1
|
Zhu S, Yu Q, Xue Y, Li J, Huang Y, Liu W, Wang G, Wang L, Zhai Q, Zhao J, Zhang H, Chen W. Bifidobacterium bifidum CCFM1163 alleviates cathartic colon by activating the BDNF-TrkB-PLC/IP 3 pathway to reconstruct the intestinal nerve and barrier. Food Funct 2025; 16:2057-2072. [PMID: 39963068 DOI: 10.1039/d4fo05835f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Introduction: Cathartic colon (CC) is a type of slow-transit constipation caused by a patient's long-term use of irritating laxatives. Probiotics play a crucial role in managing constipation. Objectives: This study aims to identify probiotics that can alleviate CC and explore their specific mechanisms of action. Methods: The CC-model was constructed using senna leaf extract. Bifidobacterium bifidum was applied to the mice for intervention. Relevant marker changes were then examined using ELISA and RT-qPCR. Furthermore, 16S rDNA sequencing was utilized for functional prediction of intestinal microorganisms, while GC-MS analysis was performed to determine the content of short-chain fatty acids (SCFAs) in feces. Results: Senna damages the intestinal nerve and the intestinal barrier while inducing CC. In contrast, Bifidobacterium bifidum CCFM1163 may enhance the brain-derived neurotrophic factor (BDNF) expression in the colon by altering the intestinal microbiota composition (e.g., increasing Lactobacillus and Bacteroides, and decreasing Faecalibaculum) and by elevating SCFA levels (e.g., acetic and isobutyric acid). Subsequently, elevated BDNF expression activates the BDNF-tyrosine kinase receptor B-phospholipase C/inositol trisphosphate (BDNF-TrkB-PLC/IP3) pathway, which upregulates the gene expression of Uchl1, S100β, and Acta2; repairs the enteric nervous system-interstitial cells of Cajal-smooth muscle cells (ENS-ICC-SMC) network; upregulates the gene expression of Ocln and Tjp1; improves intestinal permeability in CC mice; and modulates the immune response by upregulating Tlr4, downregulating Il1b, and upregulating Il10, ultimately alleviating CC. Conclusion: Bifidobacterium bifidum CCFM1163 was identified as a probiotic that can promote BDNF expression in the colon, activate the BDNF-TrkB-PLC/IP3 signaling pathway, and effectively alleviate CC.
Collapse
Affiliation(s)
- Shengnan Zhu
- State Key Laboratory of Food Science and resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qiangqing Yu
- State Key Laboratory of Food Science and resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yifan Xue
- State Key Laboratory of Food Science and resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jiazhen Li
- State Key Laboratory of Food Science and resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yin Huang
- State Key Laboratory of Food Science and resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenxu Liu
- State Key Laboratory of Food Science and resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Gang Wang
- State Key Laboratory of Food Science and resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Linlin Wang
- State Key Laboratory of Food Science and resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Wei Chen
- State Key Laboratory of Food Science and resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
2
|
Liang X, Wan D, Li X, Peng Y, Chen L. Study on the effects of Massa Medicata Fermentata with different formulations on the intestinal microbiota and enzyme activities in mice with spleen deficiency constipation. Front Cell Infect Microbiol 2025; 14:1524327. [PMID: 39844840 PMCID: PMC11753248 DOI: 10.3389/fcimb.2024.1524327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/06/2024] [Indexed: 01/24/2025] Open
Abstract
Objective This study aims to explore the therapeutic mechanism of Massa Medicata Fermentata (MMF) with different formulations on spleen deficiency constipation in mice by analyzing gastrointestinal hormones, D-xylose, intestinal microbiota, and intestinal enzyme activities. Methods A spleen deficiency constipation model was established using an oral administration of Sennae Folium decoction combined with controlled diet and water intake. After successful model establishment, the mice with spleen deficiency constipation were treated with MMF S1, S2, S3. Following the intervention, serum samples from each group of mice were collected to measure VIP, 5-HT, and D-xylose. Additionally, small intestine contents were analyzed for intestinal enzyme activity and subjected to 16S rRNA high-throughput sequencing. Results Mice with spleen deficiency constipation showed significant decreases in body weight and fecal water content. In contrast, the body weight of the CS2 and CS3 groups returned to normal levels, and fecal water content in the CS2 and CS3 groups also returned to normal. The MMF S2 and S3 significantly increased protease and sucrase enzymes levels compared with CM group. Serum D-xylose levels were significantly reduced in the CM and CS2 group. VIP levels increased significantly in the CM group but decreased in the CS2 and CS3 groups. Additionally, 5-HT levels in the CM and CS1 groups decreased significantly, with the CS2 group returning to normal and the CS3 group showing significant increases. 16S rRNA sequencing analysis revealed that all three MMF formulations effectively restored the intestinal microbiota composition in mice. LEfSe analysis identified characteristic microbiota linked to different intervention groups. The CS3 group significantly upregulated the chloroalkane and chloroalkene degradation and vibrio cholerae pathogenic cycle pathways compared to the CM group. Candidatus_Arthromitus in the CS3 group and Psychrobacter in the CS2 group were positive and negative correlations with 5-HT and VIP, respectively. Conclusion The three formulations of MMF significantly alleviated spleen deficiency constipation symptoms by modulating intestinal enzyme activities, D-xylose, VIP, and 5-HT levels, and restoring intestinal microbiota balance. Psychrobacter and Candidatus_Arthromitus were identified as potential biomarkers for the treatment of spleen deficiency constipation. Different formulations of MMF have different mechanisms of regulating constipation through intestinal microbiota.
