapse
Affiliation(s)
- Thuy T. B. Vo
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Aamir Lal
- Agriculture Science and Technology Research Institute, Andong National University, Andong, Republic of Korea
| | - Bupi Nattanong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Marjia Tabassum
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Muhammad Amir Qureshi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Elisa Troiano
- Department of Biology, Agriculture and Food Sciences, Institute for Sustainable Plant Protection of the National Research Council (IPSP-CNR), Portici, Italy
| | - Giuseppe Parrella
- Department of Biology, Agriculture and Food Sciences, Institute for Sustainable Plant Protection of the National Research Council (IPSP-CNR), Portici, Italy
| | - Eui-Joon Kil
- Agriculture Science and Technology Research Institute, Andong National University, Andong, Republic of Korea
- Department of Plant Medicals, Andong National University, Andong, Republic of Korea
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
6
|
Vo TTB, Cho WK, Jo Y, Lal A, Nattanong B, Qureshi MA, Tabssum M, Troiano E, Parrella G, Kil EJ, Lee TK, Lee S. Transcriptional Analysis of the Differences between ToLCNDV-India and ToLCNDV-ES Leading to Contrary Symptom Development in Cucumber. Int J Mol Sci 2023; 24:ijms24032181. [PMID: 36768502 PMCID: PMC9916722 DOI: 10.3390/ijms24032181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Tomato leaf curl New Delhi virus-ES (ToLCNDV-ES), a high threat to cucurbits in the Mediterranean Basin, is listed as a different strain from the Asian ToLCNDV isolates. In this study, the infectivity of two clones previously isolated from Italy and Pakistan were compared in cucumbers, which resulted in the opposite symptom appearance. The swapping subgenome was processed; however, the mechanisms related to the disease phenotype remain unclear. To identify the disease-associated genes that could contribute to symptom development under the two ToLCNDV infections, the transcriptomes of ToLCNDV-infected and mock-inoculated cucumber plants were compared 21 days postinoculation. The number of differentially expressed genes in ToLCNDV-India-infected plants was 10 times higher than in ToLCNDV-ES-infected samples. The gene ontology (GO) and pathway enrichment were analyzed using the Cucurbits Genomics Database. The flavonoid pathway-related genes were upregulated in ToLCNDV-ES, but some were downregulated in ToLCNDV-India infection, suggesting their role in resistance to the two ToLCNDV infections. The relative expression levels of the selected candidate genes were validated by qRT-PCR under two ToLCNDV-infected conditions. Our results reveal the different infectivity of the two ToLCNDVs in cucumber and also provide primary information based on RNA-seq for further analysis related to different ToLCNDV infections.
Collapse
Affiliation(s)
- Thuy T. B. Vo
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Won Kyong Cho
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yeonhwa Jo
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Aamir Lal
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Bupi Nattanong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Muhammad Amir Qureshi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Marjia Tabssum
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Elisa Troiano
- Institute for Sustainable Plant Protection of the National Research Council (IPSP-CNR), 80055 Portici, Italy
| | - Giuseppe Parrella
- Institute for Sustainable Plant Protection of the National Research Council (IPSP-CNR), 80055 Portici, Italy
| | - Eui-Joon Kil
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea
| | - Taek-Kyun Lee
- Risk Assessment Research Center, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
- Correspondence: (T.-K.L.); (S.L.)
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Correspondence: (T.-K.L.); (S.L.)
| |
Collapse
|