Collapse
Affiliation(s)
- Xuejuan Liang
- Institute of Innovative Traditional Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, China
| | - Dan Wan
- Institute of Innovative Traditional Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, China
| | - Xinliang Li
- Institute of Innovative Traditional Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, China
| | - Yanmei Peng
- Institute of Innovative Traditional Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, China
| | - Linglong Chen
- Scientific Research Department, Hunan Academy of Chinese Medicine, Changsha, China
| |
Collapse
|
3
|
Lopez VA, Lim JJ, Seguin RP, Dempsey JL, Kunzman G, Cui JY, Xu L. Oral exposure to benzalkonium chlorides in male and female mice reveals alteration of the gut microbiome and bile acid profile. Toxicol Sci 2024; 202:265-277. [PMID: 39363503 PMCID: PMC11589104 DOI: 10.1093/toxsci/kfae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
Benzalkonium chlorides (BACs) are commonly used disinfectants in a variety of consumer and food-processing settings, and the COVID-19 pandemic has led to increased usage of BACs. The prevalence of BACs raises the concern that BAC exposure could disrupt the gastrointestinal microbiota, thus interfering with the beneficial functions of the microbes. We hypothesize that BAC exposure can alter the gut microbiome diversity and composition, which will disrupt bile acid (BA) homeostasis along the gut-liver axis. In this study, male and female mice were exposed orally to d7-C12- and d7-C16-BACs at 120 µg/g/d for 1 wk. UPLC-MS/MS analysis of liver, blood, and fecal samples of BAC-treated mice demonstrated the absorption and metabolism of BACs. Both parent BACs and their metabolites were detected in all exposed samples. Additionally, 16S rRNA sequencing was carried out on the bacterial DNA isolated from the cecum intestinal content. For female mice, and to a lesser extent in males, we found that treatment with either d7-C12- or d7-C16-BAC led to decreased alpha diversity and differential composition of gut bacteria with notably decreased actinobacteria phylum. Lastly, through a targeted BA quantitation analysis, we observed decreases in secondary BAs in BAC-treated mice, which was more pronounced in the female mice. This finding is supported by decreases in bacteria known to metabolize primary BAs into secondary BAs, such as the families of Ruminococcaceae and Lachnospiraceae. Together, these data signify the potential impact of BACs on human health through disturbance of the gut microbiome and gut-liver interactions.
Collapse
Affiliation(s)
- Vanessa A Lopez
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, United States
| | - Joe J Lim
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, United States
| | - Ryan P Seguin
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, United States
| | - Joseph L Dempsey
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA 98195, United States
| | - Gabrielle Kunzman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, United States
| | - Julia Y Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, United States
| | - Libin Xu
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, United States
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, United States
| |
Collapse
|
4
|
Chen L, Chang X, Wu C, Luo G, Zhang P, Tian W. Polysaccharide extracted from Atractylodes macrocephala improves the spleen deficiency constipation in mice by regulating the gut microbiota to affect the 5-HT synthesis. Neurogastroenterol Motil 2024; 36:e14875. [PMID: 39077771 DOI: 10.1111/nmo.14875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/02/2024] [Accepted: 07/11/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND The traditional herbal medicine Atractylodes macrocephala Koidz. (A. macrocephala) is commonly utilized for alleviating symptoms associated with spleen deficiency, abdominal distension, diarrhea, and constipation. These pharmacological effects are attributed to a variety of active constituents. However, the specific bioactive compounds responsible for promoting defecation and gastrointestinal transit in A. macrocephala remain unidentified. METHODS The primary polysaccharide characteristics of PAMK was elucidated by HPLC, FT-IR, and HGPGC. Efficacy of PAMK (0.07, 0.14, and 0.28 mg/g) on mice was evaluated in a spleen deficiency constipation mouse model by analyzing stool parameters, constipation-related physiological indexes, and SCFAs. The expression levels of 5-HT3R, 5-HT4R, and related receptor genes were examined by RT-qPCR, and neurotransmitters were examined using ELISA. Finally, the diversity of gut microbiota was analyzed with 16S rDNA sequencing. KEY RESULTS The results showed that PAMK significantly reduced the gastrointestinal transport time and increased the number of fecal pellets and fecal water content in spleen deficiency constipation model mice. PAMK kept the balance of 5-HT, SCFAs, TPH-1, SERT, CgA, and neurotransmitter levels (VIP, SP, MTL) in mice colon. In addition, PAMK could regulate the abundance of gut microbiota such as Alistopes, Bacteroides, and Odoribacter in spleen deficiency constipation model mice gut. CONCLUSIONS AND INFERENCES It can be concluded that PAMK effectively ameliorated the symptoms of spleen deficiency constipation in mice by modulating the expression of 5-HT and its associated receptors. The underlying mechanism was elucidated, providing a solid theoretical foundation for the therapeutic application of A. macrocephala in treating spleen deficiency constipation and offering potential for developing novel approaches to address this condition.
Collapse
Affiliation(s)
- Lei Chen
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Xiangbing Chang
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Chuntao Wu
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Guofu Luo
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Peifeng Zhang
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Wei Tian
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, China
| |
Collapse
|
5
|
Jang JH, Kim SM, Suh HJ, Gim M, Shin H, Jang H, Choi HS, Han SH, Chang YB. Lactitol Alleviates Loperamide-Induced Constipation in Sprague Dawley Rats by Regulating Serotonin, Short-Chain Fatty Acids, and Gut Microbiota. Foods 2024; 13:2128. [PMID: 38998634 PMCID: PMC11240941 DOI: 10.3390/foods13132128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
The objective of this study was to examine the impact of lactitol on constipation caused by loperamide in Sprague Dawley rats, with a particular emphasis on its underlying mechanisms and potential health advantages. The lactitol effectively improved fecal parameters, intestinal tissue structure, and the expression of constipation-related gene expression and proteins. Lactitol alleviated fecal weight and water content altered by loperamide and enhanced gastrointestinal transit. The administration also restored mucosal and muscular layer thickness. Mechanistically, lactitol upregulated the mRNA expression and/or protein levels of mucins (MUC2 and MUC4), occludin, claudin-1, and zonula occludens, indicating improved intestinal barrier function. Lactitol positively regulated the composition of cecal microbiota, leading to an increased relative abundance of Bifidobacterium, Lactobacillus, and Romboutsia. Conversely, lactitol decreased the relative abundance of Prevotella, Aerococcus, Muribaculum, Blautia, and Ruminococcus. This study demonstrated the potential of lactitol to relieve constipation by modulating the gut microbiota. These findings suggest that lactitol is an alternative to traditional laxatives and has potential as a health-promoting food sweetener.
Collapse
Affiliation(s)
- Joo Hyun Jang
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea
- Transdisciplinary Major in Learning Health Systems, Department of Healthcare Sciences, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Sang Min Kim
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea
- Transdisciplinary Major in Learning Health Systems, Department of Healthcare Sciences, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Hyung Joo Suh
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea
- Transdisciplinary Major in Learning Health Systems, Department of Healthcare Sciences, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Minchul Gim
- LOTTE R&D Center, Seoul 07594, Republic of Korea
| | - Hoyeon Shin
- LOTTE R&D Center, Seoul 07594, Republic of Korea
| | | | - Hyeon-Son Choi
- Department of Food and Nutrition, Sangmyung University, Seoul 03016, Republic of Korea
| | - Sung Hee Han
- Institute of Human Behavior and Genetics, Korea University, Seoul 02841, Republic of Korea
| | - Yeok Boo Chang
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea
- Transdisciplinary Major in Learning Health Systems, Department of Healthcare Sciences, Graduate School, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
6
|
Li Y, Zhang XH, Wang ZK. Microbiota treatment of functional constipation: Current status and future prospects. World J Hepatol 2024; 16:776-783. [PMID: 38818289 PMCID: PMC11135260 DOI: 10.4254/wjh.v16.i5.776] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/05/2024] [Accepted: 04/03/2024] [Indexed: 05/22/2024] Open
Abstract
Functional constipation (FC) is a common disorder that is characterized by difficult stool passage, infrequent bowel movement, or both. FC is highly prevalent, recurs often, accompanies severe diseases, and affects quality of life; therefore, safe and effective therapy with long-term benefits is urgently needed. Microbiota treatment has potential value for FC treatment. Microbiota treatments include modulators such as probiotics, prebiotics, synbiotics, postbiotics, and fecal microbiota transplantation (FMT). Some probiotics and prebiotics have been adopted, and the efficacy of other microbiota modulators is being explored. FMT is considered an emerging field because of its curative effects; nevertheless, substantial work must be performed before clinical implementation.
Collapse
Affiliation(s)
- Yan Li
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiao-Han Zhang
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
- Medical School, Nankai University, Tianjin 300071, China
| | - Zi-Kai Wang
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
7
|
Lopez VA, Lim JL, Seguin RP, Dempsey JL, Kunzman G, Cui JY, Xu L. Oral Exposure to Benzalkonium Chlorides in Male and Female Mice Reveals Sex-Dependent Alteration of the Gut Microbiome and Bile Acid Profile. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593991. [PMID: 38798482 PMCID: PMC11118417 DOI: 10.1101/2024.05.13.593991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Benzalkonium chlorides (BACs) are commonly used disinfectants in a variety of consumer and food-processing settings, and the COVID-19 pandemic has led to increased usage of BACs. The prevalence of BACs raises the concern that BAC exposure could disrupt the gastrointestinal microbiota, thus interfering with the beneficial functions of the microbes. We hypothesize that BAC exposure can alter the gut microbiome diversity and composition, which will disrupt bile acid homeostasis along the gut-liver axis. In this study, male and female mice were exposed orally to d 7 -C12- and d 7 -C16-BACs at 120 µg/g/day for one week. UPLC-MS/MS analysis of liver, blood, and fecal samples of BAC-treated mice demonstrated the absorption and metabolism of BACs. Both parent BACs and their metabolites were detected in all exposed samples. Additionally, 16S rRNA sequencing was carried out on the bacterial DNA isolated from the cecum intestinal content. For female mice, and to a lesser extent in males, we found that treatment with either d 7 -C12- or d 7 -C16-BAC led to decreased alpha diversity and differential composition of gut bacteria with notably decreased actinobacteria phylum. Lastly, through a targeted bile acid quantitation analysis, we observed decreases in secondary bile acids in BAC-treated mice, which was more pronounced in the female mice. This finding is supported by decreases in bacteria known to metabolize primary bile acids into secondary bile acids, such as the families of Ruminococcaceae and Lachnospiraceae. Together, these data signify the potential impact of BACs on human health through disturbance of the gut microbiome and gut-liver interactions.
Collapse
|
8
|
Johnson-Martínez JP, Diener C, Levine AE, Wilmanski T, Suskind DL, Ralevski A, Hadlock J, Magis AT, Hood L, Rappaport N, Gibbons SM. Generally-healthy individuals with aberrant bowel movement frequencies show enrichment for microbially-derived blood metabolites associated with reduced kidney function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.04.531100. [PMID: 36945445 PMCID: PMC10028848 DOI: 10.1101/2023.03.04.531100] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Bowel movement frequency (BMF) has been linked to changes in the composition of the human gut microbiome and to many chronic conditions, like metabolic disorders, neurodegenerative diseases, chronic kidney disease (CKD), and other intestinal pathologies like irritable bowel syndrome and inflammatory bowel disease. Lower BMF (constipation) can lead to compromised intestinal barrier integrity and a switch from saccharolytic to proteolytic fermentation within the microbiota, giving rise to microbially-derived toxins that may make their way into circulation and cause damage to organ systems. However, the connections between BMF, gut microbial metabolism, and the early-stage development and progression of chronic disease remain underexplored. Here, we examined the phenotypic impact of BMF variation in a cohort of generally-healthy, community dwelling adults with detailed clinical, lifestyle, and multi-omic data. We showed significant differences in microbially-derived blood plasma metabolites, gut bacterial genera, clinical chemistries, and lifestyle factors across BMF groups that have been linked to inflammation, cardiometabolic health, liver function, and CKD severity and progression. We found that the higher plasma levels of 3-indoxyl sulfate (3-IS), a microbially-derived metabolite associated with constipation, was in turn negatively associated with estimated glomerular filtration rate (eGFR), a measure of kidney function. Causal mediation analysis revealed that the effect of BMF on eGFR was significantly mediated by 3-IS. Finally, we identify self-reported diet, lifestyle, and psychological factors associated with BMF variation, which indicate several common-sense strategies for mitigating constipation and diarrhea. Overall, we suggest that aberrant BMF is an underappreciated risk factor in the development of chronic diseases, even in otherwise healthy populations.
Collapse
Affiliation(s)
- Johannes P. Johnson-Martínez
- Institute for Systems Biology, Seattle, WA 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | | | - Anne E. Levine
- Institute for Systems Biology, Seattle, WA 98109, USA
- Seattle Children’s Hospital, Seattle, WA 98105, USA
| | | | | | | | | | | | - Leroy Hood
- Institute for Systems Biology, Seattle, WA 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Phenome Health, Seattle, WA 98109
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA 98195, USA
| | - Noa Rappaport
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Sean M. Gibbons
- Institute for Systems Biology, Seattle, WA 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- eScience Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
9
|
Kashyap Y, Wang ZJ. Gut microbiota dysbiosis alters chronic pain behaviors in a humanized transgenic mouse model of sickle cell disease. Pain 2024; 165:423-439. [PMID: 37733476 PMCID: PMC10843763 DOI: 10.1097/j.pain.0000000000003034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/31/2023] [Indexed: 09/23/2023]
Abstract
ABSTRACT Pain is the most common symptom experienced by patients with sickle cell disease (SCD) throughout their lives and is the main cause of hospitalization. Despite the progress that has been made towards understanding the disease pathophysiology, major gaps remain in the knowledge of SCD pain, the transition to chronic pain, and effective pain management. Recent evidence has demonstrated a vital role of gut microbiota in pathophysiological features of SCD. However, the role of gut microbiota in SCD pain is yet to be explored. We sought to evaluate the compositional differences in the gut microbiota of transgenic mice with SCD and nonsickle control mice and investigate the role of gut microbiota in SCD pain by using antibiotic-mediated gut microbiota depletion and fecal material transplantation (FMT). The antibiotic-mediated gut microbiota depletion did not affect evoked pain but significantly attenuated ongoing spontaneous pain in mice with SCD. Fecal material transplantation from mice with SCD to wild-type mice resulted in tactile allodynia (0.95 ± 0.17 g vs 0.08 ± 0.02 g, von Frey test, P < 0.001), heat hyperalgesia (15.10 ± 0.79 seconds vs 8.68 ± 1.17 seconds, radiant heat, P < 0.01), cold allodynia (2.75 ± 0.26 seconds vs 1.68 ± 0.08 seconds, dry ice test, P < 0.01), and anxiety-like behaviors (Elevated Plus Maze Test, Open Field Test). On the contrary, reshaping gut microbiota of mice with SCD with FMT from WT mice resulted in reduced tactile allodynia (0.05 ± 0.01 g vs 0.25 ± 0.03 g, P < 0.001), heat hyperalgesia (5.89 ± 0.67 seconds vs 12.25 ± 0.76 seconds, P < 0.001), and anxiety-like behaviors. These findings provide insights into the relationship between gut microbiota dysbiosis and pain in SCD, highlighting the importance of gut microbial communities that may serve as potential targets for novel pain interventions.
Collapse
Affiliation(s)
- Yavnika Kashyap
- Departments of Pharmaceutical Sciences and Center for Biomolecular Science, University of Illinois, Chicago, IL, United States
| | - Zaijie Jim Wang
- Departments of Pharmaceutical Sciences and Center for Biomolecular Science, University of Illinois, Chicago, IL, United States
- Department of Neurology & Rehabilitation, and Sickle Cell Center, University of Illinois College of Medicine, Chicago, IL, United States
- Department of Biomedical Engineering, University of Illinois, Chicago, IL 60607, United States
| |
Collapse
|
10
|
Li H, Lv N, Li D, Qian Y, Si X, Hua Y, Wang Y, Han X, Xu T. Tongbian decoction restores intestinal microbiota and activates 5-hydroxytryptamine signaling: implication in slow transit constipation. Front Microbiol 2024; 14:1296163. [PMID: 38287961 PMCID: PMC10822989 DOI: 10.3389/fmicb.2023.1296163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/01/2023] [Indexed: 01/31/2024] Open
Abstract
Introduction Slow transit constipation (STC) is a type of functional constipation. The detailed mechanism of STC, for which there is currently no effective treatment, is unknown as of yet. Tongbian decoction (TBD), a traditional Chinese medicinal formula, is commonly used to treat STC in clinical settings. However, the potential impact of TBD on the management of STC via modulation of the gut microbiota remains unclear. Methods Pseudo-germ-free rats were constructed after 6 days of treatment with bacitracin, neomycin, and streptomycin (abbreviated as ABX forthwith). Based on the successful construction of pseudo-germ-free rats, the STC model (ABX + STC) was induced using loperamide hydrochloride. After successful modeling, based on the different sources of donor rat microbiota, the ABX + STC rats were randomly divided into three groups: Control → ABX + STC, STC → ABX + STC, and STC + TBD → ABX + STC for fecal microbiota transplant (FMT). Body weight, fecal water content, and charcoal power propelling rate of the rats were recorded. Intestinal microbiota was detected by 16S rRNA sequencing, and the 5-hydroxytryptamine (5-HT) signaling pathway was examined by western blots, immunofluorescence, and immunohistochemical analysis. Results After treatment with fecal bacterial solutions derived from rats treated with Tongbian decoction (TBD), there was an increase in body weight, fecal water content, and the rate of charcoal propulsion in the rats. Additionally, activation of the 5-hydroxytryptamine (5-HT) signaling pathway was observed. The 16S rRNA sequencing results showed that the fecal bacterial solution from TBD-treated rats affected the intestinal microbiota of STC rats by increasing the proliferation of beneficial bacteria and suppressing the expansion of harmful bacteria. Conclusion Our study showed that TBD alleviated constipation in STC rats by modulating the structure of the intestinal microbiota.
Collapse
Affiliation(s)
- Hongjia Li
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Na Lv
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dongna Li
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yunzhi Qian
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Xianghuan Si
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuanqing Hua
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yujuan Wang
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiaojuan Han
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Tianshu Xu
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
11
|
Jeong JJ, Ganesan R, Jin YJ, Park HJ, Min BH, Jeong MK, Yoon SJ, Choi MR, Choi J, Moon JH, Min U, Lim JH, Lee DY, Han SH, Ham YL, Kim BY, Suk KT. Multi-strain probiotics alleviate loperamide-induced constipation by adjusting the microbiome, serotonin, and short-chain fatty acids in rats. Front Microbiol 2023; 14:1174968. [PMID: 37333632 PMCID: PMC10272585 DOI: 10.3389/fmicb.2023.1174968] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
Constipation is one of the most common gastrointestinal (GI) disorders worldwide. The use of probiotics to improve constipation is well known. In this study, the effect on loperamide-induced constipation by intragastric administration of probiotics Consti-Biome mixed with SynBalance® SmilinGut (Lactobacillus plantarum PBS067, Lactobacillus rhamnosus LRH020, Bifidobacterium animalis subsp. lactis BL050; Roelmi HPC), L. plantarum UALp-05 (Chr. Hansen), Lactobacillus acidophilus DDS-1 (Chr. Hansen), and Streptococcus thermophilus CKDB027 (Chong Kun Dang Bio) to rats was evaluated. To induce constipation, 5 mg/kg loperamide was intraperitoneally administered twice a day for 7 days to all groups except the normal control group. After inducing constipation, Dulcolax-S tablets and multi-strain probiotics Consti-Biome were orally administered once a day for 14 days. The probiotics were administered 0.5 mL at concentrations of 2 × 108 CFU/mL (G1), 2 × 109 CFU/mL (G2), and 2 × 1010 CFU/mL (G3). Compared to the loperamide administration group (LOP), the multi-strain probiotics not only significantly increased the number of fecal pellets but also improved the GI transit rate. The mRNA expression levels of serotonin- and mucin-related genes in the colons that were treated with the probiotics were also significantly increased compared to levels in the LOP group. In addition, an increase in serotonin was observed in the colon. The cecum metabolites showed a different pattern between the probiotics-treated groups and the LOP group, and an increase in short-chain fatty acids was observed in the probiotic-treated groups. The abundances of the phylum Verrucomicrobia, the family Erysipelotrichaceae and the genus Akkermansia were increased in fecal samples of the probiotic-treated groups. Therefore, the multi-strain probiotics used in this experiment were thought to help alleviate LOP-induced constipation by altering the levels of short-chain fatty acids, serotonin, and mucin through improvement in the intestinal microflora.
Collapse
Affiliation(s)
- Jin-Ju Jeong
- Institute for Liver and Digestive Disease, Hallym University, Chuncheon, Republic of Korea
| | - Raja Ganesan
- Institute for Liver and Digestive Disease, Hallym University, Chuncheon, Republic of Korea
| | - Yoo-Jeong Jin
- R&D Center, Chong Kun Dang Healthcare, Seoul, Republic of Korea
| | - Hee Jin Park
- Institute for Liver and Digestive Disease, Hallym University, Chuncheon, Republic of Korea
| | - Byeong Hyun Min
- Institute for Liver and Digestive Disease, Hallym University, Chuncheon, Republic of Korea
| | - Min Kyo Jeong
- Institute for Liver and Digestive Disease, Hallym University, Chuncheon, Republic of Korea
| | - Sang Jun Yoon
- Institute for Liver and Digestive Disease, Hallym University, Chuncheon, Republic of Korea
| | - Mi Ran Choi
- Institute for Liver and Digestive Disease, Hallym University, Chuncheon, Republic of Korea
| | - Jieun Choi
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ji Hyun Moon
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Uigi Min
- R&D Center, Chong Kun Dang Healthcare, Seoul, Republic of Korea
| | - Jong-Hyun Lim
- R&D Center, Chong Kun Dang Healthcare, Seoul, Republic of Korea
| | - Do Yup Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sang Hak Han
- Department of Pathology, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Young Lim Ham
- Department of Nursing, Daewon University College, Jecheon, Republic of Korea
| | - Byung-Yong Kim
- R&D Center, Chong Kun Dang Healthcare, Seoul, Republic of Korea
| | - Ki Tae Suk
- Institute for Liver and Digestive Disease, Hallym University, Chuncheon, Republic of Korea
| |
Collapse
|
12
|
Liang Y, Wei X, Ren R, Zhang X, Tang X, Yang J, Wei X, Huang R, Hardiman G, Sun Y, Wang H. Study on Anti-Constipation Effects of Hemerocallis citrina Baroni through a Novel Strategy of Network Pharmacology Screening. Int J Mol Sci 2023; 24:4844. [PMID: 36902274 PMCID: PMC10003546 DOI: 10.3390/ijms24054844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Daylily (Hemerocallis citrina Baroni) is an edible plant widely distributed worldwide, especially in Asia. It has traditionally been considered a potential anti-constipation vegetable. This study aimed to investigate the anti-constipation effects of daylily from the perspective of gastro-intestinal transit, defecation parameters, short-chain organic acids, gut microbiome, transcriptomes and network pharmacology. The results show that dried daylily (DHC) intake accelerated the defecation frequency of mice, while it did not significantly alter the levels of short-chain organic acids in the cecum. The 16S rRNA sequencing showed that DHC elevated the abundance of Akkermansia, Bifidobacterium and Flavonifractor, while it reduced the level of pathogens (such as Helicobacter and Vibrio). Furthermore, a transcriptomics analysis revealed 736 differentially expressed genes (DEGs) after DHC treatment, which are mainly enriched in the olfactory transduction pathway. The integration of transcriptomes and network pharmacology revealed seven overlapping targets (Alb, Drd2, Igf2, Pon1, Tshr, Mc2r and Nalcn). A qPCR analysis further showed that DHC reduced the expression of Alb, Pon1 and Cnr1 in the colon of constipated mice. Our findings provide a novel insight into the anti-constipation effects of DHC.
Collapse
Affiliation(s)
- Yuxuan Liang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyi Wei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Rui Ren
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xuebin Zhang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiyao Tang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jinglan Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoqun Wei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Gary Hardiman
- The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast BT7 1NN, UK
| | - Yuanming Sun
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
13
|
Qi B, Zhang Y, Ren D, Qin X, Wang N, Yang X. Fu Brick Tea Alleviates Constipation via Regulating the Aquaporins-Mediated Water Transport System in Association with Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3862-3875. [PMID: 36802556 DOI: 10.1021/acs.jafc.2c07709] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
This study aimed to investigate the amendatory effects of Fu brick tea aqueous extract (FTE) on constipation and its underlying molecular mechanism. The administration of FTE by oral gavage (100 and 400 mg/kg·bw) for 5 weeks significantly increased fecal water content, improved difficult defecation, and enhanced intestinal propulsion in loperamide (LOP)-induced constipated mice. FTE also reduced colonic inflammatory factors, maintained the intestinal tight junction structure, and inhibited colonic Aquaporins (AQPs) expression, thus normalizing the intestinal barrier and colonic water transport system of constipated mice. 16S rRNA gene sequence analysis results indicated that two doses of FTE increased the Firmicutes/Bacteroidota (F/B) ratio at the phylum level and increased the relative abundance of Lactobacillus from 5.6 ± 1.3 to 21.5 ± 3.4% and 28.5 ± 4.3% at the genus level, subsequently resulting in a significant elevation of colonic contents short-chain fatty acids levels. The metabolomic analysis demonstrated that FTE improved levels of 25 metabolites associated with constipation. These findings suggest that Fu brick tea has the potential to alleviate constipation by regulating gut microbiota and its metabolites, thereby improving the intestinal barrier and AQPs-mediated water transport system in mice.
Collapse
Affiliation(s)
- Bangran Qi
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yuanyuan Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Daoyuan Ren
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xinshu Qin
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Nan Wang
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
14
|
Yi X, Zhou K, Deng N, Cai Y, Peng X, Tan Z. Simo decoction curing spleen deficiency constipation was associated with brain-bacteria-gut axis by intestinal mucosal microbiota. Front Microbiol 2023; 14:1090302. [PMID: 36846756 PMCID: PMC9947565 DOI: 10.3389/fmicb.2023.1090302] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/20/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Simo decoction (SMD) is a traditional prescription for treating gastrointestinal diseases. More and more evidences prove that SMD can treat constipation by regulating intestinal microbiota and related oxidative stress indicators, but the specific mechanism is still unclear. METHODS A network pharmacological analysis was used to predict the medicinal substances and potential targets of SMD to alleviate constipation. Then, 15 male mice were randomly divided into normal group (MN group), natural recovery group (MR group), and SMD treatment group (MT group). Constipation model mice were constructed by gavage of Folium sennae decoction and control of diet and drinking water, and SMD was used for intervention after successful modeling. The levels of 5-hydroxytryptamine (5-HT), vasoactive intestinal peptide (VIP), superoxide dismutase (SOD), malondialdehyde (MDA), and fecal microbial activities were measured, and the intestinal mucosal microbiota was sequenced. RESULT Network pharmacology analysis showed that a total of 24 potential active components were obtained from SMD, and 226 target proteins were obtained after conversion. Meanwhile, we obtained 1,273 and 424 disease-related targets in the GeneCards database and the DisGeNET database, respectively. After combination and deduplication, the disease targets shared 101 targets with the potential active components of SMD. When the mice were intervened with SMD, the 5-HT, VIP, MDA, SOD content, and microbial activity in MT group were close to MN group, and Chao 1 and ACE in MT group were significantly higher than that in MR group. In the Linear discriminant analysis Effect Size (LEfSe) analysis, the abundance of beneficial bacteria such as Bacteroides, Faecalibacterium, Alistipes, Subdoligranulum, Lactiplantibacillus, and Phascolarctobacterium in MT group increased. At the same time, there were some associations between microbiota and brain-gut peptides and oxidative stress indicators. CONCLUSION SMD can promote intestinal health and relieve constipation through brain-bacteria-gut axis associating with intestinal mucosal microbiota and alleviate oxidative stress.
Collapse
Affiliation(s)
- Xin Yi
- The Domestic First-class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Kang Zhou
- The Domestic First-class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Na Deng
- The Domestic First-class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Ying Cai
- The Domestic First-class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xinxin Peng
- The Domestic First-class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Zhoujin Tan
- The Domestic First-class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